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ABSTRACT

We present a model of city size distributions that emphasizes the importance of human capital ac-
cumulation. We then use it to explore the evolution of city size distributions in the United States by
means of a newly constructed data set. The data are from the U.S. Census and cover metropolitan
areas from 1900 to 1990. We examine in some detail the dynamics in the evolution, using both a
variety of parametric and non-parametric distributional approaches, including the Pareto law, and
consider convergence aspects of those dynamics. We show that entry of new cities is an important
characteristic of the U.S. experience, and that the U.S. urban system appears to be characterized
by divergent growth, if spatial evolution is ignored, and by convergent growth in the presence of
very significant regional effects.
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EVOLUTION OF THE U.S. CITY SIZE DISTRIBUTION

1 Introduction

The empirical study of trends in city size distributions has engaged economists since the beginning
of this century. It has attracted renewed attention recently, in part because of two reasons. First,
the cumulative effect of important contributions by the new urban economics literature [Fujita and
Thisse (1998)] have heightened the need for new empirical work. Second, the topic appeals to those
enamored by the “universality” of power laws [Gell-Mann (1994)].

Important contributions to the city size distribution literature are found in the work of J.
Vernon Henderson, which determines city size by integrating international trade theory with urban
economics. As summarized in Henderson [ (1974; 1987; 1988)], this fundamental approach proposes
a model of optimum city size, which balances the benefits of larger city size with its costs in terms of
disamenities. Several of the implications of these theories have been tested, especially by Henderson
himself. To the best of our knowledge, however, Henderson’s theories and others we discuss below
have never been tested directly, that is, in terms of data for an entire systems of cities. Such an
endeavor is timely in view of the enormous attention which city sizes have been attracting in the
economic geography, regional economics and urban economics literature.

Some of the most recent empirical interest has been rekindled by Eaton and Eckstein (1997), who
use data from France and Japan and find urban systems in those two countries to be characterized
by parallel growth, that is, city size distributions appear to have remained unchanged over many
years.

In Section 2 we review the significant literature on city size distributions from early in the
twentieth century to the present. In Section 3 we propose a model of city size distributions within
the national economy. Our model emphasizes human capital: each city within the economy is
assumed to contribute to the production of national output by means of specialized labor. Demand

for national output drives the evolution of cities in the economy, in the simplest possible version



of the model. The model is aimed at explaining the endogenous emergence of cities and important
stylized facts associated with it, namely that earnings are positively related to city size, which is
generally regarded as an important piece of evidence linking productivity and city size.

We examine the pattern of growth rates of U.S. metro areas and find, in contrast to Eaton and
Eckstein, that the U.S. urban system appears to be characterized by divergent growth, if spatial
evolution is ignored, and convergent growth, if it is not. In order to examine this property of the
data further, we look at the data in more detail (and non-parametrically) by constructing transition

matrices to track the movement of each city in the distribution relative to the others.

2 Historical Perspective on City Size Distributions

Some economists, as well as geographers and other social scientists, have found it useful to invoke
the rank size rule, an alleged statistical regularity that is an outgrowth of the application of the
Pareto distribution to city size data. Stated in its various forms, the rank size rule — city size
multiplied by its rank in its system equals a constant — has been debated, calculated, and dismissed
several times over since its first mention (that we can find) in Auerbach (1913). Unlike other
scientists, economists are dubious of universal constants and power laws.!

Singer (1936 )suggested that city sizes follow a Pareto distribution; his courbe des populations)
parallels Pareto’s (courbe des revenues) [Pareto (1906)]. If city sizes follow a Pareto distribution,
its characteristic exponent «, in effect expresses the degree of concentration of population among
cities in a system. Proponents of the rank size rule assert that this coefficient is equal to 1.
Strictly speaking, if the Pareto exponent is equal to 1, then the size distribution possesses no finite
moments. In that case, the rank size rule may hold on its own, but it is not associated with an

interesting distribution function. Whether the critical coefficient, «, is actually 1; whether the «

coefficient equal to 1 is the true test of the rank size rule; and whether a Pareto distribution is

!There are several writers, including Auerbach (1913), who see the rank size rule as part of an overall scheme of
things. Lotka (1925) noted the rule as he sought similarity in the “laws” of various disciplines, including economics and
physics. Zipf (1949) made the rule an example of his overriding “Principle of Least Effort” in the conduct of human
behavior. See also Beckmann (1958). For the latest in this history of fascination with the rank size rule see Gell-Mann
(1994) and Krugman (1993; 1994; 1996). Krugman suggests that the rank size rule may be evidence of complexity
theory at work and links the “self-organization properties” of complex systems to the statistical regularity implied by
the rank-size rule. Krugman’s papers fit within the larger explanation of the relationship between increasing returns
and path dependence. See also Arthur (1994).



at all an appropriate law of city size distributions, are all questions addressed in the literature.
The higher the threshold city size, the higher would be the estimated Pareto exponent. Madden
(1956) provides an interesting non-parametric analysis of urban growth in the United States. He
emphasizes stability features in the distribution of growth rates and their evolution over time, where
he notes that great dispersion coexists with considerable intertemporal variation for individual
cities. We continue this line of inquiry by performing rank size regressions with our data set. We
look, however, at Standard Metropolitan Areas—as Singer would have said, “conurbations”.

The question of city size distribution also underlies Eaton and Eckstein (1997), which uses a
different method, but asks the same question: how has city size distribution changed over a long
historical period? Using nonparametrically data from France for 1876 to 1990, and from Japan for
1925 to 1985, they find evidence of “parallel” growth; that is to say, city size distributions in those
countries have remained almost the same over time.

Eaton and Eckstein’s selection of France and Japan was motivated by their roughly stable
geographical boundaries and the consistent availability of data. In contrast to such old countries as
France and Japan, the United States has grown by continuously expanding its land mass into a well
defined hinterland. New regions and cities have been brought into the U.S. urban system during
the nineteenth and twentieth centuries, older regions have grown and declined, and the spatial
distribution of economic activity has undergone some remarkable changes. In Europe, almost no
new cities were created during the twentieth century. The economic forces at work may well be
the same as in other economies. However, to the extent that “history matters”, the U.S. urban
system has developed with initial conditions quite different from those of other countries. It is for
this reason, too, that a fresh approach to the U.S. case is of particular interest. Our choice of the
time span of this study, the entire twentieth century, would allow us in principle to address some
of these phenomena. In contrast, Crihfield and Panggabean (1995) use data for U.S. metro areas
for 1960-1982. The peculiarities of cities and their openness is a natural subject during the revival

at present of empirical growth theories.



3 Theoretical models

The dynamics of city size distributions when cities of different sizes and types coexist are still not
very well understood. Several seminal studies by Henderson [Henderson (1974; 1983; 1987; 1988)]
rest on the notion that cities differ because of the demand for their products either as final goods
or intermediate goods. However growth in a Henderson-type system of cities would consist of the
economy’s producing an increasing number of cities, with the number of each city type growing at
the rate of growth of national population [Henderson and Ioannides (1981)]. A drawback of this
approach, which is not mitigated in the present paper, is the fact that national space is ignored.?
When that is brought into consideration, the location of new cities matter, as we shall discuss
further below. Eaton and Eckstein (1997) also work with the assumption that the price of non-
urban land use remains constant over time, or at least is exogenous as far as urban growth is
concerned, and thus exclude national space considerations as well.

The dynamics of city growth in Eaton and Eckstein (1997) are assumed to depend critically on
knowledge flows across a given number of cities. Each individual’s learning productivity depends on
a linear combination of the average levels of human capital. The assumption of a nationwide capital
market is a second source of the dependence of each city’s growth on all others’. Equilibrium city
sizes depend critically on the condition that, at the steady state, residents of different cities have no
incentives to migrate. At one extreme, human capital is general; at the other, it is perfectly city-
specific. Eaton and Eckstein show that the general case where human capital is partly city-specific
implies lower and upper bounds on city size distributions. These bounds share some common
determinants, including, in particular, the ratio of human capital at the corresponding cities at the
steady state, which is of course endogenous.

Models of the Henderson genre, on the other hand, imply a theory of city size distribution that
directly reflects preferences. For similar sets of reasons, such a theory implies that all determinants
are highly interdependent.

Henderson explains that the types of goods produced in cities help determine the size of those

2This is also true of Toannides (1994), where the Dixit-Stiglitz-Ethier-Krugman monopolistic competition model
is employed to motivate the existence of many city types. Even though that model is symmetric, it is straightforward
to see that a model of asymmetric preferences would produce different city types but not very different dynamics.
Ioannides (1997b) mitigates this. See also Fujita and Thisse (1998) for a comprehensive review of monopolistic
competition models of urban structure.



cities; if the types of goods currently in vogue change, then we would expect urban concentrations
to change. Thus city-specific factors combine with aggregate ones to determine the distribution of
city sizes. Abdel-Rahman and Fujita (1993) show that diversified and specialized cities can co-exist
in a system, with diversified cities being larger. If industrial structures change to favor smaller,
more specialized cities, we would see less concentration in large cities, ceteris paribus. If industrial
structures remain the same over time, we might see a parallel growth pattern, as in Eaton and
Eckstein. And if industrial structures change to favor larger cities, or demand conditions change

to favor the larger, more diversified cities, we might well see increasing concentration.

3.1 The Model

We propose a model that is aimed at explaining a number of very important stylized facts, such as
that urbanization is closely associated with economic growth and that earnings are positively related
to city size, which is generally regarded as important evidence linking productivity and city size.
Our model emphasizes human capital: each city within the economy is assumed to contribute to the
production of national output by means of specialized labor. Demand for national output drives
the evolution of cities in the economy, in the simplest possible version of the model. Localization
and other spatial factors have not been explicitly brought into the analysis here.

