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Abstract 

This study highlights some problems with using the Johansen cointegration statistics on data 
containing a negative moving average (NMA) in the error term of the data generating process.    
We use a Monte Carlo experiment to demonstrate that the asymptotic distribution of the 
Johansen cointegration statistics is sensitive to the NMA parameters and that using the stated 5% 
critical values results in severe size distortion.  In our experiment, using the asymptotic critical 
values resulted in empirical size of 76% in the worst case.  To date a NMA in the error term was 
known to cause poor small sample performance of the Johansen cointegration statistics; however 
our study demonstrates that problems associated with a NMA in the error term do not improve as 
sample size increases. In fact, the problems become more severe. Further, we show that 
commodity prices in the U.S. tend to exhibit this property.  We recommend that researchers 
pretest data for NMA in the error term before using the standard asymptotic critical values to test 
for cointegrating rank.  
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Cointegration Analysis of Commodity Prices: Much Ado about the Wrong Thing? 

Mindy L. Mallory and Sergio H. Lence 

 

Economists have formed a cottage industry out of testing for cointegrating relationships among 

economic variables. Since the development of cointegration tests by Johansen (1988), Johansen 

and Juselius (1990) and Johansen (1991), the cointegration framework has been used to examine 

spatial arbitrage and the law of one price for commodities, trade conditions, and purchasing 

power parity, to name some prominent examples (Corbae and Ouliaris 1988; Enders 1988; Kim 

1990; Goodwin and Schroeder 1991; Goodwin 1992; Johansen and Juselius 1992; Chowdhury 

1993; Kugler and Lenz 1993; Adamowicz and Luckert 1997; Bahmani-Oskooee 1998; Asche, 

Bremnes et al. 1999; Boyd, Caporale et al. 2001; Goodwin and Piggott 2001; Caporale and Chui 

2002; Sephton 2003; Hoover, Johansen et al. 2008). 

Given the widespread use of cointegration analysis in the economics literature, it is 

noteworthy the lack of studies assessing the robustness of results to slight changes in the 

assumptions underlying the cointegration tests. This is somewhat puzzling because, for example, 

there are several studies showing that the Johansen tests possess poor small sample properties 

when applied to data with a negative moving average (NMA) component in the error term and 

low power against a persistent alternative (Cheung and Lai (1993), Toda (1995), Johansen 

(2002), Ahn and Reinsel (1990), and Reimers (1992)).  

This study begins to fill a noticeable gap in the existing empirical cointegration literature, 

by exploring the properties of the Johansen cointegration tests when used to analyze time series 

like the ones often used by applied economists. The intended contributions of the study are 

threefold. First, we show that a NMA component in the error term is a common attribute among 
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U.S. commodity prices. We arrive at this conclusion by performing the corresponding tests on a 

large number of U.S. price series for important commodities, including major feed grains, other 

feed products, livestock, and consumer food prices. 

Second, we examine the properties of the Johansen cointegration tests as sample size 

changes for data generating processes (DGPs) containing a NMA in the error term. This study 

advances the previous small-sample literature by focusing on DGPs that mimic the temporal 

nature of actual time series for commodity prices. Prior studies did not draw a connection 

between the simulation experiments and the type of data they intended to mimic. Their simulated 

DGPs did not correspond to daily, weekly, monthly, quarterly, or annual observations. They 

merely set the variance within some convenient range, e.g., [ ]0 25 1. ,σ ∈ . However, this 

distinction is critically important. While 400 observations of annual data is a longer series than 

social scientists ever enjoy, 400 observations of daily data contain scarcely more than a year’s 

worth of information. A year is not likely to be nearly enough time to capture the variation 

required in the data to test for cointegrating relationships for crops, feedstuffs, and other food-

related products with yearly production cycles. Yet, small-sample studies often make 

recommendations of the nature, “With 100 observations it seems safe to assume that asymptotic 

results apply.” 

Because of this, previous studies leave the applied researcher with the question, “How 

much data is enough to test for cointegrating relationships?” We constructed hypothetical data 

series designed to mimic “daily data” of varying lengths and varying severity of MA errors. By 

this we mean that we calibrated the random disturbances of our Monte Carlo experiment’s DGP 

so that the annualized volatility, as measured by standard deviation of prices divided by the 

mean, is equal to a value typical for commodity prices. By designing the Monte Carlo 
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experiment in this way, we show that NMA errors really are not a small sample issue at all. In 

fact, the performance of the test statistics becomes worse as sample size is lengthened in the 

presence of NMA errors (e.g., the empirical sizes corresponding to the stated 0.05 asymptotic 

critical values are on the order of 0.75). This suggests that the asymptotic distribution of the test 

statistic is quite sensitive to the MA parameter. 

Several researchers have been close to discovering this property, but none really put the 

NMA error structure and the poor performance of the Johansen statistics together. There is a bit 

of foreshadowing in the unit root literature, as Phillips and Perron (1988) note that in a univariate 

unit root testing environment the ( )ˆ 1T α −  and related statistics diverge as the MA term 

approaches -1. Hodgson (1998) develops a residual-based cointegration test that allows for MA 

errors, but it is unclear from the design of his Monte Carlo experiment whether the asymptotic 

distribution of the likelihood ratio statistic is affected in the residual based test or not. Lütkepohl 

and Claessen (1997) estimate cointegrated vector autoregressive moving average processes, 

citing Saikkonen and Luukkonen (1997) as justification that the cointegrating rank test in this 

environment follows the distribution of the standard Johansen trace test. However, Saikkonen 

and Luukkonen showed this result for an infinite order autoregressive process rather than an 

