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Abstract

Vector autoregressions (VARs) are important tools in time series analysis.
However, relatively little is known about the �nite-sample behaviour of
parameter estimators. We address this issue, by investigating ordinary least
squares (OLS) estimators given a data generating process that is a purely
nonstationary �rst-order VAR. Speci�cally, we use Monte Carlo simulation
and numerical optimization to derive response surfaces for OLS bias and
variance, in terms of VAR dimensions, given correct speci�cation and several
types of over-parameterization of the model: we include a constant, and
a constant and trend, and introduce excess lags. We then examine the
correction factors that are required for the least squares estimator to attain
minimum mean squared error (MSE). Our results improve and extend one
of the main �nite-sample multivariate analytical bias results of Abadir,
Hadri and Tzavalis (Econometrica 67 (1999) 163), generalize the univariate
variance and MSE �ndings of Abadir (Economics Letters 47 (1995) 263) to
the multivariate setting, and complement various asymptotic studies.
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1 Introduction

Vector autoregressions have been extensively studied in econometrics and continue

to be one of the most frequently used tools in time series analysis. However,

little is currently known about the properties of parameter estimators when

applied to �nite samples of data, and especially in nonstationary frameworks. In

particular, the form and extent of estimator bias and variance have not yet been

fully investigated. In a paper that is central to this issue, Abadir, Hadri and

Tzavalis (1999) (AHT) study nonstationary multivariate autoregressive series,

and derive an approximate expression for the mean bias of the ordinary least

squares estimator of the matrix of autoregressive parameters, in terms of the

sample size T and VAR dimension k. They consider estimation of a correctly-

parameterized �rst-order vector autoregression (a VAR(1)), with no constant

or trend, given that the data generating process is a k-dimensional Gaussian

random walk. Using Monte Carlo simulation, they show that their \analytic

approximation" provides a good representation of bias in �nite samples, and for

small k (AHT, Table I).

The purposes of this paper are twofold. Firstly, we extend the results given by

AHT in a number of directions, building upon previous studies by Stamatogiannis

(1999) and Lawford (2001, chapter 4). In broadening the scope of AHT, we assess

over-parameterization of the estimated VAR model, by including a constant,

and a constant and deterministic trend. This creates additional bias problems,

as was suggested by simulation results for the univariate case in Abadir and

Hadri (2000, p. 97) and Tanizaki (2000, Table 1). We also assess the e�ects of

introducing p � 1 excess lags into the estimated model. We use Monte Carlo

methods to simulate small sample bias, and then �t a series of response surfaces
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using weighted nonlinear least squares. Well-speci�ed and parsimonious response

surfaces are chosen following diagnostic testing, and are shown to perform very

well in out-of-sample prediction. In the correctly-parameterized setting, the

prediction error of our response surface is substantially less than that of the

AHT form, across the parameter space under investigation.

Secondly, we focus attention on the variance and MSE of the least squares

estimator, and generalize the heuristic univariate variance approximation of

Abadir (1995) to rigorous response surfaces. We develop response surfaces for

variance, and show that multiplying the OLS estimator by a scalar correction

factor achieves minimum MSE and removes most of the bias, at the expense of

a small increase in estimator variance. To our knowledge, no other �nite-sample

approximations (analytic or otherwise), and few simulations, were previously

available for bias in the multivariate over-parameterized cases, or for excess lags,

or for variance in the multivariate setting.

The paper is organized as follows. Section 2 introduces the possibly over-

parameterized VAR model and briey reviews existing �nite-sample results.

