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Abstract

The paper extends the Brock-Durlauf model of interactive discrete choice, where individuals’
decisions are influenced by the decisions of others with whom they are in contact (interact), to richer
social structures. Social structure is modelled by a graph, with individuals as vertices and inter-
action between individuals as edges. The paper extends the mean field case to general interaction
topologies and examines in detail such stylized topologies like the star, the cycle (or wheel) and the
one-dimensional lattice (or path). It explores the properties of Nash equilibria when agents act on
the basis of expectations over their neighbors’ decisions. It links social interactions theory with the
econometric theory of systems of simultaneous equations modelling discrete decisions. The paper
obtains general results for the dynamics of adjustment towards steady states and shows that they
combine spectral properties of the adjacency matrix with those associated with the nonlinearity of
the reaction functions that lead to multiplicity of steady states. When all agents have the same
number of neighbors the dynamics of adjustment exhibit relative persistence. Cyclical interaction is
associated with endogenous and generally transient spatial oscillations that take the form of islands
of conformity, but multiplicity of equilibria leads to permanent effects of initial conditions. The
paper also analyzes stochastic dynamics for arbitrary interaction topologies, when agents acts with
knowledge of their neighbors’ actual decisions, which involve networked Markov chains in sample
spaces of very high dimensionality.
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1 Introduction

The paper examines an economy which is populated by individuals whose discrete decisions are
influenced by the decisions of other individuals. Interactions among individuals exhibit spatial
structure that is modelled as a graph, with individuals as vertices and interaction between individ-
uals as edges, and interpreted as social structure. The paper explores how patterns in the graph
topology may affect the properties of the decisions of agents at equilibrium. E.g., what difference
does it make if not all individuals are directly connected? What if all individuals are connected
only through a common intermediary (neighbor), in which case the topology of interconnections is
a star, or if each individual is connected to only two other neighbors, with the topology being a
cycle? What if the topology forms an one-dimensional lattice (path)?

The paper extends the Brock–Durlauf model of interactive discrete choice [ Brock and Durlauf
(2001) ] to richer social structures, which range from a number of stylized topologies, like the ones
mentioned above, to arbitrary topologies. It explores the properties of Nash equilibria when agents
act on the basis of expectations over their neighbors’ decisions. It links social interactions theory
with the econometric theory of systems of simultaneous equations modelling discrete decisions.
The paper obtains general results for the dynamics of adjustment towards steady states and shows
that they combine spectral properties of the adjacency matrix of the underlying graph topology
with the properties of individuals’ nonlinear reaction functions. Multiplicity of equilibria is possible
in both static and dynamic settings. Such multiplicity of equilibria is significant because it may
lead to permanent effects of initial conditions. That is, if the economy starts with different indi-
viduals making different decisions, such differences across the economy may persist, under certain
conditions. In contrast, if the economy starts with individuals making identical decisions, social
interactions may push the economy away towards heterogeneous outcomes. When all individu-
als have the same number of neighbors, the dynamics of adjustment exhibit relative persistence.
Cyclical interaction is associated with endogenous and generally transient spatial oscillations that
form “islands of conformity”: groups of adjacent individuals are more likely to be making similar
decisions. The paper also analyzes stochastic dynamics for arbitrary interaction topologies, when
agents act with knowledge of their neighbors’ actual decisions, which involve networked Markov
chains in sample spaces of very high dimensionality.

Some results for arbitrary interaction structures are qualitatively similar to the global interaction
case, but a richer class of anisotropic equilibria may arise, for some topologies, like the cycle and one-
dimensional lattice, in static settings and provided that the interaction coefficients differ. Equilibria
with social interactions when individuals react to the actual behavior of their neighbors in the
previous period differ qualitatively from those when individuals use the mean of their neighbors’
lagged decisions as forecasts of their current ones.

Current interest in the study of social interactions aims inter alia at a better understanding
of conditions under which interdependence is responsible for multiplicity in conformist behavior.
Ellison (1993) and Young (1998) obtain results that rest on individual agents’ behavior being af-
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fected by the behavior of a subset of other agents, rather than of all other agents. Ellison (1993) and
Glaeser, Sacerdote and Scheinkman (1996) exploit the intrinsic symmetry of the cyclical interaction
topology in modelling, respectively, local matching and by relying on its tractable analytics when
the number of agents is large.

The present paper brings different topologies together under the same overarching model. Its
single most important result is that unless individuals located in different positions value differently
their interactions with others in the social interaction topology, Nash equilibrium outcomes when
individuals make decisions based on the expectation of their neighbors’ decisions do not differ from
the Brock–Durlauf case in static settings. In dynamic settings and regardless of the rule individuals
use to forecast their neighbors’ contemporaneous decisions, the dynamics of adjustment and the
nature of equilibrium outcomes reflect critically the social interaction topology. Our results extend
Brock and Durlauf (2001) in a number of ways and complement contributions by others, including
in particular, Horst and Scheinkman (2004), who emphasize continuous decisions and also allow
for random topologies in static models, and Bisin et al. (2004), who also emphasize continuous
decisions with fixed one-sided interactions and allow for dynamics with rational expectations but
exclude multiple equilibria. Bala and Goyal (2000), Haag and Lagunoff (2001) and Jackson and
Wolinsky (1996) have also addressed bringing together different interaction topologies.

2 Interactive Discrete Choice

Let the elements of a set I represent individuals. Social interactions among individuals I are
defined by an undirected graph G(V, E), where: V is the set of vertices, V = {v1, v2, . . . , vI}, an
one-to-one map of the set of individuals I onto itself, and I = |V | is the number of vertices (nodes),
(known as the order of the graph); E is a subset of the collection of unordered pairs of vertices and
q = |E| is the number of edges, (known as the size of the graph). We say that agent i interacts with
agent j if there is an edge in G(V, E) between nodes i and j. Let ν(i) define the local neighborhood
of agent i : ν(i) = {j ∈ I|j 6= i, {i, j} ∈ E}. The number of i’s neighbors is the degree of node i :
di = |ν(i)|. Graph G(V, E) may be represented equivalently by its adjacency (a.k.a. acquaintance
or sociomatrix) matrix, Γ, an I× I matrix whose element (i, j) is equal to 1, if there exists an edge
from agent i and to j, and is equal to 0, otherwise. For undirected graphs, matrix Γ is symmetric
and its spectral properties are both well understood and are used extensively below. We use N−1

to denote the diagonal matrix with the inverse of each agent’s degree, 1
|ν(i)| , as its element (i, i).

2.1 The Brock-Durlauf Interactive Discrete Choice Model with an Arbitrary

Interaction Topology

This section adapts the Brock- Durlauf model of interactive discrete choice [ Brock and Durlauf
(2001); Durlauf (1997) ] to arbitrary interaction topologies represented by an arbitrary adjacency
matrix Γ. All individuals faces the binary choice set S = {−1, 1}. Let agent i choose ωi, ωi ∈ S,

so as to maximize her utility, which depends on the actions of her neighbors: Ui = U(ωi;
∼
ων(i)),
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where
∼
ων(i) denotes the vector of dimension di containing as elements the decisions made by each of

agent i’s neighbors, j ∈ ν(i). The I−vector of all agents’ decisions,
∼
ω= (ω1, . . . , ωI), is also known

as a configuration, and
∼
ων(i) is known as agent i’s environment. We assume that an agent’s utility

function Ui is additively separable in a private utility component, which without loss of generality
(due to the binary nature of the decision) may be written as hωi, h > 0, in a social interactions
component, which is written in terms of quadratic interactions between her own decision and of
the expectation of the decisions of her neighbors,

∼
ων(i), ωiEi

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

}
, and a random

utility component, ε(ωi), which is observable only by the individual i. That is, Ui may be written
as:

Ui(ωi; Ei

{∼
ων(i)

}
) ≡ hωi + ωiEi





1
|ν(i)|

∑

j∈ν(i)

Jijωj



 + ε(ωi). (1)

The interaction coefficients may be positive, individuals are conformist, or negative, individuals are
non-conformist. We define J as the matrix of interaction coefficients, a I × I matrix with element
Jij , and I as the I × I identity matrix. Also, let the column I−vector

∼
ε stack the difference of 2I

independently and identically type I extreme-value distributed random variables, εi = εi(1)−εi(−1),
written as a column vector,

∼
ε≡∼ε (1)− ∼

ε (−1), and let 1[R] is a I−vector indicator function of the
I vector R, with its ith element equal to 1, if the ith element of R, Ri > 0, and is equal to −1,

otherwise.
Following Brock and Durlauf (2001)1 and with ε(ωi) being independently and identically type

I extreme-value distributed2 across all alternatives and agents i ∈ I, individual i chooses ωi = 1
with probability

Prob(ωi = 1) = Prob



2h + 2Ei





1
|ν(i)|

∑

j∈ν(i)

Jijωj



 ≥ −(ε(1)− ε(−1))



 . (2)

In view of the above assumptions, this may be written in terms of the logistic cumulative distribution
function:

Prob(ωi = 1) =
exp

[
β

(
2h + 2Ei

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

})]

1 + exp
[
β

(
2h + 2Ei

{
1

|ν(i)|
∑

j∈ν(i) Jijωj

})] , (3)

where β > 0 is a behavioral parameter that denotes the degree of precision in one response to the
random component of private utility, ε(ωi) in (1). The case of β = 0 implies purely random choice,
the two outcomes are equally likely, and of β →∞ purely deterministic choice. The extreme-value
distribution assumption for the ε’s is both convenient and links with the machinery of the Gibbs
distributions theory [Blume (1997); Brock and Durlauf (2001)].

