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Optimal control of spatial-dynamic processes: the case of biological invasions 

 
Abstract: 
 

This study examines the spatial nature of optimal bioinvasion control. We develop and 

parameterize a spatially explicit two-dimensional model of species spread that allows for 

differential control across space and time, and we solve for optimal control strategies. We find 

that the qualitative nature of optimal strategies depend in interesting ways on aspects of 

landscape and invasion geometry. For example, we show that reducing the extent of exposed 

invasion edge, through spread, removal, or strategically employing landscape features, can be an 

optimal strategy because it reduces long-term containment costs. We also show that optimal 

invasion control is spatially and temporally “forward-looking” in the sense that strategies should 

be targeted to slow the spread of an invasion in the direction of greatest potential long-term 

damages. These and other novel findings contribute to the largely nonspatial literature on 

optimally controlling invasions and to understanding control of spatial-dynamic processes in 

general. 
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1.  Introduction 

Much of the economic research on bioinvasion management has framed the issue as a 

pest control problem, in which the population density of the invader is controlled. This literature 

has generally focused on the aggregate pest population, without consideration of its spatial 

characteristics (e.g., Pannell [20], Deen et al. [6], Saphores [27]). However, a critical feature of 

the invasive species problem is that invasions unfold over time and space. Invasions generally 

begin with the arrival of just one or a few individuals to a region. The population density of the 

invader may then increase at the arrival site by reproduction.  In addition, the population may 

spread over space by dispersal, so that the initial population of invaders can eventually impact 

locations far from the site of initial colonization. Bioinvasions are thus characterized by spatial-

dynamic processes, rather than by simpler dynamic processes.1 Although spatial-dynamics of 

invasion spread has been a subject of empirical and theoretical study for many decades [e.g., 30], 

it only recently has been considered by economists in their research [17; 34]. 

Existing research on optimally controlling spreading invasions has primarily employed 

spatially implicit models of invasion spread, providing insights about how invasion 

characteristics, such as costs, damages, and invasion size, affect the optimal timing and amount 

of control (e.g., Sharov & Liebhold [28], Eiswerth & Johnson [7], Olson & Roy [18], Potapov et 

al. [23], Wilen [34], and Olson & Roy [19]).2  However, few studies have explicitly considered 

the spatial characteristics of bioinvasions and hence there is less understanding about where to 

allocate optimal control efforts or the effect of spatial characteristics of the invasion or landscape 
                                                
1 The concept of spatial-dynamic processes was introduced by Sanchirico and Wilen [24] to discuss harvesting from 
metapopulations. Articles by Wilen [34] and Smith, Sanchirico, and Wilen [32] discuss existing work on the 
economics of spatial-dynamic processes with particular focus on renewable resources. 
2 With spatially implicit models, the state variable generally measures the size or extent of invasion and varies across 
time as a function of itself and the quantity of control; space is not indexed. This approach reduces the spatial-
dynamic invasion problem to a simpler dynamic problem that can be used to identify how control should be applied 
over time. However, without explicit spatial consideration, controls cannot be applied differentially across space and 
spatial aspects of the invasion or control cannot be examined. 
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on optimal control choices.3  This paper addresses these spatial aspects of invasion control, 

which are important for on-the-ground management of invasions.  In addition, this paper 

contributes insights to the general problem of controlling spatial-dynamic processes. 

In this study we show how basic economic parameters of the bioinvasion problem (e.g., 

cost, damages, discount rate) and spatial characteristics of the invasion and landscape influence 

the nature of optimal control in the more general spatial-dynamic setting. Our most interesting 

findings demonstrate the manner in which boundaries and geometry4 of both the invasion and the 

landscape matter. For example, the location of an invasion relative to the boundaries of its 

potential range affects both the prospective damages and control costs, thereby affecting optimal 

control policies and the net present value of the invasion. In addition, small changes in the spatial 

configuration of the initial invasion, including shape and contiguity, can change the qualitative 

nature of optimal controls. This is often because the extent of the exposed invasion edge 

determines long-term containment costs. We find that the length of the exposed invasion front 

optimally can be reduced by employing landscape features and/or altering the shape of the initial 

invasion through spread or removal. We also show how optimal policies exhibit classic 

“forward-looking” behavior that characterizes optimal dynamic problems.  In spatial-dynamic 

problems, however, optimal policies not only anticipate impacts over time, but they also look 

forward over space to determine where and when to apply various controls. In general, invasion 

                                                
3 Brock and Xepapadeas [3] derived modified Pontryagin Maximum Principle conditions applicable to continuous in 
time and space diffusion processes. One of their examples described a linear bioinvasion problem that they showed 
has Most Rapid Approach features, in which it is optimal to use extreme controls, do nothing, or hold the pest at a 
steady state. Potapov and Lewis [22] modeled optimal spread prevention in a network, in which dispersal between 
pairs of network nodes depended on the distance between the nodes. They approximated the dynamic optimal 
control problem with a simpler static problem. They found that, at equilibrium, the landscape can be fully or 
partially invaded, and in a partially invaded equilibrium, control efforts are concentrated along the invasion front. 
They also showed that if lakes are clustered, it could be optimal to prevent spread between clusters. 
4 Here we are referring to geometry in the mathematical sense that concerns size, shape, and relative position (i.e., 
location). 
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control is targeted to slow the spread of an invasion in the direction of greatest potential local or 

long-term damages, or in the direction where the costs of achieving control are low. 

 Our approach tackles the problem of optimal control of a spatial-dynamic bioinvasion 

process by stripping the problem to its essential features. We employ a spatially explicit, two 

dimensional invasion spread model that allows for differential control over both time and space. 

We model species spread with a cellular automaton model on a grid, in which each cell in the 

grid is invaded or not in each time period and spread occurs between adjacent cells at each time 

step.5 This model approximates the basic pattern predicted with a reaction-diffusion process, 

which predicts a constant radial or linear rate of spread and provides a good description of 

observed spread patterns for a variety of species [10; 34].6  Without control efforts, the invasion 

spreads to fill the entire landscape. However, control actions can be employed to prevent spread 

of the invasion between adjacent cells and to clear already invaded cells. Each control action is 

associated with a cost, and combinations of control actions can be used to eradicate, contain, or 

slow an invasion. 

