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1 Introduction

Domesticated honey bees are livestock and like other species of domesti-

cated animals, their breeding, feeding, and roaming are for the most part controlled

by man. As a result, understanding and predicting the impacts of economic and

biological changes on the abundance of these pollinators and the services they pro-

vide hinges on understanding and predicting the behavior of their keepers. This

chapter provides an important extension to the very small literature on the eco-

nomics of pollination by presenting a model of the economics of beekeeping which

incorporates the seasonal variations of honey bee population.

The discussions and implementations of policies on domesticated pollinators

in the last half century have often overlooked the importance of the economic

behavior of beekeepers. For instance, U.S. honey subsidy programs have in the

past been publicly supported on the basis that they encourage pollination of crops

and increase social welfare by correcting the externality suggested by Meade (Muth

et al. (2003)). Cheung (1973), who argued that the existence of pollination markets

solved the externality problem did not succeed in dethroning Meade’s argument,

at least in the public discourse.1

Another example of the lack of analysis of the economic behavior of bee-

keepers can be found in recent discussions over pollinator declines. The increase

in pest and parasite pressure on bee health and the rise in the frequency of colony

losses during winter have been designated as the main drivers of a decline in the

number of honey producing colonies in the United States, as counted and published

in USDA’s Honey reports. Although it is clear that biological factors have a large

1Muth et al. (2003) analyze the political economy of the honey program but do not articu-
late the relations between economists’s arguments, public discourse, and the equilibrium of the
political market.
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influence on the economic behavior of beekeepers, the attribution of the causes of

declines cannot be safely undertaken without a close look at such behavior. In-

deed, shifts in the demand for honey or pollination services alone could explain

the observed changes in hive numbers. In addition, biological drivers are not sim-

ply exogenous shocks to production costs of beekeeping since the practices in the

industry determine to a large extent the spread and damage caused by parasites

and other pests.

The little attention paid to the economic nature of modern beekeeping, in

academic and policy discussions at least, has resulted in an incorrect interpretation

of the data available on colony numbers.2 The decline in the number of honey bee

colonies counted by the USDA and published in the Honey reports have been

the main evidence used to support the idea that pollination services have become

scarcer in the last few decades. Figure 1 presents these hive counts from 1986 to

2009 along with the ones reported by the U.S. Census of Agriculture.

The hive counts provided by Honey reports and the Census of Agriculture

provide conflicting pictures of the evolution of hive numbers in the last two decades.

The USDA only counts hives that produce honey but these hives can be counted

multiple times if they produce honey in different states. In contrast, the Census

of Agriculture counts hives only once and whether or not they produce honey. As

a result, although the number of hives declined in the late 80’s after the spread

of Varroa and tracheal mites according to both sources, only the figures from

the Census of Agriculture show an increase between 2002 and 2007. The most

notable change for the beekeeping industry during that period was the drastic rise

2Variations in the size of colonies can be large and therefore, colony counts do not necessarily
provide an accurate measure of honey bee abundance. Recall also that hive generally refers to
the wooden box whether colony refers to the group of bees that live in it.
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in demand for pollination services in almonds which has driven national averages

of pollination revenues to record highs.

Figure 2 shows pollination and honey revenues per hive as well as the sum

of the two revenues from 1992 to 2009. The honey revenue per hive does not

show any obvious trend because neither honey yields nor honey prices have varied

in magnitudes comparable to those of pollination revenues in recent years. The

pollination revenue has in contrast increased markedly between 2004 and 2009

following the increase in pollination services for almonds in California. The supply

response of beekeepers to the almond rush is only visible in the Census data. It

seems that Honey report data, which counts are based on honey production only,

provide an increasingly incomplete picture of the beekeeping industry as the share

of pollination revenues in beekeeping continue to increase. Unfortunately, the

decline in the number of hive counts alone has received public attention in recent

years.

As of today, the patterns of pollination fees, honey prices and hive counts

from both data sources remain for the most part unexplained. The hypotheses that

have been put forward to explain changes in honey bee population have hardly been

tested empirically. A better understanding of the economic behavior of beekeepers

is necessary not only to predict but also to measure changes in the scarcity of honey

bees and of their services in the first place, as illustrated by the discrepancy between

data sources for hive counts. Econometric analysis awaits further research and

data collection. This chapter presents an economic model of beekeeper behavior

which captures the most salient trade-offs between the production of honey and

the production pollination services. This modeling represents a first step towards
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both interpreting current patterns in prices and quantities of pollination services

and identifying further data collection requirements.

The jointness of production of honey and pollination services is the most im-

portant feature of the economics of beekeeping. Meade (1952) was one of the first

to model the jointness of production but Cheung (1973) was the first to provide an

empirical analysis of how pollination markets dealt with jointness of production.

Muth et al. (2003) and Rucker, Thurman, and Burgett (2008) have since devel-

oped the analysis proposed by Cheung (1973). They find that bee wages, which

are defined as the value of the marginal products of honey and crops (through

pollination services), are paid to beekeepers in pollination fees and honey revenue.

Because hives can be easily transported and because there are many participants

on both sides of the market, competition between growers and between beekeepers

ensures that all bees are paid at the value of their total marginal product. The

most important prediction of this literature, and one which seems consistent with

observation, is that pollination fees vary inversely with the amount of honey that

can be produced from the pollinated crop. Only when a crop does not provide re-

sources for bees to make honey, as with almonds, are pollination fees equal to the

bee wage.3 Conversely, when honey bee pollination does not increase the revenue

of from crop production, as often in citrus, the bee wage is equal to the value of

the marginal product of honey. In citrus, beekeepers who keep the entire honey

output pay a fee to growers which is equal to the value of the marginal product of

citrus blossoms in the production of honey.