The state of the economy satisfies the following condition, written in compact notation as:

∼
ωi= 1

[
2hI + 2N−1JΓE{∼ων(i)}+

∼
ε
]
. (4)

1McKelvey and Palfrey (1995) and Chen, Friedman and Thisse (1997) also develop game-theoretic discrete choice
models with interactive features that are based on the logit model, independently of the social interactions literature.

2If two independent and identically distributed random variables, ε(−1), ε(1), obey type I extreme-value distribu-

tions, then their difference has a logistic distribution: Prob{ε(−1)− ε(1) ≤ x} = exp[βx]
1+exp[βx]

.

3



We assume that all agents are identical in terms of preferences but each agent holds expectations
of other agents’ decisions which are contingent on those agents’ position in the social structure. An
equilibrium confirms such expectations:

Ei(ωj) = mj , ∀i, j ∈ I. (5)

By writing m for the vector of expectations of decisions, where mi = Prob(ωi = 1)−Prob(ωi = −1),
and using the hyperbolic tangent function, tanh(x) ≡ exp(x)−exp(−x)

exp(x)+exp(−x) , −∞ < x < ∞, we have:

mi = tanh
[
βh + β

1
ν(i)

JΓim
]

i = 1, . . . , I, (6)

where Γi denotes the ith row of the adjacency matrix. Succinctly, we now have:
Proposition 1. Under the assumption of location-contingent expectations (5), the system of social
interactions with an arbitrary topology (4) admits an equilibrium that satisfies (6).
Proof. This follows readily from Brower’s fixed point theorem. The mapping from [−1, 1]I into
itself, defined by the RHS of (6), has at least one fixed point. 2

In the mean field theory case, which is equivalent to global interaction and is considered by
Brock and Durlauf (2001), each individual’s subjective expectations of other agents’ decisions are
equal, Ei(ωj) = m,∀i, j ∈ I, and the Nash equilibria satisfy (6), which now simplifies to

m = tanh(βh + βJm). (7)

An important implication of these results follows. Consider that all agents have the same number
of neighbors, d = ν(i), that is the graph is regular, and the interaction coefficients are equal, Jij = J.

Then a question arises whether or not equilibria exist with agents’ behavior is differentiated by their
location on the graph. We call such equilibria anisotropic in order to distinguish them from the
isotropic case, where individuals are not distinguished in this fashion.

For an isotropic equilibrium in the regular graph case, 1
dEi

{∑
∀j 6=i ωj

}
= m, and Equ. (7) holds.

Therefore, the regular interaction case admits the same isotropic equilibria as the Brock-Durlauf
mean field case.

We summarize briefly results from Durlauf (1997) and Brock and Durlauf (2001) which are
critical in appreciating our own. If βJ > 1, and h = 0, then the function tanh(βh + βJm) is
centered at m = 0, and Equ. (7) has three roots: a positive one (“upper”), (m∗

+), zero (“middle”),
and a negative one (“lower”), (m∗−), where m∗

+ = |m∗−|. If h 6= 0 and J > 0, then there exists
a threshold H∗, which depends on β and J, such that if βh < H∗, Equ. (7) has a unique root,
which agrees with h in sign. In other words, given a private utility difference h, if the dispersion
of the random utility component is sufficiently large, the random component dominates choice. If,
on the other hand, βh > H∗, then Equ. (7) has three roots: one with the same sign as h, and
the others of the opposite sign. That is, given a private utility difference, if the dispersion of the
random utility component is small, then the social component dominates choice and is capable of
producing multiplicity in conformist behavior. If J < 0, then there is a unique equilibrium that
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agrees with h in sign. In other words, as Durlauf underscores, Durlauf (1997), p. 88, economic
fundamentals that drive private decisions and social norms play complementary roles. When three
equilibria exist, we will refer to the middle one (m∗), as symmetric and to the upper and lower ones
as asymmetric (m∗−,m∗

+) [ Figure 1]. [ INSERT FIGURE 1 HERE.]
We note that the model exhibits nonlinear behavior with respect to parameters h and J. Condi-

tional on a given private utility difference between the choices 1 and −1, there exists a level which
the interaction effect must reach in order to produce multiple self-consistent mean choice behavior.
However, as βh increases in magnitude, the importance of the conformity effect βJm diminishes in
a relative sense, and thus becomes unable to produce a self-consistent mean with the opposite sign.
Even if private incentives favor a particular decision, sufficiently strong social conformity effects
can bring about different social outcomes.

2.1.1 Star Interaction

The star interaction introduces a modicum of asymmetry: agent 1 is located at the center of a
star, all other agents are agent 1’s neighbors, ν(1) = I − {1}, and they in turn have agent 1
as their only neighbor: ∀i, i 6= 1, ν(i) = {1}. We allow for a possibly asymmetric interaction
intensity, by assuming J1i ≡ J, Ji1 ≡ JS , ∀i 6= 1, and Jij = 0, otherwise. The general expectations
assumption (6) implies that individuals 2, . . . , I hold common expectations of individual 1’s decision,
Ei {ω1} = m1, i = 2, . . . .I The expected decision of a typical such agent j, j 6= i, depends only on
m1. Individual 1 acts with rational expectations over all other agents’ decisions: E1{ωi} = m−1,

i 6= 1. So, we have:
m−1 = tanh(βh + βJm1); (8)

m1 = tanh(βh + βJSm−1). (9)

The equilibria in the economy with star interaction are described by the fixed points of the system
of equations (8) and (9). Existence is guaranteed by Proposition 1.3

If JS = J, then we revert back to (7), and the equilibrium is isotropic. Otherwise, the general
case admits more possibilities than the mean field case. They are summarized in the following
proposition, whose proof is straightforward. To visualize the equilibria, consider R2, with axes
designated by (m1,m−1) and draw the graphs of Equ. (8), (9), from which the solutions follow.
See Figure 2. Without loss of generality, we assume that h > 0 and recall that β > 0. [ INSERT
FIGURE 2 HERE. ]
Proposition 2. The system of Equations (9)–(8) admits the following roots for (m1,m−1).
(a) If J, JS > 0, then there exist at least one root that lies in the set (0, 1)× (0, 1). If, in addition,
βJ > 1, and βJS > 1, then there exists a threshold H+, such that if βh > H+, then there exist two
additional roots that lie in (−1, 0)× (−1, 0).

3This is a special case of (6), with adjacency matrix ΓW =

(
0 1TI−1

1I−1 0I−1

)
, where 1I−1 = (1, . . . , 1), the column

vector of 1’s of dimension I − 1, and 0I−1 the (I − 1)× (I − 1) matrix of 0’s.
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(b) If J > 0, JS < 0, then there always exist a single root that lies in (−1, 1)× (0, 1).
(c) If J < 0, JS > 0, then there always exist a single root that lies in (0, 1)× (−1, 1).
(d) If J < 0, JS < 0, then there exist at least one root that lies in the set (0, 1) × (−1, 0). If, in
addition, βJ < −1, and βJS < −1, then there exists a threshold H−, such that if βh < H−, then
there exist two additional roots that lie in (−1, 1)× (0, 1).

