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Abstract

A prediction model is any statement of a probability distribution for an
outcome not yet observed. This study considers the properties of weighted lin-
ear combinations of n prediction models, or linear pools, evaluated using the
conventional log predictive scoring rule. The log score is a concave function
of the weights and, in general, an optimal linear combination will include sev-
eral models with positive weights despite the fact that exactly one model has
limiting posterior probability one. The paper derives several interesting formal
results: for example, a prediction model with positive weight in a pool may
have zero weight if some other models are deleted from that pool. The results
are illustrated using S&P 500 returns with prediction models from the ARCH,
stochastic volatility and Markov mixture families. In this example models that
are clearly inferior by the usual scoring criteria have positive weights in optimal
linear pools, and these pools substantially outperform their best components.
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1 Introduction and motivation

The formal solutions of most decision problems in economics, in the private and public
sectors as well as academic contexts, require probability distributions for magnitudes
that are as yet unknown. Point forecasts are rarely su¢ cient. For econometric in-
vestigators whose work may be used by clients in di¤erent situations the mandate to
produce predictive distributions is compelling. Increasing awareness of this context,
combined with advances in modeling and computing, is leading to a sustained em-
phasis on these distributions in econometric research (Diebold et al. (1998); Christof-
fersen (1998); Corradi and Swanson (2006a, 2006b); Gneiting et al. (2007)). In many
situations there are several prediction models available, leading naturally to questions
of model choice or combination. While there is a large literature on choice or combi-
nation of point forecasts, dating at least to Bates and Granger (1969) and extending
through many more contributions reviewed recently by Timmermann (2006), there is
much less in the econometrics literature about the choice or combination of prediction
models. That is the subject of this study.
We consider the situation in which alternative models provide predictive distri-

butions for a vector time series yt given its history Yt�1 = fyh; : : : ;yt�1g; h is a
starting date for the time series, h � 1. A prediction model A (for �assumptions�) is
a construction that produces a probability density for yt with respect to an appropri-
ate measure � from the history Yt�1 denoted p (yt;Yt�1; A). There are many kinds
of prediction models. Leading examples begin with parametric conditional densities
p (yt j Yt�1;�A; A). Then, in a formal Bayesian approach

p (yt;Yt�1; A) = p (yt j Yt�1; A) =

Z
p
�
ytj Yt�1;�A; A

�
p (�A j Yt�1; A) d�A, (1)

where p (�A j Yt�1; A) is the posterior density

p (�A j Yt�1; A) / p (�A j A)
Yt�1

s=1
p (ys j Ys�1;�A; A)

and p (�A j A) is the prior density for �A. A non-Bayesian approach might construct
the parameter estimates b�t�1A = ft�1 (Yt�1) and then

p (yt;Yt�1; A) = p
�
yt j Yt�1; b�t�1A ; A

�
. (2)

The speci�c construction of p (yt;Yt�1; A) does not concern us: in the extreme,
it could be entirely judgmental. What is critical is that it rely only on information
available at time t � 1 and that it provide a mathematically complete predictive
density for yt. The primitives are these predictive densities and the realizations of
the time series yt, which we denote yot (o for �observed�) in situations where the
distinction between the random vector and its realization is important. This set
of primitives is the one typically used in the few studies that have addressed these
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questions (e.g. Diebold et al. (1998, p. 879)). As Gneiting et al. (2007, p. 244)
notes, the assessment of a predictive distribution on the basis of p (yt;Yt�1; A) and
yot only is consistent with the prequential principle of Dawid (1984).

1.1 Log scoring

Our assessment of models and combinations of models will rely on the log predictive
score function. For a sample YT = Y

o
T the log predictive score function of a single

prediction model A is

LS (Yo
T ; A) =

TX
t=1

log p
�
yot ;Y

o
t�1; A

�
. (3)

In a full Bayesian approach p (yt;Yt�1; A) = p (yt j Yt�1; A) and (3) becomes

LS (Yo
T ; A) = p (Y

o
T j A) =

Z
p (Yo

T j �A; A) d�A

(Geweke (2001) and (2005, Section 2.6.2)). In a parametric non-Bayesian approach
(2) the log predictive score is

LS (Yo
T ; A) =

TX
t=1

log p
�
yot j Yo

t�1;
b�t�1A ; A

�
which is smaller than the full-sample log-liklelihood function evaluated at the maxi-

mum likelihood estimate b�TA.
Throughout this study we assume that there is a data generating process D that

gives rise to the ergodic vector time series fytg. For most D and A

ED [LS (YT ; A)] =

Z "
TX
t=1

log p (yt;Yt�1; A)

