
1 
 

The Design of Multiyear Crop Insurance Contracts 

 

 

 

Ying-Erh Chen 

North Carolina State University 

Email: yechen@ncsu.edu 

Barry K. Goodwin 

North Carolina State University 

Email:barry_goodwin@ncsu.edu 

 
 
 
 
 
 
 
Selected Paper prepared for presentation at the Agricultural & Applied Economics Association 2010 
AAEA, CAEA, & WAEA Joint  Annual Meeting, Denver, Colorado, July 25-27, 2010  
 

 

 

 

 

 

 

Copyright 2010 by Ying-Erh Chen and Barry K. Goodwin. All rights reserved. Readers may make 
verbatim copies of this document for non-commercial purposes by any means, provided that this 
copyright notice appears on all such copies.   



2 
 

Introduction 

Agricultural production suffers potential risks because of yield and price instabilities. These 

instabilities can result from various unpredictable factors, including natural disasters such as fire, 

drought, floods, and pest damage. Yield volatility causes price movements and also income 

instability for farmers. In order to help protect farmers from production, price and income risks, 

the Federal Crop Insurance Program provides various types of insurance.  

Some insurance is based on the farm level, such as farm-level yield insurance (Multiple Peril 

Crop Insurance or MPCI), and farm-level revenue insurance (Crop Revenue Coverage (CRC) 

and Revenue Assurance (RA) coverage). The MPCI policy protects farmers against individual 

yield losses. Under this plan, insured farmers pay premiums based on crop yield for a specific 

geographical area, usually the county in which the farm is located. The Federal Crop Insurance 

Corporation (FCIC) provides indemnities when actual yields fall short of the farm’s insured yield. 

In 1985, the MPCI policy changed to adopt actual production history (APH) for the insured unit 

in order to determine the farmers’ premiums. APH is based on the average of four- to ten-years 

of realized yields for the insured unit. 

Other types of crop insurance are based on an index or on yields at an area level such as area-

level yield insurance (Group Risk Plan or GRP) and area-level revenue insurance (Group Risk 

Income Protection (GRIP). In GRP, each farmer chooses a coverage rate for the insured unit. 

Then the insurance company predicts the county yield for the current insured year based on that 

county’s data over a span of years along an adjustment for the yield trend for every insured 

farmer in that area. Finally, the insurance company uses the expected county yield and coverage 

rate in order to calculate a yield guarantee. The most distinct characteristic of GRP is that the 

farmers that are insured will obtain an indemnity when the county average yield is below the 
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guaranteed yield regardless of the individual yield of the grower. Moreover, insured farmers 

under the GRP plan pay their premiums either after the crop has been harvested or when an 

indemnity payment is made, depending on which one is earlier.   

Current MPCI and GRP are designed to mitigate monetary fluctuations resulting from yield 

losses for a specific year. However, yield realizations (or yield realization tendency) can vary 

from year to year and may depend on the correlation of yield realizations across years.  Many 

farm programs have as their stated intention the desire of policymakers to stabilize farmers’ 

incomes over time. If poor yield realizations can be offset by another year’s better yield 

realizations, the actuarially fair rate, which is given by the expected loss divided by liability, is 

expected to decrease when current single-year MPCI and GRP contracts are extended to multiple 

periods. Therefore, in this proposed multiyear MPCI and GRP, insurance terms are extended to 

more than a year and the premium, liability and indemnity are also determined by a multiyear 

term. We demonstrate in this paper that, to the extent that yield and price risks are not perfectly 

correlated across years, significant premium savings may be possible when coverage is based 

upon sums or averages across years rather than on a year-by-year basis.   

The proposed multiyear crop insurance plan has the following properties: (1) the plan provides 

lower actuarially fair premium rates than current single year plans; (2) farmers obtain a total 

indemnity at the end of the insured year; (3) the plan offers partial payment in the years that 

farmers have losses that are sufficient to cover their production costs. For example, if a farmer 

purchases a two-year insurance plan, the farmer will obtain total indemnity when the total yield 

over two years is less than the expected yield multiplied by coverage rates for two years. If the 

farmer experiences a serious loss in the first year, a partial payment will be paid to cover the 

farmer’s production costs. Therefore, the farmer can have the ability to repay any loan he may 
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have borrowed for the first year even though total indemnity is paid in the second year.  Many 

possible contract designs and features can be envisions within this multiyear framework.  The 

intent of our paper is to describe and model such designs using estimates of correlation structures 

across years. 