ARMA process. Therefore, the Johansen critical values are not necessarily appropriate in this 

context.1

The third contribution of this paper is in providing several new examples of how the 

Johansen test statistics behave for the aforementioned commodity price series. We show that the 

test statistics are extremely sensitive to the influence of individual data points, making the test 

statistics very sensitive to the length of the sample. When combined with the Monte Carlo 

 

                                                 
1Since testing for cointegration is analogous to testing for multivariate unit roots, and given the result of Phillips and 
Perron in the univariate unit root literature, this seems to be a serious misstep of Lutkepohl and Claessen. 
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analysis, these examples show that the Johansen tests are rendered of little use for the kinds of 

data agricultural economists are often interested in. This is true because for such data the size 

distortions are quite large and the test statistics are extremely sensitive to the influence of 

individual data points. We argue that for many data series it is not a question of whether or not 

the series are cointegrated, but rather the relevant task is estimating the parameters of a vector 

error correction model (VECM) with precision. For example, economic theory would predict that 

if the price of soybeans is high relative to the price of soy oil and meal for a sufficiently long 

period, soybean processors would exit the industry until processing margins can sustain the 

remaining firms. Similarly, if the price of soybeans is low relative to the price of soy oil and 

meal, processing firms will enter the market and eventually drive processing margins down. 

Therefore, testing for cointegration in the soybean complex is not necessarily an interesting 

question, whereas estimating the speed at which prices reverse to their long-run equilibrium 

relationship is a task that arguably has value.  

 

Characterizing the Time Series Properties of Prices for Major U.S. Commodities 

We begin our study by characterizing the time series properties of a large number U.S. price 

series for important commodities, including major feed grains, other feed products, livestock, 

and consumer food prices. Specifically, we show that a NMA error structure is quite common for 

such series. 

A data dictionary is provided in Table 1 indicating the data source, beginning and end of 

sample, and frequency of each data set we analyze. Our data series vary in length because we 

chose to use as much of the data as was available, so that in each case we have the longest data 

set possible. This is important for us because we argue that the problems associated with a NMA 
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in the error term are not a small-sample concern, but one that persists into the asymptotics. All of 

the series we examine are quite long, representing 20 to 40 years worth of data. Therefore, to 

remove the effects of inflation over this long period we deflate each series by the Consumer 

Price Index (CPI) maintained by the Bureau of Labor Statistics.2

To test for MAs in the DGPs of our data, we fit the ARIMA(p,q) model (1) to each series 

enumerated in the data dictionary. 

 

 

(1) ∆𝑃𝑃𝑡𝑡 = 𝑐𝑐 + 𝜀𝜀𝑡𝑡 + ∑ 𝜑𝜑𝑖𝑖∆𝑃𝑃𝑡𝑡−𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + ∑ 𝜃𝜃𝑗𝑗 𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞
𝑗𝑗=1  

 

We use the Bayesian information criterion to select p and q; we specifically note the sign and test 

the significance of the coefficients corresponding to the lagged error terms. In table 2 we report 

the parameter estimates and p-values, as well as the R2 for each data series. Starred values are 

significant at the 5% level, the parameter estimates of the lagged error terms that are both 

negative and significant are shaded.  

Over 50% of the series investigated (20 out of 36) have a statistically significant NMA 

component in the error term. The figure increases to over 75% of the series (28 out of 36) when 

considering all series with negative point estimates on the lagged error terms (regardless of 

whether they are statistically significant or not). While the series we examined are not an 

exhaustive list of commodity prices, these findings indicate that MA components in the error 

term are common and pre-testing for this structure should be part of the routine in estimating 

cointegrating rank. We underscore the importance of this issue in the sections below. 

 

 

                                                 
2CPI data can be found here at http://www.bls.gov/data/ 

http://www.bls.gov/data/�
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Technological Relationships and Issues with the Johansen Tests 

Many subsets of the data analyzed above should be expected to contain cointegrating 

relationships based on long run equilibrium and technological production processes present 

within industry groups. These include: crude oil, gasoline, and diesel – crack spread; wheat and 

wheat flour; soybeans, soybean oil, and soybean meal – soybean crush; corn, feeder cattle, and 

live cattle – cattle crush; lean hogs, pork bellies, and corn; corn and soybeans; corn gluten feed 

and corn gluten meal, and other feed products.  

We perform cointegration tests on these industry groups and report the results in table 3. 

The Johansen tests clearly indicate in each industrial processing group that the variables are 

cointegrated except for corn gluten feed and meal. The statistics are generally large so that the 

null hypothesis of no cointegration is easily rejected. In fact, for wheat flour and the soybean 

crush the statistics are so large that in sequentially testing for the number of cointegrating 

relationships the tests conclude that there are as many cointegrating relationships as there are 

equations. This is equivalent to a joint test that each price series is stationary.  

 

Effect of Sample Size on the Distribution of the Test Statistics 

Previous studies conclude that performance problems, when they exist, are small sample issues 

that can be remedied with more data. We specifically chose variables for which very long data 

sets exist. Data on the soybean complex covers over 40 years, for example. Any difficulties 

associated with small samples should not be present in these data.  

 As a thought experiment, consider what happens to the Johansen test statistics if new data 

points are added to the time series. New data points will influence the likelihood function and 

cause the value of the test statistic to be perturbed by a small amount. The larger the dataset the 
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smaller the effect each new data point should have. When the dataset becomes large enough we 

would expect additional entries to cause the value of the test statistic to vary randomly around 

the mean of its asymptotic distribution.  

