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Abstract

Vector autoregressions (VARs) are important tools in time series analysis.
However, relatively little is known about the finite-sample behaviour of
parameter estimators. We address this issue, by investigating ordinary least
squares (OLS) estimators given a data generating process that is a purely
nonstationary first-order VAR. Specifically, we use Monte Carlo simulation
and numerical optimization to derive response surfaces for OLS bias and
variance, in terms of VAR dimensions, given correct specification and several
types of over-parameterization of the model: we include a constant, and
a constant and trend, and introduce excess lags. We then examine the
correction factors that are required for the least squares estimator to attain
minimum mean squared error (MSE). Our results improve and extend one
of the main finite-sample multivariate analytical bias results of Abadir,
Hadri and Tzavalis (Econometrica 67 (1999) 163), generalize the univariate
variance and MSE findings of Abadir (Economics Letters 47 (1995) 263) to
the multivariate setting, and complement various asymptotic studies.
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1 Introduction

Vector autoregressions have been extensively studied in econometrics and continue
to be one of the most frequently used tools in time series analysis. However,
little is currently known about the properties of parameter estimators when
applied to finite samples of data, and especially in nonstationary frameworks. In
particular, the form and extent of estimator bias and variance have not yet been
fully investigated. In a paper that is central to this issue, Abadir, Hadri and
Tzavalis (1999) (AHT) study nonstationary multivariate autoregressive series,
and derive an approximate expression for the mean bias of the ordinary least
squares estimator of the matrix of autoregressive parameters, in terms of the
sample size T and VAR dimension k. They consider estimation of a correctly-
parameterized first-order vector autoregression (a VAR(1)), with no constant
or trend, given that the data generating process is a k-dimensional Gaussian
random walk. Using Monte Carlo simulation, they show that their “analytic
approximation” provides a good representation of bias in finite samples, and for
small £ (AHT, Table I).

The purposes of this paper are twofold. Firstly, we extend the results given by
AHT in a number of directions, building upon previous studies by Stamatogiannis
(1999) and Lawford (2001, chapter 4). In broadening the scope of AHT, we assess
over-parameterization of the estimated VAR model, by including a constant,
and a constant and deterministic trend. This creates additional bias problems,
as was suggested by simulation results for the univariate case in Abadir and
Hadri (2000, p. 97) and Tanizaki (2000, Table 1). We also assess the effects of
introducing p — 1 excess lags into the estimated model. We use Monte Carlo

methods to simulate small sample bias, and then fit a series of response surfaces



using weighted nonlinear least squares. Well-specified and parsimonious response
surfaces are chosen following diagnostic testing, and are shown to perform very
well in out-of-sample prediction. In the correctly-parameterized setting, the
prediction error of our response surface is substantially less than that of the
AHT form, across the parameter space under investigation.

Secondly, we focus attention on the variance and MSE of the least squares
estimator, and generalize the heuristic univariate variance approximation of
Abadir (1995) to rigorous response surfaces. We develop response surfaces for
variance, and show that multiplying the OLS estimator by a scalar correction
factor achieves minimum MSE and removes most of the bias, at the expense of
a small increase in estimator variance. To our knowledge, no other finite-sample
approximations (analytic or otherwise), and few simulations, were previously
available for bias in the multivariate over-parameterized cases, or for excess lags,
or for variance in the multivariate setting.

The paper is organized as follows. Section 2 introduces the possibly over-
parameterized VAR model and briefly reviews existing finite-sample results.
Section 3 outlines the response surface methodology, presents the experimental
design, and proposes response surfaces for multivariate bias and variance, based
upon an extensive series of Monte Carlo experiments. Section 4 concludes the
paper. We represent vector (and scalar) and matrix quantities as a and A
respectively. Special vectors and matrices include the k£ x 1 zero vector O and

the k x k identity matrix I.