Let there be I, different cities at time ¢. Let P;; denote the size (in terms of possibly different
though not equivalent measures, such as population, or employment, or labor force ) of city i at
time ¢, and assume that data are available for cities 1 = 1, ..., [;, and time periodst =1,...7T. Let
Pyt =1,...,T, be the total urban population, Py = Zf‘;l Py, and Py = PI—‘jt the mean city size
at time . We shall suppress the time subscript when no confusion arises. The distribution of city
sizes is a way to approximately study the density distribution of economic activity over space when
its actual geographical features may be safely ignored. If we think of the distribution of economic
activity as a mathematical surface over physical space, urban areas may be identified with regions
where a certain threshold is exceeded.

City ¢ uses raw labor P; with capital and land to produce skilled labor of type ¢. The quantity

of skilled labor of type ¢ is denoted by X;, and its price by Wx,. We neglect in this paper the urban



use of land. ® We assume that city i’s demand for capital is independent of its size and equal to x.
This assumption is justified at equilibrium, as we shall see, where city size depends entirely on the
parameters of the technology with which skilled labor is produced in the city. * 77 and rx denote
the rental rates of land and capital, respectively.

National output is produced by using as inputs the quantities of specialized labor produced by

the economy’s set of cities, { X1, X2,..., X1}, along with land, L, and capital, K :
Y = G({X1, Xs,..., X1}, L, K). (1)

National production takes place according to constant returns to scale in terms of all inputs.
National land in the RHS of (1) represents constraints that major features of national geography
represent for national production, whereas capital stands for producible means of production. E.g.,
doubling of the land input would require that all convenient sites for port facilities, etc., also be
doubled. We assume the following form for G(-):
I
> X!
=1

where 0 < x < 1, a4+ 8+~ =1, and «, 3,7 > 0. The larger is x the greater the substitutability

X

Y =Gy LPK7, (2)

among different kinds of skilled labor in national production The aggregate production function (2)
is invoked to represent the use of specialized labor inputs { X7, Xs,..., X} by a large number of
different firms in the economy in order to produce a final good which may be consumed or invested.

Derived demands for land, capital and the specialized labor inputs are determined in perfectly
competitive conditions. Let Ry, Rk, Ry, and Wx; denote prices (rental rates) for land, capital,
the price of national output, and the price of specialized input i. The derived demands for X;, 7 =

1,...,1, readily follow:

= 1 Wx,
- B _x 1 _B _a
RYa RL “ RKa RfﬁRL “ RKa

Y, 3)

31t would be consistent with some historically observed patterns of urbanization during economic growth to ignore
initially the impact of population growth on the demand for land, and/or alternatively, the demand for capital.
However, at some point a stage will be reached where national production will compete with the needs of urban
production, which would set in a qualitatively new phase in national economic growth [Ioannides (1997b)].

4Since each city in our analysis is assumed to have a homogeneous labor force, the level of schooling represents
the total effect, and thus subsumes the impact on an individual’s productivity of the average level of schooling in the
community of his residence [Rauch (1993)]. Rauch (1993) finds that cities with higher levels of human capital have
higher wages and higher land rents. He finds that each additional year of SMSA average education can be expected
to raise total factor productivity by 2.8%.



where G is a function of parameters. The derived demands for L and K are given by: L = %Y
and K = '_yg—l‘;Y, where 3 and 7 are functions of parameters.

City i is assumed to be host to the sole producer of specialized labor of type %, who takes the
demand function, from (3), as given, and decides on its price. This modelling choice readily leads
to a determinate solution for the range I of the types of specialized labor, that is the number of
cities in our framework [Ioannides (1994)]. We assume that production of specialized labor by city
i occurs under increasing returns to scale in the style of Dixit and Stiglitz (1977).

Specifically, let the labor requirements function for city ¢ production be denoted by
P, =TI+ cX;, (4)

where II and ¢ denote, respectively, the fixed and average variable cost of city ¢ production. Optimal

pricing assumes the average wage rate, W;, at which labor is hired as given and implies the familiar

constant markup formula Wy, = %cWi. Free entry, in turn, leads to zero profits for all firms
producing differentiated inputs. This implies X; = %% which along with the labor requirements

function (4) yields:
P=_—IL (5)

3.2 General Equilibrium

With overall symmetry the prices of all intermediate inputs are equal. At equilibrium, &e price of
national output must be equal to its marginal cost: Ry = gORgR}{ (Zi[_l W:ﬁ> I , where
go is a function of parameters. It is convenient to normalize by choosing national output as the
numeraire, Ry = 1 which yields a relationship between the three unknown prices R, Rk, and
W. Equilibrium conditions for land and capital yield two additional equations: Ry = _%; Ry =
ﬁm. where k denotes city i’s demand for capital, which has been assumed to be inelastic.

National output is given by:
Wh+y

Ry R}

Equilibrium in the national labor market requires:

Y =y ST (6)

1
I =N, (7)



where N denotes the national labor force. Condition (7) determines the equilibrium number of cities
I. The model is closed by specifying the demand for national output, which in turn determines the
only remaining unknown, namely the equilibrium wage rate W.

The model may be solved as follows:

Y = vLf (K — k(1 — X)%Y N, (8)
W=w 1 (K —s(1 —x)%)yN%_lﬂa“‘%’; (9)
Ry = LA (K — (1 —x)%)vN%H““i); (10)

Rk =i LP (I‘( - ;%)H N, (11)

where v, w, 7, and Tg, denote functions of parameters. These expressions for equilibrium output
and factor prices reveal the impact of increasing returns. Not surprisingly, output and the rental
rates for land and capital increase with the size of the national labor force, were we to ignore the
increased demands for land and capital caused by such a change. But, so does the wage rate,
provided that a > x, namely that the higher the share of specialized labor in national output, the
higher the substitutability among different kinds of specialized labor which would be consistent
with generation of increasing returns in the manner suggested by this model. In that case, increase
in the national labor force increases national output more than proportionately. We also note that
output and factor prices are all decreasing functions of II, the fixed costs in the production of
specialized labor inputs.

Two remarks are in order. First, the positive association between total population and the wage
rate reflects directly the impact of increasing returns in the production of skilled labor. In contrast,
the modern urban economics literature in the Henderson genre has obtained a positive association
by endowing city production with Marshallian external effects: city size confers advantages to
city production which are external to each firm and internal to the city economy. Second, it
would be appropriate to interpret cities here as the smallest urban centers which are consistent
with exploitation of the advantage of increasing returns. This smallest city size may be identified
with what Krugman (1996) calls “lumps.” Appearance of increasing returns here is not getting
something out of nothing. The maintenance of “lumps” requires resources, which cuts into the

amounts of land and capital available for national production.



3.3 Dynamics

Equ. (7) implies that when the labor force grows the number of cities also grows, unless the capacity
of each city may grow through an increase in fixed costs II. This could be accommodated if we were
to assume that although II is a fixed cost relative to the production of a specialized input, it may
be decreased by means of capital investment and use of land, under decreasing returns to scale.
The dynamic evolution of the economy may be described once we have elaborated on the capital
accumulation process. We invoke, for simplicity, a simple neoclassical descriptive (Solow) growth
setting, where the economy saves a constant fraction s, 0 < s < 1, of aggregate national output.
Savings, sY;, are invested in capital used in national production. The law of motion for our model
of an urbanized economy readily follows from (8): K1 = suLP (K; — k(1 — X)%)’y Nt% Ha(l_%),
where v, denotes a function of parameters. We see that sufficiently strong increasing returns, i.e.
a > x, would make up for the fixity of land in national production. The law of motion when

transformed in intensive form becomes:

v k(1 =x)\" . 2—(@+B) o1 1
kt+1=é’1+nLﬁ (kt—T) Ny (), (12)

where k; denotes the national capital labor ratio, k; = %

At a cost of @ per capita, the economy avails itself of growth according to (12), which
reflects in effect an endogenous source of technological change, Nt%_(a+ﬁ). Provided that % >1—,
the more important capital is in aggregate production, the more likely it is that a given degree of
substitutability among specialized labor inputs will cause increasing returns sufficiently strong to
overcome the decreasing returns caused by the fixity of land.

We contrast with economic growth in a non-urbanized economy, in which case the counterpart

of (12) is:

U
k — n
LTS

CLORIN, (13)

where v, is a function of parameters. It is well-known that if a productive factor is available in fixed
supply and no exogenous source of technological change is present, standard neoclassical growth
with a constant returns to scale aggregate production function admits no steady state. Aggregate
output grows at a rate which is less than that of population. An economy growing along these lines

will find it advantageous to urbanize as soon as it is feasible in order to avoid further decrease in



per capita income.’

It would be consistent with the spirit of this approach if we were to assume that sites can
cluster into forming larger metro areas, as long as this process does not affect the technology of
production within each city. However, since we have not addressed spatial aspects, it is impossible
to say anything about where new cities would locate. Therefore, even though cities in this model
are identical, they may cluster into forming metropolitan areas of different sizes.

In the presence of population growth, the model of the urbanized economy will be associated
with unceasing growth, in spite of the absence of exogenous technological change. Unless Il

changes, the number of identical cities grows in proportion to population.

3.4 Different Types of Cities

The above model implies that cities in the economy are of the same type and size. We know,
however, that economies are made of cities of different types [ Henderson (1974; 1987; 1988) | and
sizes. It would be straightforward to assume a non-symmetrical CES aggregator in the RHS of (2).
In a growing economy, the number of cities grows, but there are at least two drawbacks of such a
formulation: one, there would in principle be only one city of each type (unless the CES aggregator
is defined to be of the mixed continuous-discrete type); two, the properties of the CES aggregator
assumed determine entirely the characteristics of the urban system.

