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1. Introduction

Empirical studies of the distribution of city sizes have a long and distinguished history. At least 80

years ago, it was observed that the distribution of cities within an urban system is often remarkably

well approximated by a Pareto distribution. This observation has generated a vast body of empirical

work aimed at testing this and related propositions. Much of this work has concentrated on testing

the rank–size rule first proposed by Zipf [29].2 This large empirical literature has, in turn, led

to the development of a number of theoretical models which attempt to generate this apparent

regularity. This collection of models are essentially statistical – they seek to generate, rather than

explain, the regularity. To do this, they abstract from underlying economic or social processes that

drive the evolution of city sizes. The importance of the rank–size rule in framing the discussion

about the distribution of city sizes has had two important implications for the literature on the

development of the urban system. First, it has led to the acceptance of simplistic models that

downplay important economic and social forces but that are capable of replicating the regularity.

Second, it has relegated work on other aspects of the distribution to a distant second place. This

paper is primarily concerned with these other aspects of the distribution.

With respect to the first implication, recent work by a number of theorists, who developed the

so–called new economic geography, highlight the problems that the rank size rule has presented for

theoretical work. In common with an older theoretical literature, these authors have emphasised

the interplay of agglomeration and dispersion forces as key in determining city sizes. However, they

have also emphasised the fact that “when it comes to the size distribution of cities, [...] the problem

we face is that the data offer a stunningly neat picture, one that is hard to reproduce in any plausible

(or even implausible) theoretical model” [ See Fujita, Krugman and Venables[13], Chapter 12 ]. For

the earlier literature, see Simon [27], Krugman [18], and Gabaix [14], who propose models capable

of generating regularities in the distribution of city sizes.

The second implication has received very little direct attention. The empirical work on the rank

size rule is essentially involved with one particular characteristic of the distribution of city sizes –

the shape of that distribution. In contrast, this paper examines intra–distribution dynamics. It

asks questions about how cities develop relative to the rest of the urban system, both in terms of

(ordinal) rankings and relative sizes. We propose a number of techniques for characterising this
2The rank–size rule (or Zipf’s law) states that the city size distribution follows a Pareto distribution with exponent

one. See Overman [20], Chapter 4.
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intra–distribution mobility.

We do not see characterising this intra–distribution mobility as a substitute of direct tests of

either the economic or the stochastic models of the development of the urban system. Economic

models are only infrequently asked to predict the shapes of distribution of endogenous variables

of interest, so there is no reason to be unduly demanding with regard to the dynamics of the

distribution of city sizes. To the extent that economic models help us understand the economic

forces that might promote agglomeration or drive dispersion, failure to match empirical regularities

on city sizes should not lead to an outright rejection of those models. However, given that the aim

of stochastic models is to help us understand the nature of the process that might produce the

rank–size rule, it would seem important that these models also deliver on other aspects of the city

size distribution. Stochastic models which generate the shape of the distribution, but only at the

expense of unrealistic intra–distribution dynamics, may well be uninformative about the processes

at work.

This paper proceeds as follows. Section 2 reviews some of the related empirical and theoretical

literature. Section 3 briefly describes the data. Section 4 develops a number of empirical tools which

can be used to analyse intra–distribution dynamics. We use these tools to examine the evolution of

the US city size distribution from 1900 to 1990. Section 5 concludes.

2. Related literature

There is a vast empirical literature on the distribution of city sizes. A very selective account follows,

which seeks to highlight the main issues and those most closely related to the empirical work in this

paper. A number of extensive surveys exist: Carroll [7] covers earlier work in some detail; Cheshire

[8] provides a survey of more recent work.

At least as early as Auerbach [3] it had been proposed that the city size distribution could be

closely approximated by a Pareto distribution. Thus, if we rank cities from the largest (rank 1) to

the smallest (rank N) then r(p), the rank for a city of size (population) p, obeys: r(p) = Ap−α. Or,

taking logs

�nr(p) = �nA − α�np. (1)

Rank may equivalently be measured by the countercumulative of the size distribution.

Zipf [29] went further. He proposed that, not only did the distribution of city sizes follow a

Pareto distribution, but that it took a special form of the distribution where α = 1.This expression
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of the regularity is known as the ‘rank–size” rule (or Zipf’s rule) and has formed the starting point

for much of the empirical literature. It implies that the second biggest city is half the size of the

largest, the third biggest is a third the size of the largest, etc.

Rosen and Resnick [25] brought together the questions from a large body of literature developed

from the 1950s to the 1970s.3 They highlighted the importance of the definition of the lower

threshold size for cities4 and considered how the urban system might be best defined. We will

return to this second issue briefly in section 4.2 below.

A further two decades of work has followed with two key conclusions. The first, less controversial,

is that the city size distribution is reasonably well approximated by a Pareto distribution, at least

for the largest cities. The second, far more controversial, is that the exponent of the Pareto Law,

coefficient α in Eq. (1), is close to one. Some authors, notably Krugman [18], have argued that

the combined evidence suggests that the rank size rule holds for a number of different samples

over a number of different time periods. Others, such as Alperovich [2], reject this stronger second

conclusion, but accept the first. The debate still rages. Dobkins and Ioannides [10] obtain good

fits, by performing OLS of the countercumulative of the city size distribution against the logarithm

of population (along the lines of Equ. (1)) and by maximum likelihood directly in terms of r(p) =

Ap−α. Their estimates for US cities, for 1900 to 1990, show α decreasing over time. In common

with other work, they find that the exponent α is around one for a sub–sample of the largest cities,

but below one for the whole sample. However, when they compare the fit of the Pareto Law with

a nonparametric one obtained with the generalized validation criterion, they find that the fit of

the Pareto Law is poor for a substantial portion of the distribution, thus raising doubts about the

validity of the strict rank-size rule. Black and Henderson [5] use similar (though not identical) data,

and reject Eq. (1) as they find a significant quadratic term for �np, as well.