Section 3 outlines the response surface methodology, presents the experimental

design, and proposes response surfaces for multivariate bias and variance, based

upon an extensive series of Monte Carlo experiments. Section 4 concludes the

paper. We represent vector (and scalar) and matrix quantities as a and A

respectively. Special vectors and matrices include the k � 1 zero vector 0k and

the k � k identity matrix Ik.
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2 Models and background

Let fxtg
T
1
be a k � 1 discrete time series that follows a purely nonstationary

VAR(1), where T is the sample size, the innovations are independently and

identically distributed with distribution D, and 
 is positive-de�nite:

xt = xt�1 + "t; "t � i:i:d:D(0k; 
) ; t = 1; 2; : : : ; T: (1)

We examine the �nite-sample bias, variance and MSE of the least squares estimator

of (1), for each of the following estimated VAR(p) models:

Model A : xt = b�xt�1 +
p�1X
j=1

b�j�xt�j + b"t;

Model B : xt = �+�xt�1 +

p�1X
j=1

�j�xt�j + "t;

Model C : xt = e�+ e�t+ e�xt�1 +
p�1X
j=1

e�j�xt�j + e"t;

where � is the backward-di�erence operator, and over-parameterization arises

through inclusion of a constant (Model B), a constant and time trend (Model C),

and when there are multiple lags, with p > 1 (Models A, B, and C).1 Zero initial

values are chosen for simplicity (x�j = 0k; j = 0; 1; : : : ; p � 1), and to avoid

the problems of bias nonmonotonicity that can potentially arise when non-zero

initial values are considered.2

1We are very grateful to the referees, who suggested that we generalize our original models.
2The correctly-parameterized univariate Model A, with k = p = 1, was examined by Abadir

and Hadri (2000), given a (nearly) nonstationary data generating process, and non-zero initial

values. They show, using numerical integration, that the bias of b� can be increasing in sample
size T , due to the e�ect of jx0j. This nonmonotonicity disappears under estimation of univariate
Models B and C, at the expense of higher bias. A small simulation study of (1) and Model A
by Lawford (2001), with k � 6, p = 1 and x0 6= 0k, leads to the interesting conjecture that bias
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PROPOSITION 1: The bias matrix B = E(b�)�Ik is scalar, and bias is invariant
to 
, for Models A, B, and C, if the error distribution D is symmetric, and 


is positive-de�nite. Furthermore, the variances of each of the diagonal elements

of b� are identical, and variance is invariant to 
, for Models A, B, and C, if D

is symmetric, and 
 is both positive-de�nite and diagonal. A proof is available

from the authors on request.

Abadir (1993) uses some results on moment generating functions to derive a

high-order closed form (integral-free) analytical approximation to the univariate

�nite-sample bias of b� given Model A, k = p = 1, and with j�j = 1. The �nal

expression is based upon parabolic cylinder functions, and is computationally

very e�cient. Abadir further shows that bias may be described more simply in

terms of exponential functions in polynomials of T�1, and develops the following

heuristic approximation:

bUNIV � �1:7814T�1 exp
�
�2:6138T�1

�
; (2)

where �1:7814 is the expected value of the limiting distribution of T (b�� 1), e.g.

see Le Breton and Pham (1989, p. 562).3 Heuristic �ts such as (2) have been

used elsewhere in the literature, e.g. Dickey and Fuller (1981, p. 1064), and we

distinguish here between these approximations and the rigorous response surface

approach that is used in this paper. Despite the fact that only 5 datapoints are

nonmonotonicity also disappears when k > 1.
3This constant can be calculated conveniently by using the expression 1 �

1

2

R1
0

u (coshu)�1=2 du = 1 � 2
p
2 3F2 (1=4; 1=4; 1=2; 5=4; 5=4;�1) � �1:7814, where 3F2 is

a hypergeometric function:
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used in the derivation of (2), it is accurate in-sample to 5 decimal places for bias,

and is more accurate than the special function expression (see Abadir, 1993,

Table 1). We found that (2) also performs very well out-of-sample, at least to 1

decimal place of �100�bias. Other studies that examine the exact moments of

OLS in univariate autoregressive models, with a variety of disturbances, include

Evans and Savin (1981), Nankervis and Savin (1988), Tsui and Ali (1994), and

Vinod and Shenton (1996); see also Maeshiro (1999) and Tanizaki (2000), and

references therein.