Our main goal is to design multiyear insurance contracts based on the joint distributions of yield 

across years. We will demonstrate that the actuarially fair premium rate of a multiyear insurance 

contract depends on the degrees of correlation of yield across years through simulation. 

Therefore, modeling and estimating a correlation of joint distributions for yields in a multiyear 

insurance design is an important task. As joint distribution for two marginal distributions may 

not always have a closed form expression, modeling joint distribution can become complicated.  

Several approaches have been proposed in order to model the correlation between distributions 

without explicitly modeling the joint distribution. One commonly used approach to modeling a 

multivariate distribution is based on non-parametric methods such as Kernel function (Zheng et 

al. 2008).  However, in this approach the empirical distributions are restricted to observed data 

and a large amount of simulations are required in order to obtain a continuous distribution 

(Vedenov et al. 2008).  

Another school of thought uses the inverse hyperbolic sine transformation (IHST) (Johnson 1949) 

in order to model non-normal distributions. The IHST method was extended to model 

multivariate non-normal distributions that account for skewness, kurtosis, heteroskedasticity and 

correlation by Ramirez (Ramirez 1997). However, this approach relies on a correlation matrix 

that measures the dependence structure. This structure may not be straightforward to obtain in 

practice (Vedenov et al. 2008).  



5 
 

Recently, copula has become a popular approach in order to model joint distributions (Vedenov 

et al. 2008, Tejeda et al. 2008). Copula provides flexibility as a dependence function that binds 

marginal distributions together in order to express joint distribution without sacrificing properties 

of marginal distributions. In other words, when one doesn’t know the form of joint distribution, 

one can use copula that adequately captures dependence structures of the data with reserving 

attractive properties of the marginal distributions. Therefore, one can use copula in order to 

express a multivariate distribution in terms of marginal distribution, regardless of the form of the 

marginal distribution. Copula methods were also adopted in our studies in order to model joint 

distributions of yield. 

Pearson correlation coefficient by far is the most adopted dependence concept (Trivedi and 

Zimmer, 2005). Therefore, correlation of yield across years was estimated for farm- and county-

level data based on Pearson correlation coefficient in preliminary empirical results. However, 

there are three limitations of Pearson correlation coefficient (Trivedi and Zimmer, 2005). The 

first limitation is that Pearson correlation coefficient represents a weakness of correlation as a 

measure of dependence because, in general, a zero correlation does not imply independence. The 

second limitation is that it is not defined for some heavy-tailed distribution whose second 

moments do not exist. The third limitation is that it is not invariant under a strictly increasing 

nonlinear transformation. These limitations motivate us to use an alternative measure of 

dependence: rank correlation such as Spearman’s rank correlation. We used Spearman’s rank 

correlation in our copula approach study. Different copula families have their definitions for 

correlation coefficients. Thus, the estimated correlation coefficients from copula may not be 

straightforward to interpret. Therefore, in order to easily interpret the correlation coefficients, we 



6 
 

transformed the dependence parameters estimated from copula to Spearman’s rank correlation in 

our multiyear insurance contract.  

A copula C is a multivariate joint distribution whose marginals are all uniformly distributed on 

the interval [0, 1]. 

1 P 1 1 P PC (u , ,u )=Pr(U u , ,U u )    

Sklar (1959) demonstrated that there is always a p-dimensional copula C such that for all x in the 

domain of F where F is a p-dimensional distribution function with margins pFF ,...,1 ,  

)},...,({),...( 111 pp FxFCxxF   

Archimedean Copula Family 

An Archimedean copula with two random variables u and v is constructed as: 

1C(u, v) = ( (u) + (v))    

where 

(1)  is a continuous, strictly decreasing generator function from [0, 1] to [0,∞] 

  such that 10)(,0)(,0)1( '''  t all for 0tt  .  