The simplicity of this discrete spatial spread model and the control options we allow 

provides important benefits. First, the model’s specification enables reasonably fast solutions to 

the spatial-dynamic optimal control problem using integer programming, despite its high 

dimensionality.7  In more general spatial-dynamic problems, high-dimensionality limits the size 

of the problem that can be solved [13; 22], thus limiting the questions that can be addressed. A 

                                                
5 We use the term spread to refer to the process by which uninvaded cells become invaded through dispersal from 
already invaded locations. This process accounts for both reproduction and dispersal.  
6 Mathematically, reaction-diffusion equations describe how the concentration of one or more substances distributed 
in space changes under the influence of two processes: local reactions in which the quantity of the substances can 
change and diffusion which causes the substances to spread out in space. When modeling the spread of biological 
invasions or other organisms, the reaction process characterizes the species population growth. Thus, reaction-
diffusion processes represent the combined processes of reproduction and dispersal. 
7 Even under the constraint of binary invasion states (i.e., each cell in the landscape grid is either invaded or 
uninvaded in each time period), the size of this optimization problem grows exponentially with the number of grid 
cells in the landscape and the number of time periods.  
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second benefit of the model’s simplicity is that the intuition is more readily apparent from results. 

In more complex models it is difficult to identify what factors drive the outcomes; here we can 

identify specific assumptions and initial conditions that influence control strategies, and why. 

 To identify and illustrate the role of economic parameters and invasion and landscape 

geometry in determining optimal control policies, we run a number of comparative spatial-

dynamic “experiments” in which we vary one aspect of the invasion while holding all other 

characteristics of the invasion constant.8 We then compare the optimal control results across the 

different scenarios and use these to synthesize a better understanding of invasive species control 

in a spatially explicit landscape.  

 In the next section we describe the invasion spread model, economic model, and solution 

approach. In section 3 we describe the results of our comparative spatial-dynamic “experiments” 

and derive features of optimal policies for a number of specific spatial-dynamic problems, with 

an eye toward deriving general qualitative properties of these systems. In section 4, we 

summarize and discuss results in the context of existing literature. We conclude in section 5 by 

highlighting some general principles about controlling spatial-dynamic processes that we have 

deduced from our bioinvasion case study. 

2.  Methods 

2.1 Spread model 

We employ a deterministic, discrete time, cellular automaton model to represent the 

spread of an invasive species. The landscape is represented as a grid of square cells that 

comprises the total potential extent of contiguous invasion. Each cell is labeled by its row i and 

                                                
8 Comparative statics methods vary a parameter and determine how equilibrium solutions to static problems change.  
Comparative dynamics methods vary a parameter and examine how an optimal dynamic solution path changes; we 
vary parameters and examine how the full spatial-dynamic solution changes, a technique appropriately termed 
comparative spatial-dynamics.    
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column j in the landscape grid, and each cell can take on one of two states: invaded (xi,j = 1) or 

uninvaded (xi,j = 0). In the absence of any human intervention, the species spreads from invaded 

cells to adjacent, uninvaded cells in each time period, based on rook contiguity. Thus, if cell (i,j) 

were invaded at time t, cells (i,j), (i,j+1), (i,j-1), (i+1,j), and (i-1,j) would be invaded in the next 

time period. In each subsequent time step, all cells sharing a contiguous border with an invaded 

cell also become invaded. This model does not allow for long distance dispersal and implicitly 

assumes absorbing landscape boundaries by defining a finite landscape and a binary invasion 

status for each cell. 

The size and shape of the landscape grid reflect the potential area that a species can 

invade, which is determined by biotic or abiotic constraints and can be predicted using ecological 

niche modeling [8; 21]. In addition, an appropriate combination of cell size and time unit must be 

selected to model specific species. This choice of grid cell size and time interval are closely 

linked, because the model assumes that the invasion spreads into adjacent uninvaded space at a 

rate of one grid cell per unit time. 

2.2 Economic model 

Landscape-level damages at each point in time are directly proportional to the number of 

invaded grid cells, with marginal (and average) damages equaling d per cell invaded. Spread of 

the invasion into an uninvaded cell can be prevented in each time period by applying control 

along all boundaries that the uninvaded cell shares with cells that already are invaded. Thus, the 

cost of excluding invasion from a cell increases with the number of adjacent (rook contiguous) 

invaded cells and equals invaded_neighbors*b, where b is the cost of preventing invasion along 

each boundary for one time period and invaded_neighbors is the number of invaded adjacent 

cells (0 ≤  invaded_neighbors ≤ 4). Additionally, once a cell has been invaded, it remains 
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invaded unless the invasion is removed from the cell at a cost e.  For a cleared cell to remain 

uninvaded in the following time periods, adjacent invaded borders require control at a cost b per 

invaded border per time period. If the entire landscape has been cleared, there are no subsequent 

control costs. 

To parameterize this model, economic parameters must be scaled to match the biological 

model. Specifically, damages and costs are tied to the size of the cell and should be scaled 

accordingly. Similarly, the discount rate must be scaled to match the unit of time. By separately 

parameterizing removal costs e and spread prevention costs b, this model allows flexibility in 

specifying control costs based on species characteristics. For many species, such as for plants 

with long-lived seed banks, spread prevention is much less costly than removal, and this can be 

reflected in the choice of cost parameters. 

2.3 Solution approach 

Optimal control of the invasion requires minimizing the present value of the sum of 

control costs and invasion damages across space and time. We formulate this optimization 

problem as an integer programming problem as follows: 

Minimize:      βt * xi, j ,td + yi, j ,te
(i, j )∈C
∑

(i, j )∈C
∑ + zi, j ,k ,l ,tb

(i, j ,k ,l )∈N
∑






t∈T ,t>0
∑     (1) 

subject to: 

                            (2) 

                                 (3) 

                         (4) 

       (5) 

     (6) 
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        (7) 

where 

 indexes cells by row i and column j, and C is the set of all cells in the landscape 

 indexes pairs of neighboring cells, where  is the reference cell, 

is one of its neighbors, and N is the set of all neighboring cell pairs 

indexes time, where  

 is the state of cell (i,j) at time t, where  if the cell is invaded and 

 otherwise 

 is a binary choice variable indicating if invasion is removed from cell (i,j) at 

time t, where  if the cell is cleared and  otherwise 

 is a binary choice variable indicating if control efforts are applied along 

the border between cell (i,j) and cell (k,l) at time t to prevent spread from cell (k,l) 

to cell (i,j), where  if the border is controlled and  otherwise 

is the initial state (t=0) of invasion for cell (i,j) 

      is the discount factor at time t (t>0), where  and r is the discount rate 

d         is the damage incurred per time period for each cell that is invaded 

e         is the cost of removing invasion from a cell 

b         is the cost per time period of preventing invasion along a border between 

neighboring cells 

Equation (2) establishes the initial state of the landscape by defining which cells are 

invaded at t=0. Equations (3) and (4) specify that control efforts do not begin until the first time 
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period. Condition (5) requires that a cell that was invaded in the previous time period remains 

invaded in the current time period unless removal efforts are applied. Equation (6) requires that 

cell (i,j) become invaded at time t if it had an invaded neighbor in the previous time period, 

unless invasion is removed from cell (i,j) or control is applied along the invaded border; this 

condition must hold for cell (i,j) with each of its neighbors. Individually, constraints (5) and (6) 

provide necessary conditions for a cell to be uninvaded at time t; together, constraints (5) and (6) 

provide sufficient conditions for a cell to be uninvaded at time t. Specifically, an uninvaded cell 

(i,j) will become invaded at time t+1 unless all of the borders it shares with invaded cells at time 

t are controlled at time t+1 or removal efforts are applied to cell (i,j) at time t+1. An invaded cell 

(i,j) at time t remains invaded at time t+1 unless removal efforts are applied to it at time t+1. 

