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Abstract

Almost universally, implementers of index insurance for low income households have
chosen to embed insurance with other interventions designed to improve productivity,
with the insurance used almost entirely to make the other interventions possible. A
common example is to use the insurance to allow farmers to have access to loans
by reducing the probability of weather related defaults. A bundled loan/insurance
implementation with overwhelming take-up rates had low insurance take-up rates when
researchers unbundled the package, covering the loan default risk, so that the loans
could be available without requiring insurance. If low income farmers are highly risk
averse, why do they place so little value on risk reducing insurance once their access
to productive inputs is secured? In general, why do index insurance implementers
targeting the lowest income households nearly universally utilize insurance as a tool to
increase productivity instead of using it to reduce variance? We provide a potential
explanation driven by optimal risk behavior in the face of income thresholds, illustrating
how models of risk aversion may not adequately represent the behavior of those with
very low incomes. We show how variance reduction may not be the most important
outcome for a low income farmer who lives near the poverty threshold. We show that
if a farmer’s goal is to avoid falling into a poverty trap, then the lower his income is,
the less risk averse he becomes in the mean-variance utility maximization framework
regarding the design of index insurance contracts. We begin this paper by introducing
a mean-variance utility maximization framework, using a known joint distribution for
the index and yield, and then we show how one’s risk aversion changes when the mean-
variance utility function is switched to a poverty trap avoidance utility function. We
argue that one reason farmers don’t always seek to minimize variance is that they
may be very near a poverty trap threshold, and are therefore less willing to give up
additional expected income in exchange for decreased income variance. In this case, it
may be best for implementers to utilize insurance to unlock increases in productivity
as opposed to variance reduction per se.

JEL codes: D80,O12,O16,Q14



1 Introduction

Index insurance is a relatively new tool being explored for implementation in developing
countries. Since it remains to be established if index insurance is scalable or effective in
helping to address development problems, it is important that critiques and evaluations of
index insurance interventions appropriately identify and address the basic features of the
index insurance and low income households.

An index insurance contract is one that provides its holder with a payout based on the
measurement of an index that is correlated with the holder’s income. For example, a farmer,
whose annual income varies according to his crop’s yield, may wish to buy an index insurance
contract that pays its holder some amount of money in the event of low rainfall - which is
typically associated with lower than average crop yields. A well-designed contract of this
type can significantly reduce the variance of the farmer’s annual income, which, in turn,
can induce a desirable change in the distribution of his long-term wealth and his chance of
avoiding a poverty trap (Barnett, Barrett, and Skees, 2008).

One of the most common types of index insurance currently in use is weather-based index
insurance for farmers (Hellmuth et al 2009). These contracts are sometimes referred to in
the literature as weather derivatives, area-yield insurance contracts, catastrophe bonds or
catastrophe options, or index-based risk transfer products (Miranda, 1991; Skees, Black, and
Barnett, 1997; Barnett, Barrett, and Skees, 2008).

Almost universally, implementers of index insurance for low income households recommend
that index insurance be embedded with other interventions to improve productivity. The
insurance is used almost entirely to make the other interventions possible instead of being
risk reducing per se (Hellmuth et al, 2009). A common example is to use the insurance to
allow farmers to have access to loans by reducing the probability of weather related defaults.
Because of the threat of large scale defaults due to droughts, microfinance institutions are
unable to manage the risk of massive simultaneous defaults, leaving farmers without access
to credit. By providing index insurance to the lender or the farmer, the risk of drought-
driven defaults is lowered, enabling access to credit for productive inputs. In the projects
with relatively high income farmers for which banks can easily enforce repayment, insurance
is purchased directly by the banks, and loans are forgiven during drought years. For very
low income farmers, limited liability problems make repayment enforcement problematic
(Banerjee and Newman, 1994). For these projects, loans are insured through contracts sold
directly to the farmer, and the farmer is required to repay in full in all years, using the
insurance as payment when necessary.

