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RATIONAL BUBBLES UNDER DIVERSE INFORMATION

Dahai Yu *

Abstract: This paper uses a set of post-extraction information trees to generally model

diverse information and agent specific state price processes to define present and

fundamental values. It shows that there can be no negative or finite bubbles and that, if

agents are impatient and the aggregate endowment has a finite present value under some

state price process of some agent, then there can be no bubble under this state price

process for any asset with positive supply.
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1. Introduction

As usually defined, bubbles are deviations of asset prices from their fundamental values,

or the present values of their dividends. There is by now a large body of literature on rational

asset price bubbles, including the general treatment by Santos and Woodford (1997), who

build on the work of Tirole (1985) and others. The central result of Santos and Woodford is

the non-existence of bubbles on assets with positive supply in any equilibrium where the

aggregate endowment has a finite present value. Other results include the non-negativity of

bubbles and the non-existence of bubbles on finite maturity assets. A restrictive assumption

used by Santos and Woodford is the frictionless asset markets. This assumption is relaxed by

Yu (1998), who shows that, in the presence of bid-ask spreads and short-sale constraints, the

results of Santos and Woodford survive in some similar form.

Another restrictive Santos-Woodford assumption is virtually homogeneous

information. While differing probabilities that agents attach to events will not render their

arguments invalid, more substantial information diversity will. Specialized studies of bubbles

under diverse information include Allen and Gorton (1993), who show that bubbles on a short-

sale constrained asset can occur as a result of the information asymmetry between a principal

and an agent, and Allen, Morris and Postlewaite (1993), who show that a short-sale

constrained asset known to be worthless by all agents individually may nonetheless command a

positive equilibrium price if agents do not know of each other’s information. The noise trader

models, such as that of De Long et al. (1990) also address diverse information, as do the

learning models such as those of Wang (1993) and Zhou (1995), which is summarized in Chow

(1997).
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This paper treats bubbles under diverse information at a level of generality comparable

to Santos and Woodford (1997). We model diverse information by a set of post-extraction

information trees. In rational expectations models, it is standard to assume that agents are

capable of extracting information from all the variables they can observe. Since our focus is on

the theory, we abstract from the details of the extraction process and focus on the post-

extraction information structure. The use of post-extraction information trees requires that all

commonly observed variables (common observables) be adapted to each agent’s information

tree. We assume that prices and payoffs, which figure prominently in any discussion of bubbles,

are among the common observables. This most natural assumption implies that a good deal of

information is necessarily revealed by the market, and our basic conclusion is that any

remaining information diversity matters little as far as the existence of bubbles is concerned,

and the Santos-Woodford results need hardly any modification.

Here is a brief summary of the paper. Section 2 describes the information structure and

introduces a system of notation that can be used to relate nodes on different trees. It introduces

N, the join tree or the tree of total information, and Nm, the meet tree or the tree of common

knowledge. The information tree of an agent can be regarded as a particular coarsening of N

and a particular refinement of Nm. By the no extraction condition, prices, dividends and all

other common observables must be adapted to Nm.

Section 3 discusses agent specific state price processes and explains the need to use

them. It uses an example to show that there may not exist a “state price process” on N even if

no agent can arbitrage. It shows, through Proposition 1, that, a “state price process” on Nm

generated by a state price process of some agent can usually produce only an average of the
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agent’s present values. In addition, some “state price processes” on Nm may not have clear

economic meaning.

Section 4 establishes two nonexistence theorems. Theorem 1 shows that, under any

state price process for any agent, bubbles are nonnegative and that no finite maturity asset can

have a bubble. Theorem 2 shows that, if agents are impatient and the aggregate endowment

has a finite present value under some state price process of some agent, then there is no bubble

under this state price process for any asset with positive supply. This seemingly strong result

rests on the facts that the market necessarily reveals a good deal of information, and that any

state price process of any agent must be consistent with the commonly observed prices and

dividends and therefore has some economy-wide significance. In order to value one agent’s

variables by another agent’s state price process, we introduce a system of artificial weights

defined on N. Because the aggregate variables are assumed to be adapted to every agent’s

information tree, the artificial weights drop out as a result of aggregation. Section 5 concludes.

2. Information Structure

Consider a discrete-time, infinite-horizon economy inhabited by a finite number of

rational, price taking, infinitely lived agents whose information structure is described by a set

of information trees defined on a common state space. (The finiteness in the number of agents

is not needed; all the results of this paper are valid as long as the number of agent types is

finite.) In general, information about the state of nature is revealed to different agents

differently, and each agent may have a distinct information tree. Agents are capable of

extracting information from all the variables they can observe now and in the future. These

include not only variables observable to all agents (common observables), but also variables
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observable to individual or subgroups of agents. The information trees we use are the end

result of the extraction processes. Modeling extraction processes can shed light on many issues

but is often a difficult undertaking. Since our goal of characterizing price bubbles has little to

do with the details of the extraction process, we choose to keep things simple (and general)

and make post-extraction information trees our starting point.