(2) 1  denotes the pseudo-inverse of  

(3) C is the function from [0, 1] to [0, 1]  

There are several generator functions in the Archimedean copula family, including the Clayton, 

Frank, and Gumbel Copulas.   is the parameter of copula in the following copula function: 
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(a) Clayton Copula: 

A Clayton Copula takes the form: 

),0()1();,(
1


 θ  wherevuvuC   

(b) Frank Copula: 
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(c) Gumbel Copula: 

A Gumbel Copula is constructed as: 

),1[
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θ where

vuvuC   

Normal Copula Family 

Another popular copula family is the normal copula family. Farlie-Gumbel-Morgenstern (FGM), 

Gaussian and t-Copula functions are included in the normal copula family. Their densities are 

described as follows: 
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(a) Farlie-Gumbel-Morgenstern (FGM) copula: 

A Farlie-Gumbel-Morgenstern copula is constructed as: 

( , ) (1 )(1 )

1 1

C u v uv uv u v

where





   

  
 

(b) Gaussian Copula: 
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Φ-1
 denotes the inverse of the distribution function of the univariate standard normal distribution 

and R12 is the linear correlation coefficient of the corresponding bivariate normal distribution. 

(c) t-Copula: 
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where R12 the same definition as in the Gaussian copula. tv is the t distribution with the degree of 

freedom v. 

Types of Dispersion Structures 

When implementing a three-year GRP, we need to consider the pairwise correlations between 

years. These pairwise correlations can be organized by using different dispersion structures. In 

this chapter, four types of dispersion structures were commonly used to fit the copula models: 

autoregressive of order 1 (Ar1), exchangeable (EX), Toeplitz (TOEP) and unstructured (UN) 

dispersion matrices. The corresponding dispersion matrix, or correlation matrices, when 

dimension is equal to 3 are as follows: 
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(1) Autoregressive of order 1 correlation matrix: 

Ar1 imposes that the impact on crop yields for the current year diminishes in the following years. 

2
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(2) Exchangeable dispersion structure: 

EX imposes that the correlation among years does not vary over time. 
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(3) Toeplitz dispersion structure: 

TOEP imposes that the impact on crop yields is consistent when the intervals between years are 
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(4) Unstructured dispersion structure: 

UN imposes that the correlations among years vary over time. 
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Parameter Estimation- Full Maximum Likelihood (FML) (Trivedi and Zimmer, 2007) 
 
The FML method, which maximizes likelihood function, is a method used to estimate the 

parameters of the copulas and the parameters for the marginal distribution functions 
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simultaneously. The maximum likelihood estimation method maximizes the full likelihood 

function for the sample based on the multivariate data.  

Consider the derivation of the likelihood for a bivariate model ),( 21 yy . The marginal density 

functions is jjjjjjjjj yxyFxyf  /);|();|(    

and the copula derivative is 1,2j for FxFxFC jj  /));;(),;((( 112111    
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FML estimates are obtained by solving the score equations 0/  NL  where ),,( 21  . 

FML will be used for parameter estimation in our real data analyses. 

The multiyear revenue insurance plan will be constructed as a hybrid of a single year and 

multiyear revenue insurance plan coverage. That is, farmers will obtain a partial payment of 

indemnity in each year if their actual revenue in that year falls below a certain level. Also, 

farmers will obtain an indemnity at the end of insured year if the average of the actual revenue 

for two years falls below a certain level. The partial payment of indemnity will be made to 

mitigate revenue loss in each year. Therefore, farmers are assured that the revenue loss would 

not bankrupt them because this partial payment of indemnity provides a safety net to protect 

farmers from the revenue loss in some degree. If farmers have an operation loan from banks, 

they will be able to pay the loan and keep their good credit through this partial payment of 
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indemnity. This will be more attractive to lenders as loans will be better collateralized.  

Therefore, farmers with good credit can continue to take out loans for production costs for the 

next period. To farmers, then, this proposed multiyear revenue insurance plan would also be 

more attractive than the current revenue insurance plan because of the lower actuarially fair 

premium rate and the partial payment of total indemnity.  