 To see if this behavior is observed for our data, we calculate the Johansen statistics 

varying the sample size. We begin with the sample size used to generate the statistics in table 3, 

then at each iteration we remove the oldest data point, calculate the statistics for 𝑟𝑟 ≤ 0, and plot 

them. Therefore with each iteration, looking left to right, the dataset becomes shorter. Figures 1-

5 display the results. The horizontal line represents the 95% critical value as a reference point. 

 These figures clearly do not display behavior we would expect from a statistic sampled 

from its asymptotic distribution, the values of the test statistic clearly have not converged, and in 

each case seem to be increasing. Further, this behavior is highly correlated with the presence of a 

NMA in the error term. That is, if one compares the magnitudes of the NMA parameter 

estimates, the largest NMA coefficients correspond to the worst behavior in the Johansen 

cointegration statistics. 

 Clearly, using the asymptotic critical values to test for cointegration at the 5% and 1% 

stated levels of significance will result in huge size distortions. In each figure the test statistic 

seems to be growing with the size of the data set (moving right to left). Comparing this with the 

5% critical value represented by the horizontal lines, we see given enough data we will always 

reject the null hypothesis when a NMA is present. 

In the past, researchers in possession of a long dataset have naively assumed they could 

confidently use the asymptotic critical values. When in fact many of these studies probably have 

come to erroneous conclusions regarding the cointegrating rank of their data series. In the 

following sections we develop a Monte Carlo study to further support this finding. 
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Previous Small Sample Investigations 

Since Johansen’s trace and maximum eigenvalue tests of cointegrating rank are asymptotic 

likelihood ratio tests it is likely that they have undesirable properties in small samples. It is 

known that that the tests suffer from size distortion and low power in small samples, especially 

when the error correction model produces residuals are nearly I(1). Several Monte Carlo studies 

have been published outlining the severity of these issues.  

Cheung and Lai (1993) determine the finite sample sizes of the Johansen tests and 

quantify the finite sample critical values using response surface analysis. They conclude the 

Johansen tests are biased toward rejecting a null of no cointegration too often in finite samples 

compared to the asymptotic distribution of the test statistics. Further, they conclude that the bias 

worsens as the dimension of the system or length of the lag structure increases. This contrasts 

with our findings, regarding NMA errors at least, in that increasing the lag length reduces the 

problem of size distortions. 

Toda (1995) performs an independent study of the finite sample performance of the 

Johansen tests and determines that with 100 observations the simulated distribution of the 

asymptotic test statistic under the null is fairly good. However, 100 observations are not enough 

to determine the true cointegrating rank under the alternative if one or more of the stationary 

roots of the process is nearly 1; that is, the test has low power against a persistent alternative. 

Unlike Cheung and Lai, Toda asserts that this leads to underestimation of the cointegrating rank 

because of the nature of sequential testing inherent in the Johansen procedure. Further, he finds 

the test’s performance is affected by initial values of the stationary component of the process. 

Toda concludes that one needs 300 observations for the test to perform well uniformly over the 

range of finite sample scenarios he considers. Although, the simulated data is not calibrated to a 
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specific temporal frequency so this recommendation is difficult for the applied researcher to 

interpret since the evidence is mixed about whether temporal aggregation of the data helps or 

hinders the power of cointegration tests to detect equilibrium relationships in small samples (see 

(Shiller and Perron 1985; Hooker 1993; Lahiri and Mamingi 1995; Otero and Smith 2000) for 

discussion). The level of temporal aggregation will certainly influence the distribution of the test 

statistics in a small sample, and whether it increases or decreases the tests’ power will depend on 

the nature of the DGP. 

Alternative to determining the critical values of the actual finite sample distribution, 

small sample corrections to the test statistics or critical values have been proposed. Johansen 

(2002) proposes a correction factor that depends on parameters of the error correction model as 

well as the sample size. However, the correction is fairly complicated to apply (the components 

of the correction which depend only on functionals of a random walk are simulated and 

described in (Johansen, Hansen et al. 2005)); it is not clear that one cannot obtain better 

estimates of the small sample critical values from simulating the small sample distributions 

directly. After all, the correction of the statistics developed by Johansen (2002) requires 

estimating the parameters of the data, just as is required to simulate the small sample distribution 

correctly. 

Ahn and Reinsel (1990) and Reimers (1992) develop a correction that is a simple 

function of sample size, system dimension and lag order. However, as part of their Monte Carlo 

analysis Cheung and Lai (1993) conclude that the Ahn-Reinsel method does not yield unbiased 

estimates of the finite sample critical values.  

Therefore, it seems appropriate to investigate how much data is required before the tests 

statistic appears to approach asymptotic behavior under a range of assumptions about the DGP. 
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Further, it seems worthwhile to provide small sample critical values that are associated more 

directly with a particular type of temporally aggregated data set, and for varying lengths of data 

available.  

In the next section we perform a small Monte Carlo study that provides critical values for 

Johansen’s statistics on cointegrating rank. The experiment is tailored explicitly to ‘daily data’. 

We provide both critical values of the distribution of the statistic under the null hypothesis, as 

well as a small study of the power of the test statistic under the alternative hypothesis.  

 

A Monte Carlo Study 

The DGP we use closely resembles that used in prior Monte Carlo studies done by Banerjee et al. 

(1986) and Haug (1996). In this study, we restrict our attention to a bivariate system. The DGP is  

(1) t t ty x ν− = ,    1t t twν ρν −= + , 

(2) t t ty x ψ+ = ,    1t t trψ ψ −= + ,      1t t tr ϕ θϕ −= +  

(3) 
2
1

2
2

0
0

,
iid

t

t

w
N

σ η
ϕ η σ

     
=              

. 

