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Pesticide Use and IPM Adoption:  Does IPM Reduce Pesticide Use 

in the United States? 

 

Abstract 

 

In 2001, the United States General Accounting Office issued a report entitled 

“Management Improvements Needed to Further Promote Integrated Pest Management.”  

This report documents that overall agricultural pesticide usage increased from 1992 to 

2000 while the use of the most toxic levels of pesticides have decreased.  The USDA 

suggests that these changes in pesticide use could have been caused by integrated pest 

management (IPM) adoption.   However, the GAO maintains that there is not enough 

evidence to support this claim.  This paper contributes to this debate by estimating the 

relationship between pesticide use and IPM practices adopted for number of commodities 

across the nation from 1996 to 2005.  The paper exploits an aggregated data set that 

combines surveys from different crops and different years, but it also examines specific 

surveys conducted on cotton and corn crops to better control for other factors that could 

affect pesticide use.  The paper applies multiple definitions of IPM and uses different 

spatial variables to control for environmental effects that affect pesticide use.  Although 

some specific strategies such as GM adoption decreased the amount of active ingredients 

sprayed on cotton and corn, the results suggest that on average the adoption of IPM 

strategies lead to slightly increased pesticide spending and pounds of active ingredient 

sprayed per acre.  This result is confirmed in both the analysis on the aggregated data as 

well as the analysis of the cotton and corn data.  The results also suggest that fixed 

environmental factors explain a significant amount of chemical spending and pesticide 

use in the United States.  The significance of these factors demonstrates the importance 

of research and programs that aid farmers in making intelligent pesticide use decisions at 

the local level.   

 

Keywords:  Pesticide Use, Integrated Pest Management, Corn Production, Cotton 

Production  
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Introduction 

Since the 1970s, government officials, university researchers, and extension 

specialists have worked together under the umbrella of integrated pest management 

(IPM) to establish and implement improved pest management practices.  These practices 

are designed to provide economic benefits and reduce environmental and health risks.  

The national impacts of IPM on environmental and health risks have been called into 

question by federal officials.  The United States General Accounting Office (GAO) 

(2001) used data from the Environmental Protection Agency (EPA) and the Center for 

Food and Agricultural Policy data to demonstrate that overall agricultural pesticide use 

(measured by pounds of active ingredient) increased between 1992 and 2000.  The report 

found that the use risky pesticides as defined by EPA’s risk classifications in agriculture 

decreased, but it concluded that the evidence is insufficient to support the USDA’s claim 

that this reduction is due to IPM.  The report cited EPA officials who suggest that 

changes in pesticide use could be due to EPA’s ban on some of the most toxic pesticides, 

discontinuation of certain pesticides due to liability concerns, and lack of efficacy of 

some risky pesticides due to pest resistance.  This suggestion is supported by a survey of 

United States IPM coordinators, the majority of whom felt that the decline in risky 

pesticide use was due primarily to EPA regulatory action and business decisions by 

pesticide companies to withdraw risky and ineffective pesticides from the market 

(Ratcliffe and Gray, 2004).  The EPA also suggested that the introduction of GM crops 

has reduced the reliance on the most toxic pesticides, although the report does not 

recognize that the adoption of GM crops can be a component of an IPM strategy (Kogan, 

1998).       
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Pesticide use depends on a multitude of factors that change yearly and a simple 

comparison across years may not accurately reflect true trends in pesticide use.  For 

example, USDA Agriculture Chemical Use Survey data on total pesticide use per acre in 

bell peppers from 1992 to 2006 and plotted in Figure 1.  The graph demonstrates that 

there has been no distinguishable trend in pesticide use in bell peppers over that period.  

Pesticide use on peppers in 1992 was higher than it was in 2006, but in 2002 and 2004 

pesticide use was higher than it was in 1992.  No inference can be made about a long-

term trend in pesticide use on bell peppers.  This example is not unique to peppers but 

applies to aggregate pesticide use as well (Figure 2) (Osteen and Livingston, 2006).   

It is difficult to draw inferences about pesticide use from a simple comparison of 

overall usage in two time periods.  Pesticide use depends on a number of factors and 

fluctuates heavily over time due to factors such as weather and pest pressures, and to 

management practices such as the adoption of new technologies (Norton and Mullen, 

1994).   

National IPM leaders responded to the GAO report by developing a National 

Roadmap for IPM.  The Roadmap calls for documenting how pesticide use has changed 

over time and for connecting these changes to IPM adoption.  This paper responds to that 

call by assessing the effects of IPM practices on farmer pesticide use for a number of 

crops in the United States.  It also examines the decline in risky pesticide use was due to 

pesticide bans, pesticide company decisions to withdraw certain pesticides, and the 

adoption of GM crops.  
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Motivation 

Pesticides have helped the world meet growing food demand by increasing 

agricultural productivity and reducing the effects of pest outbreaks.  Unfortunately, 

chemical pesticides also cause adverse environmental and health impacts.  Starting with 

Rachel Carson’s Silent Spring in 1962 that alerted the public to pesticides’ damaging 

effect on birds through more recent studies that suggest the link between pesticides and 

human maladies such as asthma and autism, pesticide risks have been scientifically 

demonstrated and brought to the public’s attention (Kogan, 1998; Delaplane, Roberts, et 

al., 2007; Zilberman, et al., 1991).  Several researchers have calculated the costs of 

banning or partially banning the use of some or all pesticides, and found that the burden 

in terms of increased food costs and other welfare measures would be substantial 

(Fernandez-Cornejo, et al., 1998; Zilberman, et al., 1991; Burton Jr and Martin, 1987) .  