3The extraction of honey from hives is typically done by beekeepers. The monitoring of honey
production is therefore costly, which makes it difficult for growers to keep both crop and honey
products and pay the entire bee wage to beekeepers.
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A second aspect of beekeeping which in contrast, has been not been ad-

dressed before in the economics literature, relates to the dynamic nature of the

bee stock and its yearly variations. The same hives are used to pollinate and ex-

tract honey from several crops in the same year following the bloom sequence of

the crops. Throughout the year, the population of bees in hives varies according

in particular to the quality and quantity of forage that the crops they are placed

on provide. The hauling of hives not only allows competition for bees across crops

growers whose crops bloom at the same time but it also enables migratory bee-

keepers to capture the returns from using the same hives for several crops.

Although Cheung (1973) does provide some intuition regarding the con-

sequences of migration, the importance of the dynamics of the stock of bees has

been generally overlooked.4 Sumner and Boriss (2006) provide some analysis of

the effects of seasonality on pollination fees and argue that the increase in demand

for pollination services for almonds can explain the increase in fees for crops such

as plums, which are also pollinated during early spring.

The importance of seasonality is illustrated in figure 3 which shows polli-

nation fees for representative crops from 1995 to 2009. Figure 3 is based on the

same survey data as Sumner and Boriss (2006). Cherries provide a clear illustra-

tion of the fact that the jointness of production of pollination services and honey

as described by Cheung (1973) and Muth et al. (2003) is not sufficient to explain

some patterns of pollination fees. Indeed, the pollination fees for varieties of cher-

ries blooming at the same time as almonds have increased drastically since 2004

whereas the fees for varieties blooming later have not (see figure 3).

4Cheung (1973) shows that the sum of the rents collected by a hive during a year across
different crops equals the cost of producing the hive. He also controls for seasonality when
comparing pollination fees and hive rents across crops.
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This chapter shows that taking into account the dynamics of the stock

of bees results in an economic model of pollination fees that fits observed data

better than static models. According to this view, the pollination markets brought

forward by Cheung may be solving the problems generated by the dynamics of the

stock of bees in addition to the problem of jointness of production of honey and

pollination services.

Section 2 develops a dynamic model of the bee population and the honey

stock in a hive. which identifies the trade off that exists between pollination services

and honey production. I derive the yearly variations of both the number of bees

and the honey stored in the hive and show how the price of honey and pollination

fees determine the optimal yearly cycle. The model can be extended to include

two or more crops in the bloom season.

Because this dynamic model does not have a closed form solution, appendix

7 presents a seasonal model of pollination market equilibrium in which the stock

of bees is simply kept constant throughout the year. This simplification allows the

derivation of analytical solutions for the effects of changes in crop acreage, honey

prices, and beekeeping costs on pollination fees in a market with multiple crops and

bloom periods. An increase in the acreage of one crop always results in an increase

in bee wages for all crops blooming at the same time of year and a decrease in bee

wages for other blooming periods. An increase in the cost of beekeeping results in

an increase of the wage of bees for all seasons and all crops. In contrast, changes

in honey prices have ambiguous effects on the wages of bees for a given crop.
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2 A dynamic model of honey bee population and

honey stock

2.1 Model

This section presents a stylized model of the dynamics of bees and honey

in a hive. The solution of this model is a production possibility frontier for honey

and pollination service output. The model focuses on the dynamics of the bee

and honey stocks within a single year and does not deal with multiple years. It

describes how the optimal yearly cycle of bees and honey varies according to the

relative prices of honey and pollination services. These prices are exogenous. This

is a model of the behavior of a representative beekeeper who repeats an optimal

cycle over the years without addressing how she might reach that cyclic equilibrium.

The population of domestic honey bees in a hive can vary from a couple

of thousand individuals at the end of winter to several tens of thousands during

summer. Although beekeeping practices such as adding or removing bees from

hives are common, the most crucial decision of the beekeeper is the schedule of

migration of hives and their allocation among different crops. Crops differ in the

timing of their bloom, the fees crop growers are willing to pay for the pollination

services of bees, and the amount and quality of nectar and pollen that crops provide

to bees as food. The revenues of beekeepers come for the most part from the sales of

honey and the fees for pollination services.The costs of beekeeping include the cost

of equipment and inputs such as empty hives, smokers, and parasite treatments but

labor and fuel represent the bulk of costs. For instance, Hoff and Willett (1994)

reports that in 1988, labor represented about 30% of costs, fuel and repairs 14%,
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and overhead 17%. In addition, beekeepers sometimes have to pay location fees

although these tend to be relatively small.

I first develop a model for a single crop and identify the nature of the trade-

off between honey and pollination services before showing how my model can be

extended to deal with multiple crops. Appendix 7 presents a model of pollination

market equilibrium where pollination fees are endogenous and allowed to vary.

In the model, the year is divided in two periods. During the active period

which lasts from time 0 to T , crops produce nectar and are receptive to pollination,

and bees reproduce and forage for food. During the inactive period, bees do not

produce honey nor pollinate crops, and a fraction of them dies. For simplicity, in

the model the beekeeper harvests honey once a year at the end of the active period.

In practice, beekeepers harvest honey more frequently.5

When forage, which is the bee food provided by crops, is available, changes

in the population of bees X(t) and changes in the amount of honey stored in the

hive H(t) are determined by the following differential equations:

dX(t)
dt

=−δX(t)+ α(γH(t)−X(t))≡ Ẋ(t) (1)

dH(t)
dt

=−βX(t)+ υmin(X(t), X̄)≡ Ḣ(t). (2)

where all parameters (the Greek letters) are strictly positive and t represents time

and belongs to the continuous interval [0,T ]. The first term in equation 1 represents

the number of bee deaths per unit of time and I assume that the death rate, δ, is

constant throughout the foraging season. The second term represents the births.

