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A Spatio-temporal Model for Agricultural
Yield Prediction

Oleksiy Tokovenko Jeffrey H. Dorfman Lewell F. Gunter

Abstract

The paper presents a spatio-temporal statistical model of agricultural yield
prediction based on spatial mixtures of distributions. The proposed method
combines several hierarchical and sequential Bayesian estimation procedures
that allow the general problem to be addressed with a series of simpler tasks,
providing the required flexibility of the model while decreasing the com-
plexity associated with the large dimensionality of the spatial data sets. The
data used for the study are 1970 - 2009 annual Iowa state county level corn
yield data. The spatial correlation hypothesis is studied by comparing the
alternative models using the posterior predictive criterion under squared loss
function.

Research in progress. Do not quote without authors’ permission.

Introduction

Despite the extensive knowledge accumulated over time in the field of modeling

crop yield distributions it remains an important area of research due to its role

in modern agricultural economics. Accurate information about the behavior of

crop yields is a key component of successful policy applications in many areas of

agribusiness and finance such as farm decision planning, designing agricultural

insurance and government supported policy making. A long-standing result con-

cluded from the empirical studies in the field is the rejection of the assumption

about the normality of crop yield distribution in favor of the various nonsymmet-

ric alternatives such as the beta (e.g., Nelson and Preckel 1989, Hennesy, Babcock
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and Hayes 1997), the gamma (e.g., Gallagher 1987), the log-normal (e.g. Goodwin,

Roberts and Coble 2000) and SU family distributions (e.g. Moss and Shonkwiler

(1994), Ramirez 1997). In addition a variety of nonparametric and semi-parametric

solutions to the problem were also offered in the literature (e.g. Goodwin and

Ker 1998, Ker and Coble 2003 and Racine and Ker 2004). In particular, Norwood,

Roberts and Lusk (2004) found the method of Goodwin and Ker (1998) to out-

perform other models in out-of-sample prediction power. However there is still

no consensus as to what yield model is superior for empirical work, since the

results of normality and performance tests depend significantly on the variety of

assumptions and the specifications as well as the data used for each study (see

e.g. Ramirez and McDonald 2006 for a comment on the Norwood, Roberts and

Lusk 2004 result and Just and Weninger 1999 for a discussion of methodologi-

cal problems that occur in typical crop yield distribution analyses that can make

the validity of results questionable). An interest in the spatio-temporal compo-

nent of the yield models emerged significantly in recent years (e.g. Wang and

Zhang 2003, Ozaki, Ghosh, Goodwin and Shirota 2008, Harri, Erdem, Coble and

Knight 2009 and Ozaki and Silva 2009). The spatio-temporal approach to crop

yield modeling allows increasing the scale of the studied problems and carrying

on the analysis in its full efficiency by avoiding the errors of aggregation through

the proper use of spatial information. However the computational complexity of

the spatio-temporal methods remains a problem since it often imposes restrictions

on one of the components of the analysis – spatial, temporal or distributional.

The objective of this study is to develop a method for modeling crop yield

distributions that will allow one to characterize their dynamic behavior by in-

corporating spatial information to increase the efficiency of analysis and make

it available for disaggregate levels of data while retaining the flexibility of the
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shapes of the crop yield distribution for each spatial unit. The conditional nature

of the underlying estimation algorithm assumes that only a small problem will

be addressed at a time, providing the advantage of maintaining the efficiency and

feasibility of the analysis in large scale models with computational complexity

growing linearly in the number of spatial units included.

Model

The proposed approach to agricultural yield prediction models the yield distribu-

tion of interest as a spatial mixture of unobserved dynamic processes distributed

normally at each period of time such that

p(yit) = ∑
j∈Ai

wijφ(µjt, σ2
j ) (1)

where φ(µ, σ2) denotes the normal density function with mean µ and variance σ2.

A set of spatial unit indices Ai defines the spatial neighborhood for unit i, with i ∈

Ai, describing the primal spatial relation between yi and µj’s as shown in Fig 1(a).