The positive and negative aspects of pesticide use create a tradeoff that all pesticide users 

and pesticide regulators face when they make decisions about pesticides.   

In recognition of this tradeoff, researchers since the 1970s have developed IPM 

programs that specifically address this economic-environmental dilemma (Kogan, 1998; 

Fitzner, 2002).  IPM programs seek to account for economic benefits and environmental 

costs by combining biological, cultural, and chemical pest control techniques to reduce 

pest infestation to economically acceptable levels (Gianessi and Puffer, 1992).  These 

programs aim to improve both the economic well-being of adopters while also reducing 

environmental and health risks.  IPM was founded on the premise that many pesticide 

users overspray chemical pesticides to the detriment of both the environment and their 

own incomes (Fitzner, 2002).  This dangerous overuse of pesticides has been commonly 

found in agriculture, and other areas as well.  It has led researchers to create IPM 
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programs for numerous commodities, locations, and target populations.  For example, 

recently-developed IPM programs have focused on low-income urban households who 

face cock-roach infestations that lead to asthma attacks and school buildings where it was 

found that overuse of pesticides could put children at risk (Spengler, et al., 2005).  

Unfortunately, the impacts of these recent programs are difficult to quantify due to their 

relative newness and the lack of non-agricultural pesticide use data.  For these reasons, 

this study focuses on agricultural pesticide use. 

 IPM Definitions 

Despite the proliferation of IPM programs over the past thirty years, IPM 

continues to be difficult to define very precisely (Royer, et al., 1999; Fitzner, 2002).  IPM 

programs typically involve multiple practices and can be adopted to varying degrees.  

One way to describe IPM is as a “way of thinking.”  Theodore Alter describes IPM this 

way: “IPM is a holistic way of thinking that improves our ability to mitigate the negative 

impacts of pests in agricultural production, horticulture, buildings and other situations, 

while at the same time reducing costs and improving environmental quality.” 

(Burlingame, 2002) (pg. 2)   This description highlights the fact IPM involves an 

economic-environmental tradeoff in managing pest problems.  It also demonstrates that 

IPM is a broad concept that is not easily quantifiable.  

Researchers use broad categories of individual practices to help conceptualize 

IPM.  For example, some common groups of practices used in IPM programs are 

prevention, avoidance, monitoring, and suppression practices (PAMS).  Prevention 

practices include water management practices and cleaning farm tools after fieldwork.  

Avoidance practices include adjusting planting and harvest dates and adopting pest-



7 

 

resistant crop varieties (including GM varieties) to minimize the likelihood of a pest 

infestation.  Monitoring practices include scouting for pests and keeping written records 

to track pest populations.  Suppression practices include using biological pesticides, 

alternating pesticides with different mode of actions (MOA), and using other non-

chemical methods such as introducing beneficial insects.  Another classification separates 

IPM practices into biological, cultural, and pesticide efficiency practices (Fernandez-

Cornejo and Ferraioli, 1999).  In this classification system, biological practices include 

using natural enemies, resistant varieties and biological pesticides, cultural practices 

include pruning and tillage methods, and pesticide-efficiency practices include scouting 

pest populations and using economic thresholds.    The exact practices recommended by 

specific IPM programs depend on each practices’ effectiveness which differs between 

crops and locations.  These broad categories help better define IPM, but they do not solve 

all the problems related to measuring IPM adoption.  The research presented in this paper 

uses multiple definitions of IPM in an effort to circumvent some of these problems.       

Previous Literature 

Many national and state resources have been used to develop IPM programs and 

support IPM adoption, but as the GAO report documents, national effects of IPM on the 

environment, human health, and income remain uncertain.  However, many localized 

impact assessments of IPM have reported positive environmental and health benefits.  

Norton and Mullen (1994) review 61 economic evaluations of IPM programs in the 

United States and found that IPM adoption leads to “generally lower pesticide use, 

production cost, and risk, and higher net returns to producers”  (Norton and Mullen, 

1994).  Fernandez-Cornejo and Rakshit (2007) examine more recent IPM impact studies, 
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both national and international, and reach similar conclusions.  The GAO report itself 

discusses the success of a West Coast apple and pear IPM program and a Wisconsin 

potato IPM program at reducing risky pesticide use, but concludes these studies do not 

provide sufficient evidence to suggest that IPM has made a significant impact at the 

national level.  Some individual IPM studies have documented no change or a slight 

increase in pesticide use, but the majority of studies document a positive effect of IPM on 

the environment through reduced pesticide use.  The challenge is to aggregate these 

studies to determine the national level impacts of IPM on the environment, health, and 

economic wellbeing.   

There is circumstantial evidence that IPM has been successful at meeting these 

goals.  The widespread growth in IPM adoption, both domestically and internationally 

over the last thirty years, suggests that IPM has been successful at the very least in 

convincing adopters and policymakers that it is beneficial to the environment and to 

adopters.  One recent report reviews pesticide reduction alternatives and recommends to 

the Natural Resources Conservation Service (NRCS) that IPM programs be further 

developed and given additional resources (Hamerschlag, 2007).  The report concludes 

“Integrated pest management, or IPM, can provide effective crop protection while 

minimizing risk to health and the environment.  These smarter, prevention-based pest 

control practices can avoid resistance problems that occur with traditional pesticides and 

may reduce overall costs by lowering chemical inputs, reducing liability and worker 

injuries, and improving public relations (Hamerschlag, 2007).”  The GAO report also 

mentions that several food processors encourage their growers to use IPM practices 

because it reduces processing costs.  The anecdotal nature of most of the evidence 



9 

 

supporting IPM does not satisfy the demand by the GAO or national IPM leaders for 

national impact assessments on how IPM has affected pesticide use in the United States.  