For infinite time horizon problems, this system achieves a steady state equilibrium in 

which the proportion of invaded landscape ranges from none to all and a positive level of control 

is applied to landscapes that are partially invaded. In fact, with an infinite time horizon, time 

consistency requires that the system has reached this equilibrium if the invasion landscape 

remains unchanged between two time periods. In contrast, for a finite time horizon, the system 

can reach and maintain a steady state equilibrium for many time periods, but can depart from the 

steady state towards the end of the time horizon. An infinite time horizon problem can be solved 

with a finite time horizon specification by choosing an appropriate terminal condition or salvage 

value. However, specifying an appropriate terminal value is difficult because it depends on the 

equilibrium state of the system. To deal with this difficulty, the equilibrium solution can be 

“locked in” using constraints after the equilibrium has been reached, and a salvage value 

terminal function can be added based on the resulting solution. Here we employ an infinite time 

horizon, so we add the following constraints to the model defined above: 
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     (8) 

    (9) 

     (10) 

where 1< t_mid<Tmax. We choose t_mid and Tmax large enough for an equilibrium to reached 

at t<t_mid and maintained. We calculate the terminal value as: 

     (11) 

and include this value in the objective function. 

2.4 Model implementation 

This binary integer programming problem was programmed in Zimpl (Zuse Institute 

Mathematical Programming Language, version 2.08) and solved using SCIP (Solving Constraint 

Integer Programs, version 1.1.0).9 To reduce the number of parameters, we scaled damages d to 1, 

and measured costs b and e as units of damage; this rescaling (i.e., nondimensionalization) 

imposes no loss of generality. We set Tmax=100 and t_mid=50 for all optimizations; this 

achieved and maintained steady states for all invasions considered. 

We used comparative spatial-dynamic “experiments” to elucidate the role of economic 

parameters and invasion and landscape characteristics in determining the optimal control strategy. 

Focal characteristics included: border control costs and removal costs, discount rate, landscape 

size and shape, and initial invasion size, location, and shape. For each focal characteristic, we ran 

optimizations for different levels of the characteristic while holding all other aspects of the 

                                                
9 SCIP is a framework for constraint integer programming based on the branch-and-bound procedure to solve 
optimization problems [1]. Branching divides the initial problem into smaller subproblems that are easier to solve, 
and the best of all solutions found in the subproblems yields the global optimum. Bounding avoids enumeration of 
all (exponentially many) solutions of the initial problem by eliminating subproblems whose lower (dual) bounds are 
greater than the global upper (primal) bound. 
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invasion constant. We solved optimizations for a wide array of starting conditions, and we 

present a subset of these simulations to illustrate key findings. 

3.  Results 

Optimal control strategies for invasions varied dramatically across invasion, landscape, 

and economic characteristics. Optimal policies ranged from no control to complete eradication. 

In between these two extremes, optimal policies included: eradication of part of the invasion and 

containment or abandonment of the rest, immediate complete containment, partial containment 

that allowed some spread prior to complete containment, and partial containment followed by 

abandonment of control efforts. For all scenarios examined, clearing or eradication efforts were 

optimally completed in the first time step.  

3.1 Economic parameters 

We found, as expected, that high control costs or low damages reduce the amount of 

optimal control.10 Optimal policy switches from eradication to less intensive control actions with 

increasing marginal (average) eradication costs, and shifts from containment to abandonment of 

the invasion with increasing border control costs and high eradication costs. In addition, the net 

present value of costs and damages of an optimally controlled invasion with particular physical 

characteristics is non-decreasing in each control cost parameter. We also found, without having 

firm prior expectations, that high discount rates cause a shift away from eradication and 

containment, with a more pronounced effect on the optimality of eradication.11  

                                                
10 Because we normalized marginal damages to one and scaled control costs accordingly, the effect of an increase in 
marginal damages is represented in our optimizations as a reduction in control costs. Specifically, a doubling of per 
unit damages is modeled as halving border control and removal costs. 
11 The shift away from eradication occurs because eradication costs are incurred early in an invasion and therefore 
are not affected by the discount rate, whereas the benefits from eradication (avoided future damages) are discounted. 
The effects of discounting on the optimality of containment are less pronounced because containment costs are 
incurred in perpetuity and therefore are discounted similarly to damages. Nevertheless, high discount rates reduce 
the optimality of containment because the benefits of containment are the greatest in the future when the invasion 
would be most widespread without control. Consequently, discounting reduces the benefits of containment by 
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3.2 Landscape size 

Figure 1 illustrates optimal control strategies for a 3 by 3 cell invasion in three different 

sized landscapes. The figure shows that control efforts are justified at higher marginal (average) 

control costs for larger landscapes, a result that is intuitive. The result illustrates that optimal 

policies are spatially forward-looking in the sense that, while the size of the landscape does not 

affect the costs of control, larger landscapes face higher potential damages from spread so that 

higher early levels of control are justified. 

3.3 Invasion size and control delay 

We found that controlling small invasions is optimal across a wider range of control costs 

than controlling large invasions with similar characteristics. Analagously, inadvertent delay of 

control (e.g., by late discovery) reduces the likelihood for eradication or containment to be 

optimal. Figure 2 shows this for an invasion spreading in a 15 by 15 landscape. The first panel in 

the figure represents invasion by a single cell at the center of the landscape and shows that it is 

optimal to contain or eradicate even when costs are relatively high. The second and third panels 

respresent larger invasions of five and thirteen cells, where the invasions correspond to a single 

cell invasion that has (inadvertently) spread for one and two time steps, respectively, before 

initiation of control. Thus, Figure 2 illustrates both the effects of invasion size and of control 

delays on optimal control policies, and shows that it is optimal to abandon control of larger 

invasions over wider ranges of control costs.12 

Figure 3 shows the landscape-wide net present value of controlling a single cell invasion 

in a 15 by 15 landscape, where optimal control begins immediately or is delayed one or two time 

                                                                                                                                                       
relatively more than it reduces the costs. Thus, high discount rates increase the likelihood that abandonment, as 
opposed to containment, is optimal. 
12 In this example, a range of control strategies is employed for controlling the larger invasions, including slowing 
and partial eradication. 
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periods, corresponding to the scenario depicted in Figure 2. The results are shown for three 

different eradication costs and graphed as a function of border control costs. The net present 

value of costs and damages increases with control delays, even for low marginal (average) 

border control and eradication costs, because the size of the invasion, in terms of invaded area 

and the extent of invasion edge, increases rapidly without control. This demonstrates the 

importance of finding invasions early.  In fact, the costs of delayed control are informative about 

the value invasion search policies.  Only in the case of very high border control and eradication 

costs, for which abandonment is optimal even for small invasions (shown in right side of Fig. 3c), 

does delay cause no additional losses. 