These last two papers also consider a number of issues related to the intra–distribution mobility

characteristics of the city size distribution. Both build on Eaton and Eckstein [11], who use transition

probability matrices to characterise the evolution of the French and Japanese urban systems and find

that both those systems are characterised by parallel growth. Cities tend to grow at the same rate,

maintaining their place in the relative distribution and consequently showing little intra–distribution

mobility. In contrast, Dobkins and Ioannides [10] find that the US system is characterised by the
3Key contributions included Allen [1], Madden [19], and Berry [4].
4This is a recurring theme in the urban systems literature. See Black and Henderson [5] and Dobkins and Ioannides

[10] for a recent discussion.
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entry of new cities and a higher degree of mobility. Black and Henderson [5] confirm this result.

They show that new entry means that cities tend to be more mobile up the distribution, but less

mobile down the distribution. The expected transition time from lowest state to highest is around

500 years. Movement in the opposite direction takes, on average, 5500 years. This paper builds on

these three papers to provide a more detailed characterisation of the intra–distribution mobility of

cities within the US city size distribution.

3. Data

There are a variety of ways to define cities.5 In this paper, we use contemporaneous Census Bureau

definitions of metropolitan areas, with adaptations for availability. From 1900 to 1950, we have

metropolitan areas defined by the 1950 census.6 That is, for years previous to 1950, we use

reconstructions from Bogue [6] of what populations would have been in each metropolitan area

in each year if the cities had been defined as they were in 1950. For each decennial year from 1950

to 1980, we use the metropolitan area definitions that were in effect for those years. Between 1980

and 1990, the Census Bureau redefined metropolitan areas in such a way that the largest US cities

would seem to have taken a huge jump in size, and several major cities would have been lost. While

this might be appropriate for some uses of the data, it would introduce “artificial” intra–distribution

mobility for the 1980–1990 period. Therefore, Dobkins and Ioannides reconstructed the metro areas

for 1990, based on the 1980 definitions, much as Bogue did earlier. We believe that this gives the

most consistent definitions of US cities (metropolitan areas) that we are likely to find.

The method raises a question as to which cities, as defined or reconstructed, should be included.

In the years from 1950 to 1980, we use the Census Bureau’s listing of metropolitan areas. Although

the wording of the definitions of metropolitan areas has changed slightly over the years, the number

50,000 is a minimum requirement for the core area within the metropolitan area.Therefore, we used

50,000 as the cutoff for including metropolitan areas as defined by Bogue prior to 1950. Consequently

we have a changing number of cities over time, from 112 in 1900 to 334 in1990. While it is often

difficult to deal with an increasing number of cities econometrically, we think that this is a key

aspect of the US system of cities, and thus worthy of accommodating.
5This section draws extensively from Dobkins and Ioannides [10].
6Technically, a metropolitan area must contain either a city of at least 50,000,or an urbanized area of at least

50,000 and total metropolitan population of 100,000 (75,000 in New England).
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We also use information on regional location defined according to the Census Bureau division of

the country into nine regions. We recombine these regions into five regions, when necessary. Table 1

provides summary statistics of the data for each census year. Table 2 provides additional statistics

for the whole sample in 1990.

There are two important distinctions between our data and the data used by Black and Henderson

[5] for the same time period. First, they define the geographical area of a city as the collection of

counties that form that city in 1990. They then use the urban population of each of these counties

to give city size in each census year from 1900–1990. This gets around problems relating to changing

definitions of metro areas between 1950 and 1990 that apply to our data. However, it introduces an

additional source of mismeasurement relating to the use of contemporaneous definitions of urban

population that may change throughout the period. It also means that collections of small towns in

areas that will become cities are treated identically to genuine metro areas of a similar size. Second,

they use a relative cut–off point to define when a city enters into the sample, whereas we use an

absolute cut–off point. Their use of a relative cut–off point in combination with metro areas defined

on the basis of urban populations means that their sample will tend to overstate the number of

functional metro–areas in any given sample period. In contrast, our approach based on an absolute

cut–off point will tend to understate the number of functional metro–areas. Black and Henderson

show that estimates of intra–distribution mobility are sensitive to the choice of an absolute versus

relative cut–off. However, a–priori there is no reason to prefer one definition over another.

4. Intra–distribution dynamics

As Quah [21] has forcefully argued, typical cross-section or panel data econometric techniques

do not allow inference about patterns in the intertemporal evolution of the entire cross-sectional

distribution. Such techniques do not allow us to consider the impact over time of one part of

the distribution upon another, i.e., of the development of large cities as a group upon smaller

cities. Making such inferences requires that one model and estimate directly the full dynamics

of the entire distribution of cities. In contrast, typical panel data analyses involve efficient and

consistent estimation of models where the error consists of components reflecting individual effects

(random or fixed), time effects and purely random factors. The evolution of urbanization and

suburbanization may affect individual cities so drastically as to render conventional methods of

accounting for attrition totally inappropriate.
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Examination of evolving cross-sectional distributions are most appropriate when the sample

of interest is the entire distribution, and individual observations are used to describe the entire

distribution of population of metropolitan areas in the US. We may elaborate further the process

of evolution of the system of cities by considering alternative scenaria that articulate the spatial

context. Consider first a situation where cities of uniform sizes are uniformly spread over space.