With this DGP a moving average component in the error terms exists when θ  is non-

zero. For  1ρ =  the data is generated under the null hypothesis of no cointegration, while a value 

of 1ρ <  corresponds to the alternative hypothesis that the two series are cointegrated. We 

choose values of η  and σ so that the covariance matrix of [ ]t ty x ′  matches levels typical for 

daily price changes, namely an annualized price volatility of 0.25. We run the simulations for 

each parameter scenario ( )ρ θ, , where { }0 85 0 90 1ρ ∈ . , . , , and { }0 80 0 0 80θ ∈ − . , , .  . We follow 

Haug (1996) in the choice of these parameter values, which allows us to illustrate the effect of a 



13 
 

moving average component in the error term on the size distortion and power of the Johansen 

tests. 

Deriving the variances and covariance of [ ]t ty x ′  implied by the DGP in (7) and (8), 

one finds that the covariance matrix of [ ]t tw ϕ ′  relates to the covariance of [ ]t ty x ′  by the 

equations  

(4) ( )2 2
1 2 x xyσ σ σ= −  

(5) ( ) ( )2 2 2
2 2 1y xyσ σ σ θ= + +  

(6) 2 2
y xη σ σ= −  

Where 
2

2

y yx
yx

yx x

σ σ

σ σ

 
Σ =  

  
 is the covariance matrix of the [ ]t ty x ′∆ ∆  series. These equations 

allow us to tailor the Monte Carlo experiment to mimic data of any temporal aggregation level. 

We match the covariance structure of the simulated data series to one that might be found 

in two price series with cross correlation; we set 
0 0004 0 0002
0 0002 0 0004y x

 
Σ =  

 
,

. .

. .
 . 

 We perform the simulation using 100,000 replications, and for sample lengths varying 

from one month to 100 years. Table 4 contains the finite sample critical values for different 

assumptions on the error term (values of θ ), lag specification of the VECM, and for varying data 

series lengths. We report the empirical size of the trace and maximal eigenvalue cointegration 

tests based on the stated 5% asymptotic critical value. We also report the actual 95% critical 

value of the simulated distribution of the statistics for each sample size.  
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When the moving average component of the DGP is zero or positive, ( 0θ ≥ ), the small 

sample size distortion disappears with little more than six months of data, and the statistics have 

surprisingly small size distortion with as little as three months of data.  

 On the other hand when data is generated with a NMA in the error term, the size 

distortion is severe. With a lag length of k = 2 the size distortion persists even after the statistic 

seems to have converged. Table 4 also shows that increasing the lag length to k = 4 or k = 5 is 

helpful in reducing the size distortion, but even including 5 lags leaves an asymptotic size 

distortion of 22 percentage points, and increasing the lag length is costly in terms of precision of 

the estimate of the mean reverting parameter in the VECM, which is often the primary parameter 

of interest in these kinds of studies. 

 Table 5 contains the results of a small power study of the test statistic under the 

alternative hypothesis that 1ρ < . The reported values are size adjusted powers, so the numbers 

represent the probability of rejecting the false null hypothesis using the appropriate small sample 

critical values as calculated in table 4. In other words, the probability of a type II error given that 

one is testing with the appropriate critical values found in table 4. Given the size distortion 

reported in table 4 this is an important distinction. Notice that if the asymptotic critical values are 

used, the probability of committing a type I error grows with sample size, as does the probability 

of committing a type II error since the mean of the actual distribution under the null hypothesis is 

increasing as the sample size grows. 

By simulating data for 0 85 0 90 and 0 95ρ = . , . , .  we demonstrate how the test loses 

ability to discern a cointegrating relationship from increasingly persistent alternative hypotheses. 

The trace statistic performs relatively well in terms of power also when 0θ ≥ . When the DGP 

has 0 85ρ = .  the power of the test is relatively good for sample length as small as six months, 
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and has very high power for samples of 2 years or longer. The power becomes weaker when the 

DGP is closer to a the null hypothesis of 1ρ =  with 0 90 and 0 95ρ = . . . In these cases, two years 

of data are required before the test statistic has reasonable power; however, the power is very 

good for data series of four years or more.  

We get nearly identical power results when the data contain a positive MA in the error 

term, but the size adjusted power of the test suffers when a NMA is present in the error term of 

the DGP.  

 

Comparing the Simulated Data to ‘Real World’ Data Visually 

It is useful to construct figures which record the trace and maximal statistics against sample size 

as we did above for actual data series. These are found in figures 9-11. To construct these figures 

we simulate one 10 year realization of the DGP for the following scenarios: null hypothesis of no 

cointegration and no NMA in the error term, null hypothesis of no cointegration and a NMA in 

the error term, and alternative hypothesis of cointegration and a NMA in the error term. The 

most instructive graphs are the two scenarios under the null hypothesis. Recall that the figure 

plots the trace and maximal statistics as sample size is shortened. At each step from left to right 

we drop the oldest observation, calculate the statistic, and plot it. 

 Keep in mind that these figures represent a single realization of the DGP and are not 

necessarily representative of the distribution of the statistic; however, this is still a useful tool 

since these figures can be directly compared to the figures generated by our actual data series.  

Figure 9 is created from simulated data under the null hypothesis of no cointegration and 

no NMA in the error term. Recall from the Monte Carlo study that under this scenario the 

Johansen tests perform well; size distortions quickly disappear and power becomes quite good 
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for a modest length sample. The figure is consistent with this as well. Looking at the graph from 

right to left we see the cointegration statistics varying as new data points are added. Each new 

data point perturbs the statistic, but the line appears to be quite stationary. Also, recall that the 

horizontal line represents the 95% asymptotic critical value of the statistic. Since statistics are 

almost always below the critical value, one would correctly fail to reject the null hypothesis 

except in a few of the subsamples. This is exactly what we would expect to see when the 

statistics perform as advertized. 