3.4 Landscape shape 

In addition to landscape size, landscape shape has significant effects on the optimal 

policy of an invasion because landscape boundaries affect control costs and damages by 

constraining invasion spread. Figure 4 illustrates the optimal control policies for a 2 by 2 cell 

invasion spreading in three different shaped landscapes. All three rectangular landscapes have 

equal area (256 cells), but vary in length and width. The figure shows that eradication or 

containment is optimal across a larger range of economic parameters for invasions occuring in 

the compact (i.e. square) landscape (Fig. 4a) than in increasingly narrow landscapes (Fig. 4b,c). 

Narrow landscapes confine the spread of species more than compact landscapes, so damages 

accrue more slowly, resulting in lower potential total damages. 

The particular shape of the landscape, beyond length and width, also affects optimal 

control policies. For example, nonconvexities in the landscape, including constrictions and 

expansions, can alter optimal control strategies by affecting the cost of controlling the invasion 

(Fig. 5) or by affecting the spread rate of the invasion (Fig. 6). 
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Figure 5 illustrates how landscape geometry can be employed strategically to reduce 

long-term containment costs. In this scenario, complete containment in the first time period is not 

optimal because the extent of exposed invasion edge is large. Instead, optimal policy slows the 

growth of the invasion along the center of the invasion front, and then contains the invasion 

when it reaches the landscape constriction. This control policy slows the invasion along the 

region of the invasion front that has the greatest potential long-term growth of damages (because 

it is spreading towards the largest extent of uninvaded area), and delays complete containment 

until landscape features constrain long-term costs. 

Landscape geometries that contain areas with potentially large rates of damage 

accumulation, as illustrated in Figure 6, also can lead to interesting strategic containment of an 

invasion. In this scenario, the invasion is spreading along a narrow section of the landscape 

towards a region where the landscape becomes wider (and future damages from spread become 

larger). The narrow section of the landscape confines the invasion to spread at a rate of four cells 

per time period, and neither containment nor eradication is optimal because of the costs of 

control are high relative to the avoided damages. However, if the invasion were to spread beyond 

the narrow region of the landscape, the rate of damage accumulation would increase rapidly 

because the invasion would spread in three directions rather than one. Consequently, optimal 

policy contains the invasion when it reaches the end of the constricted region, at which point the 

containment costs remain the same (control along just four borders) but the avoided damages 

increase. 

3.5 Invasion location 

Figure 7 illustrates optimal control policies for invasion of a single cell in a 15 by 15 cell 

landscape at three different locations. From top to bottom, the panels in Figure 7 represent an 
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invasion beginning at the center, at an edge, and in the corner of the landscape, respectively. In 

this example, containment is optimal across a larger range of border control costs for invasions 

occurring more distally, while eradication occurs optimally across a greater range of marginal 

eradication costs for invasions occurring more centrally. However, the relationship between 

invasion location and control costs varied across scenarios we examined. 

We found that the effect of invasion location on optimal control policy is ambiguous 

because invasion location affects long-term damages and costs of control in opposing ways. An 

invasion beginning near an edge takes longer to fully invade the landscape than an invasion that 

begins near the center because the furthest reaches of the landscape are more distant and the 

growth of the invasion is constrained by the landscape boundaries. Thus, although an 

uncontrolled invasion will eventually spread throughout the landscape regardless of its starting 

location, the net present value of potential damages from an invasion beginning near an edge are 

lower, which reduces the range of total control costs for which eradication or containment of 

non-central invasions is optimal. 

On the other hand, invasions that occur along an edge of the landscape have lower 

containment costs because the landscape boundaries prevent spread along the bounded edge at 

no cost, mediating the effects of lower damages on optimal policy. In the scenario presented in 

Figure 7, the central invasion (Fig. 7a) does not share any edges with the landscape boundary, 

whereas the edge and corner invasions (Figs. 7b,c) have one and two edges confined by the 

landscape boundary, respectively. This reduces the containment costs for these distal invasions 

by 25 and 50%, respectively, relative to the central invasion.13  

                                                
13 In general, the relative effect of invasion location on damages and control costs is determined largely by the size 
of potential landscape and the extent of the invasion that is confined by landscape boundaries. The difference in 
potential damages from central versus distal invasions is greater in larger landscapes, and more confined invasion 
edges increase the range of border control costs for which containment is optimal. The range of eradication costs for 
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We found across all simulations that, for invasions with similar characteristics, the net 

present value of costs and damages is higher for central invasions than for distal invasions, 

because central invasions have higher potential damages and higher control costs. 

We find also that invasion location can influence control costs even if the initial invasion 

does not occur immediately adjacent to a landscape boundary. Figure 8 shows the spread of an 

optimally controlled invasion across four time steps, demonstrating how landscape boundaries 

are strategically employed. The initial invasion (t=0) is a 4 by 4 block of cells located 2 cell 

widths from the corner of a 15 by 15 cell landscape. Optimal control policy contains the invasion 

along its central borders, while allowing spread of the invasion towards the corner of the 

landscape. In time periods 1 through 4, control is applied along the 12, 10, 8, and 10 most central 

borders of the invaded region, respectively, after which the invasion is contained in perpetuity. 

This strategy, which confines the invasion using landscape boundaries, reduces the number of 

exposed borders from 16 to 12, reducing periodic containment costs by 25% for the long-term. In 

contrast, for an identical invasion located centrally in the landscape, immediate containment is 

optimal because landscape boundaries cannot be employed to reduce long-term containment 

costs, and total costs and damages are higher (3696 versus 3176). This provides another 

illustration of how invasion location affects optimal control policies and the net present value of 

costs and damages. 

Figure 9 provides an example of the effect of invasion location on optimal policy for a 

two patch invasion, in which one patch occupies a corner cell (the upper left hand patch) and the 

                                                                                                                                                       
which eradication is optimal is much less mediated by the adjacency of landscape boundaries, because eradication 
costs depend primarily on the amount of area invaded, rather than the amount of edge. Thus, in most cases central 
invasions are optimal to eradicate across a larger range of eradication costs than invasions occurring distally (Fig. 7). 
Furthermore, the cost-effectiveness of eradication relative to containment tends to be higher for more central 
invasions, because the costs of containing central invasions cannot be reduced by landscape boundaries. This result 
is illustrated by the steeper line dividing eradication and containment in Figure 7 for the central invasion. 
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other patch (lower right hand corner) is located one cell width from the opposite corner. A large 

number of optimal control policies are possible for this invasion depending on the economic 

parameters. For example, eradication of both patches, containment of both patches, or 

abandonment of control are optimal policies for situations with low eradication costs, low border 

control costs, and high control costs, respectively. However, because of the different locations of 

the two patches relative to the borders, optimal policy applies dramatically different types of 

control to each patch for small variations in parameter combinations. 