In an effort to draw a greater distance between assumptions and conclusions, we propose a model
that takes advantage of increasing returns in a “vertical,” i.e., hierarchical sense. The intuition here
is to emulate the manner in which the productivity of raw labor is enhanced when it is transformed
into varieties of differentiated skilled labor which are used as inputs by a higher-level production
process. Let subscripts 0 denote variables and parameters associated with the production process
described above. Iy, denote the number of lumps, minimum-size cities, at equilibrium. We assume
that level-0 output, whose quantity Yj, is given by (8) above, may be used as capital input along

with land and differentiated products via an constant returns to scale production process, just as

5This will occur at the smallest value of ¢ for which

N1
I

Y o
v, LP (sunLﬂKng‘ — k(1 =) ) NXLI07%) > g, L8 (sun LP K7 N{) " Nii-

It may shown that if the effective increasing returns are sufficiently strong, then a transition to the urbanized phase
is feasible in finite time.

10



above, to produce output Yi,, and so on at level-2, etc. If we assume that the corresponding fixed
costs for producing specialized labor inputs satisfy Iy < II; < IIs < ..., then we can analyze the
relative magnitudes of the numbers Iy,, I1,, Is,, . . ., of the varieties of differentiated outputs required
by each ascending level of the hierarchy.

We assume that the output of the highest-level extant is used for consumption and investment;
all other outputs are used as intermediate products. The number of levels in the hierarchy evolves
endogenously, so that the highest-level output is used for final consumption and for investment
in the capital used by the level-0 process. That is, output at level-n requires I,, differentiated

products and occurs according to:

1 T o a1-1
Yo, = vy (Ln,)” (Ynlt —K(l - X)H—Nm) NI, X, n>1; (14)
n
3 1 Toe a(l-1)
Yo, = vo (Lo,)” | Kt — s(1 — X)H_ONOt N, 11, ; (15)
where Ly,, . .., Ly, denote land allocated to level-0, . .., level-n production, respectively, Ny,, ..., Ny,
denote raw labor used to produce the differentiated skilled labor used in level-0, ..., level-n produc-

tion, respectively, and K; denotes capital used in level-0 production. Finally, capital accumulation
evolves according to

Kpy1 = sY,,. (16)

By substituting back from the corresponding production function for Y,_i,, and by working
iteratively backwards we get an expression that contains the quantities of land and raw labor used

by each level of the hierarchy. E.g., for a hierarchy with level-0 and level-1, we have:

Y1, = vy (L1,)? (uo (Lo,)? (Kt - nlrIOXNOty NO%Hg(l_%) - nlﬁ—lxzvlty (Lo,)"? NEH?O_%),
(17)
and Ky = sYy,.

A key question which our framework must address is how many are the levels of the hierarchy.
We take up this question under the simplifying assumption that the capital requirements for city
production are not very large, k = 0. In the process we examine how our hierarchical setting
improves upon the identical city case. First note that competition for land implies that : Lo, =

ﬁL; L, = ﬁL. Competition for raw labor determines the allocation of N; to different city

11



types: Ny, = ﬁNt; Ny, = ﬁNt. We now note that an effect of hierarchical production is to
increase effectively the elasticities for both total land and total raw labor in the production of the
final good used for consumption and investment. That is, these elasticities with respect to land
and labor,respectively, are: (1 + ), and %(1 + 7). We also note that employment is higher the
higher the level of the hierarchy. As a result, the hierarchical organization of urban production
strengthens the increasing returns to scale that urban production with one city type makes possible

in the first place. In fact, the larger is the number of the levels of the hierarchy, the stronger is

this effect. In the limit, when n — oo, the elasticity of raw labor in the production of final output

8]

tends to ;ﬁ, the elasticity of land tends to 8 ﬁ, and the elasticity of capital used by the level-

0 production tends to 0 faster, the smaller is y. Consequently, ﬁﬁ + %ﬁ > 1, and therefore
increasing returns generated by the hierarchical model persist in the limit. It is this strengthening
of increasing returns which explains why the economy would be better off by adding an additional
level in the hierarchy.

Turning now to the model’s implications for city size distributions, we note that the numbers

of cities of type 0, and 1 are equal, respectively, to: Iy, = lﬁ—g(Not, I, = lﬁ—llet. These imply a

frequency distribution:

2 1

i T
fot: : 1 aflt: : 1 0 (18)

o T M flo * 1y
and a total number of cities given by:
2 4 1

L=01—-yXTn, 19
= X) 1+~ i (19)

We note that the relative proportion of larger cities would decrease with city size if v > Hﬁ__l, 1=

1,...,n.

In sum, our model delivers an explanation for different city types, within a hierarchical model
with an endogenous number of levels. This is significant in the context of the literature, ¢ as the
dispersion in city sizes continues to to attract a lot of attention. The extraordinary performance
of power laws as descriptions of size distribution of cities has not been satisfactorily explained, in

spite of recent attempts, notably by Krugman (1996), but also Gabaix (1997).” Our emphasis has

5See Matsuyama, (1995) for a hierarchical model with an exogenous number of levels.
"Gabaix (1997) emphasizes the emergence of power laws for city size distributions as an outcome of the statistical
properties of city growth rates.

12



been on developing models based on explicit economic economic models. It is for these reasons that
further research in this area is warranted.

The fact that a hierarchical model yields a more complex set of outcomes should not be surpris-
ing in view of the fact that it involves more complex interactions. In general, cities interact both
because of their geographical proximity and also because of economic proximity. E.g., the Boston
area and Silicon Valley (and other high-tech industry areas), or New York and Los Angeles (in the
world of entertainment) may be geographically apart but economically quite close. Our hierarchi-
cal model imposes strong restrictions on the pattern of economic interactions. These restrictions
should be relaxed in future work.®

We can imagine a variety of empirical exercises that would allow us to investigate the conclusions
of our model. The limited availability of data on cities, both over time, and in city-specific detail,
imposes constraints on such tests, even in the context of our newly constructed data set. The
theory we developed may be summarized in terms of a sequence of evolving distributions of city
sizes, { fo,, f1,,- -, fn,}, which will be referred to as f;, for short. We note whereas it is a drawback
of our theory that city sizes are proportional to exogenous parameters, Iy, Iy, ..., their frequencies

are endogenous.

4 Data

Cities pose special definitional problems for data.?” We define cities as geographic areas of great
concentration (density) of economic activity. Density of economic activity is not, of course, unam-
biguously defined; it could be in terms of value-added, employment, population, etc. City bound-
aries change, and changes in transportation technology and investment have altered the effective
economic boundaries of metro areas.

U.S. cities are defined by the Office of Management and Budget (OMB) based on data pro-
vided by the U.S. Bureau of the Census. The OMB moved to the Standard Metropolitan Area
(SMA) concept in 1950, to Standard Metropolitan Statistical Areas (SMSAs) after 1959, and, in

1983, to the Metropolitan Statistical Area (MSA)-Primary Metropolitan Statistical Area (PMSA)-

8We take up spatial interaction in Dobkins and Ioannides (1997).
9Technically, a metropolitan area must contain either a city of at least 50,000, or an urbanized area of at least
50,000 and total metropolitan population of 100,000 (75,000 in New England). See Bureau of the Census (1990).
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Consolidated Metropolitan Statistical Area (CMSA) classification.

Most data available prior to 1950 are for “city proper” sizes, reflecting legal city boundaries.
Such data are still available, but ignore the very real fact of suburban integration. Cities do not, in
a real economic sense, necessarily coincide with their legal boundaries and metropolitan area data
reflect this fact. Bogue (1953) used the 1950 SMA definitions to reconstruct what populations would
have been in those areas in each of the decennial years from 1900 to 1990. Most of the metropolitan
area data identify city units by counties. (In New England metropolitan area definitions may
involve parts of counties.) The most cumbersome issue involves these changing definitions within
the metropolitan area structure.

This state of affairs suggests three approaches which are appropriate for assembling “consistent”
data. First, it would be appropriate for some purposes to have populations for past years drawn up
under a consistent set of rules, such as the 1990 standards of the OMB. A second way of generating
consistent data would be to use the areas as defined at the time of the appropriate census. That
is, we use the 1960 definitions for 1960; 1970 definitions for 1970 data, etc. This requires returning
to original data sources for those years. A third way to generate the data would be to pick a
geographical area that defines a metro area, and to use it consistently. For example, we might use
the counties that define a metro area in 1990, and then assign those counties to the cities for each
year from 1960 forward. This is essentially what Bogue did in 1953. The issue here is to make this
method fit Bogue’s work, since the only source we have for the 1900-1940 data is Bogue. In other
words, we do not want a pronounced jump in the data between 1950 and preceding years on one
hand, and 1960 and succeeding years on the other hand. Because of the latter consideration, we
opt for the second method.

A major problem that arises in using each year’s data in contemporaneous definition is in the
span between the most recent censuses, from 1980 to 1990. Because the Bureau of the Census
redefined SMSAs as MSAs and CMSAs in 1983, the 18 large metropolitan areas which are now
CMSAs would seem to take an enormous jump in size. Therefore, we reassembled the 1990 data
to fit the 1980 definitions (by county). We consequently have metropolitan area data from 1900
to 1990. The 1900 to 1940 data are constructed using the 1950 definitions of SMAs according to

Bogue. The 1950 to 1980 data are consistent with the SMSA definitions in those years. The 1990
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data are reconstructed using the 1980 definitions. We believe that this method, while not perfect,
is the most consistent way to construct urban area sizes. Dobkins and Ioannides (1996) provides
more details on the data.

This method highlights a critical issue, the number of metropolitan areas in each census year. If
we adhere to the rough definition of metropolitan areas as having populations of more than 50,000
people, then we see a change in the number of cities each year. In 1900, there are 112 urban areas
that qualify; they grow to 334 by 1990. We believe that the number of new, “entering” cities, as
defined in each decade, is a key feature of the U.S. urban system, especially in its spatial aspects
as well, with many entrants appearing in newly developed geographical areas. In the remainder
of the paper we shall refer interchangeably to cities and metro areas, as defined here. Our task
and method therefore contrasts with Eaton and Eckstein, who premiss their study on an assertion
that the number of cities in Japan and France remain the same over the time periods involved. Of
course, this broadened approach is not costless.