2 Models and background

Let {xt}lT be a k x 1 discrete time series that follows a purely nonstationary
VAR(1), where T is the sample size, the innovations are independently and

identically distributed with distribution D, and {2 is positive-definite:
Ty =x4—1 +e¢, e ~11.dD (0, 2), t=1,2,...,T. (1)

We examine the finite-sample bias, variance and MSE of the least squares estimator

of (1), for each of the following estimated VAR(p) models:

p—1
Model A: 7 = &z + ijA;ct_j + &,
j=1
p—1
Model B: z; = u+ Q1 + ijAfL‘t,]‘ + &,
j=1
p—1
Model C: = = pn+ ot 4+ dxy 4 + ijAxt,j + &,
j=1

where A is the backward-difference operator, and over-parameterization arises
through inclusion of a constant (Model B), a constant and time trend (Model C),
and when there are multiple lags, with p > 1 (Models A, B, and C).! Zero initial
values are chosen for simplicity (z_; = O, j = 0,1,...,p — 1), and to avoid
the problems of bias nonmonotonicity that can potentially arise when non-zero

initial values are considered.?

'We are very grateful to the referees, who suggested that we generalize our original models.

2The correctly-parameterized univariate Model A, with k = p = 1, was examined by Abadir
and Hadri (2000), given a (nearly) nonstationary data generating process, and non-zero initial
values. They show, using numerical integration, that the bias of ngS can be increasing in sample
size T, due to the effect of |zo|. This nonmonotonicity disappears under estimation of univariate
Models B and C, at the expense of higher bias. A small simulation study of (1) and Model A
by Lawford (2001), with £ < 6, p = 1 and z¢ # O, leads to the interesting conjecture that bias
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PROPOSITION 1: The bias matriz B = E(®)—1I is scalar, and bias is invariant
to £2, for Models A, B, and C, if the error distribution D is symmetric, and {2
1s positive-definite. Furthermore, the variances of each of the diagonal elements
0f</I; are identical, and variance is invariant to {2, for Models A, B, and C, if D
is symmetric, and {2 is both positive-definite and diagonal. A proof is available

from the authors on request.

Abadir (1993) uses some results on moment generating functions to derive a
high-order closed form (integral-free) analytical approximation to the univariate
finite-sample bias of $ given Model A, kK = p = 1, and with |¢| = 1. The final
expression is based upon parabolic cylinder functions, and is computationally
very efficient. Abadir further shows that bias may be described more simply in
terms of exponential functions in polynomials of 7!, and develops the following

heuristic approximation:

bUNY ~ —1.7814 T exp (—2.6138T71), (2)

~

where —1.7814 is the expected value of the limiting distribution of T'(¢ — 1), e.g.
see Le Breton and Pham (1989, p. 562).> Heuristic fits such as (2) have been
used elsewhere in the literature, e.g. Dickey and Fuller (1981, p. 1064), and we
distinguish here between these approximations and the rigorous response surface

approach that is used in this paper. Despite the fact that only 5 datapoints are

nonmonotonicity also disappears when k > 1.

3This constant can be calculated conveniently by using the expression 1 —
L% u(coshu)™?du = 1 — 2v2 3F> (1/4,1/4,1/2;5/4,5/4; 1) ~ —1.7814, where 3F» is
a hypergeometric function.



used in the derivation of (2), it is accurate in-sample to 5 decimal places for bias,
and is more accurate than the special function expression (see Abadir, 1993,
Table 1). We found that (2) also performs very well out-of-sample, at least to 1
decimal place of —100xbias. Other studies that examine the exact moments of
OLS in univariate autoregressive models, with a variety of disturbances, include
Evans and Savin (1981), Nankervis and Savin (1988), Tsui and Ali (1994), and
Vinod and Shenton (1996); see also Maeshiro (1999) and Tanizaki (2000), and
references therein.

In the multivariate setting, AHT consider Model A, k > 1, p = 1, and prove
that B is exactly a scalar matriz, i.e. diagonal with equal diagonal elements:
B = diag(b,...,b), and that B is invariant to (2, given only a symmetric error
distribution. Furthermore, they develop a simple quantitative approximation to
multivariate finite-sample bias (especially AHT, p. 166, and Abadir, 1995, p.
264):

BT ~ pUNVEL =0 AT (3)

It is clear that bias is approximately proportional to the dimension of the VAR,
even when {2 is diagonal. To facilitate discussion of cointegrating relations, AHT
formulate their model as Az; = Va1 + €, where ¥ = & — [;.. Since the bias of
T is equivalent to the bias of 6, our results may be compared directly to those
in AHT, for p =1, and no deterministics.