Total indemnity is made when the average revenue over two years is less than the guaranteed 

revenue. We present the total indemnity determination of a two-year insurance plan in the 

following equation: 

)(*
2 2

)E(R)E(RRR 21
A
2

A
1 


 

 

Where  

1,2i i, year  at  revenue  actual RA
i   

i year  at  revenue  expected RE ii )(
 

1rate, coverage    

 Partial payment of total indemnity is the difference between the threshold )( i  and the actual 

revenue ),( 21
AA RR , where γ is the coverage rate for the partial payment of total indemnity and i  

is expected yield in year i . The ratio γ can be calculated in the following: 

price  predicted

cost  variable  estimated
  

 

Simulation-Actuarially Fair Premium Rate and Correlation across Years 

In this section, we will show the simulation results for the actuarially fair premium rates based 

on different correlation of yields among different years for the two-year and three-year yield crop 
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insurance plans. For simplicity, we only simulated yield distributions for yield crop insurance 

plans. However, the results can be applied to revenue insurance plans as well. Several 

assumptions were made in the simulations. These assumptions are described as follows. 

(a) The yield distribution for each year follows a Beta distribution with the shape parameters  

     α = 2, β = 1.5 and data ranging from 0 to 200. 

(b) The correlation coefficient of yield distributions between the first year and second year varies                      

between -1 and 1. The correlation coefficient of yield distributions among the first, second 

and third years is between -0.5 and 1. 

(c) The farmer selects the 70% coverage rate and the expected yield is 160. 

Indemnity is paid if the averaged yield over two or three years is below the guaranteed yield, 

which is 0.7×160=112. Then the actuarially fair rates are calculated based on the loss function. 

Results are shown in Tables 1. In Table 1 , rate12 and rate123 are the actuarially fair premium rates 

of  two-year and three-year yield crop insurance plans, respectively; rho is the Spearman 

correlation coefficient of yield distributions among the first, second and third year. 

Table 1. Simulation Result for Two-and-Three Year Yield Crop Insurance Plan.  

Observation rate12 rate123 rho Observation rate12 rate123 rho 

1 0 N/A -1 11 0.11 0.087 0 
2 0.03 N/A -0.9 12 0.116 0.097 0.1 
3 0.044 N/A -0.8 13 0.122 0.097 0.2 
4 0.055 N/A -0.7 14 0.129 0.114 0.3 
5 0.066 N/A -0.6 15 0.133 0.121 0.4 
6 0.074 0.007 -0.5 16 0.14 0.13 0.5 
7 0.082 0.035 -0.4 17 0.144 0.137 0.6 
8 0.091 0.052 -0.3 18 0.149 0.144 0.7 
9 0.097 0.066 -0.2 19 0.155 0.152 0.8 
10 0.104 0.076 -0.1 20 0.162 0.158 0.9 
    21 0.166 0.165 1 

Note: The rate for a single year plan is 0.165, which is the same as rates for multi-year plans   

          when rho=1. 
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From Table 1, several conclusions can be made: (1) the actuarially fair premium rates for two-

year and three-year yield crop insurance plans are at the minimum (i.e. 0) when the correlation 

coefficients are close to -1 and -.5, respectively; (3) the actuarially fair premium rates for two-

year and three-year yield crop insurance plans are at the maximum (.166 and .165, respectively) 

when the correlation coefficient is 1, which is the same as the actuarially fair premium rate of a 

one-year yield crop insurance plan; and (4) the actuarially fair premium rates of the two-year and 

three-year yield crop insurance plan with rho<1 are lower than the actuarially fair premium rate 

for a single year. We can use the following graph to present this simulation result for the 

relationship between correlation across years and actuarially fair premium rate.  

 

Figure 1. Relationship between Actuarially Fair Premium Rate and Correlation across Years 
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Preliminary Empirical Results for Multiyear Yield Crop Insurance Plan   

The simulation results suggested that when the Spearman’s rank correlation of yields across 

years is not perfectly positive correlated, the actuarially fair rate can be lower in the multiyear 

yield insurance plan than the single-year plan. In this section, we used farm and county-level 

data for Iowa corn to investigate the presence and level of correlation of yield across years from 

Pearson correlation coefficient estimates. Though we mentioned that Pearson correlation 

coefficient may be a weak correlation as a measure of dependence, Pearson correlation 

coefficient results estimated from real data can be viewed as an indicator if multiyear insurance 

plan can possibly offer lower premium in real case because it’s a simple calculation. As long as 

Pearson correlation coefficient from real data is not close to 1, we have good reason to believe 

that the implementation of multiyear insurance plan can offer lower actuarially fair premium rate 

in practice. We will see that Pearson correlation coefficients estimates suggest that correlation of 

yield across years is not significantly correlated in most cases on the farm and county-level data. 