Post-extraction information trees are not primitives like preferences, technology,

endowments and pre-extraction information trees. Rather, they are equilibrium specific and are

similar in this regard to the plans and expectations described by Radner (1972). At least in

special cases, one can show that, generically, prices are fully revealing (Radner, 1979).

Following the example of Allen, Morris and Postlewaite (1993), we do not address the generic

existence of equilibrium with genuinely diverse post-extraction information. Instead, we focus

on identifying conditions that any diverse information equilibrium must satisfy.

Nodes of a information tree on a given date form a partition of the states of nature. The

join of the individual partitions on a date, which has the “boundaries” of all individual

partitions as its boundaries, is the total information revealed to agents up to that date.

Connecting the joins on different dates, we get N, the join tree or the tree of total information.

The meet of the individual partitions on a date, which has the common boundaries of individual

partitions as its boundaries, represents agents’ common knowledge, a concept defined by

Aumann (1976) and clarified by Milgrom (1981). Connecting the meets on different dates, we

get Nm, the meet tree or the tree of common knowledge. The information

tree of each agent represents a particular “bundling” of N and a particular “splitting” of Nm.

When dealing with post-extraction information trees, care must be taken that an agent

cannot extract any more information from any of the variables it can observe. As a necessary
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condition for no extraction, all common observables must be adapted to the meet tree. (For

further details, see Fudenberg and Tirole, 1991 or Geanakoplos, 1994.) We choose to be

noncommittal on whether agents can observe each other’s endowments, trades and

consumption. While observability of these variables tends to make diverse information

disappear, observability of some aggregates of these variables can be consistent with diverse

information. Our model is valid under a variety of observability assumptions.

Let st be a typical node on the join tree N on date t. Each st has a unique immediate

predecessor st - 1 and a finite number of immediate successors, a typical one of which is

denoted by st+1|st. The exceptions are the N nodes at t = 0, which have no predecessors. We

use sr|st to indicate that sr belongs to the subtree of N starting at st. That is, sr|st means either sr

= st or sr is a (not necessarily immediate) successor of st.

Similarly, αt is a typical node on agent α’s information tree Nα, and mt is a typical node

on Nm. The notation for N applies to Nα and Nm as well. By definition, each Nα node is

composed of one or more N nodes, and each N node is in exactly one Nα node. Similarly, each

Nm node is composed of one or more Nα nodes, and each Nα node is in exactly one Nm node.

We use st/αt to represent an N node in αt and use αt = st to indicate that st is the only N node in

αt. Let βt be a node on agent β’s information tree Nβ. We use αt = βt to indicate that αt and βt

are the same (i.e., contain the same N nodes). The expression αt/βt and those involving mt and

Nm have obvious meanings. To take care of the possibility that agents start with different

information, we allow multiple t = 0 nodes for N and for individual information trees. We will

assume, however, that Nm has only one t = 0 node.
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The number of goods and assets, good and asset prices and asset payoffs in dividends

and assets are all common observables. No extraction requires that they be adapted to Nm.

There are n(mt) freely disposable goods at mt, with a 1×n(mt) nonnegative price vector p(mt).

At each mt, at least one good has positive price, and this good may be used as the numeraire

for mt so that all other good and asset prices at mt are in reference to the quantity of this

numeraire good. The idea that p is adapted to Nm on date t may be so expressed: for any st and

any st/mt, p(st/mt) = p(mt). The expression p(st) is meaningful and is equal to the value of p on

the Nm node that contains st. These observations apply to all variables adapted to Nm or any

individual information tree.

There are k(mt) freely disposable assets at mt with price q(mt), a 1×k(mt) vector. At

each mt, the dividends on assets are specified by an n(mt)×k(mt - 1) nonnegative matrix d(mt),

and the payoffs of assets in the form of assets are specified by a k(mt)×k(mt - 1) nonnegative

matrix b(mt). The nonnegativity of d(mt) and b(mt) may be understood as a consequence of free

disposal. A portfolio Z held at the end of trading at node st - 1 is paid d(st)Z in dividends and

b(st)Z in assets at st. For mt and mr|mt, the k(mr)×k(mt) asset transformation matrix e(mr|mt) is

defined recursively by:

e(mt|mt) = I
k mt( )

, e(mr|mt) = b(mr)e(mr - 1|mt) for all mr|mt, r > t      (1)