As Norton and Mullen (1994) state, “These (aggregate) assessments are needed for 

informed choices on policies and public investments affecting IPM.” 

There have been attempts to assess the aggregate benefits of IPM.  Resosudarmo 

(2001) uses a general equilibrium model to determine the economic impacts of IPM in 

Indonesia.  He concludes that IPM has created significant and widespread increases in 

incomes and has improved health for Indonesians.  Others have used general equilibrium 

models to determine the impacts of other technologies such as GM rice nationally and 

internationally (Hareau, et al., 2006). General equilibrium models can be useful for 

national impact assessments, but their data requirements and strong assumptions make 

them difficult to implement in an economy as large and interdependent as the United 

States (Resosudarmo, 2001).  These models also do not address pesticide usage directly, 

but instead present monetary benefits, making it difficult to address the specific issue of 

actual pesticide use.    

Fernandez-Cornejo (1996) uses another technique to examine the impact of IPM 

on pesticide use and farm profits.  He develops and applies a model that accounts for the 

self-selectivity involved in the IPM adoption decision, and the simultaneity between IPM 

adoption and the farmers’ profit maximization problem when deciding on the amount of 

pesticides to use on the farm.  Fernandez-Cornejo (1996; 1998) and Fernandez-Cornejo 

and Ferraioli (1999) applies this technique to different crops across the United States to 

determine the impact of IPM on pesticide use in specific crops.  These studies separately 

examine fresh tomatoes, grapes, and peaches, and account for farmers across the United 
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States.  They estimate of the national impacts of the crop specific IPM programs in the 

United States.  The major limitation of these studies is that they only analyze the impacts 

for one growing season and one commodity.  This limitation is due mostly to data 

constraints they faced at the time they were conducting their studies (Fernandez-Cornejo 

and Ferraioli, 1999).  As mentioned earlier, it is problematic to draw inferences about 

pesticide use without considering multiple years and multiple crops.  Results from 

Fernandez-Cornejo (1996; 1998) and Fernandez-Cornejo and Ferraioli (1999)  suggest 

that IPM practices have mixed effects on the environment and are dependent on the 

specific crop being analyzed.  For example Fernandez-Cornejo (1996) concludes that 

IPM adoption reduces insecticide and fungicide use in fresh tomatoes, but increases 

overall pesticide use and the toxicity of pesticides used in peach production.  These 

results are only for a single growing season, and further study is needed to determine if 

these results hold over time.   Fernandez-Cornejo’s model also allowed them to estimate 

the effect of IPM adoption on profits, but their results were mixed as profits were slightly 

higher for grape and tomato growers but there was no significant effect on peach 

growers.  In conclusion, studies that have measured the effectiveness of IPM and specific 

IPM groupings at reducing pesticide use have yielded mixed results. 

The major limitation that prevented Fernandez-Cornejo (1996; 1998) and 

Fernandez-Cornejo and Ferraoli (1999) from doing time series analysis was the lack of a 

sufficient data set.  These studies use NASS agricultural chemical usage surveys, but 

these surveys sample different crops and different states in different years making it 

difficult to get an accurate and consistent time series of pesticide use in United States 

agriculture.  The agricultural chemical usage surveys are part of the USDA Pesticide Data 
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Program, but the main focus is on pesticide residues.  Its goal is to “enhance the quality 

of information on pesticide residues in food” and not to determine the effect of IPM or 

other farmer practices have on pesticide use (2007).   Other agencies like Natural 

Resource Conservation Services (NRCS) and United States Geological Survey (USGS) 

collect or compile pesticide data, but most of these data focus on pesticide use as it 

relates to the specific topics the agencies are researching and do not consider farm 

practices.  These data also begin later than the NASS surveys, and therefore do not have 

as many observations.   Thelin and Gianessi (2000) document the difficulties in 

compiling pesticide use data for the USGS project.  Unfortunately, many sources of data 

on pesticide use fail to collect data on IPM practices, making it impossible to determine 

the effects of IPM on pesticide use.    

The Agricultural Resource Management (ARMS) surveys do collect both IPM 

practice and pesticide use data.  The ARMS surveys began in 1996 for the purpose of 

conducting a national accounting of farmers’ resource usage across the country.  The 

ARMS survey also collects information on farmers’ finances, production practices, use of 

chemicals, and other resources.  ARMS surveys have collected information on more than 

15 crops.
1
  ARMS surveys do not reach every agricultural pesticide user, but they sample 

agricultural pesticide users in a manner that is representative of the whole population.  An 

ARMS survey is conducted in three phases.  The first screening phase (Phase 1) surveys 

potential respondents on the crops grown and types of livestock present on the farm.  The 

second phase (Phase II) elicits information on production practices and enterprise 

                                                 
1
 ARMS surveys also collect information on some livestock, but these livestock surveys are not included in 

this analysis even though some IPM practices and pesticides are used on livestock. 
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management practices.  The third phase (Phase III) collects financial information from 

the farm.   