5In fact, the economic problem of a beekeeper is a fairly complex dynamic optimization. In
particular, the adjustment of the location of hives to the availability of nectar sources is crucial
since these can vary widely from year to year.
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The number of of births per unit of time is an increasing function of the honey

stored in the hive but a decreasing function of the population size. The birth

rate α is also constant throughout the active season. Note that these parameters

reflect the population dynamics of the hive which are driven to a large extent by

the laying behavior of the queen. As a result, δ, α, and γ cannot be interpreted

like parameters of models of population dynamics that reflect the aggregate result

of individual behaviors.6

The variation in the stock of honey is a function of the population of bees

who consume honey at a rate β and augment the stock of honey at a rate υ by

foraging.7

In order to represent the fact that crops provide a limited amount of re-

sources to bees per acre, the rate of honey increase υX(t) cannot exceed a given

value υX̄ . This specification amounts to adding a carrying capacity to crops and

is necessary to avoid corner and trivial solutions. Without the non-linearity intro-

duced by the term υmin(X(t), X̄ , the beekeeper in the model will either keep no

bees or an infinite number of them depending simply on the ratio of input and

output prices. This problem is due in part to the assumption that yield increases

linearly with bee density. Two alternatives for obtaining an interior solution are

to keep the system of equations strictly linear but to include a non-linearity either

in the response of yield to bee density or in the costs. The advantage of the spec-

ification with a carrying capacity is that is puts the emphasis on the effect of bee

densities.

6See Schmickl and Crailsheim (2007) for details about the dynamics and feedbacks of bee
population. I only include the most important features of the population models from the ento-
mology literature and ignore among others, the issues related to age classes among the bees of a
hive, or the difference between pollen and nectar foraging behaviors.

7In Schmickl and Crailsheim (2007), both honey and pollen stocks determine the growth rate
of the population.
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In addition to these coupled equations of motion for the bee and honey

stocks, I specify boundary conditions for their cycle. At the end of the foraging

season, an amount Hharv of honey is harvested by the beekeeper. Hharv is equal to

the difference between the stocks of honey at the end and beginning of the active

season:

Hharv ≡ H(T )−H(0). (3)

Hharv is the only control variable in the model. The model does not include honey

consumption by bees during the inactive period. Hharv can be positive to represent

honey extraction or negative to represent feeding, however the rest of the discussion

focuses on the extraction case.

In addition, the number of bees available in spring is a fixed fraction ω of

the fall population, that is:

X(0) = ωX(T ). (4)

With these two conditions, equations 1 and 2 can be solved for any quantity of

honey harvested Hharv. Because the trajectories of both stocks begin and end at

the same stock levels by specification, the amount of honey harvested at time T is

enough to determine the entire trajectories including the stocks at the beginning

of the season X(0) and H(0), and the values at the end of the season X(T ) and

H(T ).

The system made of equations 1, 2, 4, and 3 above can be solved analytically

by solving two sets of equations, corresponding to X(t)≤ X̄ and X(t)≥ X̄ .
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When X(t) is smaller than X̄ , the system of equations is homogeneous and

solutions are of the form X(t)

H(t)

= A1

 V x
1

V h
1

exp(r1t)+ A2

 V x
2

V h
2

exp(r2t) (5)

where r1 and r2 are the eigen values of the matrix of parameters:

D =

 −(δ + α) αγ

(υ−β) 0


and V1 and V2 the corresponding eigen vectors.8 A1 and A2 depend on initial

conditions.

When X(t) is larger than X̄ , the solution is of the form

 X(t)

H(t)

= Ā1

 V̄ x
1

V̄ h
1

exp(r̄1t)+ Ā2

 V̄ x
2

V̄ h
2

exp(r̄2t)+

 υ

β

υ(δ+α)
αγβ

 X̄ (6)

where the last term is a singular solution of the system of non-homogeneous equa-

tions. Here again r̄1 r̄2 are the eigen values and V̄1 V̄2 the eigen vectors of the

parameter matrix:

D̄ =

 −(δ + α) αγ

−β 0


. Ā1 and Ā2 depend on initial conditions.

There is no closed form solution for the four constants A1, A2, Ā1, and Ā2

in the equations of the segments of trajectories 5 and 6. These constants, which

8The value of the parameters must be such that r1 and r2 are two distinct real numbers, which
that (δ + α)2−4αγ(υ−β) is strictly positive.
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are required to describe the entire trajectories of bee population and honey, are

function of the time τ at which X(t) reaches X̄ which does not have a closed form

solution. In other words, the constants for each segment of the trajectories do not

have a closed form expression because the boundary condition at τ, which is the

end point of the segment for trajectories in 5 and the starting point for trajectories

in 6 do not have a closed form expression. Section 2.2 describes the properties of

the solutions that can be derived from the analysis of a phase diagram. Section

2.3 then describes numerical solutions to this model.

2.2 Theoretical results

Figure 4 represents the phase diagram for two yearly cycles of bees and

honey. The vertical axis represents honey and the horizontal axis represents the

population of honey bees in the hive. The cycle in the top right corner is the

annual trajectory resulting from no honey harvest whereas the cycle in the center

of the figure is the annual trajectory resulting from a strictly positive value of

honey harvest. The gray dashed lines represent nullclines, corresponding to Ḣ = 0

and Ẋ = 0. The position of X̄ is also indicated with a vertical dashed line. In each

quadrant delimited by the nullclines, the direction of the gradients for X and H is

given by two small gray dotted arrows.

When no honey is harvested, the inactive period results in a drop in the

number of bees. Following equation 3, the bees in the hive do not deplete the stock

of honey during the inactive period and therefore, when no honey is harvested the

trajectory during the inactive period is represented by a horizontal line. This

section of the trajectory and the rest of the cycle corresponding to no harvest

or Hharv = 0, is drawn at the top right corner of figure 4. Note that the cycle
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corresponding to Hharv = 0 does not go through the long run equilibrium point

which lies at the intersection of the nullclines Ẋ(t) = 0 and Ḣ(t) = 0. As indicated at

the top of the honey stock axis, there is second nullcline for H, but any equilibrium

on that nullcline This equilibrium would only be reached if the active season season

was infinitely long. Here the trajectory which would end at that equilibrium point

is interrupted by the inactive period when the population of bees drops by a factor

ω.