It is interesting that when both interaction coefficients have the same sign the resulting equilibria
are characterized by the following properties. If both interaction coefficients are positive then
there is always at least one root that is in the positive orthant of (m1,m−1) space. That is, if
agents 2, . . . , I, are optimistic about agent 1, and agent 1 optimistic about agents 2, . . . , I, the
upper equilibrium prevails: conformism is an equilibrium. If both groups of agents are pessimistic
about the other group the lower equilibrium is also possible, provided that the interactions effect
is sufficiently strong to overcome the private effect. If both interaction coefficients are negative
then at least one root is associated with a positive solution for m1 and a negative one for m−1 :
conformism is again an equilibrium. When, on the other hand, preferences are different, in the
sense that agent 1 does not wish to conform but the agents 2, . . . , I do, then agents 2, . . . , I choose
an expected decision in the positive orthant, m−1 > 0, but agent 1 might not, m1 may be positive
or negative. If, on the other hand, agent 1 does not wish to conform but agents 2, . . . , I do, agents
2, . . . , I choose an expected decision in the positive orthant, m1 > 0, but agent 1 might not, m−1

may be positive or negative.

2.1.2 Cyclical (or Wheel) Interaction

Cyclical interaction occurs when each agent interacts only with two neighboring agents, ν(i) =
{i− 1, i + 1}, ν(1) = {I, 2}, ν(I) = {I − 1, 1}. From the discrete choice model generated by (1) we
have: Ui(ωi) ≡ hωi +ωi

1
2Ei {JBωi−1 + JF ωi+1}+ ε(ωi). Let agent i’s expectation of the decision by

her neighbor to her left be mi−1 and to her right be mi+1. Then, for consistency, agent i’s expected
decision, mi, must be equal to that implied by her own decision, and may be expressed in terms of
mi−1 and mi+1:

mi = tanh[βh +
1
2
β(JBmi−1 + JF mi+1)], i = 1, . . . , I. (10)

This a system of I equations in the I unknowns mi, i = 1, . . . , I, with “circular symmetry”
conditions mI+1 = m1, and m1−1 = mI .

4 By Proposition 1 an equilibrium exists. We examine next
whether an anisotropic equilibrium exist.

If we impose that all agents’ expectations of others’ decisions be equal, then the Nash equilibria
isotropic equilibria with circular interaction coincide with those of the mean field case for J =
1
2(JB + JF ). Proposition 3, whose proof is available in the working paper version of the paper,
details that anisotropic equilibria exist only if the backward and forward interaction coefficients
are different: JB 6= JF .

4Alternatively, this is the special case of (6) with an adjacency matrix ΓC an I × I circulant matrix generated by
permutations of the I−vector (0, 1, 0, . . . , 1).
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Proposition 3. The system of Equations (10), i = 1, . . . , I, that describe cyclical interaction may
have, in general, two classes of equilibria, isotropic and anisotropic ones.
(a) If JB = JF , all equilibria are isotropic. mi = m, ∀i, and satisfy

m = tanh
[
βh +

1
2
β(JB + JF )m

]
. (11)

Their properties are identical to the mean field case. There may be either three distinct roots, or a
single root, that all lie in (−1, 1).
(b) If JB 6= JF , then anisotropic equilibria, if they exist, are given by the fixed points of Θ[I−2], the
I − 2th iterate of a mapping Θ = (Θ1, Θ2), defined as follows:

Θ1(m′,m′′)
Θ2(m′,m′′)

≡
≡

1
1
2
βJF

[
tanh−1(m′)− βh

]
− JB

JF
m′′,

m′,
(12)

where (m′,m′′) ∈ (−1, 1)× (−1, 1), and tanh−1(·) denotes the inverse hyperbolic tangent function.
(c) Anisotropic solutions may exist for the case of I = 3 agents and are given by the fixed points of
Θ[1], the first iterate of Θ.

(d) Anisotropic solutions do not exist in the case of either only backward interaction, JF = 0, or
only forward interaction, JB = 0.

(e) Anisotropic solutions do not exist for any I, if JB = JF .

The possibility of an anisotropic solution rests, in effect, on the properties of the iterates of the
function tanh(·). When JB = JF , the fixed points of the iterates of tanh−1(·) coincide with those
of tanh−1(·) itself.

2.1.3 Path Interaction

With the set of agents being defined as I = {−L, . . . , 0, . . . , L}, the equilibrium conditions for
agents −L + 1 ≤ i ≤ L − 1, are as in (10), −L + 1 ≤ i ≤ L − 1. For agents −L and L, the
equilibrium conditions are:

m−L = tanh[βh + βJF m−L+1]; (13)

mL = tanh[βh + βJBmL−1]. (14)

Equ. (10), for i = −L+1, . . . , L−1, and Equ. (13) and (14), form a system of 2L+1 equations in the
2L + 1 unknowns, the expected states of all agents. This is a special case of (6), with an adjacency
matrix the (2I + 1)× (2I + 1) matrix, whose first and last row are (0, 1, . . . , 0) and (0, 0, . . . , 1, 0)
respectively, and rows 2 through 2I are the 2I+1 vector (1, 0, 1, . . . , 0) and its permutations. Unlike
the cyclical interaction case, the presence of the end agents destroys circular symmetry.5

5To see this intuitively, consider the classic example from Schelling (1978): “If everybody needs 100 Watts to read
by and a neighbor’s bulb is equivalent to half one’s own, and everybody has a 60-Watt bulb, everybody can read
as long as he and both his neighbors have their lights on. Arranged on a circle, everybody will keep his lights on
if everybody else does (and nobody will if his neighbors do not); arranged in a line, the people at the ends cannot
read anyway and turn their lights off, and the whole thing unravels” [ibid. p. 214]. One would expect that the
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We improve our intuition on path interaction by also considering the special case with just three
agents, L = 1. For the three-agent case, L = 1, Equ. (13) yields m−1 as a function of m0, and Equ.
(14) yields m1 as a function of m0. By substituting back into the R.H.S. of (10) we obtain a single
equation in m0. Under the assumption that the interaction coefficients are both positive, we can
easily see that the multiplicity of equilibria rests on the properties of the iterates of the function
tanh(·), whose fixed points coincide with its own. Our results are summarized in the following
proposition, whose proof is given in the working paper version of the paper.

Proposition 4. The system of Equations (10), −(L − 1) ≤ i ≤ L − 1, and Equations (13) and
(14) that describe interaction on a path defines a mapping in RI into itself:

C : RI → (−1, 1)× . . . (−1, 1)︸ ︷︷ ︸
I

.

It has two classes of solutions, isotropic and anisotropic ones.
(a) There exist in general isotropic equilibria, mi = m∗

LI , −(L−1) ≤ i ≤ L−1, which are the roots
of (7) with J = 1

2β(JB + JF ); and m−L and mL, are given from (13) and (14), respectively, as
functions of m∗

LI . There may be either three distinct roots, or a single root, that all lie in (−1, 1).
(b) For L = 1, the case of three agents, m0 satisfies

m0 = tanh
(

βh +
1
2
βJB tanh[βh + βJF m0] +

1
2
βJF tanh[βh + βJBm0]

)
; (15)

m−1,m1, follow from (13) and (14), as before. Equ. (15) has, depending upon parameter values,
either three distinct roots, of which one has the same sign as h and the other two with the opposite
sign, or a single root with the same sign as h. Furthermore, m−1 = m0 = m1, only if JB = JF .

(c) For L > 1, or for an even total number of agents, there exists an one-parameter family of
solutions.

2.2 Remarks

First, we note that if we assume that all interaction coefficients in all of the above models are equal
to one another, JP = JB = JF = JS = J, and agents hold position-independent expectations,
then the equilibria of all models coincide with those of the Brock-Durlauf mean field case, Equ.
(7). While not surprising, it will be useful to bear it in mind when we discuss equilibrium with
interactions that depend on agents’ actual environments, in static and dynamic settings, sections
2.3 and 3.1, respectively.

Second, at any of the isotropic equilibria examined above, which are associated with individuals’
making decisions conditional on their expectations of their neighbors’ decisions, individuals’ states
are described as independent Bernoulli distributed random variables, whose parameters, however,

importance of the two end agents would wane as the number of agents increases and as preferences differ from the
fixed-proportions case implied by the above example. Also, the above example suggests that it might be important
to allow for boundary conditions, as when the end agents, or the agent at 0, are constrained to be in a particular
state.
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may be in general functions of the interaction topology. These are defined by the respective choice
probabilities as functions of the mean values at equilibrium. All models share the property that
the social equilibrium may be characterized by aggregate uncertainty, even when individuals are
subject to purely random shocks. That is, consider the case when h = 0, the two states equally
likely in terms of fundamentals. Then, even in the mean field case, the economy has three isotropic
equilibria, associated with the roots of Equ. (7), for h = 0. One of them is m = 0, and indeed implies
no aggregate uncertainty: the expected outcome is equal to 0. However, this social equilibrium is
unstable. If βJ > 1, then the other two roots imply expected outcomes different from 0, and the
corresponding equilibria are stable. Naturally, the emergence of aggregate activity is due to the
synergistic effects βJm [ c.f. Kirman (1993) ].