It is important to note that the ARMS surveys are designed and written 

specifically for the crop and year that is being surveyed.  In other words, individual 

ARMS surveys do differ between crops and years.  ARMS surveys have sampled corn, 

soybeans, cotton, winter, spring, and durum wheat, fall potatoes, rice, sorghum, flue-

cured tobacco, sugarbeets, peanuts, sunflowers, oats, and barley in different years.  These 

surveys have been used in other studies to examine a number of different topics.  For 

example Daberkow et al. (2003) studied the adoption of precision agriculture.   Falck-

Zepeda and Traxler (2000) estimated the rents generated by Bt cotton and herbicide 

resistant soybeans.  Marra et al. (2002) used the data set to analyze whether GM crops do 

lead to lower pesticide use.   

These studies concentrated on particular crops or a single year and did not use the 

complete set of ARMS surveys that are currently available. This study examines pesticide 

use at a more aggregated level.  Therefore most of the data used in the first part of the 

study of this study are taken from the Crop Production Practices Report (CPP) of ARMS.  

This data set does not include the financial information collected in Phase III but 

combines all of the practice data for all of the crops surveyed into a single data set.  The 

CPP makes it possible to compare practices of farmers across surveys without directly 

addressing the differences between surveys across years and crops.  By not including 

Phase III information, some specific farmer characteristics cannot be included in the 

analysis conducted in this report.  Also the CPP does not include data on actual pesticide 

usage due to the overwhelming number of different pesticides used on different crops 



13 

 

combined with the changes in pesticide brands and active ingredients over the years.  

Because of this situation, pesticide cost per acre was used in this study as a proxy for 

pesticide use.  Admittedly, this proxy might not be perfectly correlated with risky 

pesticide use, as some less risky pesticides (as defined by the EPA) might be more 

expensive, but it does provide a fair picture of the overall chemical pesticide use by 

farmers.  The measure should correlate with general pesticide use, and be useful in 

determining if IPM and other factors affect pesticide use.   

To explicitly recognize some of the limitations imposed by only using the CPP 

data, a more complete analysis using specific cotton data from 1997 and 2003 was also 

conducted. This analysis included information from both Phase II and Phase III of the 

ARMS surveys and provides more direct comparisons to previous single crop studies.  

Also by examining cotton, the analysis can separate the effects of IPM and the adoption 

of genetically modified crops on pesticide use.  This issue has been examined in previous 

studies making our results directly comparable to these studies.         

Corn data were also analyzed to enable the examination of the effects of specific 

IPM practices, essentially an unbundling of IPM.  Corn was chosen here, because the 

data offered more IPM practices to analyze.   

Model 

 

Equation 1 

𝐏𝐞𝐬𝐭𝐄𝐱𝐩𝐞𝐧𝐝 = 𝛂 + 𝛃 𝐈𝐏𝐌 + 𝛄 𝐒𝐩𝐚𝐭𝐢𝐚𝐥,𝐏𝐞𝐬𝐭 𝐏𝐫𝐞𝐬𝐬𝐮𝐫𝐞,𝐚𝐧𝐝 𝐓𝐢𝐦𝐞 𝐃𝐮𝐦𝐦𝐢𝐞𝐬 + 𝛜  
 

The basic model used in this study is represented in equation 1.  PestExpend 

represents pesticide expenditures per acre, α is an intercept term, IPM represents the 

adoption of IPM strategies, β represents the impacts that IPM strategies have on chemical 
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spending, and γ are the effects of Spatial, Pest Pressure and Time Dummies.  The 

following paragraphs and tables report the results of applying this model using different 

definitions of IPM and using different IPM practices.  The basic model does not include 

any farmer-specific characteristics because the CPP data that were used lacked the Phase 

III ARMS data.  It should be noted that some proxies for farmer characteristics such as 

total acres on the farm, whether or not the farmer adopted conservation practices, and 

irrigation use, were also used in preliminary regressions.  These variables were rarely 

statistically significant, but also reduced the number of observations and crops surveyed 

due to the fact that the same questions were not used for every crop in every year.  The 

reduction in crops inhibited achievement of the study’s primary goal of conducting an 

aggregate assessment of IPM’s effect on pesticide use.  Therefore these variables were 

not included in the final regressions.  Results by crop reported later in the study explicitly 

account for some of the relevant Phase III data.    

CPP Results 

 The percentage of farmers in the ARMS sample who adopted a single practice in 

a P,A,M,S strategy, and the percentage who had attended a pest management training 

class within the last year are reported in Table 1.  For example, any farmer who answered 

that they “scouted,” no matter what they scouted for, was considered to adopt monitoring 

strategies.  This concept of one practice being equal to IPM adoption is used throughout 

the paper unless another definition is noted.   All practices were not reported in the 

survey for every crop and wording of questions has changed as the ARMS survey and 

program has progressed.  This lack of consistency makes comparing specific practices or 

developing a more concrete definition of IPM adoption difficult with CPP.  The adoption 
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of a single practice equaling the adoption of IPM represents a broad definition of IPM 

adoption, and later specifications will narrow that definition by combining and redefining 

strategies.  The table does suggest that the adoption of prevention and monitoring 

strategies are prevalent on most American farms.   

A preliminary regression that did not control for any fixed environmental factors 

except for the crop and whether the crop was grown after 2000 grown led to some 

unexpected results.  Choosing the year 2000 roughly split the data in half and was an 

arbitrary first step to include time in the analysis.  Practices that were found to 

significantly increased chemical spending per acre were monitoring ($2.59), suppression 

($6.55), and pest management training ($2.20).  This regression demonstrated the 

importance of controlling for crops and time.  Most of the crops resulted in different 

chemical spending than corn, and farmers spent less on chemicals (-$2.03) after 2000.  

These results suggest that better controls for issues such as pest pressures could 

significantly change the results.      