When a positive amount of honey is extracted, the trajectory during the

inactive period is an upward sloping line in the state variable space. The stocks

of honey and the population of bees are designated by H0 and X0 at the end

of the inactive period. Although H0 is the lowest point of the cycle for honey,

the population of bees may at first decrease if the point (H0,X0) is below the

nullcline defined by Ẋ(t) = 0 and reaches a minimum only at the point where the

trajectory crosses that nullcline. From there, the population of bees increases at

a rate −βX(t) + υ and the stock of honey increases at a rate of (β + υ) until the

colony reaches the carrying capacity X̄ . After X̄ , the rate of honey accumulation

then switches to β for the rest of the active period.

For any given set of parameters, including the length of active period and

the carrying capacity of the crop, there is a maximum amount of honey that can be

collected. If a more than the maximum sustainable quantity of honey is collected

every year, both bee population and honey stock are gradually driven to zero. This

upper limit to honey harvest is an increasing function of the carrying capacity of

the crop.

Before turning to the relationship between the trajectories of bee numbers

and honey stock over time and the amount of honey harvested, it is useful to say
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a word on the interpretation of the state variables X and H. In particular, by

specifying the net birth rate as α(γH(t)−X(t)), I represent some of the biologi-

cal feedbacks that exist in the queens laying rate for instance. Nevertheless, the

population of bees in the model can also be interpreted as the population of a

representative hive for the beekeeping industry as a whole. Accordingly, X and H

can be simply scaled up to represent the population of bees and the stock of honey

for the entire industry.

2.3 Numerical simulations of variations in bee population

and honey stock

Figure 5 shows the numerical solutions of the cyclic trajectories for five

different amounts of harvested honey Hharv.
9 Panel (a) represents the numerical

counterpart of the illustrative phase diagram shown in figure 4. Panels (b) and

(c) in 5 show the trajectories in time of honey and bees. As the amount of honey

extracted increases, the sizes of both stocks at the beginning of the active period

decrease. Note that some for some cycles, the population of bees in the hive my

at first decreases during the first part of the active period. This patterns depends

on whether the starting point of these trajectories is above or below the nullcline

Ẋ(t) = 0.

Figure 6 shows the production possibility frontier corresponding to the three

panels of figure 5. The average bee population over the length of the active season

is given as a function of the honey harvested. This average can be used as proxy

9See figure note for parameter and honey harvest values.
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for the pollination service provided by the hive since foraging is proportional to

hive size in first approximation.10

The relationship between the average population of bees and the honey ex-

tracted corresponds to the production possibility frontier which identifies a trade-

offs that a beekeeper faces between her two outputs, honey and pollination services.

Recall that for each value of Hharv, there is only one feasible cycle and therefore,

the production possibility frontier is well defined. The five dots in 6 correspond

to the five trajectories represented in the three panels of figure 5. The rest of the

points that form the downward sloping production possibility frontier correspond

to all the other possible trajectories which for clarity are not represented in the

panels of figure 5. With the parameters used in the simulations of figure 5, the

maximum amount of honey that can be harvested is Hmax = 125 units, point past

which the average population in the hive drops to zero. Past this point, a yearly

cycle is not feasible. At the other end of the possibility frontier, the average bee

population reaches its maximum Xmax = 49 when no honey is harvested.

3 The economic problem of the beekeeper and

the optimal yearly cycle

The two following sections use the production possibility frontier derived

above from the population model to describe the economic optimum of honey and

pollination services production.

10This is not true in practice for at least two reasons. First, the proportion of the bees in
a colony that are active foragers is not constant with the number of bees in the colony. The
allocation of tasks among individuals follows a complex pattern and is based among other things
on the age of the bees. Second, the foraging activity of a hive as a unit depends in particular on
the amount of honey and pollen stored in its combs.
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3.1 Honey-pollination trade-off for a single crop

As described above, figure 6 shows the production possibility frontier for

honey and average population of bees which is a proxy for pollination services.

The production possibility frontier is given in the output space by definition and

it can therefore be used to identify the optimal production point for the beekeeper

if the quantity of inputs is fixed. This simplification does not represent a loss of

generality because the inputs for the production of a hive, aside from the nectar

and pollen collected by bees, can be considered fixed and independent in first

approximation of both the amount of honey harvested and the number of bees in

the hive.

With these simplifications, the economically optimal production point cor-

responds to the point where the slope of the production function in output space

is equal to the output price ratio as illustrated in figure 6. Because some bees are

always necessary to produce any honey, pollination services are always provided to

the crop even when their price, which is equal to the value of the marginal product

of pollination services in crop production is equal to zero. The maximum amount

of honey that can be produced is labeled Hmax on the horizontal axis of figure 6.

It is optimal for the beekeeper to produce at that point if the ratio of honey price

over pollination service price is greater in absolute value to the slope of the tangent

to the production possibility frontier at Hmax. This corner solution is includes the

case where the crop does not benefit from pollination, as is generally the case in

citrus for instance.

The other corner solution corresponds to the absence of honey harvest. It is

optimal to produce only pollination services when the output price ratio is smaller

than the slope at Xmax. Almond trees are an example of this case because the price
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of almond honey is about null and the value of the marginal product of pollination

services for almonds high.

When considering only one crop, the dynamic model reproduces the trade-

off involved in the joint production of honey and pollination services as described

by Cheung (1973) and others. The model provides additional intuition when more

than one crop is considered, as in the next section.

3.2 Honey-pollination trade-off for two crops

A variety of situations can be considered by adding crops with different

carrying capacities and different values of the marginal product of pollination ser-

vices. This section illustrates how the numerical model can be used to analyze the

case of two crops blooming sequentially. The active period of the cycle is divided

in two periods of equal length T/2. The two crops can differ in two aspects: their

carrying capacity and the price their growers are willing to pay for pollination ser-

vices. In this example, the price of honey does not vary across crops. The carrying

capacity of a crop is equal to the product of the acreage by the nectar production

per acre divided by the number of hives placed on the crop. Here I assume that

both crop prices and acreage are exogenous and fixed. In a more complete model of

pollination market both should be treated as endogenous (see appendix 7). Also, I

assume that both crops have the same carrying capacity but that the value of the

marginal product of pollination services is higher for the first crop (e.g. because

of a higher crop price). The average population of bees in the hives must be cal-

culated for each half of the season for every possible value of the control variable

Hharv. Instead of graphing the production possibility frontier in output quantity

space, it is easier now to depict the trade-off in the revenue space.
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Figure 7 shows the average bee populations for the first and second half

of the foraging season separately, corresponding to the two crops. The annual

pollination revenue is equal to the sum of the pollination revenues of each period.