We measure schooling by means of the number of students enrolled in school as percentage of
the 15-20 years of age grouping. Data unavailability has forced us to do with minor variations of
the base cohort in certain years. See Dobkins and Ioannides (1996) for further details.

We measure wages in terms of mean wage in cities proper, which are available for years 1900
1930. In 1940, Census reported details on the frequency entire distribution, up to a maximum of
$5,000. For 1950 and 1960, the median income is reported by SMSA’s and smaller cities. Since
1970, median earnings are reported separately for male and female workers. We averaged those
two numbers for each of the decennial years since then. We used the national CPI (1967 = 100) to
deflate them. It would have been more appropriate to use city-specific deflators. Such information
is available only for recent years when the CPI-U and other cost of living figures are reported for
selected metropolitan areas. See Statistical Abstract of the United States, 1994, No. 749. Local
indices show greater variability than the national index but their long-term trends are similar.
Our perusal of these numbers suggests strong correlations between city size and real earnings (and
personal income), if nominal amounts are deflated by the city-specific index for those areas for

which they are readily available.
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5 Empirics of the evolution of city size distributions

Since city sizes are the outcome of economic processes associated with interactions of thoroughly
open economic entities, one would expect such interactions to be important. When all cities in
an economy are sampled, their sizes exhibit extensive variation simultaneously in both the cross-
section, that is, across ¢ for given ¢, and the time-series, that is, across ¢ for given ¢, dimensions.
In most econometric time-series settings, one studies the dynamics of a vector of random variables,
whose dimension is fairly small and fixed. Time-series analysis aims at understanding of the dy-
namic behavior of such a vector and patterns of interactions among its components. Time-series
techniques utilize time averaging and other curve-fitting techniques, but do not involve averaging
across components of a vector. Cross-section and panel-data analyses involve investigation of the
behavior of the average (or representative) member of the each cross-section and deviation of each
individual observation from the average across all cross section units.

As Quah (1993) has forcefully argued, typical cross-section or panel data techniques do not allow
inference about patterns in the intertemporal evolution of the entire cross-section distribution. They
do not allow us to consider the impact over time of one part of the distribution upon another, i.e.,
of the development of large cities as a group upon smaller cities. Making such inferences requires
that one models directly the full dynamics of the entire distribution of cities. In contrast, typical
panel data analyses involve efficient and consistent estimation of models where the error consists of
components reflecting individual effects (random or fixed), time effects and purely random factors.
The evolution of urbanization and suburbanization may affect individual cities so drastically as to
render conventional methods of accounting for attrition totally inappropriate. As smaller urban

10 and given the small number of time series observations, non-

units fuse to create larger ones,
parametric or semi-parametric distributional approaches such as the one proposed here would be
the only appropriate ones. In fact, these techniques are appropriate when the sample of interest
is the entire distribution, and individual observations are used to recover information about the

entire distribution.

We may elaborate further the process of evolution of the system of cities by considering alter-

'%Such a process is aptly described by Simon (1955) and Krugman (1996). Similar phenomena are addressed by
the literature in economies with interacting agents. See Ioannides (1997a).
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native scenaria that articulate the spatial context. Consider first a situation where cities of uniform
sizes are uniformly spread over space. Appearance of new cities that are randomly scattered over
space is likely not to alter the pattern of uniformity. To the extent that geographical proximity
leads invariably to agglomeration, this setting implies creation of larger cities of uniform sizes. Con-
sider, alternatively, cities of uniform sizes scattered over space but in a way that exhibits clustering.
Appearance of additional cities of uniform sizes makes it more likely that ever larger cities will be
created through the agglomeration of existing ones. The availability of data are severely restricted
both in the time and the cross-section dimensions: there are only ten cross-sections, one for each
of the ten census years since 1900, with 112 metropolitan areas and 334 in 1990.

The paucity of the data naturally lends itself to techniques used by Quah (1993) and Eaton and
Eckstein (1997). That is, one may construct from population data a fairly low-dimensional vector
indicating the frequency of cities in each of a number of suitably defined intervals (cells).!! Let
f+ denote the frequency (density) distribution of Pj; at time ¢. Eaton and Eckstein assume that
f+ evolves according to a first-order autoregression (that applies to the entire distribution function

(rather than scalars or vectors of numbers):

fty1 =M - fi, (20)

where M is a matrix of parameters. If F; were restricted to be measures defined over a discrete

set, then M in (20) is a Markov transition matrix.!2

Absence of a random disturbance allows us to iterate (20) forward to get:
fos =M -M-...-M)- fy=M5 - f,. (21)

We may characterize the long-run distribution of city sizes by taking the limit of (21) for s — oo.

L All these studies use six cells, defined relative to the mean. Quah defines the end points within each distribution
as the mean in the respective period times (0, .25, .50, 1, 2, c0); Eaton and Eckstein define them as the mean times
(0, .30, .50, .75, 1, 2, 20).

2More generally, instead of (20) we have:

VAeR: Fi(A) = / M(z, A)F;_1(dz), where M : R x R — [0,1]
A

maps the Cartesian product of the real line R with its Borel sets R to the unit interval, then M would be a mixed-
discrete continuous analogue of a transition probability matrix. There is a fairly well-developed literature on the
invariant distributions of such generalized Markov chains [See Futia (1982); Quah op. cit.]. Arthur (1994), pp. 33-48
and pp. 185-201, provides additional insight. That is, in a nonlinear version of (22), Arthur et al. show that only
stable fixed points of M* can serve as limit points of f. This fact is particularly interesting within the urban model,
because city size is often not uniquely determined and, of course, not all solutions are stable.
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Divergent, convergent or parallel growth may be ascertained by the properties of foo = lim; 0 :
ft- If a limit distribution f. exists, then according to the Perron-Frobenius theorem it is given
by the eigenvector corresponding to the unique unitary eigenvalue of M, the nonzero solution of
[M — I]fs = 0], where 0] denotes a column vector of zeroes.

Parallel growth is understood to occur if f tends to a limit with non-zero probability over the
entire support. Convergent growth would occur if fo, is a mass point, and divergent growth if f
is a polarized or segmented distribution. Equ. (20) may be generalized to allow for a stochastic

disturbance, Uy,

feer = M*(ft,Upy1), (22)

where M* is an operator that maps (f;, U;11) to a probability measure. The random growth model
in Simon (1955) may be considered as a special case of processes consistent with specification (22).

Quah (1993) uses (22) with data for the growth of countries, and conditions his non-parametric
estimation on a number of “exogenous” variables. The transition dynamics are obtained for OLS
residuals of pooled cross-section and time-series observations, with no individual effects being al-
lowed for in those regressions. Individual effects, Quah argues, would remove, and thus leave
unexplained, the very object of analysis, the relative growth rates of nations. Eaton and Eckstein
(1997) do not allow for any conditioning and compute the long-run average transition probabilities.
They estimate M by computing the average M; ;.1 for all periods in the sample.

We adapt Equ. (22) in order to allow for new cities to enter according to a frequency distribution

e¢. If the number of entrants between ¢ and ¢ + 1 is I}*, I;1 = I; + I}*, then

L I
fro1 = —— M f; + =
Iiq Iy

Et. (23)

If My and +; = If—f: are time-invariant, then the above equation is amenable to the standard
treatment. Letting M and ¢ be the respective time-invariant values, we may iterate Equ. (23)

backwards to get:
t
fo=(1=0)" M fo+ > [(1 - )M]" "eer, (24)

7=0

where fy denotes the initial distribution of city sizes.
In general, if there are few or no entrants, « ~ 0, the homogeneous solution dominates: the

invariant (ergodic) distribution is a useful measure of the state of the urban system in the long
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run. If, on the other hand, ¢ is non-negligible, then the particular solution may not be ignored. In
fact, in that case, the magnitude of the largest eigenvalue of (1 — )M is (1 —¢), and the impact of
the initial conditions would be less important the higher is ¢, the number of new cities that have
entered over the last decade as a proportion of the new total number of cities.

Our approach may be adapted to accommodate a number of different possibilities. One would be
Simon’s “random urban growth” model [Simon (1955)]'%, which implies as its stationary solution a
law, approximated by a family of skew distributions of the form f(p;a,b, ) = p“—ﬂbp . This prediction
is, in principle, testable. Alternatively, other models, including the hierarchical model sketched in
subsection 3.3 above, would also imply laws that may be written as first-order autoregressions like
(22).

In our data, the values of +; are as follows: 11919 = .194, t1900 = .067; t1930 = .051, t1949 = .019,
t1950 = 012, 11960 = 229, t1970 = .136, 11980 = .245, and 11990 = .036. These numbers suggest a
non-stationary series and the intertemporal variations in ¢4 are interesting and worthy of special
analysis. In general, the stochastic specifications of Equ. (23) are very complicated. E.g., the forces
that cause growth and decline may operate quite differently at the upper level of the distribution
than at the lower one. The distribution of new entrants has a lot more mass at the lower end and
may reflect very different forces. Furthermore, the results of Arthur et al., [Arthur (1994)] have
bearing in the long run, whereas what we observe is clearly not a steady state process. It is for
these reasons that in the remainder of this paper we eschew a full analysis of the determinants of
M and concentrate instead on an approximate treatment of certain key aspects of the evolution of
city size distributions. We pursue further issues of entry of new cities in Dobkins and Ioannides

(1997).