In the multivariate setting, AHT consider Model A, k � 1, p = 1, and prove

that B is exactly a scalar matrix, i.e. diagonal with equal diagonal elements:

B = diag(b; : : : ; b), and that B is invariant to 
, given only a symmetric error

distribution. Furthermore, they develop a simple quantitative approximation to

multivariate �nite-sample bias (especially AHT, p. 166, and Abadir, 1995, p.

264):

BAHT � bUNIVkIk � b AHTIk: (3)

It is clear that bias is approximately proportional to the dimension of the VAR,

even when 
 is diagonal. To facilitate discussion of cointegrating relations, AHT

formulate their model as 4xt = 	xt�1+ "t, where 	 � �� Ik. Since the bias of

b	 is equivalent to the bias of b�, our results may be compared directly to those

in AHT, for p = 1, and no deterministics.

Abadir (1995, p. 265) uses the univariate Model A (p = 1) variance de�nition

v = 2T�2
sd

2, with values for standard deviation \sd" of normalized b� taken from
Evans and Savin (1981, Table III), and performs a similar heuristic process to

that used in derivation of (2) for bias. This gives a variance approximation for
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k = p = 1:

vUNIV � 10:1124T�2 exp
�
�5:4462T�1 + 14:519T�2

�
; (4)

which is shown to be accurate to at least 7 decimal places in small samples.

Since the bias and variance of each of the diagonal elements of b� are respectively

identical, we may use MSE(b�) = b2 + v directly, to compute the MSE.

In the following section, we present the Monte Carlo experimental design,

develop very accurate response surface approximations to multivariate bias and

variance, and consider a simple correction for the OLS estimator to have minimum

MSE.

3 Structure of Monte Carlo analysis

Response surfaces are numerical-analytical approximations, which can be very

useful when summarizing and interpreting the small sample behaviour of tests

and estimators. They have been applied to a variety of econometric problems

by, inter alia, Engle, Hendry and Trumble (1985), Campos (1986), Ericsson

(1991), MacKinnon (1994, 1996), Cheung and Lai (1995), MacKinnon, Haug

and Michelis (1999) and Ericsson and MacKinnon (2002). See Hendry (1984)

and Doornik and Hendry (2007, chapter 15) for good introductions. Briey, a

statistic � is modelled as a (response surface) function f (.) of relevant variables,

that is usually formulated in line with known analytical results. Monte Carlo is

used to generate simulated estimates ��i of � , i = 1; 2; : : : ; N , for N experiments,

where each ��i is based upon M replications, and the parameters of f (.) are

estimated using an appropriate procedure, depending upon the functional form.
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The method can be computationally intensive, since M and N must be large if

f (.) is to be accurately speci�ed. To avoid problems of speci�city, the estimated

f (.) must be subjected to testing, and its out-of-sample performance assessed.

3.1 Monte Carlo design and simulation

The data generating process and models were introduced in (1) and Models A,

B, and C. We adopt a minimal complete factorial design, which covers all triples

(T; k; p) from:

T 2 f20; 21; : : : ; 30; 35; : : : ; 80; 90; 100; 150; 200g ; k 2 f1; 2; 3; 4g ; p 2 f1; 2; 3; 4g ;

(5)

givingN = 400 datapoints. The sample sizes that we have chosen are representative

of those that are commonly used in practice, and our design includes small k and

p, so that the e�ects of changes in VAR dimension and model lag can be explored.

From Proposition 1, and with no loss of generality, we set "t � i:i:d:N(0k; Ik) in

the simulations. We calculate the OLS estimate for each combination of (T; k; p)

in the parameter space, from which we directly derive the bias. Since B is a

scalar matrix, we may estimate the scalar b by averaging over the estimated

diagonal elements of B. This results in a further increase in accuracy as k

increases. We simulate variance v similarly.4 The period of our pseudo-random

number procedure is much larger than the total random number requirement. All

simulations were performed most recently on Pentium 4 machines, with 2.5GHz

processors and 512MB of RAM, running GAUSS and/or Python under Microsoft

4We experimented with a pseudo-antithetic variate technique, based upon Abadir and
Paruolo's (2007) univariate \AV4", and were able to increase the speed of the bias simulations
by roughly 50%, for a given precision [Model A, p = 1]. While conventional antithetics are not
generally applicable to the nonstationary setting, the pseudo-antithetic is not valid either for
some of the models considered above, and is therefore not used in this paper.
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Windows XP.