Both revenues are equal to the average bee population multiplied by the price of

pollination services. The optimal mix of pollination services and honey outputs is

found where the slope of the revenue trade-off curve is equal to −1, which is the

slope of isoprofit lines in the revenue space. Because the carrying capacities of the

two crops are equal and the bee population is growing, the average bee population

during the first half of the season is almost surely lower than in the second half of

the season, which can be easily seen in panel (c) of figure 5.11

This figure illustrates one of the hypotheses for the drastic increase in the

almond pollination fees that has occurred in the last decade. Only a very high

pollination fee for the first crop, relative to the price of honey can make it optimal

for the population of bees to be large in the first part of the yearly cycle because the

amount of harvested honey that must be forgone is large.12 Almonds pollination

provides a good illustration of this case.

Other cases deserve to be addressed in further work, in particular with

multiple crops blooming both simultaneously and sequentially. The use of the

production possibility frontier is a less useful tool for describing the beekeeper’s

trade-offs when the prices of honey and pollination services are endogenous.

In appendix 7 I develop a model of pollination markets order to provide

some intuition on the effect of considering the seasonality of the stock of bees on

11A higher carrying capacity in the first crop is not sufficient however to guaranty that average
bee populations rank the other way around since the drop in bees and honey always occurs just
before the first.

12The substitution of syrup for nectar, which is not included in the model, may reduce this
effect. However, syrup and nectar are not perfect substitutes both in terms of bee health and for
honey production.
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equilibrium prices and quantities of beekeeping inputs and outputs with multi-

ple crops blooming both simultaneously and sequentially. That model ignores the

fact that crops, through the food they provide to bees, are inputs for the mainte-

nance and growth of bee stock. Leaving aside this fact means that bees are simply

providers of services rather than a renewable stock for which growth depends on

the crops serviced. Moreover, the feedbacks that exist between the dynamics of

the bee population in the hive and the stock of honey stored are disconnected by

assuming that honey production is specific to each crop. Despite these simpli-

fications, the predictions of the market model in the appendix help explain the

patterns of pollination fees, in particular those resulting from the rise of demand

for almond pollination. An increase in acreage and therefore in the demand for

pollination services for a crop, results in an increase in the wages of bees for all

crops blooming during the same period and a decrease in wages of bees from other

periods.

4 Summary of results

In commercial beekeeping, the same stock of bees forages on several crops

during the course of a year. On each crop, the bees may produce honey and may

provide pollination services jointly. Modeling the dynamics of the bee population

allows one to explain the seasonal patterns observed in pollination markets. These

seasonal patterns cannot be explained with a static model of joint production such

as those developed in the existing literature on pollination markets (see Cheung

(1973) and Muth et al. (2003)). In addition, because the pollen and nectar provided

by crops are inputs for the stock of bees, pollination fees cannot be assumed to
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be the difference between the bee wage and the value of the marginal output of

honey. The value of the increase in bee stock must also be considered.

Recall that one of the noteworthy events in pollination markets in the last

decade is the steady increase in demand for pollination services from almond grow-

ers. The resulting rise in pollination fees for almonds has been steep compared to

the increase in almond acreage. The model of bee population dynamics presented in

this paper provides a hypothesis to explain this pattern which cannot be explained

by evoking only the jointness of production of honey and pollination services for

a given crop. The hypothesis is that because almonds bloom early in the active

foraging season, a large amount of honey must be forgone in order for the popula-

tion of honey bees to be large during that bloom. The fact that honey bees do not

produce honey on almonds contributes but is not sufficient to explain the steep

rise in almond pollination fees.

Furthermore, the results from the seasonal model developed in this chapter

are important for the evaluation of policies. Muth et al. (2003) argue that the

externality argument provided by Meade is not sufficient to guaranty that honey

subsidies will increase the pollination of crops in agriculture. Here I show that

in theory at least, honey subsidies may sometimes result in an increase in the

amount of pollination services available for some crops. In contrast, research and

development designed to reduce the production costs of beekeeping benefit all crops

unambiguously. Yet, given the lack of data and the corresponding lack of estimates

of the amounts of pollination services provided by honey bees, it is difficult to

accurately quantify the returns to investments in cost-reducing efforts.
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5 Model limitations and extensions

Several other aspects of the economics of beekeeping need to be understood

to complete the picture of the management of pollinators in agriculture. One first

aspect of , the costs of migration, which depend in particular on fuel costs have not

been addressed by economists. In fact, although the general pattern of seasonal

migration of beekeepers and their hives is known, hardly any data are available

that detail the ows of hives. Existing data from the USDA Honey reports are of

limited use because accounting for hives allows for double counting of hives that

produce honey in more than one state. The addition of transportation costs in

economic models of pollination markets may be important for two reasons. First,

although hives are currently being hauled from one coast to the other, changes in

relative prices of bee outputs and fuel could result in a separation of the East and

West markets. In each of the smaller markets resulting from this fragmentation,

the opportunity for beekeepers to find crops that bloom in sequence through the

inactive and active periods would be reduced. For instance, pollination fees for

almonds may increase if beekeepers who place their hives in the citrus groves of

Florida did not find it profitable to drive across the country. Second, the spread

of pests and diseases which impose large costs on the beekeeping industry depends

on the patterns of migration of hives. Economists have also ignored until now the

heterogeneity of hives which is an important aspect of the beekeeping industry.