13Briefly, Simon’s model considers that a new city, a lump, may either, with probability w, locate on its own, or,
with probability 1 — wo, attach itself to a “clump”, an existing agglomeration. The probability that a lump will join
an existing agglomeration is assumed to be proportional to the clump’s size (measured in lumps).
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6 Results

6.1 The Rank Size Rule Revisited

We start our study of the determinants of city size distribution by first returning to the methods

of Singer (1936).!* A random variable p is said to be Pareto distributed with parameters pg,¢

Po
p

if it has a density function given by f(p;po,s) = (pio)( )$*L, with support [pg, +00) and ¢ > 0.
The mean exists and is given by E(p) = ~“ypo, if ¢ > 1; the variance exists and is given by
Var(p) = «_Dgwpg, if ¢ > 2. [Spanos (1989), pp. 339-340.] The corresponding cumulative
distribution function is given by F(p;pg,s) = 1— (p%)*"”, the countercumulative probability function
by 1 — F(p;po,s) = (p%)*g, which by taking logarithms of both sides yields: ¢n[1 — F(p;po,s)] =
sfnpy — cénp.

When we apply the Pareto law with data and hold constant the parameter pg, in effect the size
that defines a metro area, then we would expect that as E(p) increases over time, the estimated ¢
would decrease. Consequently this rather mechanically produced decline in the estimated parameter
¢, for economies where metro area populations increase over time, should not be interpreted as
evidence against (or for) power laws.

We estimate the parameters of a Pareto distribution for each cross-section of cities in the ten

census years in our sample. The estimation is based on two versions of the equation:
En[l — th] =Ar—gbnpy tep,i=1,....I1;; t=1,...,T; (25)

where [1 — Fj;] is the empirical countercumulative distribution of X;;, the proportion of cities with
population greater than or equal to X;; at time £, and ¢; is a random variable that is identically
normally distributed across I for every . We allow for A; and ¢ to possibly be time-varying
parameters. This is, of course, a more general version of the equation used in the rank size rule

literature, and implies, as a special case, ¢; equal to unity.!® Finally, we note that when ¢; is

14Recently, geographers have become disenchanted somewhat with the Pareto law and its infinite upper tail, and
have estimated constrained Pareto distributions with a finite upper bound. See Roehner (1995).

5The usual configuration of this relationship in the rank size literature is to simply define y;; to be the rank of
city size Pj:, or alternatively expressed, the number of cities with size greater than or equal to Pj;. As explained
above, we define y;; to be the proportion of cities with size greater than or equal to P;; because we derive our Equ.
(25) from the countercumulative probability function of the Pareto distribution. Our formulation, in comparison to
the standard formulation, will leave the critical ¢; coefficient unchanged. However, our A; differs. Alperovich (1984)
insists that A; should be the logarithm of the size of the largest city, if the strict rank size rule is to hold. However,
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assumed to be normally distributed, estimations according to (25) are associated with a pseudo-
Pareto distribution. Our estimation results are reported in columns 3—6 of Table 3.

We have also estimated this equation by means of a semi-parametric method using generalized
cross validation (GCV) [Héardle (1990), p. 61]. For brevity, only the results for 1990 are juxtaposed
graphically on Figure 4, where the actual data are indicated with circles, the GVC-kernel estimate
by squares connected with a curve, and the OLS fitted line according to Equ. (25) above. Not
surprisingly, the GVC kernel estimate clearly fits the data much better than OLS. Its shape is
largely concave, and thus in sharp contrast to the convexity of the Pareto countercumulative.

Estimation of a true Pareto distribution is also possible, except that py must be set externally.
In our data, there is the obvious choice, namely py = 50,000. Its consequence for the maximum
likelihood estimate of ¢ is straightforward, as the latter is available in closed form: ¢ = m.
The larger is pg the larger is &, as a larger exponent is necessary for convergence.

The results reported on Table 3 show that the estimated ¢;’s are generally lower for the true
Pareto distribution, in which case they vary from .953 to .556, in 1900 and 1990 respectively, than
for the pseudo Pareto, in which case they vary from 1.044 to .993. Column 8 reports results for
the true Pareto distribution applied to the upper one-half of the sample, which vary from 1.212 to
.993. They are higher than when the entire sample is used and all but one, the one for 1990, lie a
bit above 1, thus confirming findings by the previous literature, including, most recently, Krugman
(1996).

These results imply an increasing concentration in the upper tail over time, which is to say
that more cities are getting larger relative to an increasing mean. The values of the constant
reflect the changing proportion of “rank” to the number of cities over time. The estimated ¢’s offer
indications of subtle change in the U.S. urban structure. Chow tests suggest that each year’s ¢
coefficient significantly differs from the succeeding year’s coefficient at the .01 level except for the
1950 to 1960 period (presumably because of the large increase in the number of cities). Obviously,
there is significant difference over longer time periods as well, including 1950 to 1990 and 1960 to
1990, 1900 to 1930 and 1900 to 1990.

The jump from 1900 to 1910 may reflect heavy foreign immigration during the first decade of

our A; is the logarithm of a city size minus the logarithm of the number of cities in the sample. The A; values are
reported along with the ¢ coefficients in Table 3.
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the century. The stagnation of the 1930s is suggested in the Table as is the resurgence of economic
activity in the 1950s. One of the most obvious movements is the much touted counterurbanization
of the 1970s.16 A more subtle reflection may be the move from manufacturing to service industries
in U.S. cities, a trend that begins in the 1950s and accelerates in the 1960s.

We see that the estimated ¢’s are much smaller when we use the entire sample than when
we use only the upper tail. This is not surprising, given that the sample mean is increasing and
the estimates depend on setting zy externally and holding it equal to 50,000. Still, the results
cast additional doubt upon the relevance of the Pareto distribution as a stylized fact for city size
distributions when applied to the entire distribution. We performed one additional estimation, that
is by means of the truncated Pareto distribution, as proposed by Roehner (1995), where the largest
city in sample is used to truncate the distribution. As expected the estimate tracked, but were
larger than, those of the true Pareto distribution applied to the entire sample.

All in all, we conclude that the estimate of the Pareto exponent is clearly close to 1. Having
said that, we note that the fact that the 1990 estimate is below should raise doubts about the
validity of strict rank-size rule. Our juxtaposition of the OLS and kernel estimates also contribute

to our reservations.

6.2 Empirical transition matrices

By coding the position of each city relative to the others within the distribution, we are able to
see whether or not specific cities move up or down in the distribution over time.!” We constructed
transition matrices, presented in Appendix A, in which each cell gives the proportion of cities which
start in a given quantile (column) in a particular year (representing 1900 in the first matrix) which
move to a particular quantile (row) in the next year (representing 1910 in the next census). Entries
in the diagonal indicate that cities are staying in the same category as in the previous time period.
Our categories are defined in terms of two alternative sets of intervals, namely one based on .30,
.50, .75, 1.00, 2.00, and 20.00 times the contemporaneous mean, and a second based on deciles.

The former facilitates a comparison with Eaton and Eckstein, whereas the second provides more

6 Mills and Lubuele (1995) examine population (and employment) growth among the quartiles of the U.S. city size
distribution. They find that the most rapid growth during the 1970s was in the third and fourth quartiles; in the
1980s, the fastest growth occurred in the top three quartiles.

"De Vries (1984), Ch. 7, appears to be the originator of this device in the study of urbanization.
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detail.

Both sets of empirical transition matrices suggest that concentration at the upper end of the
distribution becomes more pronounced over time: the diagonal entries are higher for higher per-
centiles. Another observation that follows is that most movements are to nearby cells, with very
few big jumps. In interpreting these findings, one must bear in mind that the mean is changing
over time.

We have averaged these decennial movements to get an average transition matrix for comparison
to the Eaton and Eckstein results. It is presented in the Appendix. As we might expect in the U.S.
data, there is somewhat more movement off the diagonal (compared to the French and Japanese
data). Most of that movement is toward greater concentration in the time period from 1900 to
1990.

We have also computed but do not report here the invariant distribution which is associated
with the average transition matrix (C.f. matrix M in (20)) for 1900 to 1990. The result confirms an
increasing concentration at the upper end of the distribution of city sizes. This is in great contrast
to the computed invariant distributions reported by Eaton and Eckstein, op. cit., for France and
Japan. So, it is not just an upward trend in the mean city size, but an overall, and sharp, tendency
of the city size distribution that we see.

We note that the stationary distribution, associated with the average computed transition
matrix for 1900-1990 (Table 3), contains most of its mass at the upper portion of its support.
However, at any point in time, the actual distribution contains the influence of the newly entering
cities, most of which (but not all) enter via the lower end of the support.

However, these transition matrices have limitations. They do not pick up the full effect of
“entering” cities and they do not offer us any more insight into why such changes might occur.
There are undoubtedly other variables that might impact on city size distribution. Collecting these
data is often constrained either by the number of cities involved or by the time range. In order to
give a sense of the change over the century, Table 1 presents descriptive statistics for decennial years
for the total U.S. population, mean and median city sizes, real Gross National Product, real interest
rate, the percentage of total employment in manufacturing, the average real value of agricultural

land and buildings, education and earnings. Unfortunately, the availability of only ten years of
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time series data prevents us from examining the impact of variables which vary only with time.

6.3 Dynamics of City Population

We now discuss the dynamics of city populations and growth rates. Understanding the possible
explanations for changing city sizes may shed some additional light on our question of evolving

distributions. Our regression equation is:
InPy; =a; +a; + bf’nf’i_l,t +e€i,t=1,...,I;; [, =1,...,334; t = 1910,...,1990, (26)

where P;; is the population of city 4 in time ¢, the random variable ¢;; is independently, identically
normally distributed for all ¢ and ¢, the a;’s as time effects, reflecting the total effect of time-
varying variables, and the g;’s as individual effects. Our setting suggests that fixed effects are more
appropriate, although assumption of random effects may occasionally be convenient.

We account for the possibility of regional effects, by coding each city in the sample by the
nine Census regions: New England, Middle Atlantic, South Atlantic, East North Central, East
South Central, West North Central, West South Central, Mountain and Pacific. Figure 5 is a
map indicating the boundaries of the nine regions and the number of cities located in each. Table
2 reports the descriptive statistics for all variables used in our regressions. The results of our
regressions according to Equ. (26) are reported in columns 1-3 of Table 4. The results suggest
strong individual effects, either in the form of random or of fixed effects.