Where possible, our numerical results were checked with partial exact and

approximate results in the literature. These include MacKinnon and Smith

(1998, Figure 1), who plot bias functions under Model B (k = p = 1), and Pere

(2000, Table 3), who reports values that correspond to variances in the same

model, in his study of adjusted pro�le likelihood. Evans and Savin (1981, Table

3) give bias and standard deviation for 2�1=2T (b���) under Model A (k = p = 1),

which agree closely (3 to 5 decimal places) with our simulation results. Roy and

Fuller (2001, Tables 1 and 6) report bias and MSE for T = 100, under univariate

Models B and C, for p = 1.

3.2 Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance under Models A,

B, and C, on functions of sample size, VAR dimension and lag order, to reect

the dependence of b and v upon these parameters, and on the degree of over-

parameterization. Following extensive experimentation, and motivated by (2),

we �t the following nonlinear bias response surface for each of the models:5

(sbi)
�1 b (Ti; ki; pi) = (sbi)

�1 (�1 + �2 ki)T
�1
i exp

�
(�3 + �4 ki + �5 kipi + �6 k

pi
i )T

�1
i

�
+ui:

(6)

5Some early motivation for numerical re�nement of (3), for Model A, with p = 1, came
from consideration of low-order partial derivatives of bAHT . Straightforward algebra gives
(for T � 1) bAHT < 0, @bAHT=@k < 0, @2bAHT=@k2 = 0, (for T � 3) @bAHT=@T > 0,
@2bAHT=@k@T > 0, (for T � 5) @2bAHT=@T 2 < 0. Upon comparing these theoretical partials
with approximate numerical partial derivatives from simulated data, it is found that each holds,
except for @2b=@k2 = 0 (simulations suggest that @2b=@k2 > 0, for T not too large). This �nding
suggested that improvements were possible over (3), and especially that k entered the formula
in a more complicated manner than in (3).
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The dependent variable b (Ti; ki; pi) is the simulated �nite-sample bias for sample

size Ti, VAR dimension ki, and lag order pi, which take values from (5), and ui

is an error term. We correct for Monte Carlo sampling heteroscedasticity using

the term sbi , which is the simulated sampling error standard deviation of bias

over replications (see Doornik and Hendry, 2007, chapter 15, for details). We

denote the �tted values of the estimated response surface by bRS, and estimated

coe�cients are reported in Table 1. Convergence of the weighted nonlinear least

squares routine was very fast, and required few iterations. Selection criteria

included small residual variance and good in-sample �t, parsimony, and satisfactory

diagnostic performance. The response surface �ts are extremely good in-sample,

and the Jarque-Bera statistic for normality is small. The signs of all estimated

coe�cients apart from the constant �1 remain the same across the di�erent

models. Note that the asymptotic bias Tib (as Ti ! 1) is a linear function of

ki alone, which agrees with numerical observations, and that �1 + �2 ki can be

interpreted as the asymptotic component of bias, with the exponential representing

the (analytically intractable) �nite-sample \adjustment", which depends on ki

and pi (and Ti).

(Table 1 about here)

We recalculate Table I in AHT as Table 2 in this paper, with increased

accuracy, with additional results reported for T = 400; 800 and k = 6; 7; 8, and

correcting for a typo in AHT Table I: (T; k) = (25; 5). It is convenient to interpret

the scaled bias values as percentages of the true parameter value, e.g. in Model

A, given (T; k) = (25; 8), and p = 1, the absolute bias of each of the estimated

parameters on the diagonal of b� is 46:7% of the true value (unity). Clearly,

absolute bias is strictly increasing in k and decreasing in T . As T increases, bias
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goes to zero, as is well-known from asymptotic theory. We see that bAHT gives

a good approximation to bias for k small, and especially for k = 1, where (3)

reduces to the excellent heuristic approximation (2). However, as k increases,

bRS provides much closer approximations to bias, even for T quite large. Out-of-

sample points reported in Table 2 for bRS are combinations of k = 5; 6; 7; 8, and