Appearance of new cities that are randomly scattered over space is likely not to alter the pattern

of uniformity. To the extent that geographical proximity leads invariably to agglomeration, this

setting implies creation of larger cities of uniform sizes. Consider, alternatively, cities of uniform

sizes scattered over space but in a way that exhibits clustering. Appearance of additional cities of

uniform sizes makes it more likely that ever larger cities will be created through the agglomeration

of existing ones.

Recall that our data consist of only ten cross-sections, one for each of the ten census years since

1900, with 112 metropolitan areas and 334 in 1990. We use these data to examine intra-distribution

dynamics by first considering nonparametrically the long run transition patterns in the US city

size distribution. Next we introduce measures of intra-distribution mobility in the form of suitably

defined statistics of dispersion and serial correlation in changes in rankings. Finally, we examine

patterns in the intra-distribution dynamics within different groupings of cities, that is, in terms of

geographical regions and hierarchical tiers.

4.1 Intra–distribution mobility

We will consider two inter-related types of intra–distribution mobility: changes in the rankings

of cities and changes in their relative sizes. Previous studies of intra–distribution mobility have

studied both types of mobility without clearly distinguishing between implications of those two

different concepts. Eaton and Eckstein [11], Black and Henderson [5] and Dobkins and Ioannides

[10] consider the size of cities relative to the mean city size. They then discretize the state space of

relative city sizes by defining discrete intervals7 and calculate the transition matrices corresponding

to this discretization. Only Dobkins and Ioannides [10] consider mobility in terms of the rankings

of cities by discretizing the state space in each period on the basis of quantiles (bottom 10%, second
7For example, Dobkins and Ioannides [10] divide the state space in terms of bounds defined by .30, .50, .75, 1.00,

2.00 and 20.00 times the contemporaneous mean.
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10%, ..., top 10%). They argue that this gives a more detailed insight into the intra–distribution

dynamics, without making it clear that the mobility that they are studying is subtly different.

To see why the distinction is important, we need to think about what the two types of exercises

tell us. Considering the first type of mobility, that is, in terms of city sizes relative to the mean,

allows us to answer a number of interesting questions about the long run city size distribution.

Thus, one can examine whether the distribution has a tendency to become uniform (flatten out), to

collapse to a single point (all cities converge to the same size), or to, say, become bimodal. To do

this, after discretising the state space and calculating the transition probability matrix, one would

calculate the ergodic distribution of the associated markov process(assuming that it exists). All

three of the above mentioned papers do exactly that. Black and Henderson [5] emphasize that the

long run ergodic distribution is remarkably close to the current distribution.

Notice that all of these are questions about what mobility implies for the overall shape of the

distribution. These exercises also tell us about changes in the rankings of cities. Take any two

neighbouring discrete states. If some cities move up from the lower state to the higher state,

while others move from the higher state to the lower state, then the rankings of those cities must

have changed. There are, however, two problems with this method of characterising the changing

rankings of cities. First, the discretisation of the state space means that we do not observe what

happens within each discrete state. Only when cities move between states do we get information on

mobility. Second, observing the movement of an individual city between states does not necessarily

imply a change in rankings. This is where the second approach of Dobkins and Ioannides [10] based

on quantiles differs from the approach based on an (arbitrary) fixed discretisation. For this second

approach, movement of one city up a discrete state, must be accompanied by a corresponding

move down a state by another city and vice–versa. Thus all movements between states correspond

to changes in rankings. However, this second approach still suffers from the fact that we do not

observe mobility and changes of rankings within cells.

The problem of movements within cells arises because we discretize a continuous state space

in order to calculate transition probability matrices. Previous attempts to characterise the intra–

distribution dynamics of the city size distribution also face two other related problems. The first

is that there are a group of very large cities whose mobility characteristics may be different from

the rest of the system. Including these cities may over–emphasise the degree of persistence in the

distribution. A simple solution would be to exclude those cities from the sample and recalculate
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the transition matrices. However, this brings us to the second problem, that the number of cities

is such that we can only discretize the state space into relatively few discrete states. For example,

Black and Henderson report results for a five–state markov process, but the top state is occupied by

the very immobile largest cities, leaving four states to capture the dynamics of the remaining cities.

Such a limited number of states may lead us to underestimate the degree of mobility. Dobkins

and Ioannides [10] allow for ten discrete quantile states. However, that number of states leaves

very few cities in each state, and mobility may be overstated due to the movements of a very few

cities. Finally, a large number of states for a small number of cities means that small changes in the

discretization may lead to large changes in our estimates of the degree of persistence or mobility.

4.1.1 Estimations Danny Quah has proposed, in a series of papers starting with Quah [20] and

including notably Quah [21; 22; 23], a set of tools8 for analysing evolving distributions which avoid

the need to discretize the state space. He suggests calculating a non–parametric estimate of the

underlying continuous transition kernel. Let ft denote the density function (distribution) of Pi,t,

the population of city i at time t. Let us assume that the intertemporal evolution of ft may be

described in general by

ft+1 =M(ft, εt+1), (2)

whereM is an operator that maps (ft, εt+1) to a probability measure, and εt+1 is an appropriately

defined stochastic function representing random shocks. E.g., the random growth model in Simon

[27] may be considered as a special case of processes consistent with specification (2). We may

estimate such a law of motion for the evolution of city sizes by estimating nonparametrically the

probability distribution function of city i population in time t + 1, conditional on its population

at time t, f(Pi,t+1|Pi,t). Overman [20], Appendix C, presents technical issues necessary to establish

that stochastic kernel estimation techniques may be used to estimate transition, and more generally

mapping, probability functions.9

8Danny T. Quah’s program tsrf is available at http://econ.lse.ac.uk/̃ dquah/tsrf.html.
9A more precise definition of the intertemporal evolution of ft would be the following. Let b(R,R) the Banach

space under the sup norm of bounded measurable functions on (R,R). Given a stochastic kernel M, define the operator
T mapping b(R,R) to itself by:

∀f∈b(R,R),∀y∈R : (Tf)(y) =

∫
f(x)M(y, dx).

