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Introduction Main Results

Day stated that “until a science of yield 
probabilities can be developed, correct 
decisions in agriculture are virtually 
impossible” (JFE, 1965).

Methodology Results and Discussion

The DGPs are identified through unit root tests (e.g.,
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Figure 1.  Geographic Distribution of DGP Empirical

In Arkansas and Louisiana most crop yields have 
stochastic trends (RW); however, some are trend 
stationary (TS) or stationary in levels (ST).

Monte Carlo Simulation

Figure 2. Results on Filtering

Two popular filtering techniques used in crop yield density 
ti ti  (CDF) h  b  d t di d ARIMA  d 

Crop Yield Data Generating Processes (DGP)

1. Stationary (ST), Yt= a0 + et
2. Random Walk (RW), Yt= a0 + Yt-1 + et
3. Trend Stationary (TS), Yt= a0 + a2t + et

Source: USC
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The DGPs are identified through unit root tests (e.g.,
Augmented Dickey-Fuller test, 1979). The ECDFs are 
tested via a Kolmogorov-Smirnov test.
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a Monte Carlo Simulation

1. Two sample ECDF K-S test rejects (Ho) equal 
distribution between two alternative filters.

2. Rejection rates increase fast with sample size and 
equal to 100% at 200 obs.

3. Detrending I(0) or I(I) series can lead to wrong ECDF 
d i  t i  I(I) i

Figure 3. Effect of Filtering on Crop Yield Distributions

estimation (CDF) have been detrending and ARIMA, and 
CDF techniques have progressed from parametric to 
nonparametric (e.g., Botts and Boles, JFE,1958; Gallagher, 
NCJAE,1986,1987; Goodwin and Ker, AJAE,1998; 
Norwood et al., AJAE, 2004).

How do filters impact: empirical CDFs? Risk premium 
estimation? Crop insurance participation by farmers? and 
risk management at large? Some Monte Carlo evidence on 

The Monte Carlo Experiment 

Each DGP has four sample sizes: 25, 50, 100 and 200. 
Each sample was replicated 1000 times  Because the DGP 
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Conclusions

Objectives

and is worst in I(I) series.

1. The Distribution of percent errors is often skewed 
(positively or negatively) from zero             costly to 
sellers and buyers of crop insurance contracts.

2. Using a filter as a generalized model for corn and 

detrending with small samples has been documented at 
the farm level (e.g., Atwood et al. AJAE, 2003).  How does 
filtering impact Empirical CDFs in aggregated time series 
for crop yields? More explicitly, are two ECDFs for the 
same data but from different filters statistically different? 
What are the implications for yield risk management?

Each sample was replicated 1000 times. Because the DGP 
can be sensitive to starting values we eliminated the 75 
first observations from each process. Pre-testing with 10% 
of the total replications suggests that this approach 
generates samples from the true process with 5% 
reliability. DGPs are presented in table 2. Errors were 
drawn from the standard normal distribution N(0,1) – see 
Phillips, Econometrica, 1987.
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1. To identify the stochastic Properties of corn and 
soybeans yields in Arkansas and Louisiana.

2. To determine the impact of alternative filters on corn 
and soybeans yield ECDF and probability estimates.

3. To asses the impact of alternative filters on ECDF with 
small samples.

soybeans yield density estimation often leads to 
unreliable insurance premium rates.

Figure 5. Percent Errors
Distribution

Data

Table 2. Parameter Values
DGP Drift Linear Trend Lag (y)

a0 a2 a1
WN 0 0 0
TS LT 2 0.8 0
RW 0 0 1

Table 3. Kolmogorov-Smirnov Test Results
Rejection Percentages (%) under Ho

25 Obs 50 Obs 100 Obs 200 Obs
Processes Filters α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1
WN Levels Differencing 0.60 1.20 1.00 6.50 5.70 13.30 30.40 52.60
WN Levels Detrending 0.70 1.70 0.00 0.40 0.20 1.10 0.20 0.40

19
00

19
08

19
16

19
24

19
32

19
40

19
48

19
56

19
64

19
72

19
80

19
88

19
96

20
04Year 0

20 40 60 80 100 120 140 160Bu/Ac Crop Insurance?

TEMPLATE DESIGN © 2008
www.PosterPresentations.com

Percent error

Pe
rc

en
tData

Table 1. Data and Counties
Crop/State Arkansas Louisiana
Corn 31 25
Soybeans 31 34
Source: NASS > 30 Obs. 1960-2008

RWD 0.2 0 1
RWDT 0.2 0.001 1

AR MA
# Coefficient # Coefficient

ARMA 1 0.7 1 0.5
ARIMA 1 1 1 0.5

g
TS Detrending Differencing 44.00 66.70 99.20 99.80 100.00 100.00 100.00 100.00
RW Differencing Detrending 2.30 6.50 26.40 34.50 85.10 91.40 100.00 100.00
RWD Differencing Detrending 3.70 9.40 32.30 44.40 89.70 95.20 100.00 100.00
RWDT Differencing Detrending 6.60 15.20 78.70 88.70 96.00 98.40 100.00 100.00
ARMA Levels Differencing 38.00 47.70 47.60 56.80 69.70 80.90 92.70 97.40
ARMA Levels Detrending 27.40 36.40 24.40 31.30 21.50 28.30 27.20 19.00
ARIMA Differencing Detrending 7.80 18.50 52.70 65.20 97.20 99.20 100.00 100.00