An example of such a program exists for groundnuts in Malawi. The goal of the insurance
package was to increase productivity as opposed to reduce the variance of income. The index
insurance was bundled as part of a package to provide farmers with high yielding ground-
nuts, using drought insurance contracts purchased directly by smallholder farmers to enable
access to loans (Hellmuth et al 2007). Instead of designing the insurance as a tool to reduce
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variance in income, the contracts were designed solely to target the drought related loan
repayment risks that alternate risk management strategies could not effectively address (Os-
good et al, 2007). Implementation partners included the National Association of Smallholder
Farmers (NASFAM), the Malawi Rural Finance Corporation (MRFC), Opportunity Inter-
national Banking Malawi (OIBM), the Insurance Association of Malawi (IAM), the Malawi
Meteorological Agency, and the World Bank Commodity Risk Management Group (CRMG).
Technical assistance for contract design was provided by the International Research Institute
for Climate and Society at Columbia University (IRI).

The key challenge to this program was that the overwhelming farmer take-up rate outpaced
the growth capacity of the groundnut supply chain, leading to a shift to other crops with
stronger supply chains in the third year of the project (Hellmuth et al, 2009).

Testing the assumptions behind the bundled design of the pilot, in the second year of the
project’s implementation, Gine and Yang (2009) offered two versions of the contract in a
randomized experiment. It is important to note that this study was an analysis of the insur-
ance bundling issue, not an evaluation of the impacts of the insurance driven development
project. The first product was the combined insurance/loan bundle offered outside the ex-
periment. In the other version, the researchers offered the loan without requiring the farmer
to purchase insurance. Because drought risk prevented farmers from not having access to
the loan without the insurance, the researchers used project funds to guarantee the lenders
that loans would be repaid. They found that take-up rates of the package that required
insurance were substantially lower than those of the package that did not require insurance.

These perhaps surprising findings were that the farmers were more interested in the purely
production-improving package than the one that included insurance-based risk reduction.
The authors attribute the lack of interest in the insurance to the implicit insurance due to
the limited liability of the low income farmers. These findings support the assumptions of
the implementation project, that index insurance for low income farmers should be used not
as risk reduction per se, but instead to enable productivity increasing activities.

From this experience it appears that these farmers, whose livelihoods are severely threatened
by weather variability, place relatively little value on reduction of variance as compared to
increases in productivity. If low income farmers are highly risk averse, why do they place
so little value on risk reducing insurance once their access to productive inputs is secured?
In general, what could justify the assumption of index insurance implementers targeting the
lowest income households that insurance should be used as a tool to increase productivity
instead of using it to reduce variance? In the project reports of implementers, poverty
traps are mentioned, however a model explaining how poverty traps lead to a preference for
productivity over variance reduction is missing.

We explore the optimal design of an insurance contract for farmers who are living in great
poverty, and find another reason for farmers to be less risk averse than they would be in a
mean-variance utility framework. This reason is that less risk aversion results in a greater
probability of avoiding a poverty trap. In fact, the closer a farmer is to a poverty trap
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threshold, the less willing he is to give up some of his expected income in exchange for a
reduction in income variance.

In the rest of the paper we discuss contract design as it relates to two goals: (1) reducing
the variance of a farmer’s annual income, and (2) helping a farmer avoid a poverty trap.
In Section ??, we describe the set-up of the problem; here we introduce a simple form for
the payout function and we assume a known joint probability distribution to describe the
relationship between the index and the yield. In Section ?? we design optimal contracts in
a mean-variance utility maximization framework. In Section ?? we set up a framework for
a poverty trap and we design contracts that are optimal in the sense that they minimize
a farmer’s probability of falling into a poverty trap, as we define it. Section ?? contains a
closing discussion.

2 The set-up of the problem

We begin with a simple assumption about the true joint distribution of the yield, Y , and the
index, I. Assume that this joint distribution is bivariate normal, where Y ∼ N(µY , σ

2
Y ) and

I ∼ N(µI , σ
2
I ), and their correlation is ρ > 0. This model for the yield-index relationship

presents two potential problems. First, traditionally, yields are thought to be non-negative;
lognormal, gamma, and non-negative non-parametric distributions have been used exten-
sively in the literature to model yields. In the context of index insurance, however, we
treat one’s yield as a proxy for his profit, in the sense that a farmer’s profit is his yield (or
revenue), less the cost of his inputs. By this definition, it is perfectly reasonable for yields
(profits) to be positive or negative. Second, even if a normal distribution is centered far
from zero, so that virtually none of its mass is below zero (suppose it’s mean is 10 standard
deviations away from zero, for example), it may still not provide a good fit to yield data,
if the distribution of yields is bimodal or non-symmetric, for example. This is a legitimate
concern, but there is a relatively easy solution to this potential problem. There is a vast
literature of statistical methodology for testing whether a given distribution is a good fit to
observed data; the contract design methods presented in this paper for normally distributed
yields can be extended to other settings in which the joint distribution of the yield and index
is different.