Looking at figure 10 we see a different picture. This figure is generated using 10 years of 

simulated data under the null hypothesis of no cointegration, but with a NMA in the error term. 

Notice that the characteristics of this figure are much more like figures 1-8 for our real world 

data series. The figure is characterized by increasing value of the test statistic as sample size 

increases (right to left), and for almost all subsamples we would easily (but incorrectly) reject the 

null hypothesis of no cointegration. 

Figure 11 is generated using 10 years of simulated data under the alternative hypothesis 

and a NMA in the error term. The NMA in the error term causes the value of the cointegration 

statistics to increase with sample size in this case as well. The magnitude is generally much 

larger, but both data series generated under the null and under the alternative will easily reject 

the null hypothesis of no cointegration. This illustrates that when there is a NMA in the error 

term, it is not wise to test for coinegration by means of the Johansen statistics.  

 

Recommendations for the Applied Researcher 

Our results show that it is crucially important when testing for cointegrating rank to determine 

whether the data being considered contains a NMA error structure or not. When the error term 
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does not exhibit a NMA, small-sample size distortions disappear with little more than six months 

of daily data, and performs impressively well with as little as three months of simulated daily 

observations, while if a NMA error structure is present one should not use the published 

asymptotic critical values for hypothesis testing. 

 When testing in the presence of a persistent alternative hypothesis (ρ close to 1) the size 

adjusted power of the Johansen tests are similar regardless of whether a moving average 

structure was present in the error term or not, but under a more favorable alternative hypothesis 

(ρ sufficiently less than 1) the size adjusted power of the statistic is worse when a NMA is 

present than otherwise.  

 

Future Research  

There is much work to be done on this issue. The first question is whether or not a NMA in the 

error term plagues the residual based tests in the same way it does the Johansen tests. Since the 

residual based cointegration tests are effectively a subset of the unit root testing literature it is 

also relevant to determine the extent to which a NMA in the error term is responsible for unit 

root testing problems and if it is an asymptotic or small sample issue here as well.  

 Due to the severity of this issue and the prevalence of the problem in real world data, new 

techniques for testing for cointegrating rank would be highly useful. For example, testing for 

significance of cointegrating terms in a likelihood based estimation of a cointegrated VARMA 

model may be superior to using the Johansen procedure. Alternatively, it may be possible to add 

a MA component to the error structure in the auxiliary regressions used to construct the Johansen 

statistics.  
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Conclusion 

Error structure which contains a NMA is a common characteristic of commodity price series. We 

provide evidence that a NMA in the error term alters the asymptotic distribution of the Johansen 

cointegration statistics. This means that the published asymptotic critical values cannot be used 

in the cointegration testing procedure for data series with this characteristic. 

The severity of the size distortion is lessened by increasing the lag length beyond what 

would be chosen by typical methods like the Akaike information criterion or Bayesian 

information criterion, but at the cost of precision in parameter estimates. Since the speed of mean 

reversion is often the question of interest this is an unsatisfactory solution.  

 A NMA in the error term also has a detrimental effect on the size adjusted power of the 

statistics, but this seems to be a much less important issue than addressing the size distortion. 

This is because as the distribution of the statistic grows with sample size, the probability of a 

type II error goes to 0 while the probability of a type I error goes to 1. 
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Table 1: Data dictionary 
Data Set Start Date End Date Sourcea Frequency 

Sorghum – No. 2 yellow, Kansas City Sep 1975 Aug 2009 ERS Feed grains database Monthly 

Barley – No. 2 feed Portland, OR  June 1975 May 2004 ERS Feed grains database Monthly 

Oats – white heavy, Minneapolis, MN June 1975 May 1994 ERS Feed grains database Monthly 

Alfalfa meal dehydrated, 17% protein 
– Kansas City, MO Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Corn Gluten Feed 21% - Midwest Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Corn Gluten Meal 60% - Midwest Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Cottonseed meal 41% - Memphis, TN Oct 1981 Sep 2003 ERS Feed grains database Monthly 

Meat and Bone Meal – Central US Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Urea 42% - Fort Worth, TX Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Wheat Bran – KC, MO Oct 1981 Sep 2009 ERS Feed grains database Monthly 

Corn Meal yellow - NY, NY Sep 1983 Aug 2009 ERS Feed grains database Monthly 

High Fructose Corn Syrup 42% - 
Midwest Sep 1983 Aug 2009 ERS Feed grains database Monthly 

Milk, price received by farmers, all 
milk Jan 1970 Dec 2004 NASS, Agricultural Prices Monthly 

Milk, wholesale nonfat dry Jan 1970 Dec 1981 NASS, Agricultural Prices Monthly 

Eggs, grade A large Jan 1980 Dec 2009 U.S. LS Monthly 

Butter salted, US City average Jan 1980 Dec 2007 U.S. BLS Monthly 

White flour all purpose, US city 
average Jan 1980 Dec 2009 U.S. BLS Monthly 

Ground Beef, US city average Jan 1984 Dec 2009 U.S. BLS Monthly 

Chicken, fresh whole US city average Jan 1980 Dec 2009 U.S. BLS Monthly 

Potatoes, white US city average Jan 1988 Dec 2009 U.S. BLS Monthly 

Sugar, white US city average Jan 1980 Dec 2009 U.S. BLS Monthly 

Chicken breast, bone in US city 
average Jan 1980 Dec 2002 U.S. BLS Monthly 

Chicken legs, bone in US city average Jan 1980 Dec 1986 U.S. BLS Monthly 

Corn 3/1/1968 8/1/2009 Barchart “cash” Monthly 

Soybeans 3/1/1968 8/1/2009 Barchart “cash” Monthly 

Soy Oil 3/1/1968 8/1/2009 Barchart “cash” Monthly 

Soy Meal 3/1/1968 8/1/2009 Barchart “cash” Monthly 
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Wheat 3/1/1968 5/1/2009 ERS Wheat Yearbook Monthly 