For example, the lower right hand patch is more costly to contain (4 exposed edges), so in 

some circumstances it is optimal to eradicate that patch and perpetually contain the patch that has 

only 2 exposed edges (Fig 9a). For the same invasion with slightly higher eradication costs, the 

optimal policy switches so that initial containment of the upper left hand patch is still optimal, 

but the patch with more exposed borders is neither contained nor cleared (Fig. 9b). Because the 

invasion is not fully controlled, the invasion spreads, reducing the benefits of containing the 

upper left hand cell, and eventually all control efforts are optimally abandoned. 

Although the landscape boundaries cannot be used to reduce the amount of exposed edge 

on the lower right hand patch in Figure 9b, the boundaries are employed strategically to slow the 

invasion. Specifically, optimal policy applies control to the lower right hand patch to direct 

growth towards the corner. This approach, which was also employed for the invasion in Figure 5, 

reduces the long-term damages from the invasion by delaying spread in the direction with the 

highest potential growth. Similarly, in Figure 8, in which a 4 by 4 block of cells is strategically 

allowed to spread toward the corner in order to reduce the number of exposed edges prior to 

long-term containment, control efforts also prevent invasion spread centrally, which is the 

direction of greatest long-term potential growth, and slow the spread of the invasion into the 
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corner. Specifically, in time period 1, control efforts are applied to 12 borders of the invasion, 

rather than just the 8 central borders, in order to delay damages. These examples illustrate how 

invasion location within the landscape can affect optimal spatial allocation of control. 

3.6 Invasion shape and contiguity 

We found that geometric characteristics of the invasion, beyond size and location, affect 

optimal control policies. In particular, the shape and contiguity of an invasion (holding size 

constant) affect optimal levels and spatial allocation of control effort. For example, containing a 

compact invasion, which has a lower edge to area ratio, is optimal over a wider range of border 

control costs than containing a similar patchy invasion. This is illustrated in Figure 10, which 

shows the optimal control strategies for a compact 2 by 2 cell invasion and for a patchy invasion 

of four equidistant cells; both invasions occur near the center of a 15 by 15 cell landscape. In this 

scenario, the long-term damages from abandoning control are slightly higher for the patchy 

invasion than for the compact invasion because the patchy invasion spreads faster, but optimal 

policy mandates abandoning control of the patchy invasion across a larger range of marginal 

control costs because it has higher containment costs. In particular, across the range of border 

control costs for which containment of the compact invasion is mandated, optimal management 

for the patchy invasion may involve containment, spread followed by containment, slowing, and 

even abandonment. Because containment is more costly for patchy invasions, eradication is 

optimal across a larger range of marginal (average) eradication costs for patchy invasions than 

for compact invasions. This is evidenced in Figure 10 by the steeper slope of the line dividing 

containment and eradication for the patchy invasion. 

Clearly, an important feature of invasion geometry is its influence on the invasion edge 

and the effect of edge length on containment costs. We showed previously that the extent of 
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exposed edge can be reduced by employing landscape boundaries (e.g., Figs. 5 and 8). We also 

find that optimal policies can reduce the extent of edge by altering the shape of an invasion 

through clearing cells or allowing spread prior to containment. For example, Figure 11 shows an 

edgey, nonconvex14 invasion for which optimal policy combines removal and slowing to reduce 

the number of exposed edges from 11 to 8 prior to complete containment. Strategic spreading 

and clearing also was employed to reduce the extent of edge prior to containment for the 

invasions represented in Figures 1c and 10b. In each case, the approach converts a nonconvex 

invasion into one that is convex. 

We also find that optimal policy sometimes removes nonconvexities from an invasion 

even when this does not reduce the extent of exposed edge. For example, the “+” shaped, five 

cell invasion represented in Figure 2b initially has 12 exposed edges. Optimal policy applies 

control along the outer 4 edges of the invasion in the first time step, allowing the invasion to 

become a convex block of 9 invaded cells that is contained in perpetuity; twelve exposed borders 

are maintained. In this example, the benefits of removing nonconvexities depend on relative 

local spread rates, control costs, and damages in the nonconvex regions. Containment costs 

depend linearly on the length of exposed edge, whereas the short-term spread rate depends on the 

number of uninvaded cells bordering the invasion. Nonconvex regions of an invasion have a 

higher cost of spread prevention because multiple invasion edges need to be controlled to prevent 

invasion of a single cell. In contrast, convex regions of invasion edge generally have a one to one 

relationship between control effort and spread prevention, and thus have lower effective control 

costs. For this reason we find that slowing efforts are generally focused along convex regions of 

                                                
14 We use the term convex in the mathematical sense of a convex set. We refer to an invasion as convex if, for every 
pair of points in the invasion, every point on the straight line segment that joins them also is within the invasion.  
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the invasion edge, as in Figures 2b, 5, 8, 11, and 12; focusing slowing efforts in this way is most 

cost effective because it targets areas of high local growth and low relative control costs. 

Finally, with respect to non-contiguous (patchy) invasions, our scenarios show that 

optimal control strategies can vary across invasion patches, but strategies for optimal control of 

individual patches depend on the entire landscape of the potential invasion (e.g., Figs. 9 and 12). 

Just as dynamic problems involve choosing an entire time path of decisions that are 

interdependent, optimal control of a spatial-dynamic system involves simultaneously choosing 

control efforts across spatially separated patches, because the benefits (avoided future damages) 

of controlling each patch depend on the control efforts and spread rates at other patches. For 

example, Figure 12 shows an invasion for which optimal policy requires eradication of one patch 

and slowing, followed by abandonment, of the other. However, for an identical invasion with 

slightly higher border control costs (b=16), the benefits of slowing the spread of the large patch 

are reduced, so that the gains from eradication also are reduced, and eradication of the small 

patch ceases to be optimal. 

4.  Summary and Discussion 

Our analysis shows that many aspects of an invasion determine the optimal policy, 

including economic parameters, landscape size and shape, and invasion size, shape, and location.  