Furthermore, there is some literature that supports using a normal distribution for yields.
Skees et al. (2001), for example, report that the revenues, or yields, from crops in Morocco
are normally distributed, and Vedenov and Barnett (2004) fit a variety of linear regression
models for the yield-index relationship, all of which implicitly assume that the yield is normal.
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2.1 The payout function

Next, let us assume the payout function is linear, such that, if P denotes the payout, then

P = aI + b. (1)

With this payout function, the distribution of the payout is also normal:

P ∼ N(aµI + b, a2σ2
I ).

With no further restrictions, such a payout can technically range anywhere from −∞ to ∞,
but it is effectively bounded because the index, I, is almost never more than 3 or 4 standard
deviations away from its mean. Next, we set the cost, c, of this index insurance contract to

c = E(P ) + loading× (Value at Risk− E(P )). (2)

The first term of the cost function, E(P ), is the actuarially fair price, and the second term
is an additional cost borne by the farmer to offset the opportunity cost of the insurance
company, which is required to hold enough cash in reserve to cover the maximum payout.
The loading is a percentage that roughly corresponds to the interest rate that the insurance
company could earn on its investment if it weren’t holding such a large amount of cash in
reserve. From here on, we denote the loading l, and the Value at Risk “VaR.” The VaR
is set by the insurance company, and is typically either set to the maximum payout, or a
very high quantile of the payout distribution. Going forward, we set the VaR to the 99th
percentile of the payout distribution, so that

c = E(P ) + l(QP (0.99)− E(P )), (3)

where QX(z) denotes the zth quantile of the distribution of the random variable X.

2.2 The distribution of net income

Now, we can define the net income, N , as the income of a farmer with index insurance:

N = Y + P − c, (4)

where the payout P and cost c are given in Equations ?? and ??, respectively. We call it
income because we assume that the payout and the yield are measured in equivalent units,
whether the denomination is currency or kg/acre. We can now solve for E(N) and Var(N)
in terms of the parameters of the payout function, a and b:

E(N) = E(Y ) + E(P )− c (5)

= µY − 2.33l
√
a2σ2

I . (6)

Var(N) = Var(Y ) + Var(P ) + 2Cov(Y, P ) (7)

= σ2
Y + a2σ2

I + 2aρσY σI , (8)

where the second term of E(N) arises because the 99th percentile of a normal distribution lies
2.33 standard deviations above the mean. Interestingly, neither the mean nor the variance
of N depends on b, the y-intercept of the payout function.
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2.3 An illustrative example

To illustrate the set-up of the problem, let us assume some realistic parameter values for the
joint distribution of the yield and index. Consider groundnut yields in Lilongwe, Malawi,
during the 15-year span from 1988 - 2002. They are approximately i.i.d. normally distributed
with a mean of 1000 Kg/Hct and a standard deviation of 200 Kg/Hct. A potential index for
these yields is the Water Requirement Satisfaction Index, or WRSI, which is a rainfall-based
index for a given location and crop that is computed using daily rainfall during the growing
season. WRSI is essentially a weighted sum of daily rainfall, where the weights are designed
to be sensitive to the different growing phases of the groundnut plant, so as to predict as
accurately as possible the crop’s yield. The WRSI measurements for these 15 years are
approximately i.i.d. normally distributed with a mean of 0.8 and a standard deviation of
0.06 (WRSI has no units), and the correlation between the yield and the index is about 0.5.
This index, however, can be rescaled to have the same mean and standard deviation as the
yield, so that it is essentially a predicted yield based on daily rainfall at a given location.

In summary, for illustrative purposes, let us assume that the yield and index have the
following known joint distribution: Y ∼ N(µY = 1000, σ2

Y = 2002), I ∼ N(µI = 1000, σ2
I =

2002), and their correlation is ρ = 0.5. Figure ?? illustrates this relationship.
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Lilongwe Groundnut Example

Figure 1: The hypothetical relationship between groundnut yields and the rescaled WRSI
index in Lilongwe, Malawi.