Abadir (1995, p. 265) uses the univariate Model A (p = 1) variance definition
v = 2T2sD?, with values for standard deviation “sD” of normalized $ taken from
Evans and Savin (1981, Table III), and performs a similar heuristic process to

that used in derivation of (2) for bias. This gives a variance approximation for



"NV % 10.1124 T7% exp (—5.4462 T~ + 14.519T?) (4)

which is shown to be accurate to at least 7 decimal places in small samples.
Since the bias and variance of each of the diagonal elements of d are respectively
identical, we may use MSE((Z) = b + v directly, to compute the MSE.

In the following section, we present the Monte Carlo experimental design,
develop very accurate response surface approximations to multivariate bias and

variance, and consider a simple correction for the OLS estimator to have minimum

MSE.

3 Structure of Monte Carlo analysis

Response surfaces are numerical-analytical approximations, which can be very
useful when summarizing and interpreting the small sample behaviour of tests
and estimators. They have been applied to a variety of econometric problems
by, inter alia, Engle, Hendry and Trumble (1985), Campos (1986), Ericsson
(1991), MacKinnon (1994, 1996), Cheung and Lai (1995), MacKinnon, Haug
and Michelis (1999) and Ericsson and MacKinnon (2002). See Hendry (1984)
and Doornik and Hendry (2007, chapter 15) for good introductions. Briefly, a
statistic 7 is modelled as a (response surface) function f (.) of relevant variables,
that is usually formulated in line with known analytical results. Monte Carlo is
used to generate simulated estimates 7, of 7,4 = 1,2,..., N, for N experiments,
where each 7 is based upon M replications, and the parameters of f(.) are

estimated using an appropriate procedure, depending upon the functional form.



The method can be computationally intensive, since M and N must be large if
f () is to be accurately specified. To avoid problems of specificity, the estimated

f (+) must be subjected to testing, and its out-of-sample performance assessed.

3.1 Monte Carlo design and simulation

The data generating process and models were introduced in (1) and Models A,
B, and C. We adopt a minimal complete factorial design, which covers all triples

(T, k,p) from:

T € {20,21,...,30,35,...,80,90,100, 150,200}, k € {1,2,3,4}, p € {1,2,3,4},
(5)
giving N = 400 datapoints. The sample sizes that we have chosen are representative
of those that are commonly used in practice, and our design includes small k£ and
p, so that the effects of changes in VAR dimension and model lag can be explored.
From Proposition 1, and with no loss of generality, we set ; ~ 1.i.d.N(0, I}) in
the simulations. We calculate the OLS estimate for each combination of (T, k, p)
in the parameter space, from which we directly derive the bias. Since B is a
scalar matrix, we may estimate the scalar b by averaging over the estimated
diagonal elements of B. This results in a further increase in accuracy as k
increases. We simulate variance v similarly.* The period of our pseudo-random
number procedure is much larger than the total random number requirement. All
simulations were performed most recently on Pentium 4 machines, with 2.5GHz

processors and 512MB of RAM, running GAUSS and/or Python under Microsoft

We experimented with a pseudo-antithetic variate technique, based upon Abadir and
Paruolo’s (2007) univariate “AV4”, and were able to increase the speed of the bias simulations
by roughly 50%, for a given precision [Model A, p = 1]. While conventional antithetics are not
generally applicable to the nonstationary setting, the pseudo-antithetic is not valid either for
some of the models considered above, and is therefore not used in this paper.



Windows XP.

Where possible, our numerical results were checked with partial exact and
approximate results in the literature. These include MacKinnon and Smith
(1998, Figure 1), who plot bias functions under Model B (k = p = 1), and Pere
(2000, Table 3), who reports values that correspond to variances in the same
model, in his study of adjusted profile likelihood. Evans and Savin (1981, Table
3) give bias and standard deviation for 2*1/2T(g/b\—¢) under Model A (k =p=1),
which agree closely (3 to 5 decimal places) with our simulation results. Roy and
Fuller (2001, Tables 1 and 6) report bias and MSE for T' = 100, under univariate
Models B and C, for p = 1.

3.2 Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance under Models A,
B, and C, on functions of sample size, VAR dimension and lag order, to reflect
the dependence of b and v upon these parameters, and on the degree of over-
parameterization. Following extensive experimentation, and motivated by (2),

we fit the following nonlinear bias response surface for each of the models:®

(D)7 (T3, kiypi) = (s2) 71 (B1 + Ba ki) T, “exp [(Bs + Buki + Bs kipi + Bs k) T; ] +u.