The neighbors’ contribution structure is completely described by the set of spatial

weights w such that ∑j∈Ai
wij = 1 and is assumed to be constant over time. Let

Bi denote a set of spatial unit indices j for which i ∈ Aj, that defines the spatial

neighborhood for unit i latent process and describes the dual relation between

µi and yj’s as shown in the Fig 1(b). Let us denote the number of members of

Ai (and, correspondingly, the number of mixture components of p(yi)) as ki and

the number of members of Bi as mi. The nature of the spatial mixture definition

of yield distribution (1) assumes that only one of ki latent processes µj, j ∈ Ai,

will actually contribute to the realization of yi at any given moment of time t =
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1, . . . , T. Therefore, at any given moment of time t only a subset Bit ⊆ Bi of the

spatial units j ∈ Bi will be active recipients of the latent signal µi. The number of

members in Bit is thus assumed to vary over time and can be denoted as mit ≤ mi,

with mit = 0 meaning that the spatial unit i is not providing information actively

to any distribution, while mit = mi implying its complete spatial contribution. The

µ1t

µ2t

µ3t

µ6t

µ5t

µ4t y0t

µ0t

(a) Primal relation

y1t

y2t

y3t

y6t

y5t

y4t y0t

µ0t

(b) Dual relation

Figure 1: Spatial relations: a) primal, latent information to observed and b) dual,
observed information to latent.

stochastic trend specification of the latent spatial processes estimated in this study

is that of a local linear type which is quite general and shown to be well suited

for a variety of applications including agricultural yield prediction (see, e.g., Moss

and Shonkwiler 1993). It consists of a set of mit measurement equations

yjt = µit + ǫjt (2)
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where ǫjt ∼ N(0, σ2
i ), for all j ∈ Bit, and two transition equations that govern the

dynamics of the unobserved spatial unit mean µit

µit = µit−1 + ηit−1 + νit (3)

ηit = ηit−1 + ξit (4)

where νit ∼ N(0, δ2
i ) and ξit ∼ N(0, γ2

i ), such that E(νit, ξis) = 0 for all t and s.

For compactness of notation, let us denote αit = {µit, ηit} and wit = {νit, ξit} to be

stacked 2 × 1 vectors of state variables and state errors, respectively. Similarly, let

uit = {yjt}j∈Bit
and vit = {ǫjt}j∈Bit

be mit × 1 stacked vectors of observations in (2)

and measurement errors associated with them. Then using the vector notation

introduced above, equations (2) - (4) form the following state-space model:

uit = Hitαit + vit (5)

αit = Fαit−1 + wit (6)

where vit ∼ N(0, R) and wit ∼ N(0, Q), such that E(vit, wis) = 0 for all t and s.

Matrices Ht and R in (5) are defined as follows

Hit =



















1 0

1 0

...
...

1 0



















= [imit
0mit

] and R =



















σ2
i 0 . . . 0

0 σ2
i . . . 0

...
...

. . .
...

0 0 . . . σ2
i



















= σ2
i Imit

(7)
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and matrices F and Q in (6) are defined as follows

F =







1 1

0 1






and Q =







δ2
j 0

0 γ2
j






(8)

Estimation

The Bayesian treatment of the finite mixture models suggests augmenting the data

likelihood (1) with the set of mixture component labels, {zijt}, where {zijt} = 1

indicates that the observation yit is generated from the jth labeled component of

the mixture distribution (see, e.g. Koop, Porier and Tobias (2007) for details). In

the context of this study, {zijt} = 1 implies that the latent process j contributed

to the observed realization of the ith spatial unit yield yi at time t. The resulting

expression for the model parameters likelihood conditional on the values of the

latent mixture component indicators is

L(Γ, {µi}
N
i ; {yi}

N
i ) =

T

∏
t=1

∏
j∈Ai

φ(yit|µjt, σ2
j )

zijt (9)

where Γ denotes a set of all variance parameters of the model. For computa-

tional purposes (9) has a more convenient form than the original unconditional

likelihood. The model is completed by choosing the set of prior distribution spec-

ifications, where two issues has to be considered when working with the mixtures

of Normal densities, as discussed in Koop (2006, Sec. 10.3.3). First, the likelihood

function for this class of models is unbounded and therefore informative priors

are required. Second, the likelihood function is also invariant under relabeling

of the mixture components. As the result, any of k! combinations of possible la-

beling of the k mixture components will yield the same likelihood function. This
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second property of the mixture of Normals models, called ”label switching”, is

essentially an identification problem and can be irrelevant in cases where the re-

searcher is only interested in analyzing the quantities and functions based explic-

itly on the likelihood value. However, if we do not have enough prior information

to distinguish between the mixture components the invariance of the likelihood

to all possible permutations of parameter vectors will lead to a posterior distri-

bution which is also the same for all possible combinations of component labels.