Next, let us use the payout function where a = −0.4 and b = 720, so that P = −0.4I + 720.
With this function, the payout will be zero when the index is 1800, which is four standard
deviations above its mean, and the payout is effectively capped at 640 (dollars), which
would happen when the index is 200, or 4 standard deviations below its mean. In this case,
E(P ) = 320 dollars, the VaR is 506 dollars (as we have defined it), and the cost of insurance,
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c = 331.2 dollars. With this contract, the net income of a farmer is normally distributed
with a mean of µN = 988.8 dollars, and a standard deviation of σN = 174.3 dollars. This
represents a significant reduction in the standard deviation of the farmer’s income, and it
comes at the cost of a slight reduction in his expected income. In the next section we will
describe this mean-variance tradeoff in more detail.

3 A mean-variance tradeoff

For different values of the slope of the payout function, a, we can compute E(N) and Var(N)
and plot pairs of values, (Sd(N), E(N)), as are illustrated in the curves in Figure ??(b). The
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( 1 −− ρρ2,−2.33l a2σσY
2 )

No Insurance: (1,0)

Efficient
Frontier

Figure 2: (a) The form of a linear payout function, where a < 0. (b) Var(N) for different
values of a. The “Efficient Frontier” is the portion of the curve where the contracts are
optimal with respect to a mean-variance utility function. Plot (b) is drawn using ρ = 0.8.

general result from Equations ?? and ?? is that index insurance can reduce the variance of
one’s net income, at the cost of reducing its expected value. The exact value of (Sd(N),
E(N)), however, depends on the choice of a, and varies widely. From Figure ??(b), it is
clear that a poorly designed index insurance contract, in which a > 0 or a < −2ρ, increases
the variance of a farmer’s net income (provided that ρ > 0). The section of the curve in
Figure ??(b) labeled the “Efficient Frontier” is the set of contracts, in which −ρ < a < 0,
that provide a tradeoff between the mean and variance of net income that could maximize
the utility of an individual whose utility function is of the form

U(N) = E(N)− k × Var(N), (9)
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where k > 0 is often called a “risk-aversion parameter”. The fourth segment of the curve
labeled in Figure ??, where −2ρ < a < −ρ, consists of contracts in which the variance of net
income is reduced, but the expected net income is reduced my more than what is necessary:
these contracts are sub-optimal.

We want to focus on the efficient frontier. To do this, we can solve for the optimal slope
for maximizing mean-variance utility, a∗MV , as a function of the risk aversion parameter k
in Equation ??. The risk aversion parameter is rarely a tangible number that is known a
priori, but if it is, then the contract with slope

a∗MV (k) = min
(
−ρσY

σI
+

2.33l

2kσI
, 0
)

will maximize the farmer’s mean-variance utility.

Much of the current literature assumes the price of insurance is the actuarially fair price
(Miranda, 1991; Smith et al., 1994), and thus the goal is to minimize the variance of net
income. This is equivalent to setting k =∞ in Equation ??. If we take the derivative of the
right side of Equation ?? with respect to a and set it to zero, we find that:

a∗MV (k =∞) = −ρσY
σI
. (10)

The value of Var(N) for this contract is

Var(N | a = a∗MV (k =∞)) = σ2
Y (1− ρ2). (11)

This result shows that by using index insurance, the variance of a farmer’s net yield can be
reduced by a factor of (ρ2 × 100)% from its original, pre-index-insurance value of σ2

Y .

This is the same result found by Miranda (1991), where the optimal slope, φ∗ is set to
βi = −ρσY

σI
, when the critical yield level yc =∞.

In the example from Section ??, the variance-minimizing contract would have a slope of
a = −ρ = −0.5, and would results in the farmer’s net income being normally distributed
with a mean of 986 dollars and a standard deviation of about 173 dollars (compared to the
pre-insurance mean and standard deviation of 1000 and 200 dollars, respectively).