Therefore, this motivates us to obtain better dependence parameter estimates than Pearson 

correlation coefficient from the copula approach and estimate the actuarially fair premium rates 

of multiyear insurance plans based on the copula models.      

Data 

The farm-level data used in this study were collected from the Risk Management Agency (RMA) 

of the USDA. We examined corn yield data in Iowa and this farm-level data set consists of 

yearly yield quantity, insured acres of yield measured, the years of yield measured, county and 

state location, the type of insurance plan and practice for each insured farm. This farm-level data 
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set consists of 99 counties containing 42722 observations of Iowa corn. The beginning years and 

ending years of farm data vary from farm to farm. The beginning years range from 1986 to 1989, 

and the ending years range from 1995 to 1997. Data which are not continuous for some farms 

were excluded from our analysis due to the difficulty of measuring correlation of yields between 

two years. A “transitory yield” is assigned to a farmer whose yield history is not sufficient to 

calculate actuarially fair premium. Transitory yields were excluded in our study.  

Since each yield observation in this farm data is continuous for 10 years in the same location, we 

don’t have to consider the rotation practice issue in our analysis. All farms in this data set insured 

their crops on at least one occasion during the time period examined and the locations (county 

and state) for each insured farm were reserved in the data. This allowed us to aggregate farm-

level yields under different insurance plans and practices for each county, and estimate yield 

correlation across years (Pearson correlation coefficient) on the county- and state-level. The 

aggregated farm-level data on the county- and state-level allowed us to (1) investigate the 

insured yield correlation on the county- and state-level across years; (2) compare insured yield 

correlation on the county level across years with yield (including uninsured and insured farms) 

correlation across years from county-level data; (3) investigate the level of spatial correlation of 

yield correlation across years among counties. 

Other than analyzing the farm-level data for Iowa corn, we also analyzed the county-level data. 

County corn yield data from 1928 to 2007 in Iowa were obtained from the Risk Management 

Agency (RMA) of the USDA. The average county yield for 80 years in Iowa was calculated, and 

the top ten production counties in Iowa were chosen for analysis.   

Production costs were collected for Iowa from the State Extension Services. We used variable 

costs and futures to calculate coverage rates for partial payment. Table 2 shows the values of the 
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variable costs in different states, futures prices and futures periods for different crops. Variable 

costs include fertilizer, seed, pesticide, dryer haul, machinery fuel, machinery repairs, hauling, 

and interest on pre-harvest variable costs in our study. Iowa State Extension Service provides 

variable costs at different yield levels and only one of the yield levels was chosen in our study. 

We used futures prices from the Chicago Board of Trade for corn. Then the coverage rates of 

partial payment, which is also shown in Table 2, were calculated based on the variable cost 

divided by the futures.  

Table 2. Coverage Rate of Partial Payment for Iowa Corn  

Year of 
budget 

State Commodity Practices Period of 
futures 

Variable 
cost based 
on the yield 
level 

Coverage rate 
of Partial 
Payment 

2009 Iowa Corn Corn 
following 
corn 

Dec/2010 145bu./ac 2.99/4.45*=.67

Note: The denominator is the futures from Chicago Board of Trade. 

Remove Time Trend for County Data 

With the improvement of technology, crop yields increase over time. Thus, we need to remove 

the time trend for the yield data collected over different years. First we fit the time trend model 

for crop yields over years. The relationship between crop yield yt and time could be represented 

as 

)1(...eqeXy ttt     

where tX  represents the linear or nonlinear function of time. 

If crop yields increase over time linearly, we can use the following trend model to fit the 

relationship between crop yield and time: 
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If crop yields grow quadratically, we can use the following trend model to fit the relationship 

between crop yields and time: 
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Regression analysis suggested that corn yields of county data in our analysis grow quadratically 

(i.e. the null hypothesis of β2=0 is rejected), and thus eq (3) was adopted to remove the time 

trend. After we fit the time trend model for crop yield over time, we obtained trend-predicted 

yield data ( )ty


and deviation from the trend ( )te . Since lots of empirical studies support the idea 

that deviations from the time tend to be proportional to crop yield, we use the following equation 

to normalize crop yields over time (Miranda and Glauber, 1997): 

time over data yield normalized is y

nobservatio last of data yield detrended is y

where

eq  . . .
y
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Empirical Results 

In this section, we will present the following: (1) Pearson correlation coefficient of corn yields of 

county data for each county between two consecutive years; and (2) Pearson correlation 

coefficients of the corn yields for each county between two consecutive years, after we 

aggregated the farm data to a county level; (3) Pearson correlation coefficient of the corn yield 
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between two consecutive years, after we aggregated the farm data to a state level. In our results 

for p-values, p-values < 0.0001 were replaced by zero. 