Third, since anisotropic equilibria will be excluded by the assumptions that we will maintain in
the remainder of the paper, it is important to stress that they model the consequences of a basic
lack of symmetry in the economy. The islands of conformity that would appear, which become
clearer below in the analysis of circular interaction when agents make decisions based on their
neighbors’ actual decisions, are not completely random; they are instead skewed.

2.3 An Econometric Interpretation

The model of discrete decisions with social interactions, when utilities depend on the actual realiza-
tions of neighbors’ decisions, as in (4) with the expectation operator removed from the RHS, admits
an interpretation as an econometric model of simultaneous equations involving discrete decisions.6

In fact, the earlier literature on structural models of discrete choice, such as Schmidt (1981) and
others, emphasizes conditions for internal consistency, also known as “coherency” conditions. Such
conditions guarantee that given the values of exogenous variables, observed and unobserved, unique
values for the dependent variables are implied and the associated likelihood functions are well de-
fined. For example, the consistency conditions proposed by Schmidt (1981), when applied to (4),
reduce to the condition that the model be recursive [ ibid., Condition 12.6, p. 429 ]. To see this,
consider the case of star interaction. It follows that not all principal minors of N−1JΓ are equal to
0, and therefore, Condition 12.6, ibid., is not satisfied.7

The recent literature on estimating models of discrete games allows for multiple equilibria.
Tamer (2003) emphasizes that if one does not insist on coherency, then econometric models of social
interactions may accommodate economic models with multiple equilibria. Imposing coherency
eliminates multiplicity of equilibria. That is, one wants to know whether unique or multiple social
outcomes are associated with a given set of parameter values and values of stochastic shocks.
Therefore, what may be desirable of some regression models, like those examined in ibid., may not
always be desirable of models of social interactions. That is, recursiveness may be undesirable in
general, because it would imply that a single agent’s decisions would determine those of all others’.
This may well be a feature of certain social interaction settings but should not be required of all.

6I am grateful to Chuck Manski for directing my attention to this interpretation.
7Neither is the system recursive for the cases of complete, cyclical, and path interaction topologies.
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Multiplicity of equilibria may be interesting in their own right, but its econometric consequences
are still poorly understood. Some additional observations are in order. First, enumeration of
multiplicity of equilibria is appropriate for finite numbers of agents. Second, any expressions for
the probabilities of particular outcomes for each agent are the equilibrium value for the marginal
probability of agents’ decisions. Therefore, such probabilities cannot be specified independently in a
regression setting. They are no longer in the logit form. Third, as Soetevent (2003) underscores, the
multiplicity of equilibria is entirely due to the social interactions component of individual decisions
that introduces simultaneity. Fourth, it is tempting but actually not appropriate, as a referee
pointed out, to interpret the model represented by (4) with the expectations in the RHS removed,
as a simultaneous move game. But, as we see further below, such a model facilitates the derivation
of the stationary distribution in dynamic settings.

3 Dynamic Analysis of Social Interactions

In a dynamic setting, agents employ their best responses based on their forecasts of neighbors’
decisions and employ position-contingent strategies, given an arbitrary interaction topology. I wish
to distinguish the role of expectations from the impact of the topology of interactions and of the
nonlinearity of the model. I start with the general case where each agent uses as her forecast the
actual state of her neighbors in the previous period, Ei{∼ων(i),t} =

∼
ων(i),t−1, This realized-action best

response dynamic is novel in the context of the social interactions literature. I provide a general
description that establishes the existence of a stationary equilibrium distribution. I also provide
specific results for the case of cyclical interactions and of the star. I examine the vastly simpler
case when agents’ forecasts of their neighbors’ decisions are equal to their neighbors’ mean choices
in the previous period, Ei {ωj,t} = mj,t−1, j ∈ ν(i).

3.1 Realized-action Best Response Dynamics for Arbitrary Topologies

Let the actual state of the economy at time t be denoted by
∼
ωt. Under the best response dynamic I

employ, each agent responds at time t, given her neighbors’ actual decisions at time t− 1,
∼
ων(i),t−1,

defined as the subvector of
∼
ωt−1 that pertains to agent i’s neighbors. That is, adapting Equ. (3)

in a dynamic setting, we have: Prob(ωi,t = 1)|∼ων(i),t−1) =
exp

[
β

(
2h+2 1

|ν(i)|
∑

j∈ν(i)
Jijωj,t−1

)]

1+exp

[
β

(
2h+2 1

|ν(i)|
∑

j∈ν(i)
Jijωj,t−1

)] . By

adopting the concise notation of Equ. (4), the above may be written as:

∼
ωt= 1

[
2hI + 2N−1JΓ

∼
ωt−1 +

∼
εt

]
. (16)

Therefore, the state of the economy in period t is well defined in terms of time t − 1,
∼
ωt−1 and

the contemporaneous shock
∼
εt . This notation underscores that the interaction topology affects the

dynamics via the properties of the adjacency matrix Γ and of the matrices containing the number
of each agent’s neighbors, N−1, and the interaction coefficients, J.
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Let us consider the state of the economy in two successive periods. For each of the 2I possible
realizations of

∼
ωt−1,

∼
ωt−1 ∈ {−1, 1}I , Equ. (16) defines conditional choice probabilities for each

agent in each of the models of social interaction, which are in effect transition probabilities for each
of the 2I possible realizations of

∼
ωt, given

∼
ωt−1. The dynamic counterparts of Equ. (7), (8)–(9) and

(10) are special cases of this definition. The state of the economy evolves according to a Markov
stochastic process which is defined from the finite sample space {−1, 1}I , into itself and has fixed
transition probabilities. That is, the transition probability from

∼
ωt−1 =

∼
ω
′
to

∼
ωt =

∼
ω
′′

is equal to
∏I

i=1 Prob
{
ωi,t =

∼
ω
′′
i |

∼
ων(i),t−1=

∼
ω
′
ν(i)

}
. These probabilities sum to 1, when the sum is taken over

all possible realizations of
∼
ω
′′
, for any given

∼
ω
′
.

Taking cues from by Asavathiratham (2000) allows us to transform the general case (16) to a
form that is amenable to analysis by means of standard linear algebra for Markov processes. To
see how this may be done, consider representing the state of agent i instead of the binary set of
outcomes {−1, 1}, by the row vector (1 0), if ωi = 1, and by the row vector (0 1), if ωi = −1. In this
fashion, a realization

∼
ω may be represented by a row vector (1 0|0 0| · · · |0 0) with 2I elements, with

each two of them representing the state of an agent. By stacking up all possible realization vectors
we obtain a 2I × 2I matrix, known as the event matrix [ Asavathiratham (2000), p. 109 ], which
represents all possible states of the economy. The RHS of Equ. (16) allows us to define a 2I × 2I

transition matrix, to be denoted by H, which is a stochastic matrix that expresses the transition
probabilities for the Markov process that describes the evolution of the state of the economy from
∼
ωt−1 to

∼
ωt, given by (16). If the stochastic matrix H is irreducible, then its Perron-Frobenius

(dominant) eigenvalue is equal to 1 with the 2I−unit vector as the corresponding right eigenvector.
Next, we define the column vector Ψt, with 2I rows, and entries all zeroes, except one, which is 1 and
indicates that the economy is at the corresponding state, that is associated with the respective row
of the event matrix. Accordingly, we may define a probability distribution over the possible states
of the economy, the rows of the event matrix. Clearly, a stationary probability distribution over the
states of the economy, if it exists, is given by the positive left eigenvector of H, Ψ̃, corresponding to
eigenvalue 1 and suitably normalized, that satisfies Ψ̃TH = Ψ̃T [ Seneta (1981), Theorem 4.1, p. 119
]. As Asavathiratham discusses [op. cit., Theorem 5.7, p. 109], the stationary distribution might
not be unique in general, if the corresponding dominant eigenvalue that is equal to 1 does not have
an algebraic multiplicity of 1. Because of the nature of the interaction topology, some of the states
of the economy may not communicate, and the process might not have a unique recurrent class.8

The stationary distribution associated with an economy where agents act with knowledge of
their neighbors’ actual decisions coincides with the equilibrium distribution in the static case when
interactions are based on agents’ actual environments, discussed in section 2.3 above. The intuitive
appeal of this claim follows from the definition of the agents’ optimal decisions and the associated
probability distributions that they imply.9 We turn to special cases that are amenable to exact

8A synthetic review of the literature and some simulation results for large economies may be found in Verbrugge
(2003). Of particular interest is his case of effectively non-ergodic response.