#
p (YT jD) d� (YT )

exists and is �nite. Given the ergodicity of fytg,

T�1LS (YT ; A)
a:s:! lim

T!1
T�1ED [LS (YT ; A)] = LS (A;D) . (4)

We shall assume that this is true for any prediction model A and data generating
process D considered in this paper.
The log predictive score function is a measure of the out-of-sample prediction

track record of the model. Other such scoring rules are, of course, possible, mean
square prediction error being perhaps the most familiar. One could imagine using
a scoring rule to evaluate the predictive densities provided by a modeler. Suppose
that the modeler then produced predictive densities in such a way as to maximize the
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expected value of the scoring rule, the expectations being taken with respect to the
modeler�s subjective probability distribution. The scoring rule is said to be proper if,
in such a situation, the modeler is led to report a predictive density that is coherent
and consistent with his subjective probabilities. (The term �proper�was coined by
Winkler and Murphy (1968), but the general idea dates back at least to Brier (1950)
and Good (1952).)
Winkler (1969) demonstrated that, if the support of fytg is a �nite set of discrete

points, then (3) is the only proper predictive scoring rule, thereby extending earlier
work of di Finetti and Savage (1963) and Shuford et al. (1966). Bernardo (1979)
showed that in the case of continuous distributions, (3) is the only proper predictive
scoring rule that relies only on p (yt;Yt�1; A) and Yo

t . This study will consider
alternative prediction models A1; : : : ; An. Propriety of the scoring rule is important
in this context because it guarantees that if one of these models were to coincide
with the true data generating process D, then that model would attain the maximum
score as T !1.
There is a long-standing literature on scoring rules for discrete outcomes and in

particular for Bernoulli random variables (DeGroot and Fienberg (1982), Clemen et
al. (1995)). However, as noted in the recent review article by Gneiting et al. (2007,
p. 364) and Bremmes (2004) the literature on scoring rules for probabilistic forecasts
of continuous variables is sparse.

1.2 Linear pooling

This study explores using the log scoring rule (3) to evaluate combinations of prob-
ability densities p

�
yt j Yo

t�1; Aj
�
(j = 1; : : : ; n). There are, of course, many ways in

which these densities could be combined, or aggregated; see Genest et al. (1984)
for a review and axiomatic approach. McConway (1981) showed that, under mild
regularity conditions, if the process of combination is to commute with any possible
marginalization of the distributions involved, then the combination must be linear.
Moreover, such combinations are trivial to compute, both absolutely and in compar-
ison with alternatives. Thus we study predictive densities of the form

nX
i=1

wip
�
yt;Y

o
t�1; Ai

�
;

nX
i=1

wi = 1; wi � 0 (i = 1; : : : ; n) . (5)

The restrictions on the weights wi are necessary and su¢ cient to assure that (5)
is a density function for all values of the weights and all arguments of any density
functions. We evaluate these densities using the log predictive score function

TX
t=1

log

"
nX
i=1

wip
�
yot ;Y

o
t�1; Ai

�#
. (6)

Combinations of subjective probability distributions are known as opinion pools,
a term due to Stone (1961), and linear combinations are known as linear opinion
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pools (Bacharach (1974)). We use the term prediction pools to describe the setting
speci�c to this study. While all models are based on opinions, only formal statistical
models are capable of producing the complete predictive densities that, together
with the data, constitute our primitives. Choice of weights in any combinations like
(5) is widely regarded as a di¢ cult and important question. This study uses past
performance of the pool to select the weights; in the language of Jacobs (1995) the
past constitutes the training sample for the present. Sections 3 and 5 show that this
is easy to do. This study compares linear prediction pools using the log scoring rule.
An optimal prediction pool is one with weights chosen so as to maximize (6).
The characteristics of optimal prediction pools turn out to be strikingly di¤erent

from those that are constructed by means of Bayesian model averaging (which is
always possible in principle and often in practice) as well as those that result from
conventional frequentist testing (which is often problematic since the models are
typically non-nested). Given a data generating process D that produces ergodic fytg
a limiting optimal prediction pool exists, and unless one of the models Aj coincides
with D, several of the weights in this pool typically are positive. In contrast, the
posterior probability of the model Aj with the smallest Kullback-Leibler directed
distance from D will tend to one and all others to zero. Any frequentist procedure
based on testing will have a similar property, but with a distance measure speci�c to
the test.
The contrast is rooted in the fact that Bayesian model averaging and frequentist

tests are predicated on the belief that Aj = D for some j, whereas optimal prediction
pools make no such assumption. If Aj 6= D (j = 1; : : : ; n) then it is possible that the
optimal pool would include only one model, but this result seems to us unusual and
this supposition is supported in the examples studied here. Our �ndings show that
optimal pools can, and do, perform substantially better than any of their constituent
models as assessed by a log predictive scoring rule. We show that there must exist a
model, not included in the pool, with a log predictive score at least as good as, and
in general better than, that of the optimally scored prediction pool.
The paper develops the basic ideas for a pool of two models (Section 2) and then