One of the conventional ways of dealing with the label switching is to choose

the prior distribution that will impose labeling restriction through the identifia-

bility constraints on the model parameter space, such as σ2
1 < σ2

2 < · · · < σ2
N,

µ2
1 < µ2

2 < · · · < µ2
N or w2

1 < w2
2 < · · · < w2

N, where only one such constraint is

required. In many cases the choice of constraint is naturally suggested by either

the underlying economic theory or the type of the mixture used. However, there

is no obvious strict ordering of the parameter space, such as the ones discussed

above, for the problem studied here. Indeed, there is not enough information to

believe that the variation in yield realization is always higher for one spatial unit

than the other and that such a relation exists for all counties and defines the strict

ranking of σ2
i , i = 1, . . . , N. Similarly, identifying the mixture components by re-

stricting the latent process space requires imposing very strong assumptions that

lack the formal statistical or economic logic to support them. We suggest that the

solution to the identification problem can be found by examining the structure of

spatial weights. It still remains difficult to establish the strict ordering of weights

within any given spatial neighborhood. At the same time the initial definition

of the problem clearly implies that the own effect of the latent spatial process µi

must dominate the effects of contributions of the rest of spatial neighbors. For-

mally this condition can be stated as the following inequality restriction, wii > wij
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for all i and j ∈ Ai. Note, that the established inequality will only allow one to

differentiate the own mixture component from the rest of the contributors which

is generally not enough for identification purposes. However, applying this con-

straint to each of i = 1, . . . , N sets of spatial weights wi provides the required N

identifying conditions for each of corresponding N elements of parameter space.

We fit the model using a Gibbs sampler with data augmentation where the

posterior simulations are being conducted by iteratively drawing according to

Steps 1 – 5 below.

Step 1: {zi}
N
i |Γ, {µi}

N
i , y

The natural choice of prior distribution for the mixture component labels vectors

zit = {zijt}j∈Ai
is the multinomial distribution M(1, wi). Combining this infor-

mation with the augmented likelihood yields the following posterior densities of

zit

zit ∼ M



1,

{

wijφ(yit|µit, σ2
j )

∑j∈Ni
wijφ(yit|µjt, σ2

j )

}

j∈Ai



 (10)

Step 2: {µi, νi}
N
i |Γ, {zi}

N
i , y

Let p(αi) = p(αi1, . . . , αit, . . . , αiT) denote the prior for each of the state vectors αi.

Assuming p(αi1, . . . , αit, . . . , αiT) to have the form of kT-dimensional multivariate

normal prior density (where k is the number of states) the posterior inference

about αi can be carried out using the conventional Bayesian methods for linear

models. Note, that the problem of estimating the components of the latent state
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vectors is essentially the problem of estimating kT time-varying linear regression

coefficients, k for each time period, leading to a kT-dimensional multivariate nor-

mal posterior. Despite the relative ease of this approach, obtaining the draws

from the posterior distribution of αi can become difficult in practice due to a large

T and possible high correlation between the coefficients (Koop (2006), Sec. 8.3.1)

that result into low numerical stability and inefficiency of the algorithm. Alterna-

tively, rewriting the expression for p(αi) as the product of appropriate conditional

densities and applying the Markov property of the state space models will yield

the following result

p(αi1, . . . , αit, . . . , αiT) = p(αi1) . . . p(αit|αi1, . . . , αit−1) . . . p(αiT |αi1, . . . , αiT−1) (11)

= p(αi1) . . . p(αit|αit−1) . . . p(αiT |αiT−1) (12)

which establishes a hierarchical type of construct in both prior and posterior dis-

tributions of αi. The hierarchical structure of the problem allows us to use the

Bayesian sequential approach to state vectors estimation where the posterior in-

ference about each component of αi is obtained conditionally on the posterior

value of the previous component in the time sequence. The particular results

based on the specification of the measurement (5) and the state equation (6) can

be derived according to the Theorem 15.1 in West and Harrison (1989) for general

multivariate dynamic linear models as follows. For t = 2, T, the prior distribution

for αit is implied by the state transition rule as the bivariate normal density

(αit|It−1) ∼ N(d, D) (13)
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with

d = Fat−1 and D = HitPt−1HT
it + Q

where at−1 and Pt−1 are the posterior mean and variance of αit−1, respectively,

and It−1 denotes the past information available. Updating the prior information

with the observed values of y and corresponding allocation variables z at time t

gives the following bivariate normal posterior distribution for αit

(αit|It) ∼ N(at , Pt) (14)

with Kit = DHit(HitDHT
it + R)−1 such that

at = d + Kit(uit − Hitd) and Pt = D − KitH
T
it D

where at and Pt are the posterior mean and variance of αit, respectively, and It

denotes the current information available.