Indeed, the size of hives plays a central role in determining the quantity of pollina-

tion services hives provide to crops. Because of the growth of the bee population

between early spring and fall, pollination fees measured in dollars per hive cannot

be compared across the different blooming periods without adjusting for hetero-

geneity. In addition, the population of bees can differ across hives at the same
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period of the year. For instance, price premiums for hives containing more bees

are common in pollination contracts for almonds. The size of the population in

hives depends on management practices, which include the choice of crops on which

they are placed, the frequency of manual queen replacement, or prevention of dam-

ages from parasites. The heterogeneity of beekeepers has been well documented

for instance by Daberkow, Korb, and Hoff (2009) but the relationship between the

characteristics of beekeeping operations and the characteristics of hives remains to

be determined. The heterogeneity of hives may spur inferences based on pollina-

tion fees and comparisons across crops because the growers of certain crops devote

more resources in controlling the quality of the hives they rent than others. For

instance, the pollination fees for avocados have not followed the increase in fees

brought by the almond boom even though they use bees during the same period

as visible in figure 3. It is not possible to determine without a measure of hive

size whether the difference between avocado and almond fees is due to the fact

that avocados provide more nectar to bees than almonds or if avocado growers are

willing to accept smaller hives more readily.

6 Concluding remarks

Honey bees differ from other species of insect pollinators in important ways,

some of which play a determinant role in shaping the economics of their rearing

and use in agriculture. Because the nest of honey bees is easily transported and

their yearly active cycle long, honey bees can be used to pollinate multiple crops.

Also, because honey bees store honey in a way that can be easily harvested, they

produce a honey output in addition to the pollination services they can provide.

This chapter develops a dynamic model that show the consequences of these two
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important characteristics on the economic trade-offs involved in their use. Previous

literature had identified the fact that honey and crops are joint outputs of a pro-

duction process that uses beehives and crop blossoms as inputs. The main novelty

of this chapter is that is highlights the fact that crop blossoms are in addition an

input for the production of the stock of bees by modeling the dynamics of both

the stock of stored honey and the population of bees in a hive. This reciprocity

is the consequence of the reciprocity of the pollination relationship itself. The few

other species that have been used for pollination in agriculture, as well as the wild

species that provide pollination services by diffusing from wild habitat also depend

on crops as inputs, at least partially. However, because they are not migratory,

the dynamics of their stock is most likely to depend on a the few crops and wild

plants withing their foraging range. Also, because pollinator species other than

honey bees do not store honey in a harvestable form if at all, their management

does not involve the problems of joint output production

The economic problem that pollination markets tackle are complex. Al-

though the efficiency of these spontaneous institutions remains to be fully mea-

sured and understood, there is some evidence that they solve not only the problem

of jointness of production first outlined by Meade. Indeed, pollination markets

may also solve the problem of the management of a renewable and migratory stock

which economic value derives from both extraction and the provision of a service.

Although the economic importance of honey bees may be smaller than that of other

livestock, the study of the economic institutions of beekeeping provides insights on

the economic problems involved in domestication more generally.
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Figure 1: Hive numbers in the United States from 1986 to 2009
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Figure 4: Phase diagram for the yearly cycle of bees and honey stocks in a hive
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Values of simulation parameters: T = 100, X̄ = 40, υ = .27, β = .22, δ = .1, γ = .3, α = .5, ω = .5,
and Hharv = {0,30,60,90,120}.
In the diagram of the production possibility frontier, each solid point corresponds to one of the
trajectories in the three other diagrams.

Figure 5: Phase diagram, bee and honey trajectories, and production possibility
frontier
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7 Appendix: A seasonal model of pollination mar-

kets with a migratory stock of bees

This appendix describes an equilibrium displacement model of pollination

markets. The model includes the effects of changes in crop acreage, honey price,

and beekeeping costs on the wages of bees. The most important feature of this

model is that it takes into account the fact that bees are a stock used as input for

crops that bloom sequentially throughout the year.13 Previous models of pollina-

tion markets, such as in Cheung (1973) and Muth et al. (2003), consider that all

crops are competing for the same bees. Here, each crop competes only with crops

that bloom during the same period. A second important feature of the model is

the endogeneity of the input ratio of land and bees.14

I find that an increase of the acreage of one crop always results in an increase

in the wage of bees for all crops blooming at the same time of year and a decrease

of bee wages for other blooming periods. Also, an increase in the cost of beekeeping

results in an increase of the wage of bees for all seasons and all crops. In contrast,

changes in honey prices have ambiguous effects on the wages of bees for a given

crop. My prediction on the effect of changes in honey price contradicts the existing

literature. I discuss the consequences of these findings in section 4.

13The lifespan of an individual worker bee is a 4 or 5 weeks during the active period of the
year. Therefore, although the same hive may be used for several crops blooming months apart,
the bees providing the pollination services and collecting nectar are not the same. Here I only
refer to the aggregate population of bees in a hive without keeping track of the birth and death
of individuals.

14Rucker, Thurman, and Burgett (2008) argue that the density of bees per acre is in prac-
tice constant for individual crops. In addition, assuming fixed proportions in land and bees is
problematic in a seasonal model simply because the additional bees that would result from an
increase in acreage in say March must go somewhere in June.
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7.A A seasonal model of pollination market with a fixed

bee stock

First consider the demand equation for bees. The wage of bees, which is the

value of the total marginal product of bees, is equal to the sum of the values of the

marginal products of bees for honey and crop production, which can be written as:

∀(t, i), wt,i = y′t,i(bt,i)pt,i + h′t,i(bt,i)ph (3.A.1)

where wt,i is the wage of bees used on crop i of period t. The expressions y′t,i and h′t,i

are the increase in crop and honey yield per acre resulting from a marginal increase

of bee stocking density bt,i). The bee stocking density bt,i) is the number of bees

per acre and the number of crop blossoms per acre are assumed to be constant.

pt,i and ph are the prices of crop (t, i) and honey. I assume that honey per acre and

crop yield per acre are increasing in bee density over the relevant range. Equation

3.A.1 is identical to equation (3) in Rucker, Thurman, and Burgett (2008). A

similar concept is used in Cheung’s analysis.