(6)

’Some early motivation for numerical refinement of (3), for Model A, with p = 1, came
from consideration of low-order partial derivatives of b*"7T . Straightforward algebra gives
(for T > 1) v*T < 0, MY /ok < 0, %21 T /oK = 0, (for T > 3) AL /T > 0,
*v T 19kAT > 0, (for T > 5) 8*6*""/dT? < 0. Upon comparing these theoretical partials
with approximate numerical partial derivatives from simulated data, it is found that each holds,
except for 9°b/0k* = 0 (simulations suggest that 0%b/0k> > 0, for T not too large). This finding
suggested that improvements were possible over (3), and especially that k entered the formula
in a more complicated manner than in (3).




The dependent variable b (T;, k;, p;) is the simulated finite-sample bias for sample
size T;, VAR dimension k;, and lag order p;, which take values from (5), and u;
is an error term. We correct for Monte Carlo sampling heteroscedasticity using
the term si’, which is the simulated sampling error standard deviation of bias
over replications (see Doornik and Hendry, 2007, chapter 15, for details). We
denote the fitted values of the estimated response surface by b%°, and estimated
coefficients are reported in Table 1. Convergence of the weighted nonlinear least
squares routine was very fast, and required few iterations. Selection criteria
included small residual variance and good in-sample fit, parsimony, and satisfactory
diagnostic performance. The response surface fits are extremely good in-sample,
and the Jarque-Bera statistic for normality is small. The signs of all estimated
coefficients apart from the constant [; remain the same across the different
models. Note that the asymptotic bias T3b (as T; — 00) is a linear function of
k; alone, which agrees with numerical observations, and that 8; + 2 k; can be
interpreted as the asymptotic component of bias, with the exponential representing
the (analytically intractable) finite-sample “adjustment”, which depends on k;

and p; (and T;).
(Table 1 about here)

We recalculate Table I in AHT as Table 2 in this paper, with increased
accuracy, with additional results reported for 7' = 400,800 and k£ = 6,7, 8, and
correcting for a typo in AHT Table I: (T, k) = (25,5). It is convenient to interpret
the scaled bias values as percentages of the true parameter value, e.g. in Model
A, given (T, k) = (25,8), and p = 1, the absolute bias of each of the estimated
parameters on the diagonal of d is 46.7% of the true value (unity). Clearly,

absolute bias is strictly increasing in k£ and decreasing in T'. As T increases, bias



goes to zero, as is well-known from asymptotic theory. We see that b*HT

gives
a good approximation to bias for k small, and especially for k¥ = 1, where (3)
reduces to the excellent heuristic approximation (2). However, as k increases,
bRS provides much closer approximations to bias, even for T quite large. Out-of-
sample points reported in Table 2 for b5 are combinations of k = 5,6,7, 8, and
T = 400, 800. While ¥*HT is only applicable for correctly-parameterized Model
A, our response surfaces can be used when p > 1, and also when deterministics
are included. The out-of-sample fit appears to be excellent for all T', and up to
about k = p = 6 (as k and p jointly become large, with small 7', the term kP will
dominate the bias approximation, and out-of-sample predictions should be used
with particular caution). Although the response surfaces are developed with
small sample rather than asymptotic considerations in mind, it is interesting to
approximate univariate asymptotic bias by setting k£ = p = 1 and letting 7; — oo
in T;bR5, from (6), which gives T;pRS = Bl —|—E2 of approximately —1.7, —5.4 and

—10.3 in Models A, B and C respectively.
(Table 2 about here)

Kiviet and Phillips (2005, equation (14), and Figure 1) consider univariate
Model B, where the data generating process can have a non-zero drift, and
write autoregressive bias in terms of “g-functions ” gy (T') and gy (T'), which they
calculate using simulations. The function go (T") represents least squares bias
when there is a zero drift in the data generating process, while g1 (T') appears as
the bias increment due to non-zero drift. Our equation (6) simplifies (when & =
p=1)to go (T) ~ —5.3654 T exp (—2.6513 7 !), which provides a convenient

means of calculating go (T') without further simulations.

10



Using (4) to motivate the choice of functional form, we fit the variance

response surface:

(s9) Mo (Th kispi) = (V)" (1 + 2 ki) T expl(vs +va ki + 5 pi + 6 kapi) T;!