Asset j has finite maturity if there exists a date R such that eij(m
r|mt) = 0 for all i, all r ≥ R. The

n(mr)×k(mt) dividend matrix x(mr|mt) for mt and any mr|mt, r > s, is defined by:

x(mr|mt) = d(mr)e(mr - 1|mt) (2)

3. The Need for Agent Specificity
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With the necessary apparatus in place, we begin to discuss the meaning of bubbles. In

the case of homogeneous information, absence of arbitrage (of any finite horizon) by one agent

implies absence of arbitrage by all agents, and this universal absence of arbitrage is equivalent

to the existence of a state price process {a(sr)} defined on the common information tree N

(Ross, 1976; Yu, 1998). At each st, {a(sr)} satisfies the basic state price relation:

a(st)q(st) = a s p s d s q s b st t t t t

s st t

( )[ ( ) ( ) ( ) ( )]
|

+ + + + ++
+
∑ 1 1 1 1 1

1

 (3)

In addition, any resource process {x(sr)} is necessarily adapted to N, and its present

value at st is defined in terms of {a(sr)}:

v s a
a s

a s p s x sx
t

t
r r r

s sr t r t

( , )
( )

( ) ( ) ( )
|

= ∑∑
= +

∞1

1

(4)

The fundamental value of asset j at st under {a(sr)}, fj(s
t, a), is defined as the present value of

its dividends. A price bubble is said to exist on asset j at st under {a(sr)} if fj(s
t, a) is different

from qj(s
t), asset j’s price at st. When markets are incomplete, the state price process is not

unique, and the fundamental value of an asset need not be unique. It is then possible for an

asset to exhibit a bubble under one state price process but not under another.

With diverse information, agents have different ideas on what the states are, and state

price process and related concepts become agent specific. In place of (3) and (4), we have:

aα(αt)q(αt) = a p d q bt t t t t

t t

α

α α

α α α α α( )[ ( ) ( ) ( ) ( )]
|

+ + + + ++
+
∑ 1 1 1 1 1

1

 (5)

v a
a

a p xx
t

t
r r r

r t r t

( , )
( )

( ) ( ) ( )
|

α
α

α α αα
α

α

α α

= ∑∑
= +

∞1

1

(6)

Here {aα(αr)} is a state price process defined on Nα, whose existence is equivalent to the

absence of α-arbitrage (i.e., arbitrage by agent α), and {x(αr)} is a resource process adapted to
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Nα, of which any dividend process is an example. The issues to be addressed are whether agent

specificity is really needed in the study of bubbles and whether results comparable to those for

the homogeneous information case can be derived.

We begin by explaining the need for agent specificity. As the following example shows,

even if no agent can arbitrage, a “state price process” on N need not exist. Consider an

economy with two agents (α and β) and four states of nature (ω1, ω2, ω3 and ω4) to be fully

revealed on t = 2. At t = 0 neither agent has information. At t = 1, agent α’s information is the

partition {(ω1, ω2), (ω3, ω4)}, while agent β’s information is the partition {(ω1, ω3), (ω2, ω4)}.

The information trees are shown below.

      ω1

   ωu       ω2

   ωd       ω3

      ω4

     Nα

      ω1

  ωo       ω2

  ωe       ω3

      ω4

     Nβ

      ω1

      ω2

  ω?       ω3

      ω4

     Nm

      ω1

      ω2

      ω3

      ω4

     N

We have labeled the nodes (ω1, ω2) and (ω3, ω4) on Nα as ωu (up) and ωd (down), the nodes

(ω1, ω3) and (ω2, ω4) on Nβ as ωo (odd) and ωe (even), and the t = 1 node on Nm as ω?.

The economy has two assets. The price of either asset is 1 on t = 0 and t = 1 and zero

on t = 2. Neither asset pays dividend on t = 1. Asset 1 pays a dividend of 1 on t = 2, and asset

2’s state specific dividends on t = 2 are d1 = 
3

2
, d2 = 

1

2
, d3 = 

2

3
 and d4 = 2. It is easy to see

that neither agent can arbitrage. However, an agent with information tree N would be able to

arbitrage, and so there does not exist a process on N satisfying state price relation (3).
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We show that, even though the two agents recognize the same nodes on t = 2, which

are also the Nm nodes on t = 2, one agent may find the state prices assigned to these nodes by

the other agent unacceptable. The implication is that, in calculating present values, one must in

general take into account each agent’s state prices. Set any state price assigned to t = 0 to 1. It

is easy to verify that, for any a u
α  satisfying 0 < a u

α  < 1, {aα} = { a u
α , ad

α  = 1 - a u
α , a1

α = a2
α =

1

2
a u

α , a3
α  = 

3

4
(1 - a u

α ), a4
α  = 

1

4
(1 - a u

α )} is a valid set of state prices for agent α, and this

expression yields all the valid {aα}’s as a u
α  covers the open interval (0, 1). Similarly, with ao