applies them to prediction model pools for daily S&P 500 returns, 1972 through
2005 (Section 3). It then turns to the general case of pools of n models and studies
how changes in the composition of the pool change the optimal weights (Section
4). Section 5 constructs an optimal pool of six alternative prediction models for the
S&P 500 returns. Section 6 studies the implications of optimal prediction pools for
the existence of prediction models as yet undiscovered that will compare favorably
with those in the pool as assessed by a log predictive scoring rule. The �nal section
concludes.
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2 Pools of two models

Consider the case of two competing prediction models A1 6= A2. From (4)

T�1 [LS (YT ; A1)� LS (YT ; A2)]
a:s:! LS (A1;D)� LS (A2;D) .

If A1 corresponds to the data generating process D, then in general LS (A1;D) �
LS (A2;D) = LS (D;D) � LS (A2;D) � 0 and the limiting value coincides with
the Kullback-Leibler distance from D to A2. If A2 also nests A1 then LS (A1;D) �
LS (A2;D) = 0, but in most cases of interest LS (A1;D) 6= LS (A2;D) and so if
A1 = D then LS (A1;D) � LS (A2;D) > 0. These special cases are interesting and
informative, but in application most econometricians would agree with the dictum of
Box (1980) that all models are false. Indeed the more illuminating special case might
be LS (A1;D)� LS (A2;D) = 0 when neither model Aj is nested in the other: then
both A1 and A2 must be false.
In general LS (A1;D)� LS (A2;D) 6= 0. For most prediction models constructed

from parametric models of the time series fytg a closely related implication is that one
of the two models will almost surely be rejected in favor of the other as T !1. For
example in the Bayesian approach (1) the Bayes factor in favor of one model over the
other will converge to zero, and in the non-Bayesian construction (2) the likelihood

ratio test or another test appropriate to the estimates b�tAj will reject one model in
favor of the other. We mention these well-known results here only to emphasize the
contrast with those in the remainder of this section.
Given the two prediction models A1 and A2, the prediction pool A = fA1; A2g

consists of all prediction models

p (yt;Yt�1; A) = wp (yt;Yt�1; A1) + (1� w) p (yt;Yt�1; A2) , w 2 [0; 1] . (7)

The predictive log score function corresponding to given w 2 [0; 1] is

fT (w) =
TX
t=1

log
�
wp
�
yot ;Y

o
t�1; A1

�
+ (1� w) p

�
yot ;Y

o
t�1; A2

��
. (8)

The optimal prediction pool corresponds to w�T = argmaxw fT (w) in (8).
1 The deter-

mination of such a pool was, of course, impossible for purposes of forming the elements
wp
�
yt;Y

o
t�1; A1

�
+ (1� w) p

�
yt;Y

o
t�1; A2

�
(t = 1; : : : ; T ) because it is based on the

entire sample. But it is just as clear that weights w could be determined recursively
at each date t based on information through t�1. We shall see subsequently that the

1The setup in (8) is formally similar to the nesting proposed by Quandt (1974) in order to test the
null hypothesis A1 = D against the alternative A2 = D. (See also Gourieroux and Monfort (1989,
Section 22.2.7.)) That is not the objective here. Moreover, Quant�s test involves simultaneously
maximizing the function in the parameters of both models and w, and is therefore equivalent to the
attempt to estimated by maximum likelihood the mixture models discussed in Section 6; Quandt
(1974) clearly recognizes the pitfalls associated with this procedure.
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required computations are practical, and in the examples in the next section there
is almost no di¤erence between the optimal pool considered here and those created
recursively when the two procedures are evaluated using a log scoring rule.
The �rst two derivatives of fT are

f 0T (w) =

TX
t=1

p
�
yot ;Y

o
t�1; A1

�
� p

�
yot ;Y

o
t�1; A2

�
wp
�
yot ;Y

o
t�1; A1

�
+ (1� w) p

�
yot ;Y

o
t�1; A2

� , (9)

f 00T (w) = �
TX
t=1

"
p
�
yot ;Y

o
t�1; A1

�
� p

�
yot ;Y

o
t�1; A2

�
wp
�
yot ;Y

o
t�1; A1

�
+ (1� w) p

�
yot ;Y

o
t�1; A2

�#2 < 0:
For all w 2 [0; 1], T�1fT (w)

a:s:! f (w). If

lim
T!1

T�1
TX
t=1

ED [p (yt;Yt�1; A1)� p (yt;Yt�1; A2)] 6= 0 (10)