M(y, ·) is a probability measure, and therefore the image Tf is the forwards conditional expectation. In our case,
when the kernel is applied to city sizes in time t, Pi,t, it is the conditional distribution of Pi,t+1, given Pi,t. For more
details, see tsrfManual in http://econ.lse.ac.uk/̃ dquah/tsrf.html.

9



We estimate stochastic kernels for the cross-sectional evolution of the city size distribution which

mitigate some of the problems described above. Figure 2 presents nonparametrically estimated

kernels for transition probabilities along the lines of Equ. (2) above, obtained by using the techniques

developed by Quah, op. cit.. The underlying data at time t are the (logarithm of) population of

each city relative to the mean city size at time t. These results illuminate the extent of mobility, as

we discuss shortly below.

The specifics of the estimation of stochastic kernels are as follows. First, we derive a non–

parametric estimate of the joint distribution of the population of city i in two successive periods,

f(Pi,t, Pi,t+1), where Pi,s is city i population at time s.10 We then numerically integrate under

this joint distribution with respect to Pi,t+1 to get the marginal distribution of population at time

t, f(Pi,t).11 Next we estimate f(Pi,t+1|Pi,t), the distribution of population size in a given period

conditional on population size in the previous period, by dividing through f(Pi,t, Pi,t+1) by f(Pi,t):

f̂(Pi,t+1|Pi,t) =
f̂(Pi,t, Pi,t+1)

f̂(Pi,t)
. (3)

Under regularity conditions, this gives us a consistent estimator for the conditional distribution.

See Rosenblatt [26], Silverman [27] and Yakowitz [29] for details. The stochastic kernels plot this

conditional distribution for all values of Pi,t.12

We report in Figure 2 a selection of our results, from the periods 1910–1920 and 1980–1990. To

interpret the diagram, take a cross–section from any point on the 1910 axis, parallel to the 1920

axis. The cross–section is the distribution of relative city sizes in 1920 conditional on the city size

in 1910. For example, cutting across from zero in 1910 gives us the distribution of city sizes in 1920,

conditional on the city having mean size in 1910.13 Extreme persistence would imply that all cities

of (say) twice mean size in 1910, would be approximately twice mean size in 1920. In this case, the

conditional distribution for twice mean size cities would be very tightly centred around log 2. In

contrast, no persistence in city sizes would imply that cities of (say) twice mean size could occupy

any point in the distribution in 1920. In this case, the conditional distribution for twice mean
10All densities are calculated nonparametrically using a Gaussian Kernel with bandwidth set as per section 3.4.2 of

Silverman [26]. The range is restricted to the positive interval using the reflection method proposed in Silverman [26].
Calculations were performed with Danny Quah’s tsrf econometric shell (available from http://econ.lse.ac.uk/ dquah/).

11We could also estimate the marginal distribution f(Pi,t) using a univariate kernel estimate. The asymptotic
statistical properties of both estimators are identical, and in practice tend to produce very similar estimates.

12We note that this approach admits the nonparametric conditional mean estimate Pi,t+1 = g(Pi,t)+υi,t as a special
case, although it does not give actual numerical estimates.

13Recall that our underlying data are the (logarithm of) population of each city relative to the mean city size at
time t.
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size cities would just be the (unconditional) distribution of city sizes. Thus, extreme persistence is

characterised by a stochastic kernel tightly centred around the diagonal. Extreme mobility would

be characterised by a stochastic kernel centred around zero.

Figure 2 shows that city sizes are highly persistent. Nearly all the mass is concentrated around

the diagonal implying that, from decade to decade, cities hardly move relative to the mean. This

is even clearer if one looks at the contour plots presented in Figure 2. These contour plots work

exactly like the contours on a more standard map, connecting points at similar heights on the

stochastic kernel. The contour plots clearly demonstrate the high degree of persistence, reflected in

the concentration of the mass around the diagonal, at both the beginning and end of the period.

Figure 2 shows that there is almost the same degree of mobility at both the beginning and end

of the sample. We cannot directly test for the stationarity of the underlying markov process in

our nonparametric setting, although χ2 tests performed by Black and Henderson [5] do not reject

stationarity. If so, we can pool across time periods to get a better estimate of the underlying

transition process. Figure 3 shows such pooled transition kernels, for the entire US and the pooled

data for regions, where each city population is taken relative to the regional mean.

These stochastic kernels give a pictorial representation which allows us to compare mobility

across samples and time periods. They suffer from two problems, however. First, when estimated

for smaller samples, the degree of precision is reduced, giving the appearance of more mobility.

Second, they do not give us statistics with which to compare mobility across different samples. We

could discretize the state space, estimate transition matrices and calculate the standard mobility

indices – but then we are back to the problems with the previous literature that we have highlighted

above.