Invasions that are nearly identical can have dramatically different optimal control policies if they 

differ in any one of these characteristics. An unfortunate consequence of so many factors 

determining optimal control is that deriving clear and simple rules of thumb for how to best 

manage all invasions is unlikely. However, we have shown how these factors affect the 

qualitative nature of optimal control policies, as summarized next, and provided intuition for 

these results.  
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4.1 Economic factors 

Delaying clearing efforts or eradication policies is inefficient because it either enables 

further spread of the invasion or requires containment effort and accrues more damages.15  As 

expected, higher control costs lead to lower optimal levels of control; high border control costs 

reduce the optimality of containment and high eradication costs reduce the optimality of 

eradication. Similarly, invasions that produce high damages per area invaded justify higher 

control efforts to offset damages, a conclusion also supported by previous work (e.g., Sharov and 

Liebhold [28]).16 Finally, we find that high discount rates reduce the amount of optimal control, 

which is consistent with findings by Sharov and Liebhold [28] and Olson and Roy [18].  

4.2 Landscape size 

All else equal, invasions that have larger potential ranges warrant higher levels of control 

because potential damages are higher. Thus, knowledge of the potential invasion extent is 

important for determining optimal policy. Fortunately, the combination of ecological niche 

modeling and spatial technologies such as geographic information systems have provided 

methods for predicting the potential ranges of invading species [8; 21]. Nonetheless, managers 

and policy makers often define potential invasion extent based on political, rather than ecological, 

boundaries, which can lead to very different control prescriptions.  

4.3 Invasion size and delay 

Larger invasions are optimal to control over a smaller range of conditions because they 

cost more to contain or eradicate, have higher long-term damages if contained, and their control 

                                                
15 However, Sharov and Liebhold [28] and Eiswerth and Johnson [7] found that with increasing marginal control 
costs, removal efforts may be applied over time because high rates of control are penalized. Similarly, Olson and 
Roy [19] found that stock dependent control costs combined with nonconvexities in the invasion growth function 
also can lead to optimally delayed eradication. 
16 The pattern of control intensity also depends on how damages vary with the area invaded and on relationships 
between damages and other characteristics of an invasion, as demonstrated by Olson and Roy [19]. 
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provides fewer benefits because less uninvaded landscape remains to protect.17 We show that 

delaying control efforts reduces the value of the system by constraining control options and 

increasing costs and damages, an intuitive result that is supported by other studies including 

Smith et al. [31], Higgins et al. [11], and Taylor and Hastings [33]. Thus, determining and 

applying optimal control policies to invasions soon after they are detected is important.18 

4.4 Landscape shape 

We are unaware of any other studies that have explicitly examined the effects of landscape 

shape on optimal control policy. Our results show that invasions in more compact landscapes 

generally warrant more control because spread is less constrained, resulting in higher long-term 

damage potential. However, landscape shape also affects the likelihood that an invasion will be 

located near enough to landscape borders to reduce long-term containment costs. We also 

showed that nonconvexities in the landscape, such as constrictions and expansions, influence 

optimal control policies by affecting spread rates and containment costs. These results highlight 

that current rates of spread may not reflect long-term rates of spread, and optimal control needs 

to account for long-term spread patterns. Interestingly, landscape nonconvexities are the only 

situation we found for which delaying the start of control efforts can be optimal.19 

                                                
17 These results coincide with findings by Sharov and Liebhold [28] who found that optimal control strategies switch 
from eradication to slowing to abandonment with increasing initial invasion size for an invasion spreading along a 
corridor of land. Also, Olson and Roy [18] found that eradication is less likely to be optimal for large invasions that 
are more costly to eradicate. 
18 Early control of invasions is constrained by the timing of detection, uncertainty about the optimal policy, and 
possibly lack of knowledge of effective control methods. Early detection of invasions is costly because smaller 
invasions are more difficult to detect, so an optimal balance between expenditures on detection and costs from 
delaying control should be found [2; 15]. Also, early in an invasion uncertainty about the damages, spread rate, and 
potential suitable habitat for an invasion can make determination of optimal policy even more difficult. For some 
invasions, particularly by novel invaders, effective control strategies may not exist and control may be quite 
expensive. In these cases, technological innovation may reduce control costs over time. Nonetheless, delaying 
control is generally costly and optimal control strategies should be identified and applied early on. 
19 Several other studies have found that delaying control can be optimal, but for different reasons. Specifically, 
Burnett et al. [5] and Olson and Roy [19] found that when control costs are stock dependent (i.e., higher marginal 
control costs for smaller invasions), delaying control to reduce control costs can be optimal. For example, Burnett et 
al. [5] suggested that delaying control is optimal for Miconia invasions on some of the Hawaiian islands. 
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4.5 Invasion location 

The role of invasion location on optimal policy has not previously been explored, to the 

best of our knowledge. The initial location of an invasion affects both optimal control and total 

costs and damages of an invasion by affecting potential long-term damages and the costs of 

control. Central invasions face higher potential damages because the invasion can spread through 

the landscape more rapidly, and control costs may be lower for distal invasions if landscape 

boundaries can help contain an invasion. Thus, centrally located invasions tend impose higher 

total costs and damages than distal invasions. Location also influences the optimal spatial 

allocation of control by determining the direction of greatest potential invasion spread.  

4.6 Invasion shape and contiguity 

The shape of an invasion affects optimal control policies by affecting containment costs 

and spread rates. Our results concerning invasion shape and contiguity were distilled from 

optimizations for a large array of invasion scenarios and can be summarized as follows. First, a 

greater amount of invasion edge, due to invasion shape, decreases the range of control costs for 

which containment is optimal, shifting policies toward eradication or abandonment. Second, for 

non-compact (edgy) invasions, spread or removal prior to containment to reduce the amount of 

exposed edge may be optimal because it reduces long-term control costs. Third, border control 

efforts are more likely to be applied along convex regions of an invasion, where local growth 

rates are higher and relative control costs are lower. Finally, optimal control of patchy invasions 

depends on the entire landscape, and control efforts can vary across patches based on patch and 

total invasion characteristics. 
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4.7 Spatial aspects of control 

We have shown that landscape features, such as bottlenecks, can be used strategically to 

reduce long-term containment costs, contributing to understanding of the role of landscape 

boundaries in controlling invasions. These boundaries, which are determined by the habitability 

and porousness of the landscape to the invader, include elevational, temperature, and 

precipitation gradients, soil types, and water bodies, and should be accounted for when 

determining optimal control.20  

Our results regarding the effect of invasion shape on optimal control effort provide 

insight on improving the use of barrier zones, which have been used to control a variety of 

invasions, including the boll weevil and gypsy moth. The barrier zone approach applies control 

efforts along the growing edge of an invasion to slow its spread [28]. Our findings suggest that 

applying control efforts homogenously along the growing edge can be suboptimal. Instead, it can 

be better in some situations to apply higher levels of control to convex regions of the growing 

edge (parts that extend the furthest) and to apply less control along small sections of the growing 

edge that lag behind the main front. Also, greater amounts of control should be applied to slow 

the invasion in the direction of greatest long-term potential growth. 