9For a proof, one may adapt the classic treatment of Preston (1974), p. 10–18.
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solution.

3.1.1 Cyclical Interaction under Realized-Action Best Response Dynamic

When the interaction structure is translation-invariant, that is when only relative distance between
agents matter and not their actual locations, and if the process is reversible, that is, the interaction
structure is symmetric so that the process may be reversed, just like a movie being played backwards
and still making sense, then an important result follows. Bigelis et al. (1999) establishes the
existence of a stationary distribution and the closed form it actually assumes. By following the
notation in ibid., p. 3936, and writing the interaction effect from j to i as J(i− j), we have:

Proposition 5. Let the total number of agents I be finite and Λ be a d-dimensional torus contain-
ing Ld lattice sites (that is, Λ is a cube in Zd containing Ld points and having periodic boundaries).
If the Markov process for

∼
ωt, defined on the configuration space {−1, 1}Λ, with fixed transition

probabilities, given by:

Prob
{
ωi,t = $| ∼ωt−1

}
=

1
2


1 + $ tanh


β

∑

j∈Λ

J(i− j)ωj,t−1 + βh





 , $ ∈ {−1, 1}, (17)

is reversible, for which it suffices that J(i − j) = J(−i + j), then the process (17) has a unique
stationary distribution given by: Prob{∼ω} = Π̄−1 ∏

i∈Λ eβhωi cosh
(
β

∑
j∈Λ J(i− j)ωj + βh

)
, where

Π̄ is a normalizing constant.
It is clear from the above expression for the stationary distribution that when individuals

are conformist, neighbors’ making similar decisions strengthen the likelihood that an agent would
conform. The cases of global interactions and circular interactions with symmetric interaction
coefficients, Ji−1 = Ji+1, are translation-invariant, and under the assumption of reversibility, they
become special cases of the above theory.

3.1.2 Star Interaction under Realized-Action Best Response

The star model, although not translation-invariant, may be handled from first principles as follows.
From (16), Prob {Ω−1,t = K|ω1,t−1 = ω1} = B

(
1
2(I + K − 1), I − 1; Prob {ωi,t = 1|ω1,t−1}

)
, K ∈

{−I + 1,−I + 3, . . . , I − 1}, where Ω−1,t =
∑I

j=2 ωj,t and B (·) denotes the value of the binomial
distribution for 1

2(I + K − 1) successes in I − 1 Bernoulli trials, with each success having proba-
bility given by Prob {ωi,t = 1|ω1,t−1} = exp[βh+βJω1,t−1]

1+exp[βh+βJω1,t−1]
; i = 2, . . . , I. These equations define the

transition probabilities of a Markov process in terms of the pair of discrete-values random vari-
ables, (ω1,t, Ω−1,t), where defined over the sample space {−1, 1}× {−I + 1,−I + 3, . . . , I − 1}. The
stationary probability distribution for the state of agent 1, Prob {ω1 = 1} is given by:

Prob {ω1 = 1}

=

∑
k Prob

{
ω1 = 1|∑I

i=2 ωi = k
}
· Prob

{∑I
i=2 ωi = k|ω1 = −1

}

1−∑
k Prob

{
ω1 = 1|∑I

i=2 ωi = k
}
·
[
Prob

{∑I
i=2 ωi = k|ω1 = 1

}
− Prob

{∑I
i=2 ωi = k|ω1 = −1

}] .

(18)
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The state of the economy is given by: Prob {ω1, ω2, . . . , ωI} = Prob {ω1}
∏I

i=2 Prob {ωi|ω1} , where
Prob {ω1} is given from (18) and Prob {ωi|ω1} from the transition equation above.

3.2 Dynamics with Expectations Based on Lagged Mean Decisions of Neighbors

The assumption that each individual’s expectation of her neighbors’ choice at time t is equal
to those agents’ mean choice at time t − 1 allows us to examine dynamics for general arbitrary
interaction topologies by means of nonlinear deterministic difference equations. Working with a
dynamic adaptation of (4), with each individual’s expectation of her neighbors’ choice at time t

being equal to those agents’ mean choice at time t− 1, we have:

mi,t = tanh
[
βh + βN−1JΓimt−1

]
, i = 1, . . . , I, (19)

where Γi denotes the ith row of the adjacency matrix, and mt denotes the I−vector consisting of
the mi,t’s. Clearly, the steady states of (19) coincide with the fixed points of (6). The mean field
case of Brock and Durlauf, op. cit., readily follows as a special case: mt = tanh (βh + βJmt−1) .

It is interesting to contrast the dynamics under realized-action best response, expressed by (16),
with the case when agents use their neighbors’ lagged mean decisions as forecasts of their actions,
expressed by (19). As a referee pointed out, the former is the probabilistic law of motion that
determines the probabilities of the next state of the economy conditional on the current one, when
the topology of social interaction is “drawn” once and remains fixed. The latter is a deterministic
law that describes the evolution of the position-contingent mean state. The social interaction
graph may be drawn from a random population each period and holds when all individuals adopt
position-contingent strategies. Both reflect the interaction topology. It is an open question how
to bridge the gap between the two, perhaps by means of techniques similar to the ones employed
by Blume and Durlauf (2003), who show that the limit distribution of a dynamic Brock–Durlauf
model clusters around the stable steady states of the counterpart to (19).

The stability of the system is characterized by the following proposition, which utilizes standard
results based on the theory of dynamical systems and the Perron-Frobenius Theorem for symmetric
positive matrices and holds for any social interactions topology.

Proposition 6.
Part I. If the topology of interaction is represented by a regular graph, whose degree is |ν(i)| = d

and otherwise arbitrary, and a constant interaction coefficient J, then the following hold.
(a) The economy’s steady states satisfy Equ. (7) and are isotropic. They are generically hyper-

bolic fixed points of the I−order dynamical system defined by Equ. (19).
(b) Small perturbations around a steady state m̂ of (19), ∆mt = mt − m̂, satisfy:

∆mt = βτN−1JΓ∆mt−1, (20)

where τ := tanh′
[
βh + β 1

|ν(i)|JΓim̂
]
.
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(c) If the graph is regular, d = |ν(i)|, a necessary and sufficient condition for the local dynamics
of (20) at a steady state mi = m to be stable (unstable) is:

βJ tanh′(βh + βJm) < (>)1. (21)

Part II. A necessary and sufficient condition for the local dynamics of (20) at a steady state
mi = m to be stable (unstable) is (21), even for an economy with an arbitrary topology of social
interactions.

Proof.
Part I.

(a) This part follows from the discussion in subsection 2.1. That they are all isotropic follows
from symmetry. To see this, assume that for agent i, her neighbors are at nonisotropic steady
states. By iterating forward with respect to i we reach a contradiction. Therefore, when Equ. (19)
is taken at a steady state, Γim = dmi and mi = m∗, where m∗ is a solution of Equ. (7) is a
solution. It is easy to see that it is the only solution.

(b) This part is also obvious after we linearize around a uniform steady state and apply matrix
notation.

(c) Since the adjacency matrix Γ is symmetric and positive, it has real eigenvalues and a
non-negative maximal eigenvalue, whose magnitude absolutely exceeds all other eigenvalues. This
eigenvalue is “squeezed” between the average degree of G and is maximal degree, which in our case
is equal to I − 1 [ Cvetkovic, et al. (1995), 381–382 ]. However, all agents have the same number
of neighbors, therefore, the maximal eigenvalue is equal to d.