Instead, we proceed by reporting on Figure 4 the “cross profile” plots, a graphical device proposed

by Dolado et al. [9] and also used by Quah [24]. The top left hand corner of Figure 4 shows such a

cross–profile plot for all the cities that exist in 1920. The vertical axis is the logarithm of the city size

relative to the mean. The horizontal axis marks city rank according to size in 1920. Reading upward

from the bottom of the figure, the plots are for 1920, 1940, 1960 and 1980 respectively. For 1920,

cities have been ranked in order of increasing size thus the cross–profile plot is monotone rising. We

then maintain the same horizontal ordering of cities for each of the plots in subsequent years. That

is, the ordering of cities is fixed according to their 1920 rankings. As cities change rankings year

to year, the plots cease to be monotone rising and instead become “jagged”. Thus, the extent of
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choppiness (or jaggedness) depends on the degree of intra–distribution mobility. The shape of the

plots gives us information on both types of mobility that we discussed above. If the cross–profile

plots were always monotone rising, but the slope increased over time, then city population ranks are

invariant, but the spread of the distribution is increasing. If the cross profile plot becomes jagged,

then cities are changing rankings over time.

We add precision by calculating a number of statistics which capture features of the changes

in the distributions that we have described above. We report these statistics in Tables 3, 5 and

7. The first measure, Slope, gives the OLS estimated slope of the resorted14 cross–profile plot at

each point in time, that is, the slope of the regression of the logarithm of city size against its rank.

By resorting the data in each year and by comparing the respective estimates, we may capture

the extent to which the spread of the distribution is changing over time. This gives an idea of the

degree of changes in inequality in the city size distribution. When Slope has the value v, then being

10 cities larger means having a population e10v times higher. For the whole sample, this measure

decreases slightly over time, but stabilizes towards the end of the period.

Additional insight on the degree of intra–distribution mobility is provided by two new measures,

SerCorr and Variation. They are intended to capture the changing choppiness of the cross–profile

plot and are defined as follows. Let (r) denote the ranking in 1920 when the cities are ordered in

terms of increasing size. Thus, r = 1 for the smallest city; r = 2 for the second smallest city etc.

Then, for each period, SerCorr is the first–order serial correlation coefficient of sequential changes

across this ordering. If p(r) is the relative population of the city with rank r, then sequential changes

are defined as the difference in relative sizes of the cities with two successive rankings:

∆∗p(r) = p(r) − p(r−1). (4)

Then, SerCorr is defined as the“serial” (along the ranking in 1920) correlation coefficient:

SerCorr =

∑
r(∆

∗p(r) − E[∆∗p])(∆∗p(r−1) − E[∆∗p])∑
r(∆∗p(r) − E[∆∗p])2

, (5)

where E[∆∗p] is the average of ∆∗p(r) across all rankings. As with all correlation coefficients, the

definition of SerCorr ensure that it lie between −1 and +1. If the cross–profile plot is a straight line,
then SerCorr is zero one regardless of the slope of that cross–profile plot.15 Usually, SerCorr differs

14That is, OLS is done after sorting cities according to their current ranks. This is necessary, because the smallest
(largest) city in 1920, is not necessarily the smallest (largest) city in later decades.

15To see this, note that the slope of the cross-profile at any point is proportional to ∆∗p(r) by definition. Thus a
constant slope implies ∆∗p(r) = ∆∗p(r−1) = E[∆∗p].

12



from one, because the relative sizes do not differ uniformly across the ranking. If the cross-profile

plot is monotone rising and convex, then SerCorr is positive.16 If the cross-profile plot is increasing

and concave, then SerCorr will be negative. It becomes smaller (or more negative) when the

choppiness of the cross–profile plot increases.

The other measure of intra–distribution mobility is Variation, defined as the mean–square

variation in relative “growth rates” across two pairs of successive rankings. In contrast, the variance

sums up squared deviations from the mean, and SerCorr sums up the products of deviations from

the mean for all pairs of successive rankings. That is, if N is the number of cities, then:

Variation =
1

N − 2
∑

r

(∆∗p(r) −∆∗p(r−1))
2. (6)

Variation is non–negative and becomes larger with increasing variance of the cross–profile plot. As

with SerCorr, Variation is zero when the cross-profile is a straight line, that is, when the relative

size of cities with successive rankings are constant, regardless of the slope of the profile. However, it

will be positive for all other cross–profile plots, regardless of whether or not they are monotonically

increasing.

Table 3 provides these summary statistics for the cross–profile of all cities existing in 1920. The

intra–distribution dynamics for the whole sample settle down rapidly: SerCorr has value -0.612,

-0.619 and -0.609 in 1960, 1980 and 1990 respectively. One can see from the cross–profile plot that

this does not mean that the profile is actually frozen in time. Rather, the ongoing “churning ” of the

distribution, that is the changing in the rankings of cities, has characteristics that are stable. This is

consistent with our earlier observation on the stationarity of the Markov process for city transitions.

However, now we are directly examining the mobility properties of the entire distribution. Notice

that Variation shows ongoing increase over time, which reflects increasing amplitudes of changes

in relative sizes, as evidenced by the cross-profile plots in the upper left hand corner of Figure 4.

However, the estimated slope of the cross-plot diminishes over time, implying that the relative sizes

across successive rankings decrease over time.