Wheat Flour 3/1/1968 5/1/2009 ERS Wheat Yearbook Monthly 

Crude Oil – Cushing, OK 6/15/1986 7/15/2009 U.S. EIA Monthly 

Gasoline – NY Harbor Conventional 6/15/1986 7/15/2009 U.S. EIA Monthly 

Diesel – Los Angeles, CA No2 6/15/1986 7/15/2009 U.S. EIA Monthly 

Live Cattle 1/1/1970 8/1/2009 Barchart “cash” Monthly 

Feeder Cattle 1/1/1970 8/1/2009 Barchart “cash” Monthly 

Lean Hogs 3/1/1968 8/1/2009 Barchart “cash” Monthly 

Pork Bellies 3/1/1968 8/1/2009 Barchart “cash” Monthly 
aERS denotes the Economic Research Service of the U.S. Department of Agriculture (USDA), NASS is the USDA 
National Agricultural Statistics Service, BLS is the Bureau of Labor Statistics, and EIA is the Energy Information 
Administration, Barchart denotes spot prices as archived by Barchart.com. 
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Table 2: ARIMA Resultsa  

 

  

  1ϕ  2ϕ  4ϕ  4ϕ  1θ  2θ  3θ  4θ  
Alfalfa Coefficient 1.73* -0.99*   -1.70* 0.96*   

R2= 0.0866 P-value 0.00 0.00   0.00 0.00   
          

Barley Coefficient 0.91* -0.63* 0.13*  -0.69* 0.37*   
R2= 0.1450 P-value 0.00 0.00 0.02  0.00 0.00   

          
Butter Coefficient 1.32* -0.95*   -1.30* 0.99*   

R2= 0.05 P-value 0.00 0.00   0.00 0.00   
          

Whole 
Chicken Coefficient 0.23    -0.23    

R2= 0.0433 P-value 0.35    0.93    
          

Chicken 
Breast Coefficient -0.72    0.67    

R2 = 0.003 P-value 0.14    0.19    
          

Chicken Legs Coefficient 0.10    0.04    
R2 = 0.0174 P-value 0.89    0.96    

          
Corn Gluten 

Feed Coefficient 1.04* 0.06 -0.45* -0.14* -1.02* -0.21 0.68*  

R2= 0.1061 P-value 0.00 0.85 0.04 0.02 0.00 0.46 0.00  
          

Corn Gluten 
Meal Coefficient 0.87* -0.07 0.004 0.10 -0.97*    

R2= 0.0618 P-value 0.00 0.33 0.95 0.10 0.00    
          

Corn Meal 
Yellow Coefficient -0.35    0.54*    

R2= 0.0373 P-value 0.13    0.01    
          

Cotton Seed 
Meal Coefficient -0.23 -0.18 -0.06 -0.13 -0.15    

R2= 0.1434 P-value 0.61 0.30 0.58 0.06 0.74    
          

Eggs Coefficient 1.62 -0.81 -0.11  -1.79 1.11 -0.08  
R2= 0.1229 P-value 0.00 0.11 0.70  0.00 0.03 0.79  

          
Ground Beef Coefficient -0.02    -0.17    
R2= 0.0326 P-value 0.94    0.56    

          
High Fructose 

Corn Syrup Coefficient 1.67* -1.81* 1.50* -0.87* -1.55* 1.56* -1.39* 0.82* 

 

R2=  0.2659 P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
a Starred values significant at 5% level, shaded values are significant and negative  
The iϕ  and jθ are the estimated AR and MA coefficients respectively. 
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Table 2 (continued): ARIMA Results a 

 

 

 

 

          
  1ϕ  2ϕ  4ϕ  4ϕ  1θ  2θ  3θ  4θ  

Meat and 
Bone Meal Coefficient -0.99* -0.34* -0.30* -0.13* 0.90*    

R2= 0.0768 P-value 0.00 0.00 0.00 0.02 0.00    
          

Milk Farm 
Gate Price Coefficient 2.59* -3.11* 1.94* -0.62* -2.12* 2.27* -1.43* 0.57* 

R2= 0.5196 P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
          

Milk 
Wholesale 
Non Fat 

Coefficient -0.07 0.11 -0.21*  0.56    

R2= 0.2144 P-value 0.88 0.66 0.05  0.29    
          

Oats Coefficient -0.04    0.29    
R2= 0.0585 P-value 0.88    0.24    

          
Potatoes Coefficient 1.38* -0.49*   -0.96*    
R2= 0.2555 P-value 0.00 0.00   0.00    

          
Sorghum Coefficient 0.37    0.23    
R2=  0.0627 P-value 0.83    0.22    

          
White Sugar Coefficient 0.97* -0.95* 0.51* -0.01 -0.43* 0.89*   

R2= 0.5406 P-value 0.00 0.00 0.00 0.85 0.00 0.00   
          

Urea Coefficient -0.69* 0.83* 0.34* -0.39* 0.95* -0.64* -0.85*  
R2= 0.2220 P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

          
Wheat bran Coefficient 1.06* 0.17 -0.67*  -1.28* -0.03 0.88* -0.27* 
R2= 0.1600 P-value 0.00 0.67 0.00  0.00 0.93 0.00 0.00 