When the economy is at a steady state with all mi’s assuming either one of the asymmetric
values m∗−,m∗

+, or the symmetric value m∗, as defined in subsection 2.1 above, if they exist, then τ

simplifies to become equal to tanh′[βh + βJm]. Condition (21) follows as a necessary and sufficient
condition for the solution of (20) to be stable (unstable). It would be stable if mi = m∗−,m∗

+, and
unstable if mi = m∗, ∀i. Brock and Durlauf, op. cit., pp. 12–14, is a special case.
Part II. The proof follows from the fact that the row elements of the matrix consisting of rows 1

|ν(i)|Γi

are positive and sum up to 1. Therefore, it is a stochastic matrix, whose maximal eigenvalue is
equal to 1. Condition (21) holds, provided that its l.h.s. is evaluated at the appropriate steady
state, at least one of which exists, by Part 2.
Q.E.D. 2

A number of remarks are in order. First, by Theorem 3.33, p. 104, Cvetković et al., op.
cit., the eigenvector associated with the maximal eigenvalue is (1, 1, . . . , 1)T. As a result, the role
played by this eigenvector in the qualitative discussion of circular interaction pertains to all social
interactions settings represented by regular graphs, that is where all agents have the same number
of neighbors. In other words, the relative persistence result that we identify below with the circular
interaction topology actually applies to all regular interaction topologies. Second, isotropic steady
states for the entire economy would be either stable, as when m = m∗−,m∗

+, or unstable, m = m∗.
Third, the nature of the time map suggests that the dynamical system (19) possesses no periodic
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orbits. Fourth, the analysis following Equ. (19) above may be extended, in particular, to the
case where the interaction topology results from a random graph, where any two agents may be
connected with probability p [ Erdös and Renyi (1960) ], provided that we normalize by means
of the largest possible degree, that is the size of the interaction graph, I. From Cvetković et al.
(1988), p. 79, it follows that the largest eigenvalue of the adjacency matrix grows according to pI,
as I tends to infinity. The above existence and stability results carry over to an economy whose
interaction topology results from pure randomness. Fifth, as the properties of the spectrum of
certain classes of interaction topologies are known [Cvetković et al., op. cit.], one could obtain
specific results for such classes, as confirmed by treating stylized topologies separately. Sixth,
the mean field case, Brock and Durlauf, op. cit., yields: ∆mt = βJ tanh′ (βh + βJm∗) ∆mt−1.

Therefore, local stability depends entirely upon the magnitude and sign of βJ tanh′ (βh + βJm∗) ,

exactly as in (21) above. The steady states exhibit “symmetry breaking”: the symmetric one
is unstable, βJ tanh′(0) > 1, while the asymmetric ones are stable: βJ tanh′

(
βh + βJm∗

+

)
< 1;

βJ tanh′
(
βh + βJm∗−

)
< 1. Seventh, the importance of nonlinearity is underscored by contrasting

with linear models, even in the unbalanced graph case, as in Brueckner and Smirnov (2004),p. 10.
In that case, the system converges to a uniform outcome, which is defined as a weighted sum of
the initial positions multiplied by the left eigenvalue of N−1JΓ.

We see below that with symmetry, J = JS , for the star interaction, and JF = JB, for the
cyclical and path interactions, the above equations imply the same steady state equation, which
coincides with that of the Brock-Durlauf mean field theory case, Equ. (7). To understand how the
interaction topology affects the dynamics of adjustment to a steady state even when we do impose
symmetry, we need to perturb the steady state equilibrium.

It should be noted that although individuals may be in either of the two realizations of the
discrete state, the dynamic adjustment was defined earlier in terms of the expected choice of
neighbors in the previous period. In that case, when self-consistent expectations exist in the Brock-
Durlauf model, then Proposition 6, ibid., guarantees that the sample average population choice
converges weakly to the self-consistent expectation, the equilibrium solutions of (7). Blume and
Durlauf (2003) examine the stochastic dynamics of this model. They show that when individuals
revise their choices at independent random times given by a “Poisson” clock by looking at all other
agents’ lagged choices and if their number is large, then the mean decision obeys the continuous-time
counterpart of the mean-field case.

3.2.1 Dynamics of Star Interaction

Adapting (19) to this topology yields m1,t = tanh (βh + βJSm−1,t−1) , and m−1,t = tanh (βh + βJm1,t−1) .

Linearization of the equations around a steady state (m∗
1,m

∗−1) yields a two-dimensional system:
[

∆m1,t

∆m−1,t

]
=

[
0

βJτ−1

βJSτ1

0

] [
∆m1,t−1

∆m−1,t−1

]
, (22)

where τ1 ≡ tanh′
(
βh + βJm∗−1

)
and τ−1 ≡ tanh′ (βh + βJm∗

1) .
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Working in the usual fashion, the eigenvalues of the matrix in the R.H.S. of (22), satisfy λ2 =
τ1τ−1β

2JJS . Therefore, if JJS > 0, and since τ1, τ−1 > 0, then the eigenvalues are real and have
equal magnitudes but opposite signs: |λ| = β

√
τ1τ−1JJS . If, on the other hand, JJS < 0, then

the eigenvalues are conjugate imaginary. In either case, we have that if the economy is near an
asymmetric (symmetric) equilibrium for the agents outside the center and for the agent in the
center, βτ1|JS | < 1, and βτ−1|J | < (>)1, the eigenvalues have absolute values less (greater) than
1, and the dynamic adjustment is stable (unstable). Finally, if the economy is near an asymmetric
equilibrium for the agents outside the center and the symmetric one for the agent in the center,
βτ1|JS | < 1, and βτ−1|J | > 1, the eigenvalues may have absolute values greater than 1, depending
upon parameter values, and the dynamic adjustment would be unstable. The presence of factor
β
√

τ1τ−1 carries the impact of the nonlinearity of the dynamics for the linearized model. Again,
the instability of the symmetric steady state is more pronounced the larger are βτ1 and βτ−1.

10

The general solution of (22) when JJS > 0 is given by:

[
∆m1,t

∆m−1,t

]
= λt


 A1 + A−1(−1)t

√
Jτ−1

JSτ1

(
A1 −A−1(−1)t

)

 , (23)

where A1, A−1 are constants that reflect initial conditions. For example, if ∆m1,0 = 1, ∆m−1,0 = 0,

A1 = A−1 = 1
2 . Clearly, the solution reflects dampened cob-web like oscillations. Oscillations also

occur if JJS < 0.

3.2.2 Dynamics of Cyclical Interaction

Adapting (19) to this topology yields: mi,t = tanh
(
βh + 1

2β(JBmi−1,t−1 + JF mi+1,t−1)
)

, i =
1, . . . , I. Linearization of this equation around its isotropic steady state m∗, that is, one of the
solutions of (11), yields:

∆mi,t = tanh′
(

βh +
1
2
β(JBm∗

i−1 + JF m∗
i+1)

)

×
[
1
2
βJB∆mi−1,t−1 +

1
2
βJF ∆mi+1,t−1

]
, i = 1, . . . , I. (24)

Let ∆mt := (∆m1,t, . . . ,∆mI,t)T; This above system, for the case of JF = JB = J, may be written,
equivalently as:

∆mt = βτCJ · 1
2
ΓC ·∆mt−1, (25)

where τC := tanh′
(
βh + 1

2β(Jm∗
i−1 + Jm∗

i+1)
)

. The adjacency matrix ΓC has as rows the permu-
tations of (0, 1, 0, . . . , 1). The general solution to equation (25) can be written, in the usual fashion

10We note that the dynamics of the model continue to reflect properties of both the topology of interaction and
the nonlinearity. This is somewhat obscured by the fact that the product of the eigenvalues of the adjacency matrix,
−(I − 1), cancels out because of the division by I − 1.
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for linear systems and after a number of tedious steps11, as a linear combination of the eigenvec-
tors, each multiplied by its respective eigenvalue raised to the power of t, and weighted by arbitrary
constants, which are determined by initial conditions. Specifically, let us assume that I is odd and
therefore write:

[∆m1,t, . . . , ∆mI,t]
T = A1(βJτC)t [1, . . . , 1]T+A2

(
βJτC cos

(
2π

I

))t [
cos

(
2π

I

)
, cos

(
4π

I

)
, . . . , 1

]T

+A3

(
βJτC cos

(
2π

I

))t [
sin

(
2π

I

)
, sin

(
4π

I

)
, . . . , 0

]T
+ . . . , (26)

where A1, . . . , denote constants which are computed from initial conditions.
To see the implications of this model, consider that the system is originally at a steady state

equilibrium when it is shocked at time 0 by changing agent 1’s decision, say ∆m1,0 = 1, ∆m2,0 =
11We have in closed form, from Brockwell and Davis (1991), p. 133–138, and Anderson (1971), Theorem 6.5.2, p.

279–281, the eigenvalues and eigenvectors of 1
2

times the adjacency matrix for the cyclical interaction, ΓC . Specifically,
if I is odd, the eigenvalues of this matrix are

{
cos 0 = 1, cos

(
2π

I

)
, cos

(
2π

I

)
, cos

(
4π

I

)
, cos

(
4π

I

)
, . . . , cos

(
(I − 1)π

I

)
, cos

(
(I − 1)π

I

)}
.