then f (w) is concave. The condition (10) does not necessarily hold, but it seems
to us that the only interesting case in which it does not occurs when one of the
models nests the other and the restrictions that create the nesting are correct for
the pseudo-true parameter vector. We have in mind, here, prediction models A1 and
A2 that are typically non-nested and, in fact, di¤er substantially in functional form
for their predictive densities. Henceforth we shall assume that (10) is true. Given
this assumption w�T = argmaxw fT (w) converges almost surely to the unique value
w� = argmaxw f (w). Thus for a given data generating process D there is a unique,
limiting optimal prediction pool.
It will prove useful to distinguish between several kinds of prediction pools, based

on the properties of fT . If w�T 2 (0; 1) then A1 and A2 are each competitive in the
pool fA1; A2g. If w�T = 1 then A1 is dominant in the pool fA1; A2g and A2 is excluded
in that pool;2 equivalently f

0
T (1) � 0, which amounts to

TX
t=1

p
�
yot ;Y

o
t�1; A2

�
=p
�
yot ;Y

o
t�1; A1

�
� 1.

By mild extension A1 and A2 are each competitive in the population pool fA1; A2g
if w� 2 (0; 1), and if w� = 1 then A1 is dominant in the population pool and A2 is
excluded in that pool. There are analogous necessary and su¢ cient conditions for A1
to be dominant in the population pool.
Some special cases are interesting, not because they are likely to occur, but because

they help to illuminate the relationship of prediction pools to concepts familiar from
model comparison. First consider the hypothetical case A1 = D.

2Dominance is a necessary condition for forecast encompassing (Chong and Hendry (1986)) as-
ymptotically. But it is clearly weaker than forecast encompassing.

7



Proposition 1 If A1 = D then A1 is dominant in the pool fA1; A2g.

Proof. In this case

f 0 (1) = lim
T!1

T�1
TX
t=1

ED

�
1� p (yt;Yt�1; A2)

p (yt;Yt�1; D)

�
= 0.

From (9) and the strict concavity of f it follows that A1 is dominant in the population
pool.
A second illuminating hypothetical case is LS (A1;D) = LS (A2;D). Given (10)

then A1 6= D and A2 6= D in view of Proposition 1. The implication of this result for
practical work is that if two non-nested models have roughly the same log score then
neither is �true.�Section 6 returns to this implication at greater length.
Turning to the more realistic case LS (A1;D) 6= LS (A2;D), w� 2 (0; 1) implies

also that A1 6= D and A2 6= D. In fact one never observes f , of course, but the
familiar log scale of fT (w) provides some indication of the strength of the evidence
that neither A1 = D nor A2 = D. There is a literature on testing that formalizes
this idea in the context of (7); see Gourierioux and Monfort (1989, Chapter 22), and
Quandt (1974). Our motivation is not to demonstrate that any prediction model is
false; we know at the outset that this is the case. What is more important is that
(7) evaluated at w�T provides a lower bound on the improvement in the log score
predictive density that could be attained by models not in the pool, including models
not yet discovered. We return to this point in Section 6.
If w� 2 (0; 1) then for a su¢ ciently large sample size the optimal pool will have

a log predictive score superior to that of either A1 or A2 alone, and as sample size
increases w�T

a:s:! w�. This is in marked contrast to conventional Bayesian model
combination or non-Bayesian tests. Both will exclude one model or the other as-
ymptotically, although the procedures are formally distinct. For Bayesian model
combination the contrast is due to the fact that the conventional setup conditions on
the truth of either D = A1 or D = A2. As we have seen, if this is true then posterior
probability of A1 and w�T have the same limit. By formally admitting the contingency
that A1 6= D and A2 6= D we change the conventional assumptions, leading to an en-
tirely di¤erent result: even models that are arbitrarily inferior, as measured by Bayes
factors, can substantially improve predictions from the superior model as indicated
by a log scoring rule. For non-Bayesian testing the explanation is the same: since a
true test rejects one model and accepts the other, it also conditions on D = A1 or
D = A2. We turn next to some examples.