          
White All 

Purpose Flour Coefficient 0.46 -0.45 -0.55  -0.54 0.51 0.48  

R2= 0.1634 P-value 0.32 0.33 0.23  0.26 0.30 0.32  
          

Live Cattle Coefficient 0.11    -0.04 -0.06 -0.20* -0.19* 
R2= 0.0854 P-value 0.60    0.84 0.18 0.00 0.00 

          
Feeder Cattle Coefficient -0.90 -0.98   0.87* 0.98*   

R2= 0.0403 P-value 0.00 0.00   0.00 0.00   
          

Corn Coefficient -0.13    0.10 0.17* -0.10 -0.11 
R2= 0.0480 P-value 0.79    0.82 0.00 0.34 0.11 

a Starred values significant at 5% level, shaded values are significant and negative 
  The iϕ  and jθ are the estimated AR and MA coefficients respectively, and 2σ̂ represents the sum of 
squared residuals in the regression.   
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Table 2 (continued): ARIMA Results a 

 

 

 

 

 

  

          
  1ϕ  2ϕ  4ϕ  4ϕ  1θ  2θ  3θ  4θ  
          

Wheat Coefficient 0.73    -0.83* 0.10 -0.07 -0.11* 
R2= 0.0523 P-value 0.00    0.00 0.08 0.25 0.04 

          
Wheat Flour Coefficient 0.89    -0.91* 0.05 -0.25* 0.14* 

R2= 0.0659 P-value 0.00    0.00 0.42 0.00 0.01 
          

Crude Oil Coefficient 1.27* -0.23* -0.18*  -0.90*    
R2=  0.2436 P-value 0.00 0.03 0.01  0.00    

          
Diesel Coefficient 1.10* -0.10 -0.12*  -0.93*    

R2= 0.0730 P-value 0.00 0.27 0.06  0.00    
          

Regular 
Gasoline Coefficient 1.90* -1.53* 0.58* -0.25* -0.25* -1.73* 1.00*  

R2 = 0.1975 P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
          

Soybeans Coefficient 0.85* 0.09 -0.12*  -0.94*    
R2= 0.0426 P-value 0.00 0.11 0.02  0.00    

          
Soybean 

Meal Coefficient 0.13 0.06 -0.20  -0.12    

R2= 0.0414 P-value 0.56 0.15 0.00  0.60    
          

Soybean Oil Coefficient 0.11 0.23 -0.17  -0.36    
R2= 0.1367 P-value 0.73 0.02 0.00  0.26    

          
Lean Hogs Coefficient 0.47* -0.02 -0.12*  -0.52*    
R2= 0.0256 P-value 0.03 0.65 0.03  0.02    

          
Pork Bellies Coefficient 0.80* 0.15* -0.09  -0.96*    
R2= 0.0458 P-value 0.00 0.01 0.06  0.00    

          
a Starred values significant at 5% level, shaded values are significant and negative 
  The iϕ  and jθ are the estimated AR and MA coefficients respectively.   
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Table 3: Johansen Cointegration Test Results for Industrial Groups 

 2H : Trace test 5% c.v. 1% c.v Max test 5% c.v. 1% c.v 

Crack Spread 0r ≤  109.79 29.68 35.65 64.93 20.97 25.52 

 1r ≤  44.87 15.41 20.04 39.09 14.07 18.63 

 2r ≤  5.77 3.76 6.65 5.77 3.76 6.65 

Wheat and Flour 0r ≤  42.66 15.41 20.04 34.60 14.07 18.63 

 1r ≤  8.06 3.76 6.65 8.06 3.76 6.65 

Soybean Crush 0r ≤  84.35 29.68 35.65 52.04 20.97 25.52 

 1r ≤  32.31 15.41 20.04 24.19 14.07 18.63 

 2r ≤  8.11 3.76 6.65 8.11 3.76 6.65 
Live Cattle, 

Feeders, Corn 0r ≤  92.15 29.68 35.65 71.37 20.97 25.52 

 1r ≤  20.78 15.41 20.04 15.74 14.07 18.63 

 2r ≤  5.05 3.76 6.65 5.05 3.76 6.65 
Lean Hogs, 

Pork Bellies, Corn 0r ≤  55.61 29.68 35.65 27.82 20.97 25.52 

 1r ≤  27.80 15.41 20.04 23.91 14.07 18.63 

 2r ≤  3.89 3.76 6.65 3.89 3.76 6.65 

Corn Soybeans 0r ≤  33.72 15.41 20.04 28.64 14.07 18.63 

 1r ≤  5.08 3.76 6.65 5.08 3.76 6.65 
Corn Gluten 
Feed/Meal 0r ≤  19.69 15.41 20.04 16.76 14.07 18.63 

 1r ≤  2.93 3.76 6.65 2.93 3.76 6.65 

Feed Products 0r ≤  119.58 69.82 77.82 47.60 33.88 39.37 

(Alfalfa meal, Corn 
gluten feed, Corn 
gluten meal, Meat 

and bone meal, 
Urea, Wheat bran) 

1r ≤  71.98 47.86 54.68 35.27 27.59 32.72 

2r ≤  36.71 29.68 35.65 26.65 20.97 25.52 

3r ≤  10.05 15.41 20.04 7.66 14.07 18.63 

4r ≤  2.40 3.76 6.65 2.40 3.76 6.65 
Critical values from Osterwald-Lenum(1992) 
No constant term in the cointegrating vector 
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Table 4: Finite sample critical values for Johansen’s cointegration tests – “Daily data” 