β

covering the open interval (0, 1), {aβ} = { ao
β , ae

β  = 1 - ao
β , a1

β  = 
2

5
ao

β , a2
β  = 

2

3
(1 - ao

β ), a3
β  =

3

5
ao

β , a4
β  = 

1

3
(1 - ao

β )} yields all the valid {aβ}’s. One such {aβ} (with ao
β  = 

1

2
) is a1

β  = 
1

5
,

a2
β  = 

1

3
, a3

β  = 
3

10
, and a4

β  = 
1

6
, which agent α, who always has a1

α = a2
α , finds unacceptable.

In this example, the hypothetical agent with information tree N is better informed than

either agent α or agent β. It is therefore not surprising that it can arbitrage when agents α and

β cannot; this is the “advantage of better information” discussed more generally by Duffie and

Huang (1986). By the same reasoning, a hypothetical agent with information tree Nm will not

be able to arbitrage and a process on Nm that satisfies the state price relation must exist as long

as some agent cannot arbitrage. One may then wonder whether it is enough to use only the

“state price processes” on Nm and not those for individual agents. The following proposition

gives a generally negative answer. Let {aα} be a state price process for agent α, and let

{x(mr)} be a resource process adapted to Nm. We show that {aα} can generate a “state price
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process” on Nm, and the present values of {x(mr)} under {aα} and under {am} are related. But

the relation is not strong enough to allow us to drop all reference to {aα}.

Proposition 1: Let {aα(αr)} be an arbitrary state price process for agent α.

(A) {am(mr)} = { ( )}
/

a r

mr r

α

α

α∑ is a process satisfying, at each mt,

am(mt)q(mt) = a m p m d m q m b mt t t t t

m mt t

( )[ ( ) ( ) ( ) ( )]
|

+ + + + ++
+
∑ 1 1 1 1 1

1

 (7)

 (B) Let {x(mr)} be an arbitrary resource process adapted to Nm. For each mt, we have:

a v at

m
x

t

t t

α

α

αα α( ) ( , )
/

∑  = am(mt)vx(m
t, am). (8)

Proof: For any mt and any αt/mt, we have, by (5),

aα(αt/mt)q(αt) = a p d q bt t t t t

mt t t

α

α α

α α α α α( )[ ( ) ( ) ( ) ( )]
|( / )

+ + + + ++
+
∑ 1 1 1 1 1

1

 (9)

Summing (9) over αt/mt and noting that p, d, q and b are all adapted to Nm, we get:

[ ( )]
/

a t

mt t

α

α

α∑ q(mt) = a p d q bt t t t t

m t tt t

α

α αα

α α α α α( )[ ( ) ( ) ( ) ( )]
|/

+ + + + ++
+
∑∑ 1 1 1 1 1

1

= 
α

α α α α α α
t tt t m

t t t t t

m m

a p d q b
+ ++
∑∑ + + + + ++
1 11

1 1 1 1 1

/|

( )[ ( ) ( ) ( ) ( )]

= [ ( )][ ( ) ( ) ( ) ( )]
/| α

α α
t tt t m

t t t t t

m m

a p m d m q m b m
+ ++
∑∑ + + + + ++
1 11

1 1 1 1 1 (10)

The equivalence between 
α αα t tt tm +
∑∑

1 |/

and 
α t tt t mm m + ++

∑∑
1 11 /|

 follows from the observation

that each double summation sums over all Nα nodes at t + 1 whose date t predecessors are in

mt. (10) is the same as (7).

(B) For any mt,

a v at

m
x

t

t t

α

α

αα α( ) ( , )
/

∑  = a p xr r r

r tm r tt t

α

α αα

α α α( ) ( ) ( )
|/

∑∑∑
= +

∞

1
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= a p xr r r

mm mr t r rr t

α

α

α α α( ) ( ) ( )
/|

∑∑∑
= +

∞

1

 = [ ( )] ( ) ( )
/|

a p m x mr

m

r r

m mr t r rr t

α

α

α∑∑∑
= +

∞

1

= a m p m x mm r r r

m mr t r t

( ) ( ) ( )
|

∑∑
= +

∞

1

 = am(mt)vx(m
t, am) (11)

The equivalence between 
α αα r tt t r tm |/
∑∑∑

= +

∞

1

and 
α r rr t mm mr t /|
∑∑∑

= +

∞

1

follows from the

observation that each triple summation sums over all Nα nodes from t + 1 on whose date t

predecessors are in mt. Q.E.D.