3 Examples of two-model pools

We illustrate some properties of two-model pools using daily percent log returns of
the Standard and Poors (S&P) 500 index and six alternative models for these returns.
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All of the models used rolling samples of 1250 trading days, about �ve years. The �rst
sample consisted of returns from January 3, 1972 (h = �1249, in the notation of the
previous section) through December 14, 1976 (t = 0), and the �rst predictive density
evaluation was for the return on December 15, 1976 (t = 1). The last predictive
density evaluation was for the return on December 16, 2005 (T = 7324 ).
Three of the models are estimated by maximum likelihood and predictive densities

are formed by substituting the estimates for the unknown parameters: a Gaussian
i.i.d. model (�Gaussian,� hereafter); a Gaussian generalized autoregressive con-
ditional heterosceadsticity model with parameters p = q = 1, or GARCH (1,1)
(�GARCH�); and a Gaussian exponential GARCHmodel with p = q = 1 (�EGARCH�).
Three of the models formed full Bayesian predictive densities using MCMC algo-
rithms: a GARCH(1,1) model with i.i.d. Student t shocks (�t-GARCH�); the sto-
chastic volatility model of Jacquier et al. (1994) (�SV�); and the hierarchical Markov
normal mixture model with serial correlation andm1 = m2 = 5 latent states described
in Geweke and Amisano (2007) (�HMNM�).
Table 1 provides the log predictive score for each model. That for t-GARCH ex-

ceeds that of the nearest competitor, HMNM, by 19. Results for each are based on
full Bayesian inference but the log predictive scores are not the same as log marginal
likelihoods because the early part of the data set is omitted and rolling rather than
full samples are used. Nevertheless the di¤erence between these two models strongly
suggests that a formal Bayesian model comparison would yield overwhelming pos-
terior odds in favor of t-GARCH. Of course the evidence against the other models
in favor of t-GARCH is even stronger: 143 against SV, 232 against EGARCH, 257
against GARCH, and 1253 against Gaussian.
Pools of two models, one of which is t-GARCH, reveal that t-GARCH is not

dominant in all of these pools. Figure 1 shows the function fT (w) for pools of two
models, one of which is t-GARCH with w denoting the weight on the t-GARCH
predictive density. The vertical scale is the same in each panel. All functions fT (w)
are, of course, concave. In the GARCH and t-GARCH pool fT (w) has an internal
maximum at w = 0:944 with fT (0:944) = �9317:12, whereas fT (1) = �9315:50.
This distinction is too subtle to be evident in the upper left panel in which it appears
that f 0T (w) u 0. For the EGARCH and t-GARCH pool, and for the HMNM and
t-GARCH pool, the maximum is clearly internal. For the SV and t-GARCH pool
fT (w) is monotone increasing, with f 0T (1) = 1:96. In the Gaussian and t-GARCH
pool, not shown in Figure 1 , t-GARCH is again dominant with f 0T (1) = 54:4: Thus
while all two-model comparisons strongly favor t-GARCH, it is dominant only in the
pool with Gaussian and the pool with SV.
Figure 2 portrays fT (w) for two-model pools consisting of HMNM and one other

predictive density, with w denoting the weight on HMNM. The scale of the vertical
axis is the same as in Figure 1 in all panels except the upper left, which shows fT (w)
in the two-model pool consisting of Gaussian and HMNM. The latter model nests
the former, and it is dominant in this pool with f 0T (1) = 108:3. In pools consisting of
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HMNM on the one hand and GARCH, EGARCH or SV, on the other, the models are
mutually competitive. Thus SV is excluded in a two-model pool with t-GARCH, but
not in a two-model pool with HMNM. This is not a logical consequence of the fact
that t-GARCH has a higher log predictive score than HMNM. Indeed, the optimal
two-model pool for EGARCH and HMNM has a higher log predictive score than any
two-model pool that includes t-GARCH, as is evident by comparing the lower left
panel of Figure 2 with all the panels of Figure 1:
Table 2 summarizes some key characteristics of all the two-model pools that can be

created for these predictive densities. The entries above the main diagonal indicate
the log score of the optimal linear pool of the two prediction models. The entries
below the main diagonal indicate the weight w�T on the model in the row entry in
the optimal pool. In each cell there is a pair of entries. The upper entry re�ects
pool optimization exactly as described in the previous section. In particular, the
optimal prediction model weight is determined just once, on the basis of the predictive
densities for all T data points. This scheme could not be used in practice because
only past data are available for optimization. The lower entry in each pair re�ects
pool optimization using the predictive densities p

�
yos ;Y

o
s�1; Aj

�
(s = 1; : : : ; t� 1) to

form the optimal pooled predictive density for yt. The log scores (above the main
diagonal in Table 1) are the sums of the log scores for pools formed in this way. The
weights (below the main diagonal in Table 1) are averages of the weights w�t taken
across all T predictive densities. (For t = 1, w was arbitrarily set at 0:5.)
For example, in the t-GARCH and HMNM pool, the log score using the optimal