Our results for the cross–profile of cities that exist in 1920 suggests that the churning charac-

teristics of the distribution are relatively stable over time and parameterised by a value of SerCorr

around -.6. Both these statistics and the estimated stochastic kernels indicate the degree of mobility

that characterises the evolution of the US city size distribution. Models that seek to explain the
16Again, because slope of the cross-profile at any point is proportional to ∆∗p(r), the convexity implies that ∆∗p(r)

is increasing across the sample.
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evolution of that distribution could use these figures as upper bound benchmarks.17 These tools

can also be used to compare the mobility patterns of different groupings of cities. It is to this issue

that we now turn.

4.2 Regional urban sub–systems

A key issue, seldom addressed in the rank–size literature, is the appropriate definition of the urban

system. Our approach allows us to characterise the degree of mobility within different urban sub–

systems. Here, we demonstrate the technique by considering the evolution of nine subsystems defined

by the US Census regions.18 Regional analysis of the US system of cities is particularly interesting

in view of US economic history. Not all of the continental U.S. was settled at the same time, and

urban development since the beginning of the twentieth century has sharp regional patterns. Note

that Kim [15] argues that the census regions are likely to serve well as economic regions.19 Kim

[16] relates regional economic patterns to changes in cities’ industrial employment shares and other

characteristics. Table 4 provides summary stastics for the regional urban systems.

The picture on the right hand side of Figure 3 shows the stochastic kernel for the evolution of city

size relative to the average city size of cities in the same region. This stochastic kernel is estimated

assuming that the transition process is stationary over time and identical across regions. This allows

us to pool observations across both dimensions. It appears that the pattern of mobility of cities

within their regional subsystems is not much different from the pattern of mobility relative to the

US-wide average city size. However, remember that this result is conditional on the assumption

that we can pool observations across both regional subsystems and across time. The results of

the cross–profile plots suggest that this is not a valid assumption. In fact, there may actually be

substantial differences between regional subsystems.

Figure 4 shows the cross–profile plots for eight of the nine regions.20 The cross–profile plots are
17We would argue upper bound, as the actual urban system is hit by shocks that presumably increase mobility

relative to the underlying economic mechanisms captured by current theoretical models.
18The nine regions are New England(ned); Middle Atlantic (mad); South Atlantic (sad), East South Central (escd);

East North Central (encd), West North Central(wncd); West South Central (wscd); Mountain (mtd); Pacific (pad).
These regions may not correspond exactly to functional urban sub–systems at all times during the period of study.
However, they provide a convenient division that allows us to demonstrate the general approach. Their geographic
definitions are indicated on Figure 1.

19Kim [15], p. 7–9, discusses the original intention of the definition of U.S. regions as delineating areas of
homogeneous topography, climate, rainfall and soil, but subject to requirement that they not break up states. By
design, the definitions were particularly suitable for agriculture and resource-based economies. The role of those
industries as inputs to manufacturing would make them likely to serve well as economic regions.

20We exclude the Mountain region which only has 4 cities in 1920.
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for the years 1920, 1940, 1960 and 1980 as before. Because of the varying numbers of cities in each

region the plots are hard to compare visually. However, some stark differences do immediately jump

out. For example, compare the cross–profile plots for the South Atlantic and Mid Atlantic regions.

Both regions have similar numbers of cities21, but the transition dynamics appear very different.

The measures in Table 5 allow a more direct comparison. For example, we see that the visual

impression that the Mid Atlantic region shows more churning than the South Atlantic, is actually

driven by higher variation, rather than increased churning. Thus, SerCorr has similar values for the

two regions, but Variation is much higher for the South Atlantic. We know that the South Atlantic

has gained, in the second half of the twentieth century, larger cities relative to the Mid Atlantic. To

take another example, we see that the West South Central and West North Central regions show a

higher level of churning than all the other regions. In contrast to other US regions, which typically

experienced roughly monotonic changes in their shares of larger cities, those two regions saw their

shares increasing and then subsequently decreasing during the study period. The cross–profile plots

suggest some evidence that there are differences in intra–distribution mobility within the different

regional subsystems. Some areas of the US have urban systems that are characterised by far higher

intra–distribution mobility.

4.3 City tiers

Classical hierarchical theories of cities divide cities in to tiers, depending on the functions of each

city. More recent theoretical work has incorporated insights from this older literature in to the new

economic geography literature. These theoretical analyses suggest that the highest-tier cities, which

are most diversified, may display different patterns of evolution from lower tier cities. See Fujita,

Krugman and Venables [13] for details. In this section, we examine whether the intra–distribution

dynamics do appear to differ substantially among tiers.

In order to construct the tiers, we took as our basic classification a listing of US cities by

“function” (nodal centers) from Knox [17]. We amended the top tier slightly to include Atlanta,

Chicago, Denver, Houston, Los Angeles, New York City, Miami, San Francisco, Seattle and

Washington D.C.. The next classification is the regional nodal centres, which includes fourteen

large cities: Baltimore, Boston, Cincinnati, Cleveland, Columbus, Dallas, Indianapolis, Kansas

City MO, Minneapolis, New Orleans, Philadelphia, Phoenix, Portland OR, and St. Louis. The
2124 and 21 respectively.
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third classification is the sub–regional nodal centres. This comprises nineteen cities: Birmingham,

Charlotte, Des Moines, Detroit, Hartford, Jackson MS, Little Rock, Memphis, Milwaukee, Mobile,

Nashville, Oklahoma City, Omaha, Pittsburgh, Richmond, Salt Lake City, Shreveport, Syracuse

and Tampa. The remaining cities are placed in the lowest tier. Table 6 gives summary statistics for

each tier.22

From the classification, it is clear that the number of cities in the different tiers differs substan-

tially between tiers. Thus the top tier comprises ten cities, the second tier fourteen cities, the third

tier nineteen cities and the lowest tier the remaining 291 cities. With such small numbers of cities

within the top three tiers, it makes no sense to calculate stochastic kernels for each tier. Instead, in

Figure 5 we show the cross–profile plots for each of the four tiers. Table 7 gives the corresponding

measures.