The choice of indexing, although not the most intuitive at first, is driven by

the ease with which equilibrium conditions can be represented. In the notation,

crop (1,1) and crop (2,1) are two different crops blooming in periods 1 and 2. An

alternative notation would be to attribute a crop index to each crop but with such

notation, market clearing conditions cannot be easily written and require to keep

track of which crops bloom when throughout. An additional difficulty resides in

dealing with blooming periods of different lengths and with overlaps. Specifically,

the bloom period of certain crops can be longer than those of others and hives

placed on crops with longer bloom become available only to crops that bloom after
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end of the bloom of the first crops. For instance, some apple orchards in California

start blooming before the end of the almond bloom (Sumner and Boriss, 2006).

The notation adopted here can be used to represent these cases by splitting the

bloom of, say, almonds in two periods. In that case, crop (1,1) and crop (2,1)

may both be almonds, and an additional equation can be added to constrain the

number of almond acres and bees used in almonds to be equal across periods.

When pollination markets are competitive, the wage of bees employed on

all crops blooming during the same bloom period only differ by the cost of trans-

portation of hives from their location of origin to the crop. Here I ignore these

shipping costs. Accordingly:

∀i,∀t, wt,i = wt (3.A.2)

Furthermore, the total wage of bees for the entire year is the sum of the wages

collected during each period or:

∑
t

wt = W (3.A.3)

where W is the yearly bee wage.

The market clearing conditions for the numbers of bees are characterized

by

∀t, ∑
i

At,ibt,i = Bt (3.A.4)

and

∀t, Bt = B (3.A.5)
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where At,i is the acreage of crop (t, i) and Bt the number of bees in period t.

Equation 3.A.4 is the market clearing condition for each period.15 Equation 3.A.5

states that the same number of bees are used for each bloom period.

Finally, I write the supply function for bees as a function of the yearly wage

and a supply shifter s:

B = f (W,s). (3.A.6)

By constraining the bee stock to be fixed yearlong and by treating honey

as an output similar to the crop output, I ignore many of the complexities of the

biology of bees discussed and modeled in section 2. Importantly, the wage of bees,

defined as the value of the marginal product of bees, does not include the value

deriving from the increase in bee stock. This value is implicit in the dynamic

model presented in the section 2. In addition, the production of honey by bees is

simplified here since it just comes as an output for each crop. In the fully dynamic

model, the trade-off between the production of a honey harvest and the increase

in the population of bees is taken into account. I leave the construction of market

model that incorporates these features for future work.16 Figure 3.A.1 provides a

graphical representation of the system of equations for a 3 crop 2 periods model.

7.B Displacements of market equilibrium

Writing equations 3.A.2 through 3.A.5 in log-differential form yields a sys-

tem of linear equations that can be solved to obtain the changes in equilibrium

quantities and prices resulting from changes in exogenous variables such as out-

put prices, acreages, and supply shifters. The notation EX = dX/X indicates the

15bt,i is a density of bees per acre.
16Some of the dynamic characteristics of the stock of bees could be added by changing this

equation to Bt+1 = f (Bt) for instance.
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percentage change in variable X . After log-differentiation, equation 3.A.1 becomes:

∀(t, i), Ewt,i =
[
η

y
t,i(1−αt,i)+ η

h
t,iαt,i

)
Ebt,i +(1−αt,i)E pt,i + αt,iE ph (3.A.7)

where η
y
t,i is the elasticity of the marginal product of bees in the production of

the crop with respect to bee densities and is equal to (dy′t,i/db)(bt,i/y′t,i); ηh
t,i is the

elasticity of the marginal product of the honey with respect to bee densities and

is equal to (dh′t,i/db)(bt,i/h′t,i); and αt,i is the share of honey in the value of the

marginal product of bees, that is αt,i = (h′t,i ph)/wt,i.

Equations 3.A.2 and 3.A.3 become:

∀i,∀t, Ewt,i = Ewt (3.A.8)

∑
t

ωtEwt = EW (3.A.9)

where ωt is the share of one period in the total yearly wage, that is ωt = wt/W .

The market clearing conditions 3.A.4 and 3.A.5 become:

∀t, ∑
i

γt,i (EAt,i + Ebt,i) = EBt (3.A.10)

∀t, EBt = EB (3.A.11)

where γt,i is the share of the bee population used in crop i during period t, or

γt,i = (At,ibt, i)/Bt .

Finally, the differentiated form of the supply equation is:

EB = εEW + Es. (3.A.12)
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7.C Model with three crop and two bloom periods

This model is linear and can be solved for any number of crops or periods.

The model with three crops and two periods suffices to derive four general results. I

derive the changes in the wages of bees for a crop resulting from changes in acreage

of crops both in other periods and in the same period, change in the price of honey,

and changes in the marginal cost of rearing bees: to cover the interesting cases,

assume that there are two crops in the first period and only one in the second

period.

Equation 3.A.7 can be expanded for the three crops as follows:

Ew11 =
(

η
y
11(1−α11)+ η

h
11α11

)
Eb11 + α11E ph (3.A.13)

Ew12 =
(

η
y
12(1−α12)+ η

h
12α12

)
Eb12 + α12E ph (3.A.14)

Ew2 =
(

η
y
2(1−α2)+ η

h
2α2

)
Eb2 + α2E ph. (3.A.15)

Equations 3.A.8to 3.A.12 become:

Ew11 = Ew12 (3.A.16)

ω1Ew11 + ω2Ew2 = EW (3.A.17)

γ11 (EA11 + Eb11)+ γ12 (EA12 + Eb12) = EB1 (3.A.18)

γ2 (EA2 + Eb2) = EB2 (3.A.19)

EB1 = EB2 = EB (3.A.20)

EB = εEW + Es. (3.A.21)
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Because there is only one crop in period 2, γ2 is equal to one. In addition, I define:

∀(t, i),mut,i = η
y
t,i(1−αt,i)+ η

h
t,iαt,i (3.A.22)

and simplify equations 3.A.13 to 3.A.15 to

Ewt,i = µt,iEbt,i + αt,iE ph (3.A.23)

Because µt,i is a weighted average of two negative numbers η
y
t,i and ηh

t,i, it is also

negative for all crops and periods. All other parameters are positive.