The eigenvalues come in pairs, so that there are 1+ I−1
2

distinct roots. The eigenvector corresponding to the eigenvalue

1 is (1, 1, . . . , 1)T, and to the eigenvalues cos j2π
T

, j 6= 0, I
2
, there correspond the eigenvectors

(
cos

(
j
2π

I

)
, cos

(
j
4π

I

)
, . . . , 1

)T
,

(
sin

(
j
2π

I

)
, sin

(
j
4π

I

)
, . . . , 0

)T
,

if I is odd. If I is even, the eigenvalues are
{

cos 0 = 1, cos
(

2π

I

)
, cos

(
2π

I

)
, cos

(
4π

I

)
, cos

(
4π

I

)
, . . . , cos

(
(I − 2)π

I

)
, cos

(
(I − 2)π

I
, cos π = −1

)}
.

The eigenvector corresponding to the eigenvalue 1 is (1, 1, . . . , 1)T, and to the eigenvalues cos j2π
T

, j 6= 0, I
2
, the same

as above. The eigenvector corresponding to the eigenvalue −1, is (−1, 1,−1, . . . , 1)T.
Instead of this approach, we may work, following Turing (1952) and Glauber (1963)12, from first principles

and seek a general solution for Equ. (24) in the form Aζiρt, where A is a constant and ρ, ζ are unknown,
generally complex, numbers to be determined. Then we substitute into Equ. (24) to find its general solu-
tion for the special case of JB = JF = J. We note that for cyclical symmetry, it must be the case that
ζI = 1. In other words, the complex number ζ must assume the values of the I basic complex roots of 1,
that is:

(
1, exp[ 2π

I

√−1], . . . , exp[ 2π(I−1)
I

√−1]
)

. We then substitute into Equ. (24) and obtain the eigenvalues:

ρ = τCJζ−1 + τCJζ, where τC := tanh′
(
βh + 1

2
β(Jm∗

i−1 + Jm∗
i+1)

)
. Proceeding in this fashion is rather tedious,

however, because we need to transform back into real quantities.
This solution technique was employed by Turing (1952). A special case of Glauber’s model, the “infinite ring” case,

that is when I →∞, is solved by Ellis (1985), Theorem V. 10.4, p. 190–203. The circle model, studied in depth by
Eisele and Ellis (1983), gives rise to some features which are absent from the Curie-Weiss model, namely a new kind
of phase transition described in terms of random waves.

The general properties of the dynamics of differential equations of this type have received attention in the literature.
Notable are the contributions of Hirsch (1982), who shows that such systems of ordinary differential equations have
bounded solutions that converge to steady states or to periodic orbits. Mallet-Paret and Smith (1990) allow only
backward feedback and show that the Poincaré–Bendixson theorem holds, roughly speaking, for such equations.
Elkhader (1992) studies the general properties of bounded orbits of deterministic systems of differential equations
roughly corresponding to our cyclical interaction case. His is the only paper that allows for backward and forward
feedback. Our results are broadly consistent with those in ibid., who shows that the omega limit set of such orbits
contains a steady state or a nonconstant periodic orbit.
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. . . , ∆mI,0 = 0. We thus have I equations (26) in the unknown constants A1, . . . , AI , that reflect
the initial conditions. These equations may be solved uniquely since the I eigenvectors span the
space.

The solution (26) implies oscillatory behavior with spatial variation. If the factor βJτC were
not present, as in the linear case, as t tends to ∞, the system would tend to the eigenvector
corresponding to the maximal eigenvalue, which in that case would be 1. The corresponding
eigenvector is (1, 1, . . . , 1)T. The economy would exhibit persistence, in that case. However, the
factor βJτC changes this. The amplitude of the oscillations has a maximum given by the maximal
eigenvalue βJτC . The oscillations range from βJτC to −βJτC , depending upon the position of an
agent on the circle. That is, because the eigenvectors form an orthonormal set, all eigenvectors
other than the one consisting of ones contain negative terms. If, as we assumed, the economy starts
from an isotropic equilibrium, then the eventual pattern of states would be determined by whether
the starting isotropic equilibrium is a stable or unstable one. If all agents start from a stable
equilibrium, then these amplitudes all have absolute values less than 1, because the eigenvectors
form an orthonormal set. It follows that the amplitudes of the oscillations diminish over time, and
the economy tends to return to the same isotropic steady state that it started from. If, on the
other hand, the economy starts from the unstable isotropic equilibrium, βJτC > 1. Because the
magnitude of the oscillations varies spatially, depending upon the position of an agent on the circle,
and is bounded upwards by βJτC , even when the economy starts from the unstable equilibrium,
some agents would not be changing their decisions.

The system (24) can be studied further, even if JF 6= JB, because the matrix is circulant and
its diagonalization is accomplished by means of the Fourier matrix that diagonalizes all circulant
matrices [ Davis (1979), p. 73; Brockwell and Davis (1991), p. 135 ] The solution in the general
case of JF 6= JB, involves, intuitively, two “trains” of I oscillatory terms with different amplitudes,
indexed by the individuals and modulated by time-varying amplitudes, which move in opposite
directions around the circle. In either case, that is, in either the general or the specific case, the
spatial fluctuations can be interpreted as cluster emergence.

Our results are reminiscent of Danny Quah’s findings on cluster emergence in continuous spatial
settings, which occurs for reasons that are identical to ours [ Quah (2000) ].13 Aside from Quah’s
use of continuous space and time, the present model has a key implication that is entirely due to
the multiplicity of steady state equilibria. Once disturbed, all agents in the system will ultimately
return to a steady state, which may be either the upper or the lower, as the symmetric one is
unstable. While after the symmetric steady state equilibrium is disturbed, adjustment to a new
steady state is associated, as in Quah’s case, with spatial clustering, where some individuals may
end up in the positive and other in the negative steady states. However, unlike Quah’s case,
clustering here is permanent.

13Technically, the similarity of these results originates in the fact that for consistency, the solution must obey cyclical
symmetry, which brings us to circulant matrices, whose eigenvalues involve the complex roots of 1. In contrast, Quah
works with Toeplitz operators, which are the continuous time and space counterparts of circulant matrices.
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3.2.3 Small versus Large Neighborhoods

Does the speed of adjustment vary with neighborhood size? We can address this question by
extending the range of local interactions in the model so that agent i is influenced by agents
{i − Ln, . . . , i − 1, i + 1, . . . , i + Ln}, Ln ≤ I − 1. We set JB = JF . The counterpart of Equ. (19)
implies that the cyclical interaction model with larger neighborhoods possesses the same steady
states as the solutions of (11). The counterpart of Equ. (24) becomes:

∆mi,t = tanh′
(

βh +
1

2Ln
βJ(

Ln∑

`=1

[m∗
i−` + m∗

i+`])

)

×βJ
1

2Ln

[
Ln∑

`=1

[∆mi−`,t−1 + ∆mi+`,t−1]

]
, i = 1, . . . , I. (27)

The counterpart of Equ. (25) for Equ. (27) involves a real symmetric circulant matrix ΓCN , whose
eigenvalues and eigenvectors are known in closed form [ Proposition 4.5.1, p. 134–135, Brockwell
and Davis (1991) ]. 14 Let us define τS ≡

(
βh + 1

2LβJ(
∑L

`=1[m
∗
i−` + m∗

i+`])
)

βJ. The eigenvalues
and eigenvectors of matrix 1

2ΓCN again involve sine and cosine terms. The maximal eigenvalue is
equal to 1, and the corresponding eigenvector is (1, 1, . . . , 1). The remaining eigenvalues come in
pairs, if I is odd, or there are I−2

2 pairs of double eigenvalues and an additional distinct one, if I

is even.
Dynamics for more general cyclical interaction cases may be studied even when the backward

and forward interaction coefficients differ, as long as the pattern of dependence gives rise to a
circulant matrix. The presence of both local and global interactions, that is where agent i is
influenced by agents {i− 1, i + 1} and by the mean state of all agents, can also be handled. It may
be put in the above form and its dynamic analysis involves a circulant matrix.