A second set of regression results are reported in Table 2.  These results 

separately control for the crop grown, the state where the crop was grown, and the 

specific year that the crop was grown.  Prevention and avoidance strategies were found to 

have a non-significant effect on chemical spending.  Monitoring and suppression 

practices significantly increased chemical spending, as did participating in a pest 

management training program in the last year.  Crop, state, and time specific effects were 

also significant.  Half of the crops differed significantly from corn, half of the states 

differed significantly than Iowa, and in six years farmers spent significantly less than in 
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1996.  Even with the larger number of control variables, monitoring ($2.48) and 

suppression ($5.45) practices had a significant positive effect on chemical spending.   

 A third model controlled for environmental factors by creating a variable (pest 

pressure) that separated each state by crop and year.  For example, a variable was created 

that represented Iowa corn farmers in 1996, Ohio soybean farmers in 1998, another 

variable for Iowa corn farmers in 2000, and another variable for Ohio soybean farmers in 

2001.  These variables combined all of the information collected in the second model, but 

allowed for a more focused analysis on the effect of a single location in a given year on 

chemical spending.  This pest pressure variable was intended to identify localized pest 

pressure situations that could cause a spike in pesticide use in a given year.  This variable 

is not perfect, because some states, especially larger states, face different pressures within 

the state.  The variable should also help control for some farm characteristic, because it is 

expected that farmers of the same crop in the same state (especially geographically 

smaller states) have similar characteristics, especially with respect to prices received and 

expected for their crop and other input costs.    

 The results from this specification are presented in Table 3.  The effects of 

monitoring ($1.67) and suppression ($4.86) decreased, but the strategies still increased 

chemical spending overall.  Also, over fifty percent (129 out of 238) of the pest pressure 

variables were significant at the 5% level.  This result indicates that pesticide use is not 

strictly determined by use practices but also by environmental factors.       

  A fourth model was created that separated individual practices into those that 

should clearly reduce chemical use (non-chemical) and those practices that had an 

unknown effect on chemical usage.  This specification was designed to separate some of 
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the ambiguous effects that IPM practices such as scouting have on pesticide use.  

Scouting can lead to either an increase or a decrease in pesticide use depending on the 

pests and pest numbers identified by the scouting.   This fourth model retained the pest 

pressure variables of the third model, and the results are reported in Table 4.  These 

results also yielded unexpected results as even those farmers who adopted practices that 

should clearly reduce chemical use spent more on chemicals than those who did not.   

 A fifth model analyzed the effect of adopting all of the P,A,M,S strategies.  This 

definition represents a narrow definition of IPM adoption as it requires the farmer to 

adopt at least one IPM practice in each of the separate P,A,M,S  strategies, but the effect 

($4.12) of adopting all strategies also increased chemical spending and was statistically 

significant.  Other models that included combinations of  P,A,M,S strategies led to 

similar results.   The general conclusion from all of these specifications was that IPM 

adoption and pest management training lead to slightly greater chemical spending on 

average.
2
  Table 5 summarizes the different effects that P,A,M,S strategies have on 

chemical spending across the different specifications controlling for different spatial 

variables.   The implications of these conclusions will be discussed later.    

 These results suggest that IPM might actually increase spending on pesticides.    

Chemical Use on Cotton  

As discussed before, most previous studies have focused on a single crop during a 

single year.  The benefit of this type of analysis is that it allows the researcher to control 

for more farm and farmer-specific characteristics.  For example, Fernandez-Cornejo 

(1996) controlled for a number of farmer-specific variables such as farm size, farmer 

                                                 
2
 These results were robust to the removal of outliers. 
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experience, education level of the farmer, where farmers received their pest information, 

and the price of inputs.   In a similar way, an analysis was completed that combines the 

ARMS Phase II and Phase III data to more directly examine the impacts of IPM on 

chemical use in cotton in 1997 and 2003.  Also by examining cotton production, the 

effects on pesticide use attributed to IPM can be separated from the effects of adoption of 

genetically modified herbicide (HR) and insecticide resistant (IR) cotton varieties.  This 

separation permits a comparison with other studies that have specifically examined the 

relationship between IR and HR adoption and pesticide use in cotton production in the 

United States. 

 

Equation 2.2 

𝐀𝐈 = 𝛂 + 𝛃 𝐈𝐏𝐌 + 𝛗 𝐈𝐑, 𝐇𝐑 𝐃𝐮𝐦𝐦𝐲 + 𝜹 𝐅𝐚𝐫𝐦𝐞𝐫 𝐂𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜𝐬 

+ 𝝎 𝐅𝐚𝐫𝐦 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐂𝐡𝐚𝐫𝐚𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜𝐬 + 𝛜 

 

By focusing on cotton, the analysis was also able to create a dependent variable of 

pounds of herbicide and insecticide active ingredient (AI) used per acre which is 

preferable to using pesticide expenditures.  Although A.I. does not explicitly consider 

riskiness of pesticides, it is more applicable to the GAO report and addresses some of the 

previously discussed concerns with using chemical spending per acre as a proxy for 

pesticide use.  Similar to the previous models, multiple definitions of IPM were used.  

One definition (Any IPM)) defined IPM adoption as adopting any single IPM practice.  A 

more restrictive definition (Intensive IPM) ensured that an adopter practiced scouting and 

at least one other IPM practice.  In different models, other IPM practices were separated 

from IR or HR adoption.  In these models, HR or IR did not count towards IPM adoption. 