7.D Analytical solutions

The system of linear equations 3.A.16 to 3.A.23 are solved for the change in

bee wage for crop 1 in period 1 Ew11 as a function of changes in acreages EA2 and

EA12, beekeeping costs S, and honey price E ph. The increase in bee wage resulting

from an increase in the acreage of crop 2 in period 2 is given by:

Ew11

EA2
=

µ11µ12µ2ε(1−ω1)
Φ

≤ 0 (3.A.24)

with

Φ = εω1µ11µ12− (γ11µ12 + γ12µ11)(1− ε(1−ω1)µ2)≥ 0. (3.A.25)

The numerator of is always negative because it contains an odd number of µs

and because ω1 is a share. In the denominator Φ, terms preceded by a positive

sign have even numbers of µs and terms preceded by a negative sign have an odd

number of µs . As a result, the denominator Φ in expression 3.A.28 is always

positive. Accordingly, an increase in acres of crops in other seasons always result
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in an decrease in the bee wage. This result is intuitive and is a consequence of the

returns to scale of beekeeping which use the same bees to pollination and make

honey from several crops.

The effect of a change in acreage of crops from the same bloom period is

given by:

Ew11

EA12
=

γ12µ11µ12 (1− ε(1−ω1)µ2)
Φ

≥ 0. (3.A.26)

The denominator is the same as in expression 3.A.24 and therefore the sign of

expression 3.A.26 is the sign of its numerator. (1− ε(1−ω1)µ2) is positive because

µ2 is negative. The entire fraction in expression 3.A.26 is therefore positive. An

increase in the acreage of crops in the same blooming periods always result in an

increase of bee wages for that period. These first two results illustrate the fact

that crops are substitute when in the same blooming season and complements

when not. That this is consistent with patterns of observed pollination fees in

figure 3 of section 1.

Equations 3.A.24 and 3.A.26 show that an increase in acreage of one crop

causes an increase in bee wages for all crops of the same blooming period and a

decrease of bee wages for crops blooming during other periods. This result can

be applied to the increase in almond acreage that has occurred in the last couple

of decades. The result is consistent with the patterns of pollination fees shown in

figure 3 because pollination fees for crops that bloom at the same time as almonds

have increased. However, pollination fees for crops blooming after almonds do

not seem to have declined significantly, as equation 3.A.24 predicts. Econometric

estimation is required to test further the validity of the equilibrium displacement

model developed here.
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I now turn to the effect of shifts in the supply of bees on bee wages.

Ew11

Es
=
−µ11µ12

Φ
≥ 0. (3.A.27)

Here again the denominator is positive. Since the numerator is negative, I find

that an increase in the marginal cost of producing bees results in an increase in

bee wages for all periods and crops.17 The denominator is an increasing function

of ω1 and therefore the effect of a supply shift is larger for crops which represent

a larger share of the yearly wage of bees.

Finally, the effect of a change in the price of honey on bee wages is ambigu-

ous:

Ew11

E ph
=

(α11γ11µ12µ2 + α12γ12µ11µ2−α2µ11µ12)ε(1−ω1)− (α11γ11µ12 + α12γ12µ11)
Ψ

(3.A.28)

with

Ψ = εω1µ11µ12− ε
2(1−ω1)2µ11µ12µ2− (γ11µ12 + γ12µ11)(1− ε(1−ω1)µ2)≥ 0.

(3.A.29)

The denominator Ψ is positive because as for Φ, the terms preceded by

a positive sign have even numbers of µs and terms preceded by negative signs

have odd numbers of µs. Furthermore, (1− ε(1−ω1)µ2) is positive as before. In

contrast, the sign of the numerator depends on the values of the parameters. In

order to gain some intuition on the meaning of expression 3.A.28, it is useful to

consider two special cases.

17According to the notation, an increase in the marginal cost of beekeeping corresponds to a
negative Es.
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First, if we assume that the only honey producing crop is the crop of the

second period and that bees do not provide any pollination service to that crop,

expression 3.A.28 can be simplified using the facts that α11 = α12 = 0 and α2 = 1:

Ew11

E ph
=
−α2µ11µ12ε(1−ω1)

Ψ
≤ 0. (3.A.30)

In this case, an increase in the price of honey causes a decrease in the wage of bees

for the first period. An increase in the price of honey increases the derived demand

for bees in crops that produce honey and since only the crop in the other bloom

season produced honey, the wages for the first period decrease.

Consider a second special case in which the only honey producing crop is

crop 2 in the first period. In that case, α11 = α2 = 0 and α12 = 1. Therefore,

expression 3.A.28 becomes:

Ew11

E ph
=
−γ12µ11 (1− ε(1−ω1)µ2)

Ψ
≥ 0. (3.A.31)

Here, an increase in the price of honey results in an increase of bee wages for the

first period for a similar reason than before except that the increase in derived

demand for bees occurs on a crop that competes for bees with crop (1,1). In the

general case of expression 3.A.28 the net effect of changes in honey prices depends

on the relative changes in derived demand from crops of the same and other bloom

periods.

Rucker, Thurman, and Burgett (2008) identify the pollination fee as the

bee wage minus the value of the marginal product of honey. In my model, the

pollination fee is equal to µt,iEbt,i and the results derived in equations 3.A.24,

3.A.26, 3.A.27, and 3.A.28 can be written in terms of pollination fees using equa-
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tion 3.A.23. When the price of honey is constant, this is equivalent to dividing

the fraction for the bee wage expression by µ to obtain the proportional change

in pollination fees. When the price honey varies, expression 3.A.28 can be also

converted to pollination fees but the sign of the relationship remains ambiguous.

b1,1 b1,2

b2

B1

B2

w1

B

S

Value of marginal honey product

Value of marginal crop product

Total value of marginal product

w12w11

w2

w2

W

Figure 3.A.1: Diagram of pollination market equilibrium with two periods and
three crops
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