The fact that the Var(N) does not depend on the y-intercept of the payout function, b,
means that we can choose any value of b that we like. If one wishes to virtually guarantee
that there will be no negative payouts, then we can just set b to a high value, so that the
x-intercept of the payout function is larger than any probable value of the index, such as
µI + 4σI (as we did in the hypothetical contract in Section ??). The value of b that gives
this x-intercept is

b = a(µI + 4σI).

Likewise, although the maximum payout is technically ∞, it will effectively be no larger
than −8aσI , since there is virtually no chance that the index will be less than 4 standard
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deviations below its mean. If such an agreement is practical, it may be best to set b = −aµI ,
so that the mean payout is zero. This way half of the time the farmer will owe money to the
insurance company at the end of the season, and the other half of the time, the insurance
company will owe the farmer. Overall, less money will be transferred than if the farmer is
forced to pay a large amount in the beginning of the season, and then the insurance company
is forced to pay back a correspondingly large payout to the farmer at the end of the season,
as would happen if b is set to a large number so that negative payouts never occur.

An important feature of contract design is that the efficient frontier is different for different
values of ρ. Figure ?? illustrates the efficient frontiers for a set of values of ρ, ranging from
0.3 to 0.9. As the index becomes “stronger”, or more highly correlated with the yield, the
farmer’s mean-variance utility increases.

100 120 140 160 180 200

975

980

985

990

995

1000

Sd(N)

E
(N
)

ρ = 0.3
ρ = 0.5
ρ = 0.7
ρ = 0.9

Efficient Frontiers for Different Correlations

Figure 3: The mean-variance tradeoff, represented here by the colored curves (efficient fron-
tiers) depends on the correlation between the index and the yield.

4 Avoiding a poverty trap

The mean-variance tradeoff is not the only framework in which to evaluate an index insurance
contract. Another goal of index insurance is to build long-term wealth by avoiding a poverty
trap. A poverty trap is a theoretical threshold of wealth below which a farmer’s ability to
produce income is severely impaired. In theory, it is a “trap” because an individual cannot
escape it without outside assistance or aid.

We can set up a simple model of a poverty trap, and optimize an index insurance contract
to maximize a farmer’s probability of avoiding the poverty trap. Suppose the poverty trap
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threshold is wtrap dollars of household wealth, and a farmer’s current wealth is w0 = wtrap+d,
where d > 0, so that the farmer is currently not in a poverty trap.

Suppose we want to design an index insurance contract to minimize the probability of a
farmer falling into a poverty trap after 1 year. Let Wt denote the farmer’s wealth after year
t, and let Nt denote the farmer’s net income in year t. Then,

P(W1 < wtrap) = P(w0 +N1 < wtrap) (12)

= Φ
(wtrap − (w0 + µN)

σN

)
(13)

= Φ
(−(d+ µN)

σN

)
. (14)

We make the further assumption that µY > 0, so that without insurance, the farmer’s
expected yield is positive. The scenario is illustrated in Figure ??.

Wealth

a = 0 (no insurance)
a = -0.3
a = -0.8

Poverty Trap Threshold
Current Wealth

Distribution of Wealth after One Year

d = 5

wtrap w0

Figure 4: The probability of avoiding a poverty trap after one year. Three contracts are
shown, with different payout function slopes. The set-up for the graph is µY = µI = 1,
σ2
Y = σ2

I = 52, ρ = 0.8, wtrap = 0, and w0 = 5. The blue contract (a = −0.8) is the
minimum-variance contract, and of the three contracts pictured here, it is the one that
minimizes the probability of falling into a poverty trap at the end of the year. It is not
optimal among all possible contracts, however, with regard to minimizing the probability of
a poverty trap, as we show in Section ??.

To minimize the probability of falling into a poverty trap after one year, we minimize −(d+
µN)/σN , which only depends on the mean and variance of net income. Since the mean and
variance only depend on the slope of the payout function, a, we simply take the derivative
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of −(d + µN)/σN with respect to a and find that the optimal slope for avoiding a poverty
trap, a∗PT , is

a∗PT =

−ρ
σY
σI

(
2.33l−ρz

2.33lρ2−ρz

)
if z > 2.33l

ρ
,

0 otherwise,

(15)

where z = (d+µY )
σY

. We define z this way because it is the number of standard deviations
between the poverty trap threshold and the farmer’s initial wealth, measured in terms of the
mean and standard deviation of his pre-insurance income distribution. In other words, it is
a z-score.