T = 400; 800. While bAHT is only applicable for correctly-parameterized Model

A, our response surfaces can be used when p > 1, and also when deterministics

are included. The out-of-sample �t appears to be excellent for all T , and up to

about k = p = 6 (as k and p jointly become large, with small T , the term kp will

dominate the bias approximation, and out-of-sample predictions should be used

with particular caution). Although the response surfaces are developed with

small sample rather than asymptotic considerations in mind, it is interesting to

approximate univariate asymptotic bias by setting k = p = 1 and letting Ti !1

in Tib
RS, from (6), which gives Tib

RS = b�1+ b�2 of approximately �1:7, �5:4 and
�10:3 in Models A, B and C respectively.

(Table 2 about here)

Kiviet and Phillips (2005, equation (14), and Figure 1) consider univariate

Model B, where the data generating process can have a non-zero drift, and

write autoregressive bias in terms of \g-functions " g0 (T ) and g1 (T ), which they

calculate using simulations. The function g0 (T ) represents least squares bias

when there is a zero drift in the data generating process, while g1 (T ) appears as

the bias increment due to non-zero drift. Our equation (6) simpli�es (when k =

p = 1) to g0 (T ) � �5:3654T
�1 exp

�
�2:6513T�1

�
, which provides a convenient

means of calculating g0 (T ) without further simulations.
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Using (4) to motivate the choice of functional form, we �t the variance

response surface:

(svi )
�1v (Ti; ki; pi) = (svi )

�1 (1 + 2 ki)T
�2
i exp[(3 + 4 ki + 5 pi + 6 kipi)T

�1
i

+(7 kipi + 8 k
pi
i )T

�2
i ] + ui; (7)

where v (Ti; ki; pi) is the simulated �nite-sample variance, and s
v
i is the simulated

sampling error standard deviation of the variance over replications. In estimating

(7), we did not use datapoints for which Ti = 20; : : : ; 24 (and so N = 320),

since variance becomes very large for such small sample sizes, which makes it

very di�cult to specify good response surfaces across the full parameter space.

Estimated response surfaces vRS are given in Table 3, and are seen to �t very well.

The signs of each of the estimated coe�cients, except for 1, remains the same

across the models, the Jarque-Bera statistic is relatively low, and vRS provides a

very good approximation in-sample. The out-of-sample variance approximation

should be used with caution as k and p jointly exceed about 5 or 6, with small T ,

again due to the e�ect of the term kp. We note that no variance approximations

were previously available for over-parameterized models, excess lags, or even for

k > 1. Similarly to the bias response surfaces, the asymptotic variance T 2
i v (as

Ti !1) is a linear function of ki alone, and 1+ 2 ki can be interpreted as the

asymptotic component of variance, with the exponential term again representing

the �nite-sample \adjustment", which depends upon ki and pi (and Ti). The

dependencies of bias and variance on T , k, and p are depicted in Figures 1 and

2, which plot scaled response surfaces �100� bRS and 10; 000� vRS, against T ,

for Models A, B, and C, with k = 1; 2 and p = 1; 2.
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(Table 3 about here)

(Figures 1 and 2 about here)

Bias and variance are not the only criteria to be used in comparison of time

series estimates, and the mean squared error, MSE(b�) = b2 + v; is often of

interest. For univariate Model A (p = 1), Abadir (1995) de�nes � as a correction

factor such that MSE(�b�) is minimized, and bm and vm as the bias and variance

of the corrected OLS estimator �b�, with:

� =
1 + b

v + (1 + b)2
; bm =

�v

v + (1 + b)2
; vm = �2v; (8)

when � = 1. Equations (6) and (7) may be now combined to give an approximation

to MSE, and by substitution of response surface values for bias and variance

into (8), we are able to calculate � for various T; k, and p. As an illustration,

correction factors are reported in Table 4, for p = 1 and Model A, which displays

qualitatively similar results to those in Abadir (1995, Tables 2 and 3). It is

clear that OLS (� = 1) does not achieve minimum MSE. It is also shown that

the corrected OLS is almost unbiased, unlike OLS. From Table 4, � increases

monotonically with k and decreases monotonically with T (asymptotically, the

OLS achieves minimum MSE). The correction can be particularly large for small

T , e.g. (T; k) = (25; 5) implies a correction of 32%. The corrected estimator

is much less biased than the OLS, and bm tends to zero more rapidly than b.