weight based on all T observations is -9284.72. If, instead, the optimal weight is
recalculated in each period using only past predictive likelihoods, then the log score
is -9287.28. The weight on the HMNM model is 0.289 in the former case, and the
average weight on this model is 0.307 in the latter case. Note that in every case the
log score is lower when it is determined using only past predictive likelihoods, than
when it is determined using the entire sample. But the values are, at most, about 3
points lower. The weights themselves show some marked di¤erences �pools involving
EGARCH seem to exhibit the largest contrasts. The fact that the two methods can
produce substantial di¤erences in weights, but the log scores are always nearly the
same, is a consequence of the small values of f 00T (w) in substantial neighborhoods of
the optimal value of w evident in Figures 1 and 2 .
Figure 3 shows the evolution of the weight w�t in some two-model pools when pools

are optimized using only past realizations of predictive densities. Not surprisingly w�t
�uctuates violently at the start of the sample. Although the predictive densities are
based on rolling �ve-year samples, w�t should converge almost surely to a limit under
the conditions speci�ed in Section 2. The HMNM and t-GARCH pool, upper left
panel, might be interpreted as displaying this convergence, but the case for the pools
involving EGARCH is not so strong.
Whether or not Section 2 provides a good asymptotic paradigm for the behavior

of w�t is beside the point, however. The important fact is that a number of pools
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of two models outperform the model that performs best on its own (t-GARCH),
performance being assessed by the log scoring rule in each case. The best of these
two-model pools (HMNM and EGARCH) does not even involve t-GARCH, and it
outperforms t-GARCH by 37 points. These �ndings illustrate the fresh perspective
brought to model combination by linear pools of prediction models. Extending pools
to more than two models provides additional interesting insights.

4 Pools of multiple models

In a prediction pool with n models the log predictive score function is

fT (w) =
TX
t=1

log

"
nX
i=1

wip (yt j Yt�1; Ai)

#

where w =(w1; : : : ; wn)
0, wi � 0 (i = 1; : : : ; n) and

Pn
i=1wi = 1. Given our assump-

tions about the data generating process D,

T�1fT (w)
a:s:! lim

T!1
T�1

Z
log

"
nX
i=1

wip (yt j Yt�1; Ai)

#
p (YT jD) d� (YT ) = f (w) .

Denote pti = p
�
yot ;Y

o
t�1; Ai

�
(t = 1; : : : ; T ; i = 1; : : : ; n). Substituting w1 = 1 �Pn

i=2wi,

@fT (w) =@wi =
TX
t=1

pti � pt1Pn
j=1wjptj

(i = 2; : : : ; n) ; (11)

and

@2fT (w) =@wi@wj = �T�1
TX
t=1

(pti � pt1) (ptj � pt1)
[
Pn

k=1wkptk]
2 (i; j = 2; : : : ; n) .

The n�n Hessian matrix @2fT=@w@w0 is non-positive de�nite for allw and, patholog-
ical cases aside, negative de�nite. Thus f (w) is strictly concave on the unit simplex.
Given the evaluations pti from the alternative prediction models and a sample, �nding
w�
T = argmaxw fT (w) is a straightforward convex programming problem. The limit

f (w) is also concave in w.
Extending the de�nitions of Section 2, models A1; : : : ; Am (m < n)are jointly ex-

cluded from the pool fA1; : : : ; Ang if
Pm

i=1w
�
Ti = 0; they are jointly competitive in

the pool if 0 <
Pm

i=1w
�
Ti < 1; and they jointly dominate the pool if

Pm
i=1w

�
Ti = 1.

Obviously any pool has a smallest dominant subset. A pool trivially dominates itself.
There are several useful relations between exclusion, competitiveness and dominance
that are useful in interpreting and constructing optimal prediction pools.
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Proposition 2 If fA1; : : : ; Amg dominates the pool fA1; : : : ; Ang then fA1; : : : ; Amg
dominates fA1; : : : ; Am; Aj1 ; : : : ; Ajkg for all fj1; : : : ; jkg � fm+ 1; : : : ; ng.

Proof. By assumption fAm+1; : : : ; Ang is excluded in the pool fA1; : : : ; Ang :The
pool fA1; : : : ; Am; Aj1 ; : : : ; Ajkg imposes the constraints wi = 0 for all i > m, i 6=
fj1; : : : ; jkg. Since fAm+1; : : : ; Ang was excluded from fA1; : : : ; Ang these constraints
are not binding. Therefore fAj1 ; : : : ; Ajkg is excluded in the pool fA1; : : : ; Am; Aj1 ; : : : ; Ajkg.

Thus a dominant subset of a pool is dominant in all subsets of the pool in which
it is included.

Proposition 3 If fA1; : : : ; Amg dominates all pools fA1; : : : ; Am; Ajg (j = m+ 1; : : : ; n)
then fA1; : : : ; Amg dominates the pool fA1; : : : ; Ang.