The estimated coefficient of the lagged value of the dependent variable is very significant and
close to but less than 1, especially when fixed effects are assumed. Inclusion of time dummies is
very significant but does not alter this picture substantially. As for the regional dummy variables,
we see highly significant, positive impact for cities being located in the South Atlantic, East and
West South Central, and Pacific regions (in reference to the West North Central region).

The proximity of the estimate of the coefficient of the lagged value of the dependent variable is
suggestive of a unit root. While unit roots have attracted particular interest by the macroecono-
metric time series literature, several authors, including notably Quah (1994), have drawn attention
to special aspects of unit root inference in data structures resembling random fields, that is, where

the cross-section and time dimensions are comparable.'® However, in our case T' = 10, and clearly

'8Quah (1994) finds that the unit regression coefficient estimator is distributed neither (unbiased) normal at rate
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an order of magnitude smaller than Iy, which ranges from 112 to 334, making those methods inap-
plicable. We instead ran a number of OLS and panel regressions where we “impose” a unit root by
restricting the coefficient of the lagged value of the dependent variable to 1. Those restrictions are
rejected comfortably in terms of the likelihood ratio test at the one percent level of significance.
Several authors have used regressions along the lines of (26) to test for divergent vs. convergent
growth across national economies. Column 4 of Table 4 reports estimation results for the growth
rate of city population, defined as /nP; 1 —¥¢nP;, as a function of the logarithm of contemporaneous
population and of individual effects. Here the contemporaneous city population is treated as prede-
termined. The availability of only ten time periods makes it difficult to perform the battery of tests
necessary to determine convergence or divergence. fnP; has a negative and significant coefficient.
We have also worked with the growth rate using the standard definition instead of its logarithmic

approximation and obtained similar results.

6.4 Urban Labor Productivity and City Size

An indirect test of our theoretical model is provided by regressing labor productivity, measured by
earnings, against human capital, measured by education, and city size. The results are reported in
columns 5 and 6 of Table 4, where we have controlled for individual and time effects and for regional
effects. They suggest an important and highly significant effect of city size on earnings. A 10 per
cent increase in population is associated with 1 percent increase in productivity. The presence of
education is also highly significant and in agreement with a fair amount of recent research, e.g.,
Ciccone and Hall (1996), Glaeser et al. (1995), and Rauch (1993). As our estimated exponent of
the Pareto tail decrease over time, our results imply that urbanization is associated with increasing

inequality of earned incomes.

Op(N™ 3 ), as one might expect from standard panel data analysis, nor standard Dickey-Fuller at rate O,(™!), as one
might expect from standard time-series analysis. Instead, the estimator is consistent and asymptotically normal, but
with a non-vanishing bias in the asymptotic distribution.
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7 Conclusions

This paper discusses the implications for the theory of city size distribution of increasing returns to
scale leading to monopolistic competition. It proposes a rudimentary model of an urban hierarchy,
in which the tendency of monopolistic competition models to generate increasing returns associ-
ated with product diversity is reinforced when the productivity of labor is augmented by having
successive, vertically arranged set of sectors produce increasingly skilled labor. Broad implications
of the model are then tested by means of a new data set.

Our data set is constructed to reflect changing definitions of Standard Metropolitan Statistical
Areas from 1900 to 1990. While no ideal data set for cities exists, we feel fairly confident that
the one we have constructed anew reflects changing numbers of cities, changing city sizes and
the changing distribution. Our methods are designed to reflect the complexities of our panel of
observations, which vary across both time and cities.

We address in this paper city size distributions in the United States in the twentieth century
and the determinants of those distributions. The estimated Pareto distributions indicate small but
significant movement toward increasing inequality, based on a declining exponent of the Pareto tail
and increasing means.

We study in a non-parametric manner transitions over size distributions across each of the last
ten decades for the U.S. In contrast to Eaton and Eckstein’s findings for France and Japan, we find
increasing concentration toward the upper end of the distribution for the U.S. over time, in spite
of considerable entry of new cities. When we regress the population of metro areas against their
own lagged values as well as variables reflecting individual and regional effects the results suggest
that lagged own population has a significant coefficient which is close to but less than 1. Growth
rate regressions also suggest convergent growth.

There are undoubtedly other variables which might be influential. We would like to be able to
say something about commuting costs, because standard urban theory suggests that the changing
technology of commuting has contributed to urban spread. We will continue to search for a broader
set of measurable factors that might have an impact. Nevertheless, we have prescribed a method
and described results which we feel shed light on the shifting distribution of city sizes in the

United States to date and its implications for earnings inequality. Our work in progress on spatial
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interaction is also promising.
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Table 1

DESCRIPTIVE STATISTICS: DECENNIAL DATA

1900 — 1990!
1 2 3 4 5 6 7 8 9 10
Year | U.S. Pop. | Mean | Median GNP Interest | Manuf. | Education Agric. Earnings
(000) Size Size billion $ | rate (%) % % land value $
1900 75,995 259952 | 121830 71.2 5.95 36 27.8 81.58 1770
1910 91,972 286861 | 121900 107.5 3.82 36.1 27.6 134.62 1939
1920 | 105,711 | 338954 | 144130 135.9 -.50 39 25.4 105.98 1875
1930 122,775 411641 | 167140 184.8 6.39 32.5 38.3 98.32 2542
1940 131,669 432911 | 181490 229.2 1.76 33.9 44.4 72.20 1983
1950 | 150,697 | 526422 | 234720 354.9 7.45 33.7 53.9 81.01 2827
1960 | 179,323 | 534936 | 238340 497.0 1.35 31 63.2 107.07 4108
1970 | 203,302 | 574628 | 259919 747.6 5.12 274 74.2 139.65 4763
1980 | 226,542 | 526997 | 232000 963.0 7.97 22.4 70.0 271.29 3520
1990 | 248,710 | 577359 | 243000 | 1277.8 5.71 17.4 81.1 154.54 3842

All figures are taken from Historical Statistics of the United States from Colonial Times to 1970, Volumes 1 and 2,

and Statistical Abstract of the United States, 1993.

Columns 5, 6 and 9: GNP, interest rates and land values adjusted by the implicit price deflator constructed from

sources above; 1958=100.
Column 7: “Manuf.” indicates manufacturing employment as percentage of the total employment for each year.
Column 8: Mean percent of 15-20 years of age cohort across all cities.

Column 10. Mean real annual earnings, by city proper or metro area, in dollars, deflated by the consumer price

index; 1967=100.

Table 2

DESCRIPTIVE STATISTICS: METRO AREAS
1900 — 1990: 1990 Observations

‘ Variable ‘ Mean ‘ Std. Dev. ‘ Skewness | Kurtosis Min Max
Population (000) 479.5 1001.5 6.6 58.8 50.7 9,372.0
Log(Population) 12.4028 0.9895 1.0 4.1 10.8343 | 16.374
Growth Rate (%) 10.58 41.99
New England .0879 .2833 2.9 9.5 0.00 1.00
Mid Atlantic 0.1276 0.3338 2.2 6.0 0.00 1.00
South Atlantic 0.1673 0.3734 1.8 4.2 0.00 1.00
East North Central | 0.2030 0.4023 1.5 3.2 0.00 1.00
East South Central | 0.0663 0.2489 3.5 13.1 0.00 1.00
West North Central | 0.0910 0.2876 2.8 9.1 0.00 1.00
West South Central | 0.1221 0.3275 2.3 6.3 0.00 1.00
Mountain 0.0462 0.2100 4.3 19.7 0.00 1.00
Pacific 0.0884 0.2840 2.9 9.4 0.00 1.00
Education (%) 57.1085 20.9284 -0.4 1.8 11.80 92.73
Real Wage ($) 3197.92 | 1132.37 0.2 2.3 1020.00 | 7311.00
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ESTIMATES OF THE PARETO DISTRIBUTION FOR CITY SIZES

This table gives the number of cities available for each year, the mean size, and the estimated parameters using
three methods: the pseudo-Pareto distribution, according to Eq. (25), in columns 3-6, the true Pareto distribution,
holding po constant and equal to 10.81978 (corresponding to 50,000), column 7, and the true Pareto distribution

using the upper one-half of the sample, column 8.

Table 3

1 2 3 4 5 6 7 8
Year | Obs | Constant | Minimum G (s.e.) R? s (s.e) s (s.e)
1900 112 11.419 91,035 1.044 (0.010) 0.990 | .953 (.107) 1.212 (.170)
1910 | 139 11.106 66,569 1.014 (0.009 ) | 0.989 | .919 (.093) | 1.120 (.149)
1920 | 149 | 1L.214 | 74,161 | 1.010 (0.009 ) | 0.990 | .799 (.088) | 1.108 (.143)
1930 | 157 11.075 64,537 0.985 (0.010 ) | 0.983 | .709 (.084) | 1.082 (.136)
1940 | 160 11.263 77,886 0.995 (0.011 ) | 0.982 | .677 (.085) | 1.131 (.136)
1950 | 162 11.523 101,013 0.999 (0.012 ) | 0.978 | .589 (.084) | 1.154 (.138)
1960 | 210 | 1L.278 | 79,063 | 0.977 (0.011) | 0.974 | .579 (.072) | L.106 (.121)
1970 | 243 10.986 59,042 0.949 (0.012 ) | 0.963 | .558 (.065) | 1.096 (.112)
1080 | 322 | 11378 | 87,378 | 0.985 (0.010 ) | 0.970 | .576 (.058) | 1.043 (.093)
1990 | 334 11.977 159,054 0.949 (0.010) 0.964 | .556 (.055) .993 (.095)

Source: 1900-1950

: D. Bogue (1953); 1960-1990: U.S. Census Bureau publications.