This leads to the following results:

• If σI = σY , which is a transformation we recommend for the normal distribution
model here, then the optimal slope a∗PT only depends on two quantities: the z-score
of the poverty trap threshold, and the correlation between the yield and the index, ρ.
Figure ?? shows the value of a∗PT for different values of z and ρ.
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Figure 5: The optimal slope of a contract designed to maximize the chance for a farmer to
avoid a poverty trap is different from the slope of the variance-minimizing contract, especially
for small values of the correlation between the index and yield, ρ, and the farmer’s initial
wealth, z.
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• If σI = σY , then
lim
z→∞

a∗PT = −ρ,

which is the variance-minimizing contract. That is, the farther a farmer’s initial wealth
is from the poverty trap threshold, the closer his optimal poverty-trap avoidance con-
tract becomes to the variance-minimizing contract.

• If z < 2.33l
ρ

, then a∗PT = 0, i.e. no insurance is the optimal way to avoid a poverty trap.

For a loading, l, of 6%, and for correlations ρ ∈ (0.3, 0.9), this threshold is between
0.47 and 0.16, respectively. In other words, for most cases, unless a farmer’s expected
wealth after one year, d + µN , will be within one half of a standard deviation, σY , of
the poverty trap threshold, then some amount of index insurance (a > 0) will help.
There are rare cases, though, where a farmer is very close to the poverty trap threshold
to begin with, in which any insurance contract will increase his chance of falling into
a poverty trap after one year.

• On the other hand, if a farmer’s expected wealth after one year is less than 2 standard
deviations from the poverty trap threshold (z < 2), then for most correlations, his
optimal poverty-trap-avoiding contract will not be the variance-minimizing contract,
and for low correlations and low values of z, the optimal poverty-trap-avoiding contract
may be substantially different from the variance-minimizing contract, where the opti-
mal poverty-trap-avoiding slope a∗ is much closer to zero than the variance-minimizing
value of a.

In fact, for a given correlation ρ, there is a one-to-one relationship between the z-score of a
farmer’s initial wealth in the poverty trap framework and his risk aversion parameter, k, in
the mean-variance utility framework. That is, the optimal contract for avoiding a poverty
trap for a given initial wealth, z, is also the optimal contract for maximizing mean-variance
utility for a given risk aversion parameter, k. The exact relationship is linear:

kPT =
1

2σY (1− ρ2)
z +

2.33lρ

2σY (ρ2 − 1)
,

where kPT denotes the mean-variance utility risk aversion parameter for a farmer whose
priority it is to avoid a poverty trap, given his initial wealth z.

Figure ?? illustrates the mean-variance efficient frontier with points denoting values of a, k,
and z along the curve.

The overall conclusion to draw from the comparison of contracts using these two different
utility functions (mean-variance and poverty trap) is that if a farmer’s priority is to avoid a
poverty trap, and his initial wealth is near the poverty trap threshold, then he is much less
risk-averse than he otherwise might be.
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Figure 6: The optimal slope for avoiding a poverty trap given one’s initial wealth, z, is also
an optimal contract in terms of mean-variance utility for a given risk aversion parameter, k.
As initial wealth decreases, so does one’s risk aversion, k.
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5 Discussion

We have investigated the optimal index insurance contract for a farmer whose current wealth
puts him at risk of falling into a poverty trap, and we have found that as his wealth approaches
a theoretical poverty trap threshold, his risk aversion, as described by the parameter k in
the mean-variance utility function, decreases. This conclusion provides a potential reason
for the lack of index insurance take-up in experiments such as that conducted by Gine and
Yang (2009), who showed lower take-up of insurance in the presence of loans for inputs.
These findings suggest that farmers at or near the poverty trap threshold are not variance-
minimizers, but rather are looking for a way to maximize productivity in a way that doesn’t
require them to sacrifice a lot of their expected income. Similar to the case of binding
constraints, models that rely on risk aversion to explain behavior may be inappropriate for
agents located near a poverty trap (or any) threshold. Future research could attempt to
model productivity as a function of inputs while simultaneously incorporating a poverty
trap threshold, to formally link these two related pieces of evidence that variance reduction
isn’t always the highest priority.
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