The farm and farmer characteristics chosen to be independent variables were the same as 
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those used in Fernandez-Cornejo (1996) and included farm size, years of farming 

experience, farm income, price received for cotton, farm tenure, type of cotton grown, 

cost of pesticides, origin of pesticide information, and if the farmer had received IPM 

training in the last two years.  The issue of selection bias where the IPM adopters are 

systematically different than non-adopters and can bias results is also explicitly 

considered by Fernadez-Cornejo (1996) (1998), but statistical tests conducted on this data 

determined that selection bias was not significant in any of the following estimated 

pesticide demand equations, and therefore only the reduced form results are reported.   

This analysis also employs different spatial variables.  The models used regional 

dummies as defined by ERS, state dummies, and zip code dummies.  These spatial 

variables, the analysis helped control for specific pest pressures that affect certain farms 

as well as other unobserved variables that are associated with location. 

Previous studies that have examined pesticide use in cotton have yielded 

somewhat contradictory results.  Marra et al. (2002) found some evidence that the 

introduction of Bt cotton might have reduced pesticide use.  Benbrook (2002) suggested 

that the benefits of GM cotton in terms of reduced pesticide usage might have been 

overstated, and suggested that further study and technologies were needed to ensure that 

pesticide use is actually reduced.  A recent study suggested that chemical use in cotton is 

somewhat sporadic and might have increased over the past few years (Fernandez-

Cornejo, et al., 2009).     

The effects that IPM and HR and IR have on herbicide and insecticide use are 

reported in Table 6-9.  For the 1997 regressions, there were 688 observations, and for the 

2003 regressions there were 1230 observations.  In most models, the farm and farmer 
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characteristics had the expected signs based on economic theory and previous empirical 

studies, but the statistical significance of these variables varied depending on the year, 

spatial variables, and IPM definition used.  IPM training rarely had a significant effect on 

pesticide use.  Also those farmers who received their pesticide information from 

extension professionals tended to use more chemicals in some models, but in most 

models, this effect was not statistically significant.  The adjusted R-squared of the models 

varied from 0.10 to 0.40.  The models that included state variables tended to have slightly 

better fit statistics than those models that included zip code variables.  As with the CPP 

regressions, many of the spatial dummies were significant and suggested that pesticide 

use differed between locations.            

These cotton results confirm the aggregate results in the sense that IPM seems to 

be associated with increased pesticide use.  But these results also question whether some 

IPM practices, in this particular case, the adoption of GM technologies might actually 

decrease pesticide use.  In 1997, the adoption of HR varieties significantly reduced the 

herbicide pounds of active ingredient sprayed on cotton, and in 2003 in the models where 

region and states were controlled for, adopting IR significantly reduced insecticide 

pounds of active ingredient sprayed on cotton.  Neither HR nor IR adopters sprayed less 

pesticides in both years, but neither demonstrated the statistically significant positive 

signs associated with the IPM adoption definitions either.  By focusing on measures of 

IPM adoption that bundle multiple practices might be generating results that do not 

properly assess the importance of some specific practices that actually decrease pesticide 

use.  Also the broad definitions of IPM increased pesticide use more than the restrictive 
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definitions. The next section addresses these issues by examining specific practices in 

corn production.    

Chemical Use on Corn  

The aggregate analysis of factors affecting pesticide use separates IPM into broad 

categories that do not allow for the possibility that specific practices may have different 

effects on pesticide use.  As in the case of cotton, aggregate analyses that uses broad IPM 

categories also might lead to the bundled factors canceling out the effects of each other, 

as specific practices in the bundles increase pesticide use while others decrease pesticide 

use.  The result might be an under-estimation of the significance of certain IPM practices 

that do reduce pesticide use.  For example, the relatively small magnitude of the 

significant coefficients and the lack of significance of prevention and avoidance activities 

in the CPP regressions could be explained by some practices within the profile increasing 

pesticide use and other practices reducing pesticide use.  For example in the cotton 

estimates, when HR is bundled together with other IPM practices, the pesticide 

decreasing nature of HR cannot be seen. 

 

Equation 2.3 

𝐀𝐈 = 𝛂 + 𝛃 𝐈𝐏𝐌 + 𝝎 𝐅𝐚𝐫𝐦 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐂𝐡𝐚𝐫𝐚𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜𝐬 + 𝛄 𝐒𝐭𝐚𝐭𝐞 + 𝛜 

 

 

To better address this bundling issue, other models using only corn data were run.  

These models allowed for specific practices (IPM) to be examined, and controlled for the 

state where the corn was grown.  Also, some farm specific characteristics such as 

irrigation practices and the farm’s conservation practices were added to the model.  Like 
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with cotton, by focusing only on 1996 corn data, the analysis was able to create another 

dependent variable of pounds of herbicide and insecticide active ingredient (AI) used per 

acre.   

  The results suggested that some practices increased chemical spending and 

pounds of active ingredient applied while other practices decreased chemical spending 

and pounds of active ingredient applied.  The farmer characteristics were not statistically 

significant in explaining the pesticide use.  The significant results are presented in Table 

10.  Some practices, even monitoring practices such as scouting for rootworms and 

prevention practices such as adjusting planting dates and row spacing, reduced pesticide 

use.  These results highlight that combining practices might not be telling the full story of 

the effects that IPM related practices are having on pesticide use.        

A similar type of analysis was done with the ARMS corn data from 2001, except 

chemical spending per acre was used as the dependent variable.  The results from 1996 

corn production differed from the results from 2001 corn production.  For example, in 

2001 systematic scouting decreased chemical spending while in 1996 it had an increasing 

effect.   This contrast reinforced the importance of time and environmental factors on 

pesticide use and reiterated the dangers in just comparing two years worth of pesticide 

use data.   