Top ten production counties of Iowa corn were chosen. After detrending the normalized county 

yield data, Pearson correlation coefficients were calculated and the significance of the 

correlations between y1 and y2, which are yields between two years, were tested. Pearson 

correlation coefficients and p-values are summarized in Table 5. In Iowa, Pearson correlation 

coefficients are positive except in Scott County. No p-value in these counties is significant when 

the significant level is equal to 0.01 or 0.025. In other words, there is no significant correlation of 

yield across yeas in these 10 counties in Iowa. From these Pearson correlation coefficients 

estimated from county data in Iowa, we can conclude that yield across years are not significantly 

correlated when significant level is equal to .01 and .025. 

Table 5. Pearson Correlation coefficient results for Iowa corn (county-level data)  

Iowa 

Cedar County 0.012 (0.091) Hamilton County 0.156 (0.168) 

Scott County -0.014 (0.089) Wright County 0.215 (0.056) 

Ground County 0.156 (0.179) Webster County 0.197 (0.081) 

Marshall County 0.137 (0.225) Humboldt County 0.15 (0.184) 

Hardin County 0.124 (0.274) Boone County 0.161 (0.155) 
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Pearson Correlation Coefficient for Farm Data 

Pearson correlation coefficient and p-value for Iowa corn at the state level based on the 

aggregated farm data is -0.362 and 0.337, respectively. The statistics indicate the correlation 

across years and the significance of correlation. Iowa corn has negative correlation coefficient 

across years and this may suggest that moral hazard and adverse selection may result in unstable 

corn yield in Iowa.  P-value of Iowa corn is not significantly correlated at level 0.05. The 

correlation results of Iowa corn can provide a guideline for government agency to prioritize 

states to implement the multiyear insurance plans. For example, the actuarially fair premium rate 

for Iowa corn can be much lower based on the multiyear insurance plan than single year plan due 

to the negative correlation.  

Next, we show Pearson correlation coefficients for corn at the county level based on the farm-

level data through the following correlation maps. The following figure provides Pearson 

correlation coefficient and p-value results for farm data in graphical form at the county level. We 

used four colors in the maps to show four levels of Pearson correlation coefficients. Moreover, 

we used histograms to show p-value results for most counties. 

For Iowa corn in Figure 2, Pearson correlation coefficient increases from the western to eastern 

Iowa. From Figure 3 the average annual precipitation increases from the western to eastern Iowa. 

Figure 2 and 3 suggest that (1) precipitation may be a key factor to influence yield stability of 

Iowa corn; (2) Iowa corn is more stable in eastern Iowa than west and thus Iowa corn may prefer 

to grow under average annual precipitation between 34-38 inches based on the precipitation map.   
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    Figure 2. Correlation Result for Iowa Corn (Farm-Level Data) 

 

    Figure 3. Annual Precipitation Map in the United State from 1971 to 2000 
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Figure 4. Histogram of P-Values of Iowa at County Level (Crop: Corn) 

 

A Two-and-Three-Year Insurance Contract Demonstration-Adair in Iowa 

We used eq(3) and eq(4) to detrend and normalized corn yield data for Adair in Iowa and the 

parameter estimates for detrended data are shown in Table 6. After we obtained the detrended 

normalized data, we used Goodness-of-Fit Tests for Normal and Beta Distributions to see which 

distribution supports the detrended normalized data. From Table 7, the tests are rejected at the 

0.05 significance level so that the detrended normalized data doesn’t have a normal distribution. 

From Table 7, the tests cannot be rejected at the significance levels (1% and 5%), so the 

detrended normalized data may follow a Beta Distribution. 

