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Abstract

The ”financialization” of commodity markets have become a concern for policy mak-
ers and market participants. What was once a market for the hedging of holding physical
commodities has expanded to become a market for the diversification of financial as-
sets. When financial assets diversification goals are decoupled from the fundamental
factors that affect producers and consumers of physical goods futures markets may not
be as efficient in aggregating information concerning the economics of the underlying
commodity. Theoretical understanding of whether commodity futures market function
well under exogenous shifts in demand for futures contracts depend on our assumptions
of how market participants behave, including their level of risk aversion. This paper
builds a competitive storage model with an explicit futures market that incorporates
irrational shocks to demand for futures contracts. This model is flexible enough to
investigate the impact of the ”financialization” of commodity futures markets and the
resulting impacts.

keywords: commodity, futures, financialization, competitive storage, rational expec-
tations.
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1 Rational Expectations Inventory Model with Futures Con-
tracts

In the summer and fall of 2008, high commodities prices drew the scrutiny of Congress. The
Committee on Homeland Security held hearings on what role institutional investors may
have played in causing commodity futures prices to rise sharply between 2005 to 2008. In
particular, large increases in the volume and position of long-only commodity index funds
were thought to play a role in the rise of futures prices. (cite masters, leiberman)

Furthermore, the increase in commodity futures prices were seen as a threat to the cost
of food in developing countries with countries considering raising export barriers in order
to keep enough foodstuffs in countries to avoid shortages.

A number of academic economists argued that speculative bubbles in futures markets
did not exist according to the available data at the time and that increases in futures prices
are a result of an increase in demand for physical commodities. (Sanders and Irwin, 2010;
Krugman, 2008) In some sense the argument relied on the separation of the futures market
with the physical market, and rest on the fact that the futures price should not have an
independent impact on spot prices absent an accompanying increase in storage and demand
or a decrease in supply. Therefore, it is argued, all changes in the futures price should come
from changes in expectations about the physical world.

However, it is possible that the rise in demand for futures contract itself be used as
basis for forming expectations about the future; expectations that affect choices of pro-
duction, storage and consumption. If the exogenous shock that impacts futures markets
affect expectations of production, consumption and storage, then it is highly likely that
exogoneous shocks to financial markets alone can engendered a change in behavior among
market participants and will thus result in real impacts.

This paper contributes to the debate on the impact of ”financialization” of commodity
futures market by building a competitive storage model linked to an explicit futures market
in order to investigate the theoretical impacts of exogenous shocks to the demand for futures
contracts on our variables of interest: spot price, the quantities of futures contracts held,
futures prices, and inventories. We also examine the dynamics of the price series and
compare the characteristics of our variables of interest under different regimes.

2 Model

Our model follows the competitive rational expectations commodity storage literature of
Williams and Wright (1991); Deaton and Laroque (1992), where a representative firm uses
storage to arbitrage between the current price and the expected future price. More recent
work by Routledge et al. (2000) uses a similar model with a mean-reverting Markov process.
We extend that model by assuming risk aversion on the part of the representative storage
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firm. Moreover, we explicitly model the holdings of futures contracts by the firm and a
financial sector that has exogenous demand for futures contracts. We do this to investigate
the effects of exogenous demand shocks for futures contracts on the spot price, inventory
holdings and quantities of futures contracts held by the representative firm.

The model is a discrete-time, infinite horizon model of a risk averse profit-maximizing
firm that holds inventories and futures contracts in a homogeneous commodity. In each
period t the utility gained from profit Π is represented by the constant relative risk aversion
(CRRA) utility function

U(Πt) =
Π1−α

t

1− α
, (1)

where the α is the risk aversion parameter (α = 0 being the risk neutral case and α = 1
being the equivalent of log utility, lnΠt). Also note that 1/α is the inter-temporal elasticity
of substitution in this formulation, the willingness to substitute aggregate profit over time.
In each period, the profit of each firm is given by the equation

Πt = Pt(It−1(1− δ)− It) + Qt−1(Ft−1 − Pt). (2)

At time t, the firm receives current price Pt for all inventory It−1 carried into the period
and pays the same Pt for all inventory It carried out. Inventory must satisfy the non-
negativity constraint of storage and therefore It ≥ 0, for all time periods. A spoilage or
volumetric storage cost of δ ∈ [0, 1] is assessed on inventory carried into the period. For every
It−1 units of inventory stored last period, only (1−δ)It−1 units are available this period. On
the financial side of the ledger, the firm comes into the period holding Qt−1 contracts short.
The firm receives the futures price Ft−1, and pays Pt at expiration, assuming the futures
and spot price converge at the expiration of the futures contract. Futures contracts are not
subject to any non-negativity constraints. A negative Qt would indicate long positions in
this model.