Examining specific practices illuminated the complexity entailed in evaluating an 

IPM program’s effect on pesticide use.  Farmers face numerous choices concerning how 

to use pesticides.  Some of these choices are controllable such as IPM practices, but other 

factors are uncontrollable such as weather and pest infestations in a given year.   

Aggregate analysis allows us to get an unfocused picture of how IPM affects pesticide 
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use, but it does not give insights into how to improve IPM programs or other ways to 

reduce pesticide use.  By examining specific practices, IPM practitioners can get a better 

idea of what IPM practices actually decrease pesticide use and which practices increase 

pesticide use.      

Limitations of this study 

The methods of this study have a number of limitations.  First, multiple 

definitions of IPM were used in this study.  Second, individual IPM programs make 

specific recommendations while the ARMS surveys were created to take a national 

sample of producers.  The ARMS surveys were not specifically designed to study the 

impacts of IPM, and therefore, do not have the detail of localized IPM impact practices.  

As the analysis of corn and cotton suggests, the significance of a particular practice in a 

specific location can lead to significant reductions.  By examining aggregate relationships 

and using the broad IPM definitions necessary to estimate these relationships, it is 

difficult to determine the specific practices that are important in determining IPM’s effect 

on pesticide use.  The underlying difficulty in an aggregate analysis is that IPM programs 

are unique, and it is hard to control for this uniqueness in an aggregated study.           

It also must be mentioned that analyzing national “all-inclusive” surveys is a time 

consuming process that involves a number of constraints.  The surveys offer a wealth of 

data, but some of these data are not relevant to IPM impact assessment.  As with all 

empirical studies, there are questions about which data to include or exclude, and which 

data best approximate the suggested theoretical variables.  With data as comprehensive as 

the ARMS data, these questions and the number of different possible variables can 

become almost overwhelming.      
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Also, the definitions used in this analysis cannot account for large IPM related 

programs such as the boll weevil eradication program (BWEP) and soybean rust 

monitoring program.  Participants in these programs could not be separated in order to 

determine the effect that these programs have on pesticide use.  Research suggests these 

programs could have a large economic and environmental impact (McCorkle, et al., 

2008; Roberts, et al., 2006).   These large-scale programs have benefits for IPM adopters 

and non-IPM adopters that are not being directly accounted for in this analysis.  Also the 

BWEP goal of eradication might initially lead to increased pesticide use, but over the 

long-term, the program could lead to significant reductions in pesticide use as the boll 

weevil is eradicated.     

The ARMS data used in this paper do not include fruit and vegetable pesticide 

use.  Although these fruit and  vegetable crops account for less than 25% of agricultural 

pesticide use in the United States, they are important crops for which IPM has made 

inroads in reducing pesticide use (Fernandez-Cornejo, et al., 2009).  By not including 

these crops, some of IPM’s ability to reduce pesticide use might be understated.   

Conclusions          

This paper does not directly consider all the benefits of IPM, but IPM has 

multiple objectives and is not limited to reduced pesticide use (Kogan, 1998).  The only 

environmental factor examined in this paper is pesticide use.  IPM programs have been 

instrumental in educating farmers about proper pesticide use, and the benefits from 

pesticide applicators having a greater awareness of the dangers inherent in pesticide use 

has probably helped reduce pesticide application accidents that can cause health 

complications and death.  Studying IPM’s effect on the awareness of pesticide risks and 
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other environmental measures such as environmental indices could be examined in future 

research.    

The results presented in this paper suggest that adoption of some IPM strategies 

lead to increased pesticide use on average.  This result is robust to a number of different 

IPM definitions and specifications.  Some individual practices for particular crops 

certainly decrease pesticide use, but using national data and multiple definitions for IPM 

adoption, the models presented in this paper suggests that IPM adoption actually 

increases chemical spending and pounds of active ingredient sprayed on U.S. farms.  

These results suggest that IPM practices may have been more directed at increasing 

farmer profits than not reducing pesticide use.  Identifying the practices that increase 

profits but do not actually decrease pesticide use, and directing research to practices 

focused on reducing pesticide use should be part of the future of IPM research.  This 

paper provides a first step in understanding the long-term relationship between IPM 

practices and pesticide use. 

IPM coordinators have expressed doubt in IPM’s ability to decrease pesticide use, 

and a number of individual studies have reported that IPM has mixed effects on pesticide 

use.  This being said, there is other evidence that suggests that individual IPM programs 

have reduced pesticide use in the United States at the local level.  The GAO report 

mentions some of these, but there are numerous other examples in the literature.  The 

more aggregated results reported in this paper may be an example of Simpson’s Paradox 

where aggregate trends overwhelm important local trends.  In other words, this analysis 

might be underselling important IPM programs that do decrease pesticide use.  