By Proposition 1, if αt/mt = mt, we have aα(αt/mt) = am(mt) and vx(αt, aα) = vx(m
t, am).

In general, however, we know only that vx(m
t, am) is an aα(αt/mt)-weighted average of the

vx(αt/mt, aα)’s. As a result, even if we know that the “fundamental value” of an asset under

{am} is equal to its price at mt, we cannot be sure that agent α perceives no bubble under aα(αr)

at every αt/mt.

There is another problem with using the {am}’s in studying bubbles. Any {am}

generated by some {aα} has clear economic meaning. It is possible, however, for some {am}

satisfying (7) not to be generated by a state price process of some agent. In the example above,

(7) becomes am
?  = 1, 

3

2
am

1 + 
1

2
am

2  + 
2

3
am

3  + 2 am
4  = 1 and am

1  + am
2  + am

3  + am
4  = 1. It is

easy to verify that am
1  = 

1

3
, am

2  = 
1

6
, am

3  = 
7

16
 and am

4  = 
1

16
 satisfy these conditions.

However, this {am} cannot be generated by any {aα}, which necessarily assigns the same state

price for ω1 and ω2, or any {aβ}, which necessarily assigns state prices for ω1 and ω3 at two-to-

three ratio. The implication is that (7) may give rise to {am}’s that do not have clear economic
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meaning, and to identify the {am}’s that do, we still need to make use of agent specific state

price processes.

4. Two Nonexistence Theorems

Having explained the need to use agent specific state price processes and related

concepts, we now turn to the derivation of results. The 1×k(αt) fundamental value vector fα(αt,

aα) for agent α at αt under {aα} is defined as:

f a
a

a p xt
t

r r r t

r t r t

α α
α

α

α α

α
α

α α α α( , )
( )

( ) ( ) ( | )
|

= ∑∑
= +

∞1

1

(12)

The study of bubbles boils down to comparing fα with asset price q. The theorem

below, which is essentially the same as the results in Santos and Woodford (1997), shows that

negative and finite bubbles cannot exist.

Theorem 1: For any agent α, at any node αt and for any {aα},

(A) q(αt) ≥ fα(αt, aα)  (13)

(B) For any asset j with finite maturity,

qj(αt) = f j
α (αt, aα)    (14)

(C) aα(αt)[q(αt) - fα(αt, aα)] = a q f a b
t t

t t t tα

α α

α αα α α α( )[ ( ) ( , )] ( )
|+

∑ + + + +−
1

1 1 1 1 (15)

Proof: For any T > t, we have, from (5),

aα(αt)q(αt) = a p xr r r t

r t

T

r t

α

α α

α α α α( ) ( ) ( | )
|

∑∑
= + 1

+ a q eT T T t

T t

α

α α

α α α α( ) ( ) ( | )
|

∑ (16)

As T approaches infinity, the first term on the right approaches aα(αt)fα(αt, aα). Since the

second term on the right is nonnegative, we get Theorem 1A. For an asset with finite maturity,
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the second term on the right becomes constantly zero after T is sufficiently large, and (16)

implies Theorem 1B. From the definition of fundamental value, we have:

 aα(αt) fα(αt, aα) = a p dt t t

t t

α

α α

α α α( ) ( ) ( )
|

+ + +

+
∑ 1 1 1

1

 + a f a bt t t

t t

α α α

α α

α α α( ) ( , ) ( )
|

+ + +

+
∑ 1 1 1

1

(17)

Theorem 1C follows from subtracting (17) from (5). Q.E.D.

Theorem 1A says that asset price is never lower than the fundamental value under any

state price process of any agent, or there can be no negative bubbles. This implies that the

fundamental value has to be finite. Theorem 1B says that no finite maturity asset can have a

bubble. This implies that the fundamental value of a finite maturity asset is the under any state

price process same for any agent. Theorem 1C says that a bubble must be self-perpetuating in

the sense that it satisfies a generalized martingale relation.

Theorem 1B does not contradict either Allen, Morris and Postlewaite (1993) or Allen

and Gorton (1993), because these studies make use of short-sale constraints. In the presence of

short-sale constraints, one can still define bubble, as the studies cited above do, as the

difference between price and fundamental value. However, under this definition a bubble could

be a one-period phenomenon representing the excess of price over one-period return, an

excess not possible when short sales are allowed. In contrast, Yu (1998) defines bubble as the

difference between the price net all such excesses and the fundamental value. Under this more

strict definition, bubbles are necessarily self-perpetuating, and the difference between the prices

and the fundamental values in the studies cited above do not qualify as bubbles.