However, this reduction in bias comes at the expense of a small increase in the

variance of the corrected estimator, vm. It is seen that b2 forms a much larger

proportion of MSE than variance for k � 3, although this is reversed following

the minimum MSE correction; and that MSE e�ciency is generally decreasing
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in T and k.

(Table 4 about here)

4 Concluding comments

We have performed an extensive set of Monte Carlo experiments on the bias and

variance of the OLS of the autoregressive parameters, given a data generating

process that is a purely nonstationary VAR(1), where the estimated model is a

possibly over-parameterized VAR(p), for small sample sizes, and various VAR

dimensions and lag lengths. Although the univariate framework has been the

subject of much research, a comprehensive multivariate simulation study has

not previously been performed. We estimate parsimonious and computationally

convenient response surfaces for bias and variance, that are much more accurate

and more general than existing approximations. In this way, we improve numerically

upon existing �nite-sample analytical bias results, and extend them to p > 1

and deterministics, and also extend existing �nite-sample variance results to

k > 1, p > 1, and to deterministics. Finally, we investigate the correction factors

required for the OLS to achieve minimum MSE and show that this correction can

signi�cantly reduce bias, at the expense of a small increase in estimator variance.

Our results may provide guidelines for applied researchers as to the behaviour

of VAR models, given that relatively short samples and nonstationary data are

often relevant in empirical work.

Our work complements important asymptotic treatments by Phillips (1987a)

in the univariate framework, and Park and Phillips (1988, 1989), Phillips (1987b),

and Tsay and Tiao (1990) in the multivariate setting. Our results may also be
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useful when studying the derivation of exact formulae (for instance, in conjunction

with work by Abadir and Larsson, 1996, 2001, who derive the exact �nite-sample

moment generating function of the quadratic forms that create the basis for the

su�cient statistic in a discrete Gaussian vector autoregression). Exact analytical

bias expressions may involve multiple in�nite series of matrix-argument hypergeometric

functions (generalizing, e.g. Abadir, 1993). When such series arise in other

areas of econometrics, they are generally complicated and may be di�cult to

implement for numerical evaluation. We may, therefore, need to rely upon approximations

in practice, even when the exact formulae are available.
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Model A Model B Model C

b�1 0:320104 �3:475124 �8:522213
(0:010386) (0:013364) (0:053317)

b�2 �2:044023 �1:890281 �1:743529
(0:004011) (0:005275) (0:018449)

b�3 �1:123620 �1:788271 �1:410424
(0:136479) (0:093583) (0:227607)

b�4 �1:860624 �1:907111 �2:632320
(0:039287) (0:029559) (0:080549)

b�5 0:998913 1:037856 1:404018
(0:010382) (0:009215) (0:019767)

b�6 0:008005 0:006210 0:002401
(0:000712) (0:000496) (0:000822)

R
2

0:9995 0:9996 0:9976
JB 1:35 8:95? 8:92?

Table 1: Estimated bias response surfaces bRS for Models A, B, and C. Response
surfaces (6) were estimated using weighted nonlinear least squares. White's

heteroscedasticity-consistent standard errors are given in parentheses, R
2
is the

degrees-of-freedom adjusted coe�cient of determination, JB is the Jarque-Bera
test statistic for normality, asymptotically distributed as �2 (2), and ? denotes
signi�cance at the 5% level.
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VAR dimension (k)