 Sample length Empirical Size based on stated 5% 
significance level Actual Trace Actual Max 

 T Trace Max 95% c.v. 95% c.v. 
0θ =  1 mo 0.19 0.12 24.17 20.22 

k = 2 3 mos 0.07 0.04 19.36 16.17 
 6 mos 0.06 0.03 18.71 15.59 
 2 yrs 0.05 0.03 18.32 15.28 
 4 yrs 0.05 0.03 18.10 15.01 
 10 yrs 0.05 0.03 18.11 15.01 
 20 yrs 0.05 0.03 18.13 15.08 
 100 yrs  0.05 0.03 18.12 15.03 
  ∞    18.17 16.87 
0 8.θ =  1 mo 0.20 0.13 25.33 21.18 

k = 2 3 mos 0.07 0.04 19.41 16.18 
 6 mos 0.06 0.03 18.54 15.44 
 2 yrs 0.05 0.03 17.90 14.92 
 4 yrs 0.05 0.03 17.85 14.84 
 10 yrs 0.04 0.02 17.74 14.78 
 20 yrs 0.04 0.02 17.79 14.83 
 100 yrs  0.04 0.02 17.75 14.79 
  ∞    18.17 16.87 
0 8.θ = −  1 mo 0.22 0.14 25.23 21.12 

k = 2 3 mos 0.40 0.30 28.41 24.86 
 6 mos 0.60 0.51 35.19 31.98 
 2 yrs 0.73 0.67 52.47 49.67 
 4 yrs 0.74 0.70 59.17 56.31 
 10 yrs 0.76 0.71 64.23 61.41 
 20 yrs 0.76 0.71 66.54 63.74 
 100 yrs  0.76 0.71 67.94 64.98 
  ∞    18.17 16.87 
0 8.θ = −  1 mo 0.48 0.39 37.32 32.07 

k = 4 3 mos 0.18 0.12 23.44 19.85 
 6 mos 0.24 0.17 25.44 21.98 
 2 yrs 0.34 0.28 30.58 27.43 
 4 yrs 0.37 0.30 32.33 29.34 
 10 yrs 0.38 0.32 33.67 30.69 
 20 yrs 0.39 0.32 34.26 31.25 
 100 yrs  0.39 0.33 34.56 31.67 
  ∞    18.17 16.87 
0 8.θ = −  1 mo 0.81 0.75 71.82 63.68 

k = 5 3 mos 0.17 0.10 23.07 19.35 
 6 mos 0.18 0.12 23.45 20.00 
 2 yrs 0.24 0.18 26.41 23.18 
 4 yrs 0.25 0.19 27.27 24.16 
 10 yrs 0.26 0.20 27.93 24.84 
 20 yrs 0.27 0.21 28.31 25.22 
 100 yrs  0.27 0.21 28.49 25.51 

n = 2, k is the number of lags used to perform the tests, 100,000 replications, T assumes 250 trading days in one 
year.  Asymptotic critical values from Osterwald-Lenum (1992) 
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Table 5: Size-adjusted finite sample power of Johansen’s trace cointegration test under the 
alternative 1ρ <  – “Daily data”    

 
Sample length 0θ =  

k = 2 
0 8.θ =  

k = 2 
0 8.θ = −  

k = 2 
0 8.θ = −  

k = 4 
0 85.ρ =  1 mo 0.05 0.05 0.05 0.05 
 3 mos 0.10 0.10 0.08 0.11 
 6 mos 0.28 0.27 0.12 0.21 
 2 yrs 1 1 0.49 0.99 
 4 yrs 1 1 0.99 1 
 10 yrs 1 1 1 1 
 20 yrs 1 1 1 1 
 100 yrs  1 1 1 1 
0 90.ρ =  1 mo 0.05 0.05 0.05 0.05 
 3 mos 0.08 0.07 0.06 0.10 
 6 mos 0.15 0.15 0.09 0.16 
 2 yrs 0.99 0.99 0.22 0.95 
 4 yrs 1 1 0.70 1 
 10 yrs 1 1 1 1 
 20 yrs 1 1 1 1 
 100 yrs  1 1 1 1 
0 95.ρ =  1 mo 0.05 0.05 0.05 0.05 
 3 mos 0.06 0.06 0.06 0.11 
 6 mos 0.08 0.08 0.0 0.14 
 2 yrs 0.55 0.56 0.09 0.47 
 4 yrs 0.99 0.99 0.17 0.98 
 10 yrs 1 1 0.90 1 
 20 yrs 1 1 1 1 
 100 yrs  1 1 1 1 

n = 2, k is the number of lags used to perform the tests, 100,000 replications, T assumes 250 trading days in one 
year.   
  



27 
 

Figure 1: Crack Spread 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
 

Figure 2: Wheat, Wheat Flour 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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Figure 3: Soybean Crush 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
 

Figure 4: Cattle Crush 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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Figure 5: Lean Hogs, Pork Bellies, Corn 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
 

 

Figure 6: Corn and Soybeans 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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Figure 7: Corn Gluten Feed and Corn Gluten Meal 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
 

Figure 8: Other Feed Products 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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Figure 9: Simulated Data Under the Null Hypothesis of No Cointegration – No NMA in the 

Error Term 

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
 

Figure 10: Ten Years of Simulated Data Under the Null Hypothesis of No Cointegration – NMA 

in the Error Term  

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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Figure 11: Simulated Data Under the Alternative Hypothesis of Cointegration – NMA in the 

Error Term  

 

At each step moving left to right the oldest observation in the dataset is dropped, the trace and 
maximal statistics are calculated for the remaining subsample, and plotted on the graph. 
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