+ (v7 kipi + 8 K2 T2 +

where v (T}, k;, p;) is the simulated finite-sample variance, and s; is the simulated
sampling error standard deviation of the variance over replications. In estimating
(7), we did not use datapoints for which 7; = 20,...,24 (and so N = 320),
since variance becomes very large for such small sample sizes, which makes it
very difficult to specify good response surfaces across the full parameter space.

Estimated response surfaces v%°

are given in Table 3, and are seen to fit very well.
The signs of each of the estimated coefficients, except for 7y, remains the same
across the models, the Jarque-Bera statistic is relatively low, and v®5 provides a
very good approximation in-sample. The out-of-sample variance approximation
should be used with caution as k£ and p jointly exceed about 5 or 6, with small 7',
again due to the effect of the term k. We note that no variance approximations
were previously available for over-parameterized models, excess lags, or even for
k > 1. Similarly to the bias response surfaces, the asymptotic variance Tfu (as
T; — o0) is a linear function of k; alone, and ~y; + 2 k; can be interpreted as the
asymptotic component of variance, with the exponential term again representing
the finite-sample “adjustment”, which depends upon k; and p; (and T;). The
dependencies of bias and variance on T, k, and p are depicted in Figures 1 and

2, which plot scaled response surfaces —100 x bR and 10,000 x v®5, against T,

for Models A, B, and C, with £k =1,2 and p =1, 2.

(7)

11



(Table 3 about here)
(Figures 1 and 2 about here)

Bias and variance are not the only criteria to be used in comparison of time
series estimates, and the mean squared error, MSE(@) = b? 4 v, is often of
interest. For univariate Model A (p = 1), Abadir (1995) defines A as a correction

factor such that MSE(A¢) is minimized, and b™ and v™ as the bias and variance

of the corrected OLS estimator Agg, with:

1456 —v
A= —— 1 =y =\, 8
v+ (1+0)? v+ (14 b)? ®

when ¢ = 1. Equations (6) and (7) may be now combined to give an approximation
to MSE, and by substitution of response surface values for bias and variance
into (8), we are able to calculate A for various Tk, and p. As an illustration,
correction factors are reported in Table 4, for p = 1 and Model A, which displays
qualitatively similar results to those in Abadir (1995, Tables 2 and 3). It is
clear that OLS (A = 1) does not achieve minimum MSE. It is also shown that
the corrected OLS is almost unbiased, unlike OLS. From Table 4, A increases
monotonically with & and decreases monotonically with 7' (asymptotically, the
OLS achieves minimum MSE). The correction can be particularly large for small
T, eg. (T,k) = (25,5) implies a correction of 32%. The corrected estimator
is much less biased than the OLS, and ™ tends to zero more rapidly than b.
However, this reduction in bias comes at the expense of a small increase in the
variance of the corrected estimator, v™. It is seen that b? forms a much larger
proportion of MSE than variance for £ > 3, although this is reversed following

the minimum MSE correction; and that MSE efficiency is generally decreasing

12



in T and k.

(Table 4 about here)

4 Concluding comments

We have performed an extensive set of Monte Carlo experiments on the bias and
variance of the OLS of the autoregressive parameters, given a data generating
process that is a purely nonstationary VAR(1), where the estimated model is a
possibly over-parameterized VAR(p), for small sample sizes, and various VAR
dimensions and lag lengths. Although the univariate framework has been the
subject of much research, a comprehensive multivariate simulation study has
not previously been performed. We estimate parsimonious and computationally
convenient response surfaces for bias and variance, that are much more accurate
and more general than existing approximations. In this way, we improve numerically
upon existing finite-sample analytical bias results, and extend them to p > 1
and deterministics, and also extend existing finite-sample variance results to
k> 1,p > 1, and to deterministics. Finally, we investigate the correction factors
required for the OLS to achieve minimum MSE and show that this correction can
significantly reduce bias, at the expense of a small increase in estimator variance.
Our results may provide guidelines for applied researchers as to the behaviour
of VAR models, given that relatively short samples and nonstationary data are
often relevant in empirical work.