Our examination of multi-patch invasions contributes some insight into an unanswered 

question about where to focus control effort: on large, core patches or on smaller, satellite 

patches.21 High-density, established invasions can contribute to invasion expansion both through 

                                                
20 For example, an elevationally-constrained invasion spreading in a valley between two mountain ranges may best 
be contained in a narrow region of the valley. Also, it may be possible to employ restoration to create landscape 
barriers, because many species more easily invade disturbed ecosystems than diverse or undisturbed systems [e.g., 9; 
14]. Creating barriers through restoration of strategic areas in the landscape may reduce the long-term costs of 
containing invasions that are too widespread to eradicate. 
21 This questions was first addressed in the literature by Moody and Mack [16]. Taylor and Hastings [33] point out 
that even theoretical frameworks suggest different prioritizations: “the population biology approach suggests that, in 
general, outliers contribute the most to range expansion and should be removed first, whereas the metapopulation 
approach suggests prioritizing core populations that supply most of the new propagules.” 
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growth of the main invasion and the creation of new satellite populations. In this study we do not 

consider long-distance dispersal processes or differential densities among invaded patches, but 

our results support two points. First, greater amounts of control tend to be optimal for smaller 

invasions because of eradication and containment costs are lower, suggesting that it may be 

optimal to focus more control effort on smaller, satellite invasions in some cases. Second, 

optimal control for each patch of an invasion depends on the entire invasion and landscape, so 

that patches cannot be considered independently. A blanket strategy or prioritization is thus 

unlikely to be optimal. 

The management of many invasive plants is not regulated because they are classified as too 

widespread to justify eradication. Our results show, however, that under some circumstances it is 

optimal to eradicate one patch of an invasion even while allowing other patches to spread. Thus 

it may be worth controlling small populations that occur far from the main invasion, even when 

an invasion is widespread. Furthermore, it may be optimal to slow or contain widespread 

invasions, even when eradication is not justified, especially when large potential for further 

spread exists. 

4.8 Some principles of optimal bioinvasion control22 

Some basic principles that arise from this study are: 1) Protect large areas of uninvaded 

landscape. For example, small invasions and large landscapes portend larger future damages and 

thus warrant greater control effort. 2) Reduce the extent of exposed invasion front, by employing 

landscape features or altering the shape of the invasion through spread or removal, in order to 

                                                
22 The generalizability of our results depends upon the extent to which invasion control costs, damages, and spread 
processes align with our modelling assumptions. In this study we do not allow for long distance dispersal events. 
However, a constant rate of spread has been shown to provide good approximation of spread patterns for many 
invaders [29]. For species that exhibit long distance dispersal, eradication would likely be optimal across a greater 
range of economic parameters, because damages would accrue faster. However, the same qualitative patterns that 
we found in this study with respect to economic, landscape, and invasion characteristics are likely to hold for 
invasions with different patterns of spread. 
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reduce long-term containment costs. 3) Slow the spread of an invasion in the direction of greatest 

potential local or long-term growth. 5) Do not delay eradication. 

5.  Conclusions 

This paper has two purposes. The first is to provide useful and novel understanding of 

economically optimal control of bioinvasions. Employing a two dimensional, spatially explicit 

biological spread model allowed us to examine control strategies that varied across space and 

time and to identify how the geometry of the invasion and landscape affect the qualitative nature 

of optimal control policies. As we show, the optimal solution for a spatially explicit optimization 

problem generates a far richer set of solution characteristics and more nuanced conclusions about 

how to control bioinvasions than work that treats space only implicitly or does not allow for 

differentiated control across space. We describe and provide intuition for the wide spectrum of 

optimal solutions that emerge as we perturb both bioeconomic parameters and landscape and 

invasion geometry. 

The second purpose of this paper is to use the bioinvasion problem as a model case study 

for learning about a wider class of problems, namely spatial-dynamic problems. Economics has a 

rich legacy of analysis that addresses the spatial nature of economic activities and that addresses 

dynamic problems. In contrast, problems driven by spatial-dynamic processes have only recently 

begun to receive attention.23 Spatial-dynamic problems are characterized by diffusion or spread 

processes that generate patterns over space and time. Examples (aside from bioinvasions) include 

groundwater contamination, epidemics, forest fires, migration and movement, technology 

adoption, etc.  In human-mediated landscapes, economic agents may be affected by these spatial-

                                                
23 This includes work on marine systems by Sanchirico and Wilen [24; 25; 26], Janmaat [12], and Smith, Sanchirico, 
and Wilen [32], a study on spatial-endogenous fire risk and fuel management by Konoshima and others [13], and 
work by Brock and Xepapadeas [4]. Wilen [34] and Smith, Sanchirico, and Wilen [32] describe much of the existing 
work on the economics of spatial-dynamic processes, focusing on renewable resources. 
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dynamic processes, and they also may affect the patterns that unfold. In a setting in which agents 

are located over space, a general question arises about how to control spatial-dynamic processes 

in a manner that maximizes welfare across the whole landscape. As we have shown for the 

bioinvasion case where spread generates damages, the issue is not only when and at what level of 

intensity to initiate controls, but where?24 We have found, in general, that the dynamic parts of 

the solution (concerned with when and at what level of intensity to initiate controls) are 

intertwined in complex ways with, and are not separable from, the spatial part of the solution of 

where to initiate controls. 

Some of what emerges from accounting for both space and time reflects our intuition about 

the dynamic components of the problem, while other features are novel. Most importantly, 

adding space necessitates concern about geometric characteristics of problems in addition to 

concern about more familiar metrics such as size or quantity. To highlight some of our new 

findings about bioinvasions that may shed light on the larger class of spatial-dynamic problems, 

we compare general principles that apply to dynamic problems with some new results that 

emerge from our consideration of spatial-dynamics: 

• In dynamic problems, the index that differentiates decisions (time) runs only forward. In 

spatial-dynamic problems, the index that identifies decisions is both a time index and a 

spatial index. Moreover, spatial-dynamic problems run forward in time, but can spread and 

contract in multiple directions over space.  

• The solutions to interesting dynamic problems always involve a dynamic tradeoff such that 

the optimal control level balances contemporaneous benefits (costs) against the present value 

of long-term costs (benefits).  For example, optimal investment in any period balances the 

                                                
24 Spatial-dynamic processes may generate benefits, of course, in which case similar issues would arise in choosing 
policies that encourage rather than inhibiting spread. 
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marginal cost of the last unit of investment with the marginal change in the present value of 

benefits associated with that small change in the capital stock.  Importantly, the solution is 

forward-looking at each date, scanning the complete horizon, adding up the marginal impacts 

over that horizon (all evaluated along the optimal path), and comparing those anticipated 

impacts with current marginal costs. Spatial-dynamic problems also are forward-looking but 

over both time and space. Optimal bioinvasion controls in our problem account for the size 

and character of the potential space (and hence damages) that lies ahead in both time and 

space of the advancing invasion front. Directionally-differentiated damages influence the 

degree of control exerted at any point in time and space. Large prospective damages (either 

from a large amount of space or from high damages per unit of space) in the path of a 

spreading front will call forth higher levels of control early and at locations often roughly 

orthogonal to the path of the front.  