32




Table 4

DYNAMICS OF CITY POPULATION AND EARNINGS

Column 1: OLS regression, logarithm of city population
Column 2: OLS regression with fixed effects, logarithm city population
Column 3: GLS regression with random effects and time dummies, logarithm of city population

Column 4: GLS regression with fixed effects and time effects, ten-year first-difference of logarithms
of city population

Column 5: GLS regression with random effects and period effects, logarithm of average city annual
earnings

Column 6: GLS regression with random effects and time time dummies, logarithm of average city
annual earnings

t— statistics in parentheses.

1 2 3 4 5 6
VARIABLE b (t) b () b (t) b (t) b (t) b (t)
Constant 372 (6.75) 1052 (.970) | 2.294 (11.51) | 5.19 (54.85) | 4.56 (71.36)
LogPi—1 1984 (221.2) | .888 (127.5) | .098 (237.4) | -.202 (6.61)
New England -.036 (2.00) 112 (3.34)
Middle Atlantic 028 (1.71) 1007 (:21)
South Atlantic .010 (6.37) -.025 (.86)
East North Central .019 (1.29) .083 (2.85)
East South Central .057 (2.95) -.054 (1.5)
West South Central 119 (7.14) -.300 (.98)
Mountain 163 (7.31) .055 (1.48)
Pacific 1187 (10.20) 1048 (1.49)
LogEducation; .398 (27.6) 492 (49.3)
LogP, 177 (10.98) | .1107 (20.9) | .1158 (22.57)
Observations 1657 1657 1657 1656 1990 1990
LLF 512.4 1101.6 748.0 316.5 905.3
X’ p .0000 .0000
R? 9673 .980 .974 .9597 464 .824
F 254.6 3819 95.6 564.7
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APPENDIX

AVERAGE TRANSITION MATRIX
U.S. CITIES 1900 - 1990

The cells in this matrix are identified by the upper endpoints of the categories, as explained in the
text; that is, .3, .5, .75, 1, 2, and 20 times the mean. Entries in the cells are the averages over nine
matrices that define decade to decade changes. See Appendix A for the decade matrices. The total
cities (jolumn and row give the actual distributions for 1900 (summing to 112) and 1990 (summing
to 322).

| 1990/1900 ] 03 ] 05 J 075 ] 1 | 2 | 20 [ Totalcities |

0.3 79.84 | 6.90 [ 0.41 0 0 0 110

0.5 19.79 | 66.36 | 9.07 0 0 0 64

0.75 0.37 | 25.66 | 62.54 | 7.62 | 2.53 0 51

1 0 1.09 [ 21.48 | 53.47 | 4.48 0 23

2 0 0 649 | 3891 | 79.23 | .85 38

20 0 0 0 0 [13.76 [ 98.76 36

Total cities 24 31 15 14 15 13 322/112

Stationary distribution || 0.15 0.38 1.00 1.27 8.03 | 89.17
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APPENDIX
TRANSITION MATRICES, DECADE BY DECADE

Each cell in these matrices represents the number of cities in the respective category in year t+1
(rows) compared year t (columns), and the associated frequency. For example, in the first matrix,
the proportion of cities belonging to the smallest category in 1900 which move to the next category
(between the tenth and twentieth percentiles) in 1910 was 58.33 %; 7 cities did so. As explained
in the text, these matrices do not show the entry of new cities. The first matrix picks up only the
112 ciities that meet our criteria for 1900.

TRANSITIONS: 112 cities; 1900 to 1910.

1910/1900 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1910
0.10 0 0 0 0 0 0 0 0 0 0 0 14
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 7 1 0 0 0 0 0 0 0 0 8 6
58.33 | 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.14
0.30 3 3 3 0 0 0 0 0 0 0 9 5
25.00 | 27.27 | 27.27 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.04
0. 40 0 5 5 2 0 0 0 0 0 0 12 2
0.00 | 45.45 | 45.45 | 18.18 | 0.00 0.00 0.00 0.00 0.00 0.00 10.71
0. 50 1 0 0 0 0 2 1 3 4 3 14 0
8.33 0.00 0.00 0.00 0.00 | 16.67 | 9.09 | 27.27 | 36.36 | 27.27 12.50
0.60 0 1 0 5 6 2 0 0 0 0 14 0
0.00 9.09 0.00 | 45.45 | 54.55 | 16.67 | 0.00 0.00 0.00 0.00 12.50
0.70 0 0 0 0 1 6 7 0 0 0 14 0
0.00 0.00 0.00 0.00 9.09 | 50.00 | 63.64 | 0.00 0.00 0.00 12.50
0.80 0 0 0 0 1 2 4 7 0 0 14 0
0.00 0.00 0.00 0.00 9.09 | 16.67 | 36.36 | 63.64 | 0.00 0.00 12.50
0.90 0 0 0 0 0 1 0 4 9 0 14 0
0.00 0.00 0.00 0.00 0.00 8.33 0.00 | 36.36 | 81.82 0.00 12.50
1.00 0 0 0 0 0 0 0 0 2 11 13 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 18.18 | 100.00 | 11.61
Total 12 11 11 11 11 12 11 11 11 11 112 27
10.71 | 9.82 9.82 9.82 9.82 | 10.71 | 9.82 9.82 9.82 9.82 100.00

35




TRANSITIONS: 139 cities; 1910 to 1920.

1920/1910 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1920
0.10 6 3 1 0 0 0 0 0 0 0 10 5
42.86 | 2143 | 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19
0.20 6 5 1 0 0 0 0 0 0 0 12 3
42.86 | 35.71 | 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.63
0.30 1 4 8 1 0 0 0 0 0 0 14 1
7.14 | 28,57 | 57.14 | 7.14 0.00 0.00 0.00 0.00 0.00 0.00 10.07
0.40 1 0 2 9 2 0 0 0 0 0 14 1
7.14 0.00 | 14.29 | 64.29 | 14.29 | 0.00 0.00 0.00 0.00 0.00 10.07
0.50 0 2 2 4 5 2 0 0 0 0 15 0
0.00 | 14.29 | 14.29 | 28.57 | 35.71 | 14.29 | 0.00 0.00 0.00 0.00 10.79
0.60 0 0 0 0 4 10 1 0 0 0 15 0
0.00 0.00 0.00 0.00 | 28.57 | 71.43 | 7.14 0.00 0.00 0.00 10.79
0.70 0 0 0 0 2 2 10 1 0 0 15 0
0.00 0.00 0.00 0.00 | 14.29 | 14.29 | 7143 | 7.14 0.00 0.00 10.79
0.80 0 0 0 0 1 0 3 10 1 0 15 0
0.00 0.00 0.00 0.00 7.14 0.00 | 2143 | 71.43 | 7.14 0.00 10.79
0.90 0 0 0 0 0 0 0 3 12 0 15 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 21.43 | 85.71 0.00 10.79
1.00 0 0 0 0 0 0 0 0 1 13 14 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.14 | 100.00 | 10.07
Total 14 14 14 14 14 14 14 14 14 13 139 10
10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 9.35 100.00
TRANSITIONS: 149 cities; 1920 to 1930.
1930/1920 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1930
0.10 9 0 0 0 0 0 0 0 0 0 9 7
60.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.04
0.20 6 8 1 1 0 0 0 0 0 0 16 0
40.00 | 53.33 | 6.67 6.67 0.00 0.00 0.00 0.00 0.00 0.00 10.74
0.30 0 3 7 6 0 0 0 0 0 0 16 0
0.00 | 20.00 | 46.67 | 40.00 | 0.00 0.00 0.00 0.00 0.00 0.00 10.74
0.40 0 4 5 4 2 0 0 0 0 0 15 0
0.00 | 26.67 | 33.33 | 26.67 | 13.33 | 0.00 0.00 0.00 0.00 0.00 10.07
0.50 0 0 2 3 8 2 0 0 0 0 15 1
0.00 0.00 | 13.33 | 20.00 | 53.33 | 13.33 | 0.00 0.00 0.00 0.00 10.07
0.60 0 0 0 1 3 11 1 0 0 0 16 0
0.00 0.00 0.00 6.67 | 20.00 | 73.33 | 6.67 0.00 0.00 0.00 10.74
0.70 0 0 0 0 2 2 9 2 0 0 15 0
0.00 0.00 0.00 0.00 | 13.33 | 13.33 | 60.00 | 13.33 | 0.00 0.00 10.07
0.80 0 0 0 0 0 0 5 9 2 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 | 33.33 | 60.00 | 13.33 0.00 10.74
0.90 0 0 0 0 0 0 0 4 12 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 26.67 | 80.00 0.00 10.74
1.00 0 0 0 0 0 0 0 0 1 14 15 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 | 100.00 | 10.07
Total 15 15 15 15 15 15 15 15 15 14 149 8
10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 | 10.07 9.40 100.00
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TRANSITIONS: 157 cities; 1930 to 1940.