Unlike negative and finite bubbles, positive bubbles cannot be ruled out by arbitrage

arguments alone. In the homogeneous information case, general equilibrium arguments have

been used to rule out positive bubbles since at least the work of Brock (1979). The basic
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conclusion of this approach is that, because of their self-perpetuating property, the existence of

bubbles may make market clearing impossible on remote future dates. Santos and Woodford

(1997) use this approach in a general setting and show that bubbles can be ruled out on any

asset with positive supply if the economy’s aggregate endowment has a finite present value. In

what follows, we show that similar ideas can be applied to a diverse information setting.

Specifically, if agents are impatient and the present value of the aggregate endowment is finite

under some agent α’s state price process {aα}, then agent α does not perceive a bubble under

{aα} on any asset with positive supply.

We will let α be the agent whose state price process {aα} is used to calculate values

and use β as the index for agents. While diverse information makes it possible for agents to

have “private” state price processes, any state price process of any agent must be consistent

with the commonly observed prices and returns. As a result, each {aα} can still help measure

the values pertaining to all agents or the whole economy. To avoid certain complications, we

will maintain the assumption that aggregate endowment is adapted to every individual

information tree, and aggregate initial asset endowment is adapted to every individual partition

at t = 0.

Agent β is endowed with 
~
Zβ (β0) of assets at node β0, which may have both positive

and negative elements. We obviously have, for any s0/β0, 
~
Zβ (s0) = 

~
Zβ (β0). Aggregate asset

endowment at s0, which is the asset supply at s0, is 
~
Z (s0) = 

~
Zβ

β
∑ (s0) . We assume that 

~
Z (s0)

is nonnegative and adapted to every individual partition at t = 0. There is no asset endowment

at any node with t ≠ 0. While we do not require that q is strictly positive, we assume that

agents never dispose of assets outside the market. With this assumption, asset supply at
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arbitrary node st is given by 
~
Z (st) = e(st|s0)

~
Z (s0). Because e(st|s0) is nonnegative and adapted

to each Nβ, 
~
Z (st), like 

~
Z (s0), is nonnegative and adapted to each Nβ.

Agent β has a nonnegative good endowment process {ωβ}. Aggregate good

endowment at an arbitrary node st is given by ω(st) = ω β

β
∑ (st). We assume that {ω} is

adapted to each Nβ. The supply of goods at st (t ≠ 0) is given by ~ω (st) = ω(st) + x(st|s0)
~
Z (s0)

and is nonnegative and adapted to each Nβ. For each s0, we have ~ω (s0) = ω(s0).

We assume that the preferences of any household are increasing in the following sense:

more of any good at any node is always weakly preferred, and at each node there is at least one

good more of which is strictly preferred.

Let cβ be a typical nonnegative consumption process for agent β. For any βt∈Nβ, we

can write cβ = ( c−
β (βt), cβ(βt), c+

β (βt)), where c−
β (βt) denotes the coordinates of cβ indicating

consumption at nodes other than those on the subtree starting at βt, cβ(βt) denotes the

coordinates of cβ indicating consumption at βt, and c+
β (βt) denotes the coordinates of cβ

indicating consumption at nodes on the subtree starting at βt other than βt itself. According to

this notation, cβ(βt) represents present consumption, c+
β (βt) represents future consumption,

both with reference to βt, while c−
β (βt) represents the past consumption with reference to βt as

well as the present and future consumption not on the subtree starting at βt. The trade-off

between cβ(βt) and c+
β (βt) therefore indicates the degree of impatience (with reference to βt) in

agent β’s preferences.

Let φβ  represent agent β’s strict preference relation. To make a precise definition of

impatience, we use the aggregate good supply ~ω (βt) to describe the alternative consumption
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at βt, and a discount factor to describe the alternative future consumption with reference to βt.

For given { ~ω (βt)}, we say agent β is impatient if there exists 0 ≤ γβ < 1 such that for any

βt∈Nβ,

( c−
β (βt), cβ(βt) + ~ω (βt), γ c+

β (βt)) φβ  cβ     (18)

for all consumption processes satisfying cβ ≤ ~ω  and all γ ≥ γβ. This definition depends on

{ ~ω (βt)}, which is determined by good and asset endowments, and so impatience is a joint

assumption of preferences and endowments. This impatience assumption, which is also used by

Magill and Quinzii (1994) and Levine and Zame (1996), is satisfied by all preferences that are

represented by continuous, stationary, recursive utility functions; for more details, see Santos

and Woodford (1994).