• Dynamic optimization solutions depend critically upon the initial state of the system, 

generally measured by the size of capital or resource level at some starting date.  For 

example, the smaller the initial capital level relative to its steady state level, the larger current 

optimal investment should be. For spatial-dynamic problems, the geometry of the initial state, 

as well as its size, matters. As we showed, small variations in shape and location in the 

landscape can lead to qualitatively different optimal solutions. For example, whether 

eradication or containment may be optimal depends not only upon basic costs, damages, and 

discount rate, but also upon how large the initial invasion is relative to the landscape, where 

it is located, the extent of exposed invasion edge, etc. 

• In dynamic problems the optimal decision for any control variable often can be described as 

an open loop function of time and the initial state. In spatial-dynamic problems, on the other 



30 

hand, the optimal control at a site cannot be reduced to an open loop function of time. Instead, 

optimal control at each point in space depends on its location in space and the state and 

control levels at other points in space. This was demonstrated in our multi-patch invasion 

examples, in which the optimal policy at one patch was explicitly interdependent with 

optimal policies at other patches. 

These are just a few of the characteristics that we conjecture may emerge as general 

properties of solutions of other spatial-dynamic optimization problems.  In the end, economists 

will need to develop new intuition about spatial-dynamic problems by analyzing these and other 

cases before we can understand what features of the solutions to this class of problems appear to 

be general, and what features are specific to particular cases. 
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Figure 1. Optimal control strategies for three sizes of landscape (potential invasion range). 

Parameter space shows how control strategy varies based on eradication and border control costs. 

The initial invasion is a 3 by 3 block of cells in the center of the landscape. Contain, eradicate 

and abandon policies all begin in the first time step; slowing policies involve controlling along 

both exposed edges of each of the four corner cells (a total of 8 edges) for one time period and 

then abandoning control. (r = 0.05). 
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Figure 2. Optimal control strategies for three invasion sizes (inadvertent control delays). 

Parameter space shows how control strategy varies based on eradication and border control costs 

for three different invasion sizes in a 15 by 15 cell landscape:  a) 1 cell invaded, b) 5 cells 

invaded (1 central cell and 4 adjacent cells), and c) 13 cells invaded (a 3 by 3 block of cells with 

an additional cell adjacent to each central edge cell in the block). These invasions represent an 

initial, single cell invasion with a control delay of a) zero, b) one, and c) two time steps. The 

slowing strategy in b) contains the invasion along the outer 4 edges of the invasion for 1 time 

step and then contains the resulting 3 by 3 invasion in perpetuity. The “eradicate then contain” 

strategy in c) clears the outer 4 cells of the invasion and contains along all borders in the first 

time period and then contains the resulting 3 by 3 invasion in perpetuity. (r = 0.05). 
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Figure 3. Net present value of costs and damages from optimally controlling an invasion 

immediately or delaying control by one or two time steps. The initial invasion (t=0) is a single 

invaded cell at the center of a 15 by 15 landscape. Control begins at t = 1, 2, or 3, for the three 

lines in each plot. The panels correspond to different marginal eradication costs. (r = 0.05). 

 
Figure 4. Optimal control strategies for three landscape shapes. Parameter space shows how the 

optimal control strategy varies based on eradication and border control costs. The three equal-

sized landscapes are:  a) 16 by 16, b) 8 by 32, and c) 4 by 64, initially invaded by a central 2 by 2 

invasion. (r = 0.05). 
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Figure 5. Example of optimal control in a landscape with a constriction. The region is 11 by 15 

with two 4 by 9 sections removed (the light grey areas are not invadable). Optimal policy slows 

the spread of the invasion as it approaches the landscape constriction, where it is ultimately 

contained in perpetuity. (r = 0.05, b = 7, e = 250). 

 

 

Figure 6. Example of optimal control in a landscape with an expansion. The region is 9 by 18 

with two 3 by 6 sections removed (the light grey areas are not invadable). Optimal policy allows 

the invasion to spread until it reaches the end of the narrow section at time t = 4. Control efforts 

begin in time period 5 that contain the invasion in perpetuity. (r = 0.05, b = 27, e =250). 
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Figure 7. Optimal control strategies for three initial invasion locations. Parameter space shows 

how the control strategy varies based on eradication and border control costs for a single cell 

invasion in a 15 by 15 cell landscape located: a) centrally, cell (8,8), b) at an edge (1,8), and c) at 

a corner, cell (1,1). (r = 0.05). 

 

 

Figure 8. Optimal control of an invasion in a 15 by 15 cell landscape by a 4 by 4 patch of cells 

near a corner of the landscape. (r = 0.05, b = 10, e =230). 
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a) 

 
b) 

 
 

Figure 9. Optimal control of a 2 patch invasion in a 15 by 15 cell landscape for 2 different 

eradication costs. Invasion begins in cells (1,1) and (14,14) (in a corner and near a corner, 

respectively). In scenario (a) the optimal policy eradicates the cell in the lower right hand corner 

in the first time period and contains the invasion in the upper left hand corner in perpetuity. (r = 

0.05, b = 27, e =1600). With slightly higher eradication costs in scenario (b), the optimal policy 

slows the invasion for the first 6 time periods and abandons control over the whole landscape at 

time t = 7. (r = 0.05, b = 27, e =1800).  
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Figure 10. Optimal control strategies for two invasions that differ in contiguity. Parameter space 

shows how the optimal control strategy varies based on eradication and border control costs for 

invasion by: a) 4 contiguous or b) 4 equidistant, noncontiguous cells in a 15 by 15 landscape. 

The initial invasion occurs near the center of the landscape as: a) a block of 4 cells ((8,8), (8,9), 

(9,8), (9,9)), and b) 4 separated cells ((7,7), (7,9), (9,7), (9,9)). (r = 0.05). 

 
 

 

 
   
Figure 11. Optimal control of an invasion in a 7 by 14 cell landscape by a patch of cells with 

local concavities. The optimal policy eradicates one cell and slows the spread in the first time 

period, partially contains the invasion in t = 2, and contains the invasion in perpetuity beginning 

in the third time period. (r = 0.05, b = 7, e = 83). 
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Figure 12. Optimal control of an invasion in a 15 by 15 cell landscape by a small (1 cell) and 

large (9 cells) patch. Optimal policy eradicates the small patch and slows the spread of the larger 

patch by directing spread into the corner of the landscape. Eventually the invasion spreads to fill 

the entire landscape. (r = 0.05, b = 14, e =450). 

 