The table shows that the top tier actually shows a surprising degree of mobility. The top tier

exhibits, consistently over the century, the largest estimated slopes, which imply that relative sizes

increase with rankings. Looking at the cross–profile plot suggests that this mobility is mainly due

to changes in the relative sizes and rankings of cities at the lower end of the tier. By 1940, the

rankings of the top four cities appear set, although they still display mobility with respect to relative

sizes.23 For the bottom five cities, there is a surprising degree of mobility both in terms of rankings

and relative sizes. Results for the second tier are again surprising. It is actually this second tier of

cities that show remarkable stability, both in terms of relative size and rankings. The measures and

the shape of the cross-profile plot show that this is easily the most stable subsystem that we have

studied. Mobility patterns for the third tier lie somewhere between the first and second. Finally, the

fourth tier shows the highest degree of mobility. In standard analysis using transition probability

matrices, nearly all the action for the top three tiers would be disguised by the fact that they all fall

in the top discrete state. Our results here suggests that there are interesting differences in mobility

for subsystems of cities that usually fall within this highest state.
22The time-invariant nature of this classification is particularly problematic in certain instances. For example,

despite its high population, San Diego would be in tier four in the early years, after having entered in 1910, but
should be in a higher tier later on in the century. However, geographers might consider San Diego as rather special,
because it has functioned in a very specialized way as a naval base before its more diversified growth in recent years.
It is for this reason that it is in tier four in this analysis.

23Relative sizes are now defined with respect to the average city size for cities in the same tier.
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5. Conclusions

This paper has studied a number of aspects of intra–distribution mobility for the US city size

distribution. Characterising the nature of such intra–distribution mobility should help guide the

two different theoretical strands that seek to explain the evolution of urban systems. For the

literature that attempts to generate urban systems that obey the rank size rule, these results

provide benchmarks for the upper level of intra–distribution mobility that would ensure these models

are consistent with real world intra–distribution dynamics. The results on regional subsystems

and urban hierarchies also prompt questions for the literature that tries to model the economic

mechanisms that may govern the evolution of urban systems. Are there economic forces that

can explain the apparent differences in the nature of intra–distribution mobility between different

regional sub–systems? More interestingly, what explains different patterns in churning and changes

in relative rankings within groups of cities at different levels of the US urban hierarchy?
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Table 1. Descriptive statistics: decennial data 1900–1990

1 2 3 4 5 6 7 8
Year US Pop. US Urban Pop. Mean Median GNP Distance Nearest

(000) (000) Size Size billion $ miles miles
1900 75,995 29,215 259952 121830 71.2 802.5 70.9
1910 91,972 39,944 286861 121900 107.5 863.8 68.3
1920 105,711 50,444 338954 144130 135.9 864.0 66.2
1930 122,775 64,586 411641 167140 184.8 876.9 64.8
1940 131,669 70,149 432911 181490 229.2 884.9 64.4
1950 150,697 85,572 526422 234720 354.9 890.8 65.3
1960 179,323 112,593 534936 238340 497.0 940.4 56.9
1970 203,302 139,419 574628 259919 747.6 981.3 52.5
1980 226,542 169,429 526997 232000 963.0 998.7 45.9
1990 248,710 192,512 577359 243000 1277.8 1005.3 45.5

All figures are taken from Historical Statistics of the United States from Colonial Times to 1970, Volumes 1 and 2,
and Statistical Abstract of the United States, 1993. Column 6: GNP adjusted by the implicit price deflator,
constructed from sources above; 1958=100. Column 7 gives the average distance to all other cities. Column 8 gives
the average distance to the nearest city. Distances are calculated as great circle distances based on latitudes and
longitudes from the Times Atlas 1997 edition.

Table 2. Descriptive statistics for all cities – 1990

Variable Mean Std. Dev. Skewness Kurtosis Min Max
Population (000) 479.5 1001.5 6.6 58.8 50.7 9,372.0
Log(Population) 12.4028 0.9895 1.0 4.1 10.8343 16.374
Growth Rate (%) 10.62 41.98 -1.1 5.8 -.999 1.8752
Education (%) 57.1085 20.9284 -0.4 1.8 11.80 92.73
Real Wage ($) 3197.92 1132.37 0.2 2.3 1020.00 7311.00
New England 8.8
Mid Atlantic 12.8
South Atlantic 16.7
East North Central 20.3
East South Central 6.6
West North Central 9.1
West South Central 12.2
Mountain 4.6
Pacific 8.8

Data on education and real wage are taken from Historical Statistics of the United States from Colonial Times to
1970, Vol.1 and 2, and Statistical Abstract of the United States, 1993.Educational percentage refers to the mean
percent of 15 to 20 age cohort in school. Mean real annual earnings, by city proper or metro area, are in dollars,
deflated by the Consumer Price Index,1967 = 100.