Step 3: σ2
j |Γ−σ2

j
, {zi}

N
i , {µi}

N
i , y

Given the IG
(

aj, bj

)

prior distribution the posterior density of σ2
j is defined as

σ2
j ∼ IG





1

2 ∑
i

nij + aj,

[

b−1
j +

1

2 ∑
i

∑
t

zijt(yit − µjt)
2

]−1


 (15)

where nij = ∑
T
t=1 zijt denotes the number of time periods the latent process j

contributed to the observed realization of the ith spatial unit yield yi. Note that

exactly the same expression for posterior of σ2
j in (15) can be obtained from both

finite mixture of normals and Gaussian state space estimation procedures since
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both models are just two different representations of one spatio-temporal process.

Step 4: δ2
j , γ2

j |Γ−σ2
j
, {zi}

N
i , {µi}

N
i , y

Assuming the conventional IG
(

c1j, c2j

)

and IG
(

h1j, h2j

)

priors for δ2
j and γ2

j

parameters, respectively, the corresponding posterior densities are derived as

δ2
j ∼ IG





T

2
+ c1j,

[

c2−1
j +

1

2 ∑
t

(µjt − µjt−1 − ηjt−1)
2

]−1


 (16)

γ2
j ∼ IG





T

2
+ h1j,

[

h2−1
j +

1

2 ∑
t

(ηjt − ηjt−1)
2

]−1


 (17)

Note, that the form of prior distributions for δ2
j and γ2

j defines the degree of

smoothness of state variables series and has to be specified by researcher. The

choice to favor the higher variation in the stochastic trend will improve the in

sample fit of the model, decreasing however the forecast power.

Step 5: wi|Γ−wij
, {zi}

N
i , {µi}

N
i , y

Given the Dirichlet prior for component probabilities wi ∼ D({αij}j∈Ai
)1(wii >

wij) the posterior draws of wi for i = 1, . . . , N can be obtained from the following

conditional densities

wi ∼ D({nij + αij}j∈Ai
)1(wii > wij) (18)
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Prediction

The general one-step ahead prediction can be computed using the one-step fore-

cast result from Theorem 15.1 in West and Harrison (1989) by drawing from the

following predictive density of uit

(uti|It−1) ∼ N(Hitd, HitDHT
it + R) (19)

Data

The data used for the study are obtained from the National Agricultural Sta-

tistical Service (NASS) and are 1970 - 2009 annual Iowa state county level corn

yield data in bushels. The N × N connectivity matrix C was computed using

OpenGeoDa software by applying the first order Queen contiguity criterion. The

value of the matrix element C(i, j) = 1 means that the spatial unit i is the neigh-

bor to the spatial unit j while C(i, j) = 0 implies no connectivity between i

and j according to the chosen contiguity criterion. Note, that unlike the con-

ventional spatial analysis methods the algorithm proposed in this study requires

treating spatial unit i as the neighbor to itself based on the idea of the own la-

tent process contribution. As the result the connectivity matrix we use has the

values of its diagonal elements all equal to 1 (see Fig. 2). The Iowa state car-

tographic boundary files was obtained from U.S. Census Bureau Census 2000

County and County Equivalent Areas Cartographic Boundary Files Database at

http://www.census.gov/geo/www/cob/co2000.html.

12



10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Figure 2: Connectivity matrix of Iowa state counties.

Expected results

Based on the general dynamic linear model equations (2) - (4) we fit two com-

peting models, that are different in the set of spatial weights they use. Model

1 assumes no restrictions on the space of wij besides the natural nonnegativity

and adding up to 1 constraints, thus allowing for spatial correlation between the

agricultural yields of any spatial units i and j. In context of the spatial mixture

methods discussed in Section 3.2, Model 1 explicitly implies non-normality of the

underlying yield distribution yi if more than one of the spatial weights wij for

j ∈ Ai is greater than zero. An alternative, Model 2, is a special case of Model 1

that requires wii = 1 for all i = 1, . . . , N. Such a restriction essentially prohibits

any spatial correlation by assuming that only own latent process µi is going to
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be an active information contributor to the distribution of yield yi at any time t

thus reducing the Model 1 to a normality case. We have used the first 35 observa-

tions covering the period from 1970 to 2004 fit both models using the algorithm

described in Section 3.3 while the last 5 years of data for the period from 2005 to

2009 served as the basis for the model comparison based on the out-of-sample pre-

dictive power. To assess the predictive abilities of both models we use the squared

loss function form of predictive criterion developed by Gelfand and Ghosh (1998)

that incorporates both the goodness-of-fit and the penalty for higher predictive

variance measures.
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