The representative firm faces a constant discount rate β and decides the level of inventory
It and number of futures contracts Qt to hold in order to maximize the sum of its expected
utility over all future time periods,

max
It,Qt

E

� ∞�

t=1

β
t
U(Πt)

�
. (3)

From these equations, the first order necessary conditions for profit maximization are:

Pt = β(1− δ)E
��

Πt

Πt+1

�α

Pt+1

�
(4)
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and

Ft =
E

�
Π−α

t+1Pt+1
�

E
�
Π−α

t+1

� . (5)

Equations 4 and 5 relate the demand for inventories to the current price of the commod-
ity and the demand for futures contracts to the current futures price. The intuition of Eq. 4
is clear if we set α = 0, the risk neutral case. The equation would simplify into the standard
arbitrage condition Pt = β(1− δ)E[Pt+1], where the firm is equating the benefits of selling
the inventories today with the expected benefits of selling the inventory next period taking
into account the discount rate and the cost of storage.1 With the addition of risk aversion,
the firm is now also concerned with the inter-temporal substitutability of profits, and risk
aversion offers a channel for the purchasing of futures contracts to affect the decision to
store through its impacts on the profit function. Similarly, Eq.5 without risk aversion, is
the standard arbitrage condition that equates the current futures price with the expected
price next period. Equations 4 and 5 describe the equilibrium relationships of prices and
futures prices between periods but does not generate the equilibrium prices themselves. In
order to generate the equilibrium prices we need to specify the demand schedule in both
markets.

In each period, the price of the commodity in the goods (as opposed to the financial
market) will be determined by the equality between the two types of supply, current pro-
duction St and incoming inventory It−1, with the two types of demand, current use Dt plus
the outgoing inventory It. If demand and supply are functions of price, the equation would
be

St(Pt) + It−1 = Dt(Pt) + It. (6)

Rearranging the terms, would yield Dt(Pt)−St(Pt) = It−1−It, net demand as a function
of the change in inventories. If we take the inverse of the left hand side and rewrite the
right hand side as a function of ∆I, then the resulting function Pt = f(∆It) shows that
the price of the commodity in each period depends only on the difference between incoming
inventories and outgoing inventories. We assume that the price arising from this inverse net
demand function is subject to an exogenous shock ηt. We model ηt as a two-state Markov
process.

Pt = f(∆It, ηt). (7)
1
To be clear, these are not risk-free arbitrage conditions. Here and throughout the paper, arbitrage occurs

when a firm is able to buy or sell with a positive expected gain in utility.
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In the financial market, the net demand for futures contracts is assumed to be a function
of the number of contracts Qt transacted in the market, with an exogenous demand shifter
parameter νt.

Ft = f(Qt, νt) (8)

The variable ν can be thought of as the exogenous shock that might cause the futures
demand schedule to rise or fall, a proxy for demand changes in the futures market .

Equations 4, 5, 7 and 8 make up the system of equations that solves the four unknowns:
Pt, It, Ft, and Qt. However, we cannot solve for the equilibrium values using analytical
methods and so we rely on a numerical function iteration algorithm to approximate the
solution.

3 Numerical Simulation

We develop a numerical simulation of the model described in the previous section in Matlab
to calculate the equilibrium spot prices, futures prices, holdings of inventory and futures
contracts. The model finds the infinite horizon equilibria but only models three periods to
do so. This is possible by appealing to rational expectations and noting that each period’s
equilibrium prices and decision variables only depend on the five state variables νt−1, νt,
ηt, Qt−1, and It−1. These five variables are the shock to the futures market in the previous
period, the current shock to the futures market and physical market, the incoming level of
inventories and the incoming holdings of futures contracts. For clarity of exposition, the
three periods will be subscripted by t ∈ {0, 1, 2}; where t = 0 is the previous time period,
t = 1 is the current time period, and t = 2 is the future time period.