21



Slope SerCorr Variation
1920 0.020 0.391 0.063
1940 0.019 −0.479 0.513
1960 0.017 −0.612 1.324
1980 0.015 −0.619 1.708
1990 0.015 −0.609 1.924

Table 3. Whole sample cross profile statistics

East East Mid Mountain New Pacific South West West
North South Atlantic England Atlantic North South
Central Central Central Central

No. cities
1900 25 9 20 2 12 7 17 13 7
1910 35 9 21 3 12 12 22 14 11
1920 36 10 21 4 12 12 24 15 15
1930 36 11 21 5 12 12 26 16 18
1940 36 11 21 6 12 12 27 16 19
1950 36 11 21 6 12 12 27 16 21
1960 41 13 24 13 22 15 33 18 31
1970 47 15 25 14 25 23 38 20 36
1980 58 20 35 18 28 35 60 26 42
1990 58 23 36 21 28 36 62 27 43
Mean pop.
1900 233,300 121,400 561,100 120,000 330,200 166,700 149,700 188,800 99,820
1910 232,700 151,500 704,400 143,500 403,100 213,100 153,000 228,600 114,000
1920 309,100 164,000 835,300 151,400 469,800 303,400 181,900 257,200 135,000
1930 410,800 201,000 1,019,000 163,200 526,800 482,200 212,100 287,700 178,400
1940 431,400 227,200 1,071,000 166,800 541,600 570,000 247,300 305,200 196,100
1950 511,600 293,700 1,180,000 248,300 598,300 868,900 329,100 357,500 259,000
1960 577,200 320,300 1,162,000 257,600 336,000 1,099,000 400,700 408,300 292,300
1970 617,500 349,700 1,224,000 336,700 341,600 985,200 470,200 436,000 335,000
1980 546,500 378,000 920,500 398,400 337,900 812,500 436,300 386,000 397,000
1990 546,200 367,900 951,900 437,100 366,600 985,500 525,900 407,900 455,000

Table 4. Regions

22



Slope SerCorr Variation
East North Central

1920 0.084 0.279 0.169
1940 0.087 0.117 0.276
1960 0.085 −0.355 0.589
1980 0.083 −0.529 0.788
1990 0.085 −0.544 0.867

East South Central
1920 0.213 −0.304 0.185
1940 0.203 −0.276 0.209
1960 0.190 −0.879 0.468
1980 0.148 −0.296 0.396
1990 0.142 −0.397 0.449

Mid Atlantic
1920 0.159 0.448 0.250
1940 0.154 0.240 0.388
1960 0.146 −0.013 0.612
1980 0.134 −0.355 0.945
1990 0.128 −0.272 0.983

North East
1920 0.211 −0.025 0.497
1940 0.212 0.019 0.549
1960 0.241 −0.346 1.206
1980 0.219 −0.352 1.210
1990 0.226 −0.400 1.332

Pacific
1920 0.242 −0.427 0.581
1940 0.222 −0.461 1.117
1960 0.162 −0.243 1.318
1980 0.120 −0.216 1.395
1990 0.095 −0.237 1.489

South Atlantic
1920 0.090 0.376 0.148
1940 0.082 0.048 0.329
1960 0.079 −0.254 0.882
1980 0.073 −0.275 1.265
1990 0.074 −0.304 1.549

West North Central
1920 0.198 −0.071 0.308
1940 0.193 −0.296 0.484
1960 0.188 −0.672 1.120
1980 0.184 −0.622 1.255
1990 0.188 −0.671 1.579

West South Central
1920 0.120 −0.154 0.222
1940 0.134 −0.857 0.781
1960 0.148 −0.821 1.032
1980 0.164 −0.797 1.539
1990 0.172 −0.713 1.601

Table 5. Sub–regions cross profile statistics
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top tier second tier third tier fourth tier
No. cities
1900 9 13 19 74
1910 9 13 19 98
1920 9 14 19 107
1930 10 14 19 114
1940 10 14 19 117
1950 10 14 19 119
1960 10 14 19 167
1970 10 14 19 200
1980 10 14 19 279
1990 10 14 19 291

Mean pop.
1900 974,300 588,200 210,200 127,500
1910 1,384,000 736,400 247,600 138,400
1920 1,755,000 826,800 334,100 156,400
1930 2,168,000 988,300 449,900 180,000
1940 2,406,000 1,039,000 487,700 190,400
1950 2,975,000 1,233,000 590,400 229,800
1960 3,368,000 1,495,000 747,900 262,200
1970 3,885,000 1,795,000 872,300 294,400
1980 3,980,000 1,928,000 994,700 300,100
1990 4,526,000 2,121,000 1,084,000 332,000

Table 6. Tiers
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Slope SerCorr Variation
top tier
1920 0.431 0.050 0.560
1940 0.394 −0.353 1.059
1960 0.302 −0.441 1.077
1980 0.191 −0.475 1.040
1990 0.169 −0.546 1.094

second tier
1920 0.212 0.032 0.286
1940 0.181 −0.247 0.306
1960 0.123 −0.204 0.346
1980 0.073 −0.162 0.404
1990 0.055 −0.191 0.497

third tier
1920 0.150 0.360 0.243
1940 0.132 −0.025 0.465
1960 0.109 −0.232 0.782
1980 0.082 −0.426 1.073
1990 0.073 −0.462 1.163

fourth tier
1920 0.019 −0.334 0.036
1940 0.017 −0.625 0.491
1960 0.012 −0.649 1.279
1980 0.010 −0.636 1.597
1990 0.010 −0.632 1.828

Table 7. Functional tiers cross profile statistics
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Figure 1. Census regions
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Figure 2. Selected decades transition kernels

pooled us pooled regions

Figure 3. Pooled us and regions transition kernels
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US East North Central East South Central

Mid Atlantic North East Pacific

South Atlantic East North Central West South Central

Figure 4. US and US Census–regions cross profile plots
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Figure 5. Functional tiers cross profile plots
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