To model the dependence structure of joint distribution for the two-year insurance plan, we used 

the “Copula” package (Yan, 2006) provided in R to model the copula distributions. We used 

several copula functions (Normal, Clayton and Flank Copula) with Beta marginals to estimate 

parameters of Beta distributions and copula parameter simultaneously; we then selected the 
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copula which fits the data best according to their maximum likelihood values and Akaike's 

information criterion  (AIC) for two- and three- year insurance plans, respectively. In the 

following Tables, 1 , 2 , 3 , 1 , 2  and 3  are estimated shape parameters for Beta 

Distributions; and 32,1 ,,   are Spearman’s correlation coefficients converted from the copula 

parameters using the Adair County yield data in Iowa. 

Table 6. Parameter Estimates for Detrended Data 

Variable Parameter Estimate  Standard Error 

Intercept 32.48 5.482 

t 0.53 0.312 

t2 0.013 0.003 

 

Table 7. Goodness-of-Fit Test for Normal and Beta Distribution  

Goodness-of-Fit Test for Normal Distribution 

Test Statistic p-value 

Kolmogorov-Smirov 0.117 <0.01 

Cramer-von Mises 0.204 <0.005 

Anderson-Darlilng 1.285 <0.005 

Chi-Square 12.411 0.015 

Goodness-of-Fit Test for Beta Distribution 

Chi-Square 6,472 0.167 
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For the three-year plan, we used the Beta distributions as marginal distributions to fit to Normal, 

Clayton and Frank copula models with the autoregressive of order 1 correlation structure,  

Exchangeable dispersion structure, Toeplitz dispersion structure and Unstructured dispersion 

structure. We only present the Frank Copula fitting results with Beta marginals and the UN 

correlation structure under the three-year GRP because this fitting has the lowest AIC values 

among copula models with different correlation structures.  

Table 8.  Estimation results of Copula model 

Estimation Result for Frank Copula with Beta Marginals under Two-Year GRP 

Variable Parameter estimate Standard error 

α1 7.781 1.234 

β1 3.596 0.548 

α2 7.8 1.237 

β2 3.614 0.551 

Spearman’s correlation(ρ) 0.467 0.711 

Maximized likelihood 100.043 

Estimation results for Frank Copula with Beta marginals and UN Correlation structure under 

three-year GRP  

α1 7.795 1.24 

β1 3.667 0.56 

α2 7.684 1.231 

β2 3.58 0.549 

α3 7.723 1.233 

β3 3.613 0.553 

ρ1 0.029 0.113 

ρ2 0.175 0.109 

ρ3 0.002 0.113 

AIC=314.98 
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Based on the results above, we simulated a joint yield distribution with two marginal beta 

distributions based on the correlation we obtained from the copula function. Then we estimated 

the actuarially fair premium rates for two-year crop insurance from the joint yield distributions. 

We also used the same process to estimate actuarially fair premium rates for three-year insurance 

contract. These results are shown in Table 9. 

After we obtained the coverage rates for partial payments from Table 2, we demonstrated how 

partial payment can help farmers repay their debt when they have yield loss in either one of the 

two years or both years. The results are shown in Table 9. The data period is from 1926 to 2005 

and the Spearman correlation coefficient between two years is 0.072 estimated from the Frank 

Copula. We then simulated a joint yield distribution with two marginal beta distributions with 

0.072 correlation between years. Please see the parameters of beta distributions estimated by the 

Frank Copula in Table 9. The estimated actuarially fair premium rate based on the simulated 

model is 0.003 for a two-year insurance contract. We assumed the expected yield is 160 bushels 

per acre and the coverage rate for the total indemnity is 70%. In Table 2, the coverage rate for 

the partial payment is 67% of Iowa corn. We assume the realized yield is 90 and 135 bushels per 

acre in the first and second insured years, respectively, and the insured price is $2.5 per bushel. 

The average farm size of Iowa corn is 242 acres (2009, Goodwin). Since yield in the first insured 

year is below the guaranteed yield, farmers are eligible to obtain the partial payment with 

$13,310, as shown in Table 9. We also assumed farmers have a loan equal to the total variable 

cost. Therefore debt is the product of the total cost per acre times the farm size, which is equal to 

$109831.7. We assumed farms are engaged in the futures market. Therefore, the expected 

revenues will be the product of futures price times yield per acre and then times farm size, which 
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is equal to $96961. Therefore farmers are able to repay loan based on the partial payment and 

expected revenue.  