Agricultural pesticide use in U.S. farming is dependent on a number of farmer-specific 
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practices and a number of environmental constraints.  Individual farmers face different 

pest pressures, climates, and other uncontrollable environmental factors.  The results of 

this research suggest that these uncontrollable factors explain a significant portion of 

pesticide use.  They may explain a greater proportion of pesticide use than do farmer 

practices.  Pesticide use in the United States is dependent on issues not completely 

controlled by the farmer.  Increased pest pressure and other environmental factors can 

lead to greater pesticide use, and IPM practices designed to meet the local needs of 

farmers can certainly help to mitigate both the economic and environmental damage done 

by this increased pressure.    
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Figures 
 

Figure 1  Bell Pepper Pesticide Use in the United States from 1992 to 2006 
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Figure 2 Pesticide use on major crops, 1964-2004 
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Table 1: Percentages of Strategy Adoption over Whole Sample  

Practice Groupings Overall Percentage of Adoption or Training 

Prevention 82% 

Avoidance 41% 

Monitoring 81% 

Suppression 25% 

IPM Training 32% 

 

Table 2: Effect of P,A,M,S Practices on Chemical Spending Only Controlling for 

Crops and Years 

Practice Groupings Effect  Standard Error  t Value  
Prevention  -$0.50 0.47 -1.06 
Avoidance    $0.48 0.47 1.26 
Monitoring   $2.48 0.42 5.29 
Suppression   $5.45 0.38 13.11 
Pest Management Training   $2.01 0.39 5.22 

 

Table 3: Effect of P,A,M,S Practices on Chemical Spending Controlling for Pest 

Pressures 

Practice Groupings Effect  Standard Error  t Value  
Prevention  $0.18 0.46 0.39 
Avoidance   $0.11 0.37 0.30 
Monitoring  $1.67 0.45 3.68 
Suppression  $4.86 0.4 12.00 
Pest Management Training  $2.26 0.38 6.03 

 

Table 4: Effects of Non-chemical and Unknown Effect Practices on Chemical 

Spending Controlling for Pest Pressures 

Practice Groupings Effect  Standard Error  t Value  
Non-Chemical $1.66 0.48 3.43 
Unknown Effect $2.95 0.48 6.11 

 

Table 5: Summary of P,A,M,S Effects Using Different Spatial Variables 

Practice Groupings No Spatial State  Pest Pressures  
Prevention  -$0.26 -$0.50 $0.18 

Avoidance    $0.31  $0.48 $0.11 

Monitoring   $2.59***  $2.48*** $1.67 

Suppression   $6.55***  $5.45*** $4.86 

Pest Management Training   $2.20***  $2.01*** $2.26*** 

*** represents statistical significance at the 1% level 
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Table 6: Effects of IPM and HR on Pounds of AI of Herbicides Sprayed in 1997 

Cotton Production 

Variable Region State Zip 

Any IPM Weeds (including GM)  0.17  0.16  0.18 

Any IPM Weeds (not including GM)  0.24*  0.25*  0.37** 

Intensive IPM Weeds (including GM)  0.26**  0.25**  0.28** 

Intensive IPM Weeds (not including GM)  0.24**  0.24**  0.27* 

HR (Any IPM Weeds) -0.38** -0.48** -0.37* 

HR (Intensive IPM Weeds) -0.37** -0.47** -0.37* 
*represents statistical significance at the 10% level 

** represents statistical significance at the 5% level 

*** represents statistical significance at the 1% level 

 

Table 7: Effects of IPM and IR on Pounds of AI of Insecticides Sprayed in 1997 

Cotton Production  

Variable Region  State Zip 

Any IPM Insects (including GM)  0.43***  0.28*** 0.24** 
Any IPM Insects (not including GM)  0.34***  0.30*** 0.29*** 
Intensive IPM insects (including GM)  0.27***  0.23*** 0.17* 

Intensive IPM Insects (not including GM)  0.24***  0.24*** 0.17* 

IR (Any IPM Insects)  0.23**  0.22** 0.00 

IR (Intensive IPM Insects)  0.38***  0.23** 0.01 
*represents statistical significance at the 10% level 

** represents statistical significance at the 5% level 

*** represents statistical significance at the 1% level 

 

Table 8: Effects of IPM and HR on Pounds of AI of Herbicides Sprayed in 2003 

Cotton Production 

Variable Region State Zip 

Any IPM Weeds (including GM) -0.13 -0.16 -0.40 
Any IPM Weeds (not including GM)  0.45 0.45 .31 
Intensive IPM Weeds (including GM)        0.29*** 0.22*** 0.19** 

Intensive IPM Weeds (not including GM)        0.29*** 0.22*** 0.19** 

HR (Any IPM Weeds) -0.01 -0.03 0.06 

HR (Intensive IPM Weeds) -0.02 -0.03 0.05 
*represents statistical significance at the 10% level 

** represents statistical significance at the 5% level 

*** represents statistical significance at the 1% level 
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Table 9: Effects of IPM and IR on Pounds of AI of Insecticides Sprayed in 2003 

Cotton Production  

Variable Region  State Zip 

Any IPM Insects (including GM) -0.04 -0.01 0.03 

Any IPM Insects (not including GM) 0.00 0.02 0.04 

Intensive IPM insects (including GM) 0.17** 0.21*** 0.10 

Intensive IPM Insects (not including GM) 0.17** 0.21*** 0.11 

IR (Any IPM Insects) -0.14** -0.12* -0.10 

IR (Intensive IPM Insects) -0.15** -0.13* -0.10 
*represents statistical significance at the 10% level 

** represents statistical significance at the 5% level 

*** represents statistical significance at the 1% level 

 

 

Table 10: Effects of Specific Practices in 1996 Corn Production on Pounds of 

Insecticide Active Ingredient in 1996 Corn Production 

Practice Effect  Standard Error  t Value  

Scouting For Rootworms -0.12 0.04 -2.73 
Adjust Planting Dates for Pest Control -0.15 0.05 -2.94 
Adjust Row Spacing for Pest Control -0.08 -0.05 -1.86 
Scouting Records for Borers 0.15 0.05 2.72 
Considered Beneficial Organisms 0.22 0.04 5.33 
Alternate Pesticides 0.14 0.03 5.68 
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