T 1 2 3 4 5 6 7 8
b 6:4 13:5 20:0 26:1 31:8 37:1 42:1 46:7

bAHT (6:4) (12:8) (19:3) (25:7) (32:1) (38:5) (44:9) (51:3)
25 bRS [6:4] [13:5] [20:1] [26:2] [31:9] [37:2] [42:1] [46:7]

b 19:2 25:0 30:6 35:9 40:9 45:7 50:2 54:5
eb 35:3 40:0 44:5 49:0 53:2 57:3 61:2 64:9
b 3:4 7:2 10:8 14:3 17:6 20:9 24:0 27:0

bAHT (3:4) (6:8) (10:1) (13:5) (16:9) (20:3) (23:7) (27:1)
50 bRS [3:3] [7:1] [10:8] [14:3] [17:8] [21:1] [24:3] [27:3]

b 10:1 13:4 16:7 19:9 23:0 26:0 28:9 31:8
eb 19:0 21:8 24:7 27:5 30:3 33:0 35:7 38:3
b 1:7 3:7 5:6 7:5 9:3 11:1 12:9 14:6

bAHT (1:7) (3:5) (5:2) (6:9) (8:7) (10:4) (12:1) (13:9)
100 bRS [1:7] [3:7] [5:6] [7:5] [9:4] [11:2] [13:0] [14:8]

b 5:2 7:0 8:7 10:5 12:2 14:0 15:7 17:3
eb 9:9 11:4 13:0 14:6 16:3 17:9 19:5 21:1
b 0:9 1:9 2:9 3:8 4:8 5:8 6:7 7:6

bAHT (0:9) (1:8) (2:6) (3:5) (4:4) (5:3) (6:2) (7:0)
200 bRS [0:9] [1:9] [2:9] [3:8] [4:8] [5:8] [6:8] [7:7]

b 2:6 3:6 4:5 5:4 6:3 7:3 8:2 9:1
eb 5:0 5:8 6:7 7:6 8:4 9:3 10:2 11:1
b 0:4 0:9 1:4 1:9 2:4 2:9 3:4 3:9

bAHT (0:4) (0:9) (1:3) (1:8) (2:2) (2:7) (3:1) (3:5)
400 bRS [0:4] [0:9] [1:4] [1:9] [2:4] [2:9] [3:4] [3:9]

b 1:3 1:8 2:3 2:7 3:2 3:7 4:2 4:6
eb 2:5 3:0 3:4 3:9 4:3 4:8 5:2 5:7
b 0:2 0:5 0:7 1:0 1:2 1:5 1:7 2:0

bAHT (0:2) (0:4) (0:7) (0:9) (1:1) (1:3) (1:6) (1:8)
800 bRS [0:2] [0:5] [0:7] [1:0] [1:2] [1:5] [1:7] [2:0]

b 0:7 0:9 1:1 1:4 1:6 1:9 2:1 2:4
eb 1:3 1:5 1:7 1:9 2:2 2:4 2:6 2:9

Table 2: Simulated scaled bias in Models A, B, and C, for p = 1, and AHT
and Model A approximations. All reported bias values have been multiplied by
�100, b is the simulated Model A bias, bAHT is the AHT approximation (3) to
Model A bias, bRS is the response surface approximation (6) to Model A bias, b
is the simulated Model B bias, and eb is the simulated Model C bias. In-sample
points correspond to k = 1; 2; 3; 4 and T = 25; 50; 100; 200.
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Model A Model B Model C

b1 �0:345264 10:42961 26:23034
(0:054616) (0:081527) (0:150349)

b2 10:40041 9:895323 10:10400
(0:040182) (0:048754) (0:087121)

b3 �4:469397 �9:679804 �17:05139
(0:203317) (0:191752) (0:249821)

b4 �5:302022 �4:979473 �4:800818
(0:077115) (0:083314) (0:114279)

b5 1:245448 2:058910 4:750621
(0:092856) (0:075961) (0:102145)

b6 2:925115 2:957002 2:969689
(0:041124) (0:035076) (0:046760)

b7 13:23278 11:64608 14:66810
(0:883959) (0:767140) (0:966050)

b8 0:993006 0:888653 0:923219
(0:041359) (0:033083) (0:045075)

R
2

0:9991 0:9990 0:9982
JB 91:03?? 46:38?? 30:22??