For any impatient agent β, any optimal portfolio-consumption plan must satisfy, at any

βt∈Nβ,

 (1 - γβ)q(βt)zβ(βt) < p(βt) ~ω (βt)     (19)

This is because if (19) were not true at some βt, it would be feasible to realize the consumption

process ( c−
β (βt), cβ(βt) + ~ω (βt), γβ c+

β (βt)) by liquidating the fraction 1 - γβ of the portfolio

held at βt, using the proceeds to purchase ~ω (βt) for consumption, and trading and holding the

fraction γβ of the original amounts of assets and consuming the fraction γβ of the original

consumption at all the successor nodes of βt. By the impatience assumption, ( c−
β (βt), cβ(βt) +

~ω (βt), γβ c+
β (βt)) is strictly preferred to cβ, and so cβ could not be optimal.

Agent β chooses, for each node βt∈Nβ, portfolio zβ(βt) and nonnegative consumption

cβ(βt). For any βt∈Nβ, the constraints it faces are:
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p(βt)cβ(βt) + q(βt)Zβ(βt) = p(βt)ωβ(βt) + [p(βt)d(βt) + q(βt)b(βt)]Zβ(βt - 1)           (20a)

q(βt)Zβ(βt) ≥ - Bβ(βt)           (20b)

The left side of (20a) represents expenditure, while the right side represents income. We have

written (20a) as an equality on account of increasing preferences. For any β0, the last term on

the right of (20a) takes the special form of q(β0)
~
Z (β0). Bβ(βt) in (20b) is the nonnegative

borrowing limit for agent β at node βt. We assume that households treat the borrowing limits

as given data. In order for the agent optimization problem to be well-defined, borrowing limits

have to at least rule out the Ponzi scheme. For our purposes, a specific description of

borrowing limits is not needed.

Consider the processes {p(mt), q(mt), cβ(βt), Zβ(βt)}. If they represent an Arrow-

Radner equilibrium, they must satisfy the following necessary conditions:

 (i) For each β, {cβ(βt), Zβ(βt)} are optimal under (20).

(ii) For each st,

p(st) ≥ 0, q (st) ≥ 0           (21)

cβ

β
∑ (st) ≤ ~ω (st)           (22a)

p(st)[ cβ

β
∑ (st) - ~ω (st)] = 0           (22b)

Zβ

β
∑ (st)  = 

~
Z (st)     (23)

(22a) is the economy-wide resource constraint. (22b), which asserts that any good not

fully used up must have zero price, follows from the fact that all goods are fully owned by

households, and so given the increasing preferences, no household will give up any good that

can be sold at a positive price.
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Without loss of generality, we focus on the possibility of bubbles at date 0. The

following theorem resembles Theorem 3.3 of Santos and Woodford (1997).

Theorem 2: Suppose all households are impatient. Then in any Arrow-Radner

equilibrium in which vω(α0, aα) < + ∞ for any α0 under some state price process {aα} for

agent α, fα
j(α0, aα) = qj(α0) for any α0 and any asset j at α0 with positive supply.

Proof: For any αt, assign a number gα(st) to each st/αt such that

g st

st t

α

α

( )
/

∑ = aα(αt) (24)

We will use {gα} to “value” variables defined on N. For our purposes, {gα} can be

regarded as a purely mechanical device.

Let γ  be the largest of γβ’s. By (19), for any β and any st, we have:

(1 - γ )q(st)Zβ(st) < p(st) ~ω (st)     (25)

Summing (25) over st using gα(st)’s as weights, we get:

st
∑ gα(st)q(st)Zβ(st) < 

1

1− γ st
∑ gα(st)p(st) ~ω (st)

= 
1

1− γ α t
∑

st t/α
∑ gα(st)p(st) ~ω (st)

= 
1

1− γ α t
∑ [

st t/α
∑ gα(st)]p(αt) ~ω (αt)   (because p and ~ω  are adapted to Nα)

= 
1

1− γ α t
∑ aα(αt)p(αt) ~ω (αt)   (by (24)) (26)
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Let ε > 0 be an arbitrary positive number, and L be the total number of agents. Because vω(α0,

aα) < + ∞ for any α0, v ~ω (α0, aα) < + ∞ for any α0. This means there exists T  such that, for any

T ≥ T ,

α T
∑ aα(αT)p(αT) ~ω (αT) ≤ (1 - γ )

ε
L

(27)

Combining (26) and (27), we have, for any β and any T ≥ T ,

sT
∑ gα(sT)q(sT)Zβ(sT) ≤ 

ε
L

(28)

Define R(βt) = p(βt)d(βt) + q(βt)b(βt). By (18), for any β and any st, we have:

p(st)cβ(st) + q(st)Zβ(st) = p(st)ωβ(st) + R(st)Zβ(st - 1)    (29)