We use simple functional forms for net demand of physical goods and futures contracts,
the simulation analogs of equations 7 and 8. For the physical market, we assume a linear
net demand that is a function of inventory changes,

P1 = b(η1 + I1 − I0). (9)

We capture the effect of exogenous shocks either to demand or supply with ηt, an additive
shock that can take on values ηt ∈ {ηH

t , η
L
t }, and b is a parameter that adjusts the slope of

the net demand function.
For the futures market, the equilibrium futures price F1 will be determined by equation

5 and the net demand function in the financial markets. For the simulation, we use a logistic
net demand function of the following form:

6



F1 =
η

h

1 + e−(Q1/c+ν1)
. (10)

We use a logistic function so that futures prices are nonnegative, and never above the
highest price seen in the simulation.2 Just as with the shock to the physical market, the
random shock in the futures market, ν, is binary and takes values νt ∈ {νL

t , ν
H
t }, while the

parameter c adjusts the slope of the net demand for futures contracts.
Coming into the present period, t = 1, our representative firm holds a certain quantity

of inventory, I0, and futures contracts, Q0 from the previous period, and is aware of the
previous shock in the futures market, ν0. The firm needs to know the previous futures
market shock because it affected the price at which the contracts were purchased and the
profitability of contracts Q0. The profitability in the current period, Π1 affects the degree
of risk aversion of the firm through the ratio Π1

Π2
in equation 4. The representative firm also

knows the current shock η1 and ν1. With this information it chooses I1 and Q1 to maximize
the expected utility of the sum of current and future profits given by equation 3.

The representative firm In each period finds itself facing a world described by its own
holdings of I0 and Q0 and three shocks, ν0, η1,and ν1. Each of these shocks are binary and
can be high or low giving us eight combinations. These eight combinations (or scenarios) are:

Scenario Shocks
1 ν

H

0 η
H

1 ν
H

1

2 ν
H

0 η
H

1 ν
L

1

3 ν
H

0 η
L

1 ν
H

1

4 ν
H

0 η
L

1 ν
L

1

5 ν
L

0 η
H

1 ν
H

1

6 ν
L

0 η
H

1 ν
L

1

7 ν
L

0 η
L

1 ν
H

1

8 ν
L

0 η
L

1 ν
L

1

The transition matrix below gives us the probability of moving from the current regime
(column)3

2
This is useful in setting up the simulation since we use a grid space spanned by I0 and Q0, and this

functional form ensures that we enter the current period with reasonable futures prices.
3
HHH will be used interchangeably with νH

0 ηH

1 νH

1 when the meaning is clear. As shown, the probability

of transitioning from HHH to HHL is .1 or 10
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HHH HHL HLH HLL LHH LHL LLH LLL

ν
H

0 η
H

1 ν
H

1 .6 0 .2 0 .6 0 .2 0
ν

H

0 η
H

1 ν
L

1 .1 0 .1 0 .1 0 .1 0
ν

H

0 η
L

1 ν
H

1 .1 0 .1 0 .1 0 .1 0
ν

H

0 η
L

1 ν
L

1 .2 0 .6 0 .2 0 .6 0
ν

L

0 η
H

1 ν
H

1 0 .6 0 .2 0 .6 0 .2
ν

L

0 η
H

1 ν
L

1 0 .1 0 .1 0 .1 0 .1
ν

L

0 η
L

1 ν
H

1 0 .1 0 .1 0 .1 0 .1
ν

L

0 η
L

1 ν
L

1 0 .2 0 .6 0 .2 0 .6

The probabilities in the transition matrix are chosen to simulate the higher likelihood of
physical and futures market to be in similar states, i.e., when the physical market demand
is high, the futures market demand for contracts will also be high.

Two-dimensional graphs of equilibrium P1, F1, I1, and Q1 as a function of incoming
inventory, I0, when Q0 = −0.5 is graphed for the eight possible scenarios. (Fig.1,2)4

4
The relevant parameters for these graphs are: α = 0.15, b = .5, c = .5, δ = 0.1, r = 0.05, νH

= 1.5,

νL
= −1, ηH

= 3, ηL
= 1.5, and a constant = 4 is added to the profit function in each period to speed

convergence
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(a) scenario 1, ν0 = νH

0 , η1 = ηH

1 , ν1 = νH

1 (b) scenario 2, ν0 = νH

0 , η1 = ηH

1 , ν1 = νL

1

(c) scenario 3, ν0 = νH

0 , η1 = ηL

1 , ν1 = νH

1 (d) scenario 4, ν0 = νH

0 , η1 = ηL

1 , ν1 = νL

1

Figure 1: Scenarios 1 to 4
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(a) scenario 5, ν0 = νL

0 , η1 = ηH

1 , ν1 = νH

1 (b) scenario 6, ν0 = νL

0 , η1 = ηH

1 , ν1 = νL

1

(c) scenario 7, ν0 = νL

0 , η1 = ηL

1 , ν1 = νH

1 (d) scenario 8, ν0 = νL

0 , η1 = ηL

1 , ν1 = νL

1

Figure 2: Scenarios 5 to 8
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