3.2.4 Dynamics of Path Interaction

Adapting (19) for the path interaction model yields:

m−L,t = tanh (βh + βJF m−L+1,t−1) ; (28)

mi,t = tanh
(

βh +
1
2
β(JBmi−1,t−1 + JF mi+1,t−1)

)
,−L + 1 ≤ i ≤ L− 1. (29)

mL,t = tanh (βh + βJBmL−1,t−1) . (30)

14From Davis (1979), p. 72–73, we have that all circulant matrices of the same order have the same set of
(right) eigenvectors, the columns of F ∗, ibid., 32. Let a circulant matrix be defined by rows being permutations of
(c1, c2, . . . , cI). Its eigenvalues are complex and given by λj = φ

(
2π
I

(j − 1)
)

, j = 1, 2, . . . , I, where

φ
(

2π

I
(j − 1)

)
≡ c1 + c2 exp[

√−1
2π

I
(j − 1)] + . . . + cI exp[

√−1
2π

I
(j − 1)(I − 1)].
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It turns out that equilibrium is still characterized by “spatial waves,” similar to the cyclical inter-
action case. Linearization of Equ. (28) – Equ. (30), around an isotropic equilibrium, and writing
the solution in the standard fashion for the deviations from an isotropic steady state15 yields:

[∆m−L(t), . . . ,∆m0(t), . . . ,∆mL(t)]T = A−L

(
1
2
βJτL cos

(
π

2(L + 1)

))t

[
sin

(
π

2(L + 1)

)
, . . . , sin

(
π2

2(L + 1)

)
, . . . , sin

(
π(2L + 1)
2(L + 1)

)]T

+A−L−1

(
1
2
βJτL cos

(
π2

2(L + 1)

))t [
sin

(
π2

2(L + 1)

)
, sin

(
π4

2(L + 1)

)
, . . . , sin

(
π2(2L + 1)
2(L + 1)

)]T
+. . . ,

(31)
where , A−L, . . . , AL, denote constants which are computed from initial conditions.

There is an important, though subtle, difference from the circular interaction case: the maximal
eigenvalue of the dynamical system associated with path interaction is equal to cos

(
π

2(I+1)

)
and

thus less than 1. The dynamics are characterized by spatial oscillations that are again transitory
but there is no relative persistence. However, the importance of this fact vanishes asymptotically,
as L → ∞. In fact, the case of interactions along an infinite line is particularly interesting and
fortunately, lends itself to explicit treatment.

When we let the number of agents tend to infinity, the role of the end agents vanishes asymp-
totically. When we linearize around a stable isotropic steady state and use z− tranform techniques,

15By linearizing respectively for agents −L, −(L− 1), . . . , L− 1, and L,

τ−L := tanh′
(
βh + βJF m∗

−(L−1))
)

,

τL := tanh′
(
βh +

1

2
β(JBm∗

i−1 + JF m∗
i+1)

)
,

τ+L := tanh′ (βh + βJBm∗
L−1)) .

For the symmetric case where JF = JB = J, and given that we linearize around an isotropic equilibrium, we have
that: τ−L = τ+L = τL. We express Equ. (28) – Equ. (30) as a system of 2L + 1 equations in matrix form:




∆m−L(t)
.

∆m0(t)
.

∆mL(t)


 = βJτL 1

2




0
1
.
0
0

1
0
.
0
0

0
1
.
0
0

.

.

.

.

.

0
0
.
1
0

0
0
.
0
1

0
0
.
1
0







∆m−L(t− 1)
.

∆m0(t− 1)
.

∆mL(t− 1)


 .

The matrix in the RHS above is no longer a circulant. However, the eigenvalues and eigenvectors of 1
2

times this
adjacency matrix have been studied by Anderson, op. cit., p. 290, Equ. (62). The adjacency matrix is an (2I + 1)×
(2I + 1) matrix, whose first and last rows are (0, 1, . . . , 0) and (0, 0, . . . , 1, 0) respectively and rows 2 through 2I are

the 2I +1 vector (1, 0, 1, . . . , 0) and its permutations. Its eigenvalues are given by: 2 cos
(

π
2(I+1)

i
)

, i = 1, . . . , 2I +1;

the corresponding eigenvectors are given by

(
sin

(
π

2

s

L + 1

)
, sin

(
π

2

2s

L + 1

)
, . . . , sin

(
π

2

s(2L + 1)

L + 1

))T

, s = 1, . . . , 2L + 1.

This result allows us to solve the above system in the standard fashion and obtain Equ. (31) in the main text.
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16 the term
(

1
2βJτL

)t
tends to 0 as t tends to ∞. As the “disturbance” propagates through so-

cial interactions over time, it has a transient effect on each agent: the change originally increases,
reaches a peak and then decreases. This response is like two blips that move in opposite directions
away from agent 0. However, the symmetry and the setting and intuition from the spectral theory
of random fields suggest that this infinite path case should be equivalent to the infinite circle case.

In concluding the analysis of local interaction, as represented by cyclical interaction and by path
interaction, we wish to underscore, once again, important similarities and differences. Dynamics
in both cases involves spatial oscillations. The cyclical interaction case involves exhibits relative
persistence, which is due to the regularity of the social interactions topology.

4 Extensions

Several possible extensions come to mind. It is possible to study the evolution of the second mo-
ments of individuals’ decisions. It would be interesting to examine the impact of the spatial extent
of interactions upon the speed of adjustment. Ellison (1993) and Young (1998) have emphasized the
importance of local interaction for the speed of adoption of norms. They show that when individu-
als interact mainly with small groups of neighbors, then “the smaller the size of the neighborhood
groups, and the more close-knit they are, the faster the transition time for the whole population ”
[Young, op. cit., 98–99].

Several ways in which the model may be extended are noteworthy. One is a production inter-
pretation, where interactions suggest synergies between agents. Second, interactions may model

16It is convenient to apply the z−transform to the entire system of equations (29).This is the discrete-time coun-
terpart of the treatment in continuous time by Glauber, op. cit., for the linear ring case. We define L(z, t), the
z−transform of the sequence of deviations DM(t) = {∆mi(t)}i=∞

i=−∞ :

L(z, t) =

i=∞∑
i=−∞

zi∆mi(t).

It follows that by multiplying both sides of (24) by zi and summing up for all i’s, we have:

L(z, t) =
1

2
βJτL(z + z−1)L(z, t− 1).

This may be solved to yield

L(z, t) = L(z, 0)
(

1

2
βJτL

)t

z−t
(
z2 + 1

)t
.

L(z, t) may be obtained as power series by noticing that the term
(
z2 + 1

)t
may be written in terms of the binomial

expansion formula.
Intuitively, L(z, 0) carries the impact of initial conditions. We may solve for L(z, t) by assuming a set of initial

conditions. Suppose, for example, that all deviations at 0 are equal to 0 except for ∆0(0) = 1. In that case,

L(z, 0) = 1, and L(z, t) =
(

1
2
βJτL

)t ∑t

k=0
t!

k!(t−k)!
z2k−t. The solutions for ∆i(t) may be recovered from L(z, t) in the

obvious way, as the coefficients of the powers of the zi’s. That is, the solution for ∆mi(t) is given by the coefficient
of zi in the power expansion for L(z, t). Writing the terms of the summation in the r.h.s. of the above yields:

z−t + tz2−t + (t−1)t
2

z4−t + (t−2)(t−1)t
6

z6−t + . . . + tzt−2 + zt. Since for every t, the binomial coefficient in the r.h.s. of
the above increases with k, reaches a maximum, and then declines, the impact on the coefficients of the powers of z

depends on the magnitude of
(

1
2
βJτL

)t
, as well, which may be increasing or decreasing over time, depending upon

the which particular isotropic equilibrium we start from.
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trade among agents (nations). Puga and Venables (1997) explore the impact upon welfare from
the creation of free trade areas, which would correspond to our complete pairwise interactions case,
in contrast to “hub-and-spoke” arrangements, whereby a country liberalizes bilateral trade with
several other countries, with barriers remaining among those other countries. They show that the
“topology” of patterns of trade arrangements (interactions) does matter. In view of such potential
applications, it would be interesting to see the impact of interactions patterns on the persistence
of center vs. periphery type phenomena among countries engaging in liberalizing trade and the
sequence with which they actually entered into such arrangements. Third, it would be interesting
to further explore econometrics with models of interacting agents, where agents to choose whom to
interact with [ c.f., Bala and Goyal (2000) ] and to allow for preference heterogeneity [ c.f., Cont
and Lowe (2003) ].

5 References

Anderson, T. W.: The Statistical Analysis of Time Series. New York: John Wiley and Sons 1971.

Asavathiratham, C: The Influence Model: A Tractable Representation for the Dynamics of Net-
worked Markov Chains. Ph. D. thesis, Department of Electrical Engineering and Computer
Science, MIT, October (2000).

Bala, V., and Goyal, S.: An Noncooperative Model of Network Formation. Econometrica, 68, 5,
1181–1229 (2000).

Bigelis, S., Cirillo, E. N. M., Lebowitz, J. L., Speer, E. R.: Critical Droplets in Metastable States of
Probabilistic Cellular Automata,’ Physical Review Letters E, 59, 4, April, 3935–3941 (1999).
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