Our work complements important asymptotic treatments by Phillips (1987a)
in the univariate framework, and Park and Phillips (1988, 1989), Phillips (1987b),

and Tsay and Tiao (1990) in the multivariate setting. Our results may also be
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useful when studying the derivation of exact formulae (for instance, in conjunction

with work by Abadir and Larsson, 1996, 2001, who derive the exact finite-sample
moment generating function of the quadratic forms that create the basis for the
sufficient statistic in a discrete Gaussian vector autoregression). Exact analytical

bias expressions may involve multiple infinite series of matrix-argument hypergeometric
functions (generalizing, e.g. Abadir, 1993). When such series arise in other

areas of econometrics, they are generally complicated and may be difficult to
implement for numerical evaluation. We may, therefore, need to rely upon approximations

in practice, even when the exact formulae are available.
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Model A Model B Model C
B\l 0.320104  —3.475124 —8.522213
(0.010386) (0.013364) (0.053317)
32 —2.044023 —1.890281 —1.743529
(0.004011)  (0.005275)  (0.018449)
33 —1.123620 —1.788271 —1.410424
(0.136479)  (0.093583)  (0.227607)
34 —1.860624 —1.907111 —2.632320
(0.039287)  (0.029559) (0.080549)
35 0.998913 1.037856 1.404018
(0.010382) (0.009215) (0.019767)
Eﬁ 0.008005 0.006210 0.002401
(0.000712)  (0.000496) (0.000822)
R 0.9995 0.9996 0.9976
JB 1.35 8.95* 8.92*

Table 1: Estimated bias response surfaces b®5 for Models A, B, and C. Response
surfaces (6) were estimated using weighted nonlinear least squares.
heteroscedasticity-consistent standard errors are given in parentheses, R’ is the
degrees-of-freedom adjusted coefficient of determination, JB is the Jarque-Bera
test statistic for normality, asymptotically distributed as x?(2), and % denotes

significance at the 5% level.

21



VAR dimension (k)

T 1 2 3 4 5 6 7 8
b 6.4 135 200 261 31.8 37.1 421  46.7
VAT (6.4) (12.8) (19.3) (25.7) (32.1) (38.5) (44.9) (51.3)

25 RS [6.4] [13.5] [20.1] [26.2] [31.9] [37.2] [42.1] [46.7]
b 192 250 306 359 409 457 502  54.5
b 353 40.0 445 490 532  57.3  61.2  64.9
b 34 72 108 143 176 209 240 270
VAT (3.4)  (6.8) (10.1) (13.5) (16.9) (20.3) (23.7) (27.1)

50 RS [3.3]  [7.1]  [10.8] [14.3] [17.8] [21.1] [24.3] [27.3]
b 101 134 167 199 23.0 260 289 318
b 190 21.8 247 275 303 330 357  38.3
b .7 37 5.6 7.5 93 11.1 129 146
VAT 1.7y (3.5)  (5.2)  (6.9) (8.7) (10.4) (12.1) (13.9)

100 o (177 [3.7  [5.6] [7.5]  [9.4] [11.2] [13.0] [14.8]
b 52 7.0 8.7 105 122 140 157 173
b 99 114 130 146 163 179 195  21.1
b 09 1.9 2.9 3.8 4.8 5.8 6.7 7.6
VAET (0.9)  (1.8)  (2.6) (3.5) (44) (5.3) (6.2) (7.0)

200 %5 [0.9] [1.9] [29] [3.8] [48] [5.8] [6.8] [7.7]
b 2.6 3.6 4.5 5.4 6.3 7.3 8.2 9.1
b 50 58 67 76 84 93 102 111
b 04 09 1.4 1.9 2.4 2.9 3.4 3.9
VAET (0.4)  (0.9)  (1.3) (1.8) (2.2) (2.7) (3.1) (3.5)

400  bRS [0.4] [0.9]  [14] [1.9] [24] [29 [34] [3.9]
b 1.3 1.8 2.3 2.7 3.2 3.7 4.2 4.6
b 25 3.0 3.4 3.9 4.3 4.8 5.2 5.7
b 02 05 0.7 1.0 1.2 1.5 1.7 2.0
bAET(0.2)  (0.4)  (0.7) (0.9 (1.1) (1.3) (1.6) (1.8)

800 H®S  [0.2] [0.5] [0.7] [1.0] [1.2] [1.5] [L.7]  [2.0]
b 0.7 09 1.1 1.4 1.6 1.9 2.1 2.4
b 1.3 15 1.7 1.9 2.2 2.4 2.6 2.9