An example of the three-year contract is also shown in Table 9. The Spearman correlation 

coefficients estimated from the Frank Copula are 0.0028, 0.0087 and 0.0020 between years one 

and two, years one and three, and years two and three, respectively. The estimated actuarially 

fair rate is 0.0009 based on the simulated model. The assumptions we made for the two-year 

insurance contract hold for the three-year insurance contract. These assumptions include the 

amount of expected yield, coverage rates of total indemnity and partial payment, the amount of 

yield in the first and second year, the insured price and farm size. We further assumed the 

realized yield in the third year is 100 bushels per acre. Since the amount of yield in the first and 

third insured years is below the guaranteed yield, farmers will obtain partial payment in these 

two insured years with $13,310 and $7,260, respectively. In the third insured year, though the 

total yield for the three insured years is below the guaranteed yield, farmers will not obtain 

indemnity in the last insured year. That is because the partial payment made in the first and third 

year is higher than the total indemnity, which is $6,655 as shown in Table 9. 
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Table 9. Adair County in Iowa (corn) for Two-and-Three-Year Insurance Contract 

 Two-Year Insurance 
Contract 

three-year insurance contract 

Spearman’s rank correlation .072 0.0028(1&2), 0.0087(1&3), 
0.0020(2&3) 

Parameter of Beta 
Distribution 

(α1,β1)=(7.78,3.59) 
(α2,β2)=(7.8, 3.61) 

(α1,β1)=(7.79,3.66) 
(α2,β2)=(7.68, 3.58) 
(α3,β3)=(7.72,3.63) 

Actuarially fair  rate 0.003 .0009 
Expected yield  1601 160 
Coverage rate of guaranteed 
yield for two-(and three) 
year insurance contract  

70% 70% 

Guaranteed yield for 
two(three) years 

 224(=2*70%*160) 336(=3*70%*160) 

Coverage rate of partial 
payment  

67% (from Table 1) 67% (from Table 1) 

Guaranteed yield in each 
year 

112(=67%*160) 112(=67%*160) 

Assumed yield in year 1 & 2 
(&3) 

90, 135 90,135, 100 

Partial payment 13310(=2.5*(112-90)*242) 
in year 1 

(1) 13310 
(=2.5*(112-90)*242) in 
year 1 

(2) 7260 
(=2.5*(112-100)*242) 
in year 3 

Total indemnity N/A(90+135>224) N/A 
66552=2.5*(336-90-
135-100)*242 

Short-term Debt 109831.7(=3.13*145*242)  
Expected revenues in year 1  96921(=4.45*90*242)  
 

Note 1: Yield is on a per acre basis.  

Note 2: total indemnity will not be paid in the third insured year because $6655 is lower than the     

             sum of $13310 and 7260. 
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Conclusion 

In summary, we proposed multiyear insurance plans that provide lower premium rates and can 

be attractive for farmers. We used simulations to demonstrate that actuarially fair premium rate 

for the multiyear rates were lower than single-year plans when correlation of yield between years 

is less than 1. We provided comprehensive estimates of Pearson correlation coefficients for 

yields between two years at the state and county level based on the farm-level data. We also 

investigate correlation patterns at county level in Iowa. We can also see correlation patterns vary 

from county to county, mostly due to geographic locations and weather patterns. Based on the 

histograms of p-values in Figure 4, the correlation is not significant. Our simulation results 

suggested that the multiyear insurance plan has advantages over current plans when the 

correlation coefficient is less than 1. Hence, the results of correlation provide solid evidence that 

the proposed multiyear insurance plan will have lower actuarially fair premium rate than current 

single year plans in practice. Moreover, our estimates can provide a guideline for government 

agency to decide and prioritize counties to implement the multiyear plans. 

Other than estimating correlations of yields between two consecutive years using the sample   

Pearson correlation coefficient, we also estimated the correlations using the copula method. The 

copula method implicitly models the marginal distributions and thus may provide better estimate 

of the correlation than Pearson correlation coefficient. 

We also showed a multiyear insurance contract design example (Adair County in Iowa) which 

demonstrated the implementation in details. We showed in the example that how farmers can 

obtain partial payment each year and total indemnity at the end of the insurance term. We 

anticipate that the proposed plans will be of interest to both government agencies and farmers. 
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