Proof. The result is a consequence of the concavity of the objective functions.
The assumption implies that there exist weightw�2; : : : ; w

�
m such that @fT (w

�
2; : : : ; w

�
m; wj) =@wj <

0 when evaluated at wj = 0 (j = m+ 1; : : : ; n). Taken jointly these n�m conditions
are necessary and su¢ cient for wm+1 = : : : wn = 0 in the optimal pool created from
the models fA1; : : : ; Ang.
The converse of Proposition 3 is a special case of Proposition 2. Taken together

these propositions provide an e¢ cient means to show that a small group of models is
dominant in a large pool. Propositions 1 and 3 taken together mean that the model
A1 = D would be dominant in any pool that included it.

Proposition 4 The set of models fA1; : : : ; Amg is excluded in the pool fA1; : : : ; Ang
if and only if Aj is excluded in each of the pools fAj; Am+1; : : : ; Ang (j = 1; : : : ;m).

Proof. This is an immediate consequence of the �rst-order conditions for exclu-
sion, just as in the proof of Proposition 3.

Proposition 5 If the model A1 is excluded from all pools (A1; Ai) (i = 2; : : : ; n) then
A1 is excluded from the pool (A1; : : : ; An).

Proof. From (9) and the concavity of fT the assumption implies

T�1
TX
t=1

pt1=pti � 1 (i = 2; : : : ; n) . (12)

Let ewi (i = 2; : : : ; n) be the optimal weights in the pool (A2; : : : ; An). From (11)

T�1
TX
t=1

ptiPn
j=2 ewjptj = � if ewi > 0 (i = 2; : : : ; n) (13)
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for some positive but unspeci�ed constant �. From (12) and Jensen�s inequality

T�1
TX
t=1

pt1Pn
j=2 ewjptj < T�1

TX
t=1

nX
i=2

ewipt1
pti
< 1. (14)

Suppose ewi > 0. From (13)

T�1
TX
t=1

ptiPn
j=2 ewjptj = T�1

TX
T=1

nX
`=2

ew` pt`Pn
j=2 ewjptj = 1 (i = 2; : : : ; n) . (15)

From (14) and (15),

T�1
TX
t=1

pti � pt1Pn
j=2 ewjptj � 0 (i = 2; : : : ; n) .

Since w1 = 1 �
Pn

i=2wi, it follows from (11) that @fT (w) =@w1 � 0 at the point
w =(0; ew2; : : : ; ewn)0. Because fT is concave this is necessary and su¢ cient for A1 to
be uncompetitive in the pool (A1; : : : ; An).
Proposition 5 shows that one can establish the exclusion ofA1 in the pool fA1; : : : ; Ang,

or for that matter any subset of the pool fA1; : : : ; Ang that includes A1, by showing
that A1 is uncompetitive in the two-model pools fA1; Aig for all Ai that make up the
larger pool.
The converse of Proposition 5 is false. That is, a model can be excluded from

a pool with three or more models, and yet it is competitive in some (or even all)
pairwise pools. Consider T = 2 and the following values of pti:

A1 A2 A3
t = 1 0:3 0:1 1:0
t = 2 0:3 1:0 0:1

The model A1 is competitive in the pools fA1; A2g and fA1; A3g because in (9)
f 0T (0) > 0 and f

0
T (1) < 0 in each pool. In the optimal pool fA2; A3g the models A2

and A3 have equal weight with
P2

t=1

P3
j=2 ewjptj = 0:55: The �rst-order conditions in

(11) are @fT (w) =@w2 = @fT (w) =@w3 = 0:5=0:55 > 0 and therefore the constraint
w3 � 0 is binding in the optimal pool fA1; A2; A3g. The contours of the log predictive
score function are shown in Figure 4(a).
No signi�cantly stronger version of Proposition 5 appears to be true. Consider the

conjecture that if modelA1 is excluded in one of the pools fA1; Aig (i = 2; : : : ; n), then
A1 is excluded from the pool fA1; : : : ; Ang. The contrapositive of this claim is that
if A1 is competitive in fA1; : : : ; Ang then it is competitive in fA1; Aig (i = 2; : : : ; n),
and by extension A1 wold be competitive in any subset of fA1; : : : ; Ang that includes
A1. That this not true may be seen from the following example with T = 4:
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A1 A2 A3
t = 1 0:8 0:9 1:3
t = 2 1:2 1:1 0:7
t = 3 0:9 1:0 1:1
t = 4 1:1 1:0 0:9

The optimal pool fA1; A2; A3g weights the models equally, as may be veri�ed from
(11). But A1 is excluded in the pool fA1; A2g: assigning w to A1, (9) shows

f 0T (0) =
�0:1
0:9

+
0:1

1:1
+
�0:1
1

+
0:1

1
< 0.

The contours of the log predictive score function are shown in Figure 4(b).