Table 2: Simulated scaled bias in Models A, B, and C, for p = 1, and AHT
and Model A approximations. All reported bias values have been multiplied by
—100, b is the simulated Model A bias, b*HT is the AHT approximation (3) to
Model A bias, b®S is the response surface approximation (6) to Model A bias, b
is the simulated Model B bias, and b is the simulated Model C bias. In-sample
points correspond to k = 1,2,3,4 and T = 25,50, 100, 200.
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Model A Model B Model C
1 —0.345264  10.42961 26.23034
(0.054616)  (0.081527)  (0.150349)
Y2 10.40041 9.895323 10.10400
(0.040182)  (0.048754) (0.087121)
v3  —4.469397 —9.679804 —17.05139
(0.203317) (0.191752)  (0.249821)
Y4 —5.302022 —4.979473 —4.800818
(0.077115)  (0.083314) (0.114279)
Y5 1.245448 2.058910 4.750621
(0.092856)  (0.075961) (0.102145)
Yo 2.925115 2.957002 2.969689
(0.041124)  (0.035076) (0.046760)
Y7 13.23278 11.64608 14.66810
(0.883959) (0.767140) (0.966050)
s 0.993006 0.888653 0.923219
(0.041359)  (0.033083) (0.045075)
R 0.9991 0.9990 0.9982
JB 91.03** 46.38** 30.22**

Table 3: Estimated variance response surfaces v®5 for Models A, B, and C.
Response surfaces (7) were estimated using weighted nonlinear least squares.
White’s heteroscedasticity-consistent standard errors are given in parentheses,
R is the degrees-of-freedom adjusted coefficient of determination, JB is the
Jarque-Bera test statistic for normality, asymptotically distributed as x? (2),
and **+ denotes significance at the 1% level.
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VAR dimension (k)

25

50

100

200

400

800

1 2 3 4 5 6 7 8
X 105 112 119 126 132 139 146  1.52
br 023 024 026 028 031 034 037 040
ve 111 125 141 158 175 194 213 232
be 24/1  42/3  54/5  61/7  67/10 71/13  74/15 77/19
me 86 75 69 66 65 64 65 66
X 103 107 111 115 119 123 128  1.32
br 012 011 012 012 013 013 014 0.5
vr 106 114 123 132 141 152 163 174
be 23/04 42/1  53/1  61/2  67/2  T1/3  T4/3  T7/4
me 82 67 58 52 48 45 43 42
X 102 104 106 1.08 110 112 114  1.16
br 006 006 006 006 006 006 006 0.6
v 103 107 112 116 120 125 130 135
be 23/0.1 41/0.2 53/0.3 61/0.4 66/0.5 71/0.7 74/0.8 77/0.9
me 80 63 53 46 41 37 34 32
X 101 1.02 1.03 1.04 105 106 107 108
br 003 003 003 003 003 003 003 003
v 1.02 104 1.06 108 110 112 115 117
be 23/0.0 41/0.1 53/0.1 60/0.1 66/0.1 70/0.2 73/0.2 76/0.2
me 78 61 50 43 38 34 30 28
X 1.00 101 1.0l 1.02 102 1.03 104 1.04
br 00l 00l 00l 00l 00l 00l 001 0.01
v 101 102 103 104 105 107 107 108
be  23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.1
me 78 60 49 41 36 32 29 26
X 100 1.00 1.0 1.0 1.0  1.0I 102  1.02
br 0.0l 00l 00l 00l 00l 001l 001 0.01
vv 100 101 1.0 102 1.02 103  1.04 104
be  23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.0
me 77 60 48 41 35 31 28 25

Table 4: Minimum MSE correction in Model A, for p = 1. A is a correction factor,
such that )\g/g attains minimum MSE, br is the bias ratio=corrected bias/OLS
bias, vr is the variance ratio=corrected variance/OLS variance (Vr = /\2), bc and
“z/y” indicate that b? forms 2% of MSE under OLS, and corrected b* forms y%
of minimized MSE, me is the MSE efficiency=MSE after correction/MSE under
OLS (x100). All values are computed using the appropriate response surface
In-sample points correspond to & = 1,2,3,4 and

approximations (6) and (7).
T = 25,50, 100, 200.
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Figure 1. Bias response surfaces: scaled bias against T, for k = 1,2 and p = 1, 2,
for Models A, B, and C. Simulated values are represented by diamonds (k = 1)

and squares (k = 2).

Figure 2. Variance response surfaces: scaled variance against T', for £ = 1,2 and
p = 1,2, for Models A, B, and C. Simulated values are represented by diamonds
(k =1) and squares (k = 2).
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