Table 3: Estimated variance response surfaces vRS for Models A, B, and C.
Response surfaces (7) were estimated using weighted nonlinear least squares.
White's heteroscedasticity-consistent standard errors are given in parentheses,

R
2
is the degrees-of-freedom adjusted coe�cient of determination, JB is the

Jarque-Bera test statistic for normality, asymptotically distributed as �2 (2),
and ?? denotes signi�cance at the 1% level.
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VAR dimension (k)

T 1 2 3 4 5 6 7 8
� 1:05 1:12 1:19 1:26 1:32 1:39 1:46 1:52
br 0:23 0:24 0:26 0:28 0:31 0:34 0:37 0:40

25 vr 1:11 1:25 1:41 1:58 1:75 1:94 2:13 2:32
bc 24=1 42=3 54=5 61=7 67=10 71=13 74=15 77=19
me 86 75 69 66 65 64 65 66
� 1:03 1:07 1:11 1:15 1:19 1:23 1:28 1:32
br 0:12 0:11 0:12 0:12 0:13 0:13 0:14 0:15

50 vr 1:06 1:14 1:23 1:32 1:41 1:52 1:63 1:74
bc 23=0:4 42=1 53=1 61=2 67=2 71=3 74=3 77=4
me 82 67 58 52 48 45 43 42
� 1:02 1:04 1:06 1:08 1:10 1:12 1:14 1:16
br 0:06 0:06 0:06 0:06 0:06 0:06 0:06 0:06

100 vr 1:03 1:07 1:12 1:16 1:20 1:25 1:30 1:35
bc 23=0:1 41=0:2 53=0:3 61=0:4 66=0:5 71=0:7 74=0:8 77=0:9
me 80 63 53 46 41 37 34 32
� 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08
br 0:03 0:03 0:03 0:03 0:03 0:03 0:03 0:03

200 vr 1:02 1:04 1:06 1:08 1:10 1:12 1:15 1:17
bc 23=0:0 41=0:1 53=0:1 60=0:1 66=0:1 70=0:2 73=0:2 76=0:2
me 78 61 50 43 38 34 30 28
� 1:00 1:01 1:01 1:02 1:02 1:03 1:04 1:04
br 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01

400 vr 1:01 1:02 1:03 1:04 1:05 1:07 1:07 1:08
bc 23=0:0 41=0:0 52=0:0 60=0:0 66=0:0 70=0:0 73=0:0 76=0:1
me 78 60 49 41 36 32 29 26
� 1:00 1:00 1:01 1:01 1:01 1:01 1:02 1:02
br 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01

800 vr 1:00 1:01 1:01 1:02 1:02 1:03 1:04 1:04
bc 23=0:0 41=0:0 52=0:0 60=0:0 66=0:0 70=0:0 73=0:0 76=0:0
me 77 60 48 41 35 31 28 25

Table 4: MinimumMSE correction in Model A, for p = 1. � is a correction factor,
such that �b� attains minimum MSE, br is the bias ratio�corrected bias/OLS
bias, vr is the variance ratio�corrected variance/OLS variance

�
vr � �2

�
, bc and

\x=y" indicate that b2 forms x% of MSE under OLS, and corrected b2 forms y%
of minimized MSE, me is the MSE e�ciency�MSE after correction/MSE under
OLS (�100). All values are computed using the appropriate response surface
approximations (6) and (7). In-sample points correspond to k = 1; 2; 3; 4 and
T = 25; 50; 100; 200.
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Figure 1:

Figure 2:
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Figure 1. Bias response surfaces: scaled bias against T , for k = 1; 2 and p = 1; 2,

for Models A, B, and C. Simulated values are represented by diamonds (k = 1)

and squares (k = 2).

Figure 2. Variance response surfaces: scaled variance against T , for k = 1; 2 and

p = 1; 2, for Models A, B, and C. Simulated values are represented by diamonds

(k = 1) and squares (k = 2).