1940/1930 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1940
0.10 12 1 0 0 0 0 0 0 13 3
75.00 | 6.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.28
0.20 4 9 3 0 0 0 0 0 16 0
25.00 | 56.25 | 18.75 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.19
0.30 0 5 9 2 0 0 0 0 16 0
0.00 | 31.25 | 56.25 | 13.33 | 0.00 0.00 0.00 0.00 0.00 0.00 10.19
0.40 0 1 4 8 3 0 0 0 16 0
0.00 0.64 2.55 5.10 1.91 | 10.190.00 | 0.00 0.00 0.00 0.00 10.19
0.50 0 0 0 5 9 2 0 0 16 0
0.00 0.00 0.00 | 33.33 | 56.25 12.50 0.00 0.00 0.00 0.00 10.19
0.60 0 0 0 0 3 12 0 0 16 0
0.00 0.00 0.00 0.00 | 18.75 75.00 6.67 0.00 0.00 0.00 10.19
0.70 0 0 0 0 1 2 0 0 16 0
0.00 0.00 0.00 0.00 6.25 12.50 86.67 | 0.00 0.00 0.00 10.19
0.80 0 0 0 0 0 0 1 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 6.67 | 87.50 | 6.25 0.00 10.19
0.90 0 0 0 0 0 0 14 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 12.50 | 87.50 0.00 10.19
1.00 0 0 0 0 0 0 1 15 16 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.25 | 100.00 | 10.19
Total 16 16 16 15 16 16 16 15 157 3
10.19 | 10.19 | 10.19 | 9.55 | 10.19 10.19 9.55 | 10.19 | 10.19 9.55 100.00
TRANSITIONS: 160 cities; 1940 to 1950.
1950/1940 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1950
0.10 12 3 0 0 0 0 0 0 0 0 15 2
75.00 | 1875 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.38
0.20 3 10 3 0 0 0 0 0 0 0 16 0
18.75 | 62.50 | 18.75 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00
0.30 1 1 11 3 0 0 0 0 0 0 16 0
6.25 6.25 | 68.75 | 18.75 | 0.00 0.00 0.00 0.00 0.00 0.00 10.00
0.40 0 2 2 8 4 0 0 0 0 0 16 0
0.00 | 12.50 | 12.50 | 50.00 | 25.00 | 0.00 0.00 0.00 0.00 0.00 10.00
0.50 0 0 0 5 8 3 0 0 0 0 16 0
0.00 0.00 0.00 | 31.25 | 50.00 | 18.75 | 0.00 0.00 0.00 0.00 10.00
0.60 0 0 0 0 3 10 3 1 0 0 17 0
0.00 0.00 0.00 0.00 | 18.75 | 62.50 | 18.75 | 6.25 0.00 0.00 10.63
0.70 0 0 0 0 1 3 9 3 0 0 16 0
0.00 0.00 0.00 0.00 6.25 | 18.75 | 56.25 | 18.75 | 0.00 0.00 10.00
0.80 0 0 0 0 0 0 3 10 3 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 | 18.75 | 62.50 | 18.75 0.00 10.00
0.90 0 0 0 0 0 0 1 2 13 0 16 0
0.00 0.00 0.00 0.00 0.00 0.00 6.25 | 12.50 | 81.25 0.00 10.00
1.00 0 0 0 0 0 0 0 0 0 16 16 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 100.00 | 10.00
Total 16 16 16 16 16 16 16 16 16 16 160 2
10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 100.00
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TRANSITIONS: 162 cities; 1950 to 1960.

1960/1950 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1960
0.10 5 0 1 1 0 0 0 0 0 0 7 14
29.41 | 0.00 6.25 6.25 0.00 0.00 0.00 0.00 0.00 0.00 4.32
0.20 9 4 0 1 0 0 0 0 0 0 14 7
52.94 | 25.00 | 0.00 6.25 0.00 0.00 0.00 0.00 0.00 0.00 8.64
0.30 3 7 2 0 1 0 1 0 0 0 14 7
17.65 | 43.75 | 12.50 | 0.00 6.25 0.00 6.25 0.00 0.00 0.00 8.64
0.40 0 4 7 0 0 0 0 0 0 0 11 10
0.00 | 25.00 | 43.75 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.79
0.50 0 0 4 12 0 1 1 0 0 0 18 3
0.00 0.00 | 25.00 | 75.00 0.00 5.88 6.25 0.00 0.00 0.00 11.11
0.60 0 0 2 1 11 4 2 0 0 0 20 1
0.00 0.00 | 12.50 | 6.25 68.75 23.53 | 12.50 | 0.00 0.00 0.00 12.35
0.70 0 1 0 1 4 7 3 2 2 0 20 1
0.00 6.25 0.00 6.25 25.00 41.18 | 18.75 | 12.50 | 12.50 0.00 12.35
0.80 0 0 0 0 0 4 7 7 1 0 19 2
0.00 0.00 0.00 0.00 0.00 23.53 | 43.75 | 43.75 | 6.25 0.00 11.73
0.90 0 0 0 0 0 1 2 7 10 0 20 1
0.00 0.00 0.00 0.00 0.00 5.88 | 12.50 | 43.75 | 62.50 0.00 12.35
1.00 0 0 0 0 0 0 0 0 3 16 19 2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 18.75 | 100.00 | 11.73
Total 17 16 16 16 16 17 16 16 16 16 162 48
10.49 | 9.88 9.88 9.88 | 9.8810.49 | 9.88 9.88 9.88 9.88 | 100.00
TRANSITIONS: 210 cities; 1960 to 1970.
1970/1960 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1970
0.10 15 0 0 0 0 0 0 0 0 0 15 10
71.43 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.14
0.20 5 11 0 0 0 0 0 0 0 0 16 8
23.81 | 52.38 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.62
0.30 0 6 12 2 0 0 0 0 0 0 20 4
0.00 | 28.57 | 57.14 | 9.52 0.00 0.00 0.00 0.00 0.00 0.00 9.52
0.40 1 3 7 9 1 0 0 0 0 0 21 4
4.76 | 14.29 | 33.33 | 42.86 | 4.76 0.00 0.00 0.00 0.00 0.00 10.00
0.50 0 1 1 8 9 2 0 0 0 0 21 3
0.00 4.76 4.76 | 38.10 | 42.86 | 9.52 0.00 0.00 0.00 0.00 10.00
0.60 0 0 1 2 10 10 0 0 0 0 23 1
0.00 0.00 4.76 9.52 | 47.62 | 47.62 | 0.00 0.00 0.00 0.00 10.95
0.70 0 0 0 0 1 9 13 0 0 0 23 2
0.00 0.00 0.00 0.00 4.76 | 42.86 | 61.90 | 0.00 0.00 0.00 10.95
0.80 0 0 0 0 0 0 8 15 1 0 24 0
0.00 0.00 0.00 0.00 0.00 0.00 | 38.10 | 71.43 | 4.76 0.00 11.43
0.90 0 0 0 0 0 0 0 6 18 0 24 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 28.57 | 85.71 0.00 11.43
1.00 0 0 0 0 0 0 0 0 2 21 23 1
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.52 | 100.00 | 10.95
Total 21 21 21 21 21 21 21 21 21 21 210 33
10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 100.00
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TRANSITIONS: 243 cities; 1970 to 1980.

1980/1970 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1980
0.10 18 0 0 0 0 0 0 0 0 0 18 16
7.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.41
0.20 5 6 0 0 0 0 0 0 0 0 11 21
71.43 | 25.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.53
0.30 1 10 8 0 0 0 0 0 0 0 19 13
14.29 | 41.67 | 33.33 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.82
0.40 1 7 6 5 0 0 0 0 0 0 19 12
14.29 | 29.17 | 25.00 | 20.00 | 0.00 0.00 0.00 0.00 0.00 0.00 7.82
0.50 0 1 10 11 3 0 0 0 0 0 25 7
0.00 4.17 | 41.67 | 44.00 | 12.50 | 0.00 0.00 0.00 0.00 0.00 10.29
0.60 0 0 0 7 14 7 0 0 0 0 28 5
0.00 0.00 0.00 | 28.00 | 58.33 | 29.17 | 0.00 0.00 0.00 0.00 11.52
0.70 0 0 0 2 7 12 10 0 0 0 31 1
0.00 0.00 0.00 8.00 | 29.17 | 50.00 | 40.00 | 0.00 0.00 0.00 11.52
0.80 0 0 0 0 0 5 14 10 0 1 30 2
0.00 0.00 0.00 0.00 0.00 | 20.83 | 56.00 | 41.67 | 0.00 4.17 12.35
0.90 0 0 0 0 0 0 1 14 16 0 31 1
0.00 0.00 0.00 0.00 0.00 0.00 4.00 | 58.33 | 66.67 | 0.00 12.76
1.00 0 0 0 0 0 0 0 0 8 23 31 1
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 33.33 | 95.83 | 12.76
Total 25 24 24 25 24 24 25 24 24 24 243 79
10.29 | 9.88 9.88 | 10.29 | 9.88 9.88 | 10.29 | 9.88 9.88 9.88 | 100.00
TRANSITIONS: 322 cities; 1980 to 1990.
1990/1980 | 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Total | Enter
1990
0.10 28 3 0 0 0 0 0 0 0 0 31 4
82.35 | 9.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.63
0.20 4 16 11 0 1 0 0 0 0 0 32 1
11.76 | 50.00 | 34.38 | 0.00 3.13 0.00 0.00 0.00 0.00 0.00 9.94
0.30 2 10 12 4 3 0 0 0 0 0 31 3
5.88 | 31.25 | 37.50 | 12.90 | 9.38 0.00 0.00 0.00 0.00 0.00 9.63
0.40 0 2 8 12 7 0 0 0 0 0 29 3
0.00 6.25 | 25.00 | 38.71 | 21.88 | 0.00 0.00 0.00 0.00 0.00 9.01
0.50 0 1 1 15 12 3 1 0 0 0 33 0
0.00 3.13 3.13 | 48.39 | 37.50 | 9.09 3.13 0.00 0.00 0.00 10.25
0.60 0 0 0 0 8 20 5 0 0 0 33 1
0.00 0.00 0.00 0.00 | 25.00 | 60.61 | 15.63 | 0.00 0.00 0.00 10.25
0.70 0 0 0 0 1 10 20 2 0 0 33 0
0.00 0.00 0.00 0.00 3.13 | 30.30 | 62.50 | 6.25 0.00 0.00 10.25
0.80 0 0 0 0 0 0 6 24 4 0 34 0
0.00 0.00 0.00 0.00 0.00 0.00 | 18.75 | 75.00 | 12.50 | 0.00 10.25
0.90 0 0 0 0 0 0 0 6 26 1 33 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 18.75 | 81.25 | 3.13 10.25
1.00 0 0 0 0 0 0 0 0 2 31 33 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.25 | 96.88 | 10.25
Total 34 32 32 31 32 33 32 32 32 32 322 12
1056 | 9.94 9.94 9.63 9.94 | 10.25 | 9.94 9.94 9.94 9.94 | 100.00
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