5 Multiple-model pools: An example

Using the same S&P 500 returns data set described in Section 3 it is easy to �nd
the optimal linear pool of all six prediction models described in that section. (The
optimization required 0.22 seconds using conventional Matlab software, illustrating
the trivial computations required for log score optimal pooling once the predictive
density evaluations are available.) The �rst line of Table 3 indicates the composition
of the optimal pool and the associated log score. The EGARCH, t-GARCH and
HMNM models are jointly dominant in this pool while Gaussian, GARCH and SVOL
are excluded. In the optimal pool the highest weight is given to t-GARCH, the next
highest to EGARCH, and the smallest positive weight to HMNM.
Weights do not indicate a predictive model�s contribution to log score, however.

The next three lines of Table 3 show the impact of excluding one of the models
dominant in the optimal pool. The results show that HMNM makes the largest
contribution to the optimal score, 31.25 points; EGARCH the next largest, 19.47
points; and t-GARCH the smallest, 15.51 points. This ranking strictly reverses the
ranking by weight in the optimal pool. When EGARCH is removed GARCH enters
the dominant pool with a small weight, whereas the same models are excluded in the
optimal pool when either t-GARCH or HMNM is removed.
These characteristics of the pool are evident in Figure 5, which shows log predictive

score contours for the dominant three-model pool on the unit simplex. Weights for
EGARCH and t-GARCH are shown explicitly on the horizontal and vertical axes,
with residual weight on HMNM. Thus the origin corresponds to HMNM, the lower
right vertex of the simplex to EGARCH, and the upper left vertex to t-GARCH.
Values of the log score for the pool at those points can be read from Table 1. The
small circles indicate optimal pools formed from two of the three models: EGARCH
and HMNM on the horizontal axis, t-GARCH and HMNM on the vertical axis, and
EGARCH and t-GARCH on the diagonal. Values of the log score for the pool at those
points can be read from the �rst three entries in the last column of Table 3. The
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optimal pool is indicated by the asterisk. Moving away from this point, the log-score
function is much steeper moving toward the diagonal than toward either axis. This
re�ects the large contribution of HMNM to log-score relative to the other two models
just noted.
The optimal pool could not be used in actual prediction 1976-2005 because the

weights draw on all of the returns from that period. As in Section 3, optimal weights
can be computed each day to form a prediction pool for the next day. These weights
are portrayed in Figure 6. There is substantial movement in the weights, with a noted
tendency for the weight on EGARCH to be increasing at the expense of t-GARCH
even late in the period. Nevertheless the log score function for the prediction model
pool constructed in this way is -9267.82, just 3 points lower than the pool optimized
over the entire sample. Moreover this value substantially exceeds the log score for
any model over the same period, or for any optimal pool of two models (see Table 3).
This insensitivity of the pool log score to substantial changes in the weights re�ects

the shallowness of the objective function near its mode: a pool with equal weights
for the three dominant models has a log score of -9265.62, almost as high as that of
the optimal pool. This leaves essentially no possible return (as measured by the log-
score) to more elaborate methods of combining models like bagging (Breiman (1996))
or boosting (Friedman et al. (2000)). Whether these circumstances are common in
many other problems can be established directly by applying the same kind of analysis
undertaken in this section for the relevant data and models.

6 Pooling and model improvement

The linear pool fA1; A2g is super�cially similar to the mixture of the same models.
In fact the two are not the same, but there is an interesting relationship between
their log predictive scores. Denote the mixture of A1 and A2

p (yt j Yt�1;�A1 ;�A2 ; w;A1�2) = wp (yt j Yt�1;�A1)+(1� w) p (yt j Yt�1;�A2) . (16)

Equivalently there is an i.i.d. latent binomial random variable ewt, independent of
Yt�1, P ( ewt = 1) = w, with yt s p (yt j Yt�1;�A1) if ewt = 1 and yt s p (yt j Yt�1;�A2)
if ewt = 0.
If the prediction model Aj is fully Bayesian (1) or utilizes maximum likelihood

estimates in (2) then under weak regularity conditions

T�1LS (YT ; Aj)
a:s:! lim

T!1
T�1

Z
log p

�
YT j ��Aj ; Aj

�
p (YT j D) d� (YT )

= LS (Aj;D) (j = 1; 2)

where

��Aj = argmax�Aj

lim
T!1

T�1
Z
log p

�
YT j �Aj ; Aj

�
p (YT j D) d� (YT ) (j = 1; 2) , (17)
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sometimes called the pseudo-true values of �A1 and �A2. However �
�
A1
and ��A2 are

not, in general, the pseudo-true values of �A1 and �A2 in the mixture model A1�2, and
w� is not the pseudo-true value of w. These values are instead

�
���A1 ;�

��
A2
; w��

	