For t = 0, the last term of (29) takes the special form of q(s0)
~
Zβ (s0). Summing (29)

across st using gα(st)’s as weights and summing the resulting equations from t = 0 to some T ≥

T , we get (noting the special form (29) takes for t = 0):

s0
∑ gα(s0)q(s0)

~
Zβ (s0)   = 

t

T

=
∑

0 st
∑ gα(st)[p(st)cβ(st) - p(st)ωβ(st)] +

s0
∑ gα(s0)q(s0)Zβ(s0)

+ 
t

T

=
∑

1 st
∑ gα(st)[q(st)Zβ(st) - R(st)Zβ(st - 1)]

= 
t

T

=
∑

0 st
∑ gα(st)[p(st)cβ(st) - p(st)ωβ(st)]

+ 
t

T

=

−

∑
0

1

st
∑ [gα(st)q(st)Zβ(st) - 

s st t+
∑

1 |

gα(st+1)R(st+1)Zβ(st)] + 
sT
∑ gα(sT)q(sT)Zβ(sT) (30)

The left side of (30) can be written as:
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s0
∑ gα(s0)q(s0)

~
Zβ (s0) = 

α 0
∑ aα(α0)q(α0)

~
Zβ (α0) (31)

When summed over β, by market clearing condition (23), the right side of (31) becomes

α 0
∑ aα(α0)q(α0)

~
Z (α0).

Define fT,α(α0, aα) as the present value vector of the dividend processes truncated at T.

We will sum each of the three terms on the right of (30) over β. For the first term, we have:

β
∑

t

T

=
∑

0 st
∑ gα(st)[p(st)cβ(st) - p(st)ωβ(st)] = 

t

T

=
∑

0 st
∑ gα(st)p(st)[

β
∑ cβ(st) -  ω(st)]

= 
t

T

=
∑

1 s0
∑

s st | 0
∑ gα(st)p(st)x(st|s0)

~
Z (s0)   (by (22b) and the definition of ~ω )

= 
t

T

=
∑

1 α 0
∑

s0 0/α
∑

s st | 0
∑ gα(st)p(st)x(st|α0)

~
Z (α0)       (because x and 

~
Z  are adapted to Nα)

= 
t

T

=
∑

1 α 0
∑

α αt | 0
∑

st t/α
∑ gα(st)p(αt)x(αt|α0)

~
Z (α0)     (because 

s0 0/α
∑

s st | 0
∑ and

α αt | 0
∑

st t/α
∑ sum over the same st’s and x is adapted to Nα)

= 
t

T

=
∑

1 α 0
∑

α αt | 0
∑ aα(αt)p(αt)x(αt|α0)

~
Z (α0)   (by (24))

 = 
α 0
∑ aα(α0)fT,α(α0, aα)

~
Z (α0)   (by the definition of fT,α) (32)

Summing the second term on the right of (30) for a particular t over β, we get:

β
∑

st
∑ [gα(st)q(st)Zβ(st) - 

s st t+
∑

1 |

gα(st+1)R(st+1)Zβ(st)]

= 
st
∑ [gα(st)q(st) - 

s st t+
∑

1 |

gα(st+1)R(st+1)]
~
Z (st)          (by (23))
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= 
α t
∑

st t/α
∑ [gα(st)q(αt) - 

s st t+
∑

1 |

gα(st+1)R(αt+1)]
~
Z (αt)

= 
α t
∑ [aα(αt)q(αt) - 

α αt t+
∑

1 |

aα(αt+1)R(αt+1)]
~
Z (αt) = 0   (33)

The last step uses the fact that {aα} is a state price process.

Summing the last term on the right of (30) over β and using (28), we have:

β
∑

sT
∑ gα(sT)q(sT)Zβ(sT) ≤ L

ε
L

 = ε (34)

Combining (30)-(34), we get:

α 0
∑ aα(α0)[q(α0) - fT,α(α0, aα)]

~
Z (α0) ≤ ε (35)

Because aα(α0) is strictly positive and q(α0) ≥ fα(α0, aα) ≥ fT,α(α0, aα), each term on the left of

(35) is nonnegative. If qj(α0) > fα
j(α0, aα) for an asset j with positive supply, then the left side

has a positive lower bound, and for sufficiently small ε (35) cannot hold at any T. Q.E.D.

5. Conclusion

This paper develops an approach and a framework within which diverse information

issues can be analyzed in a general way. The basic conclusion of the paper can be easily stated:

within our framework, as far as the existence of bubbles is concerned, the market necessarily

reveals enough information so that any remaining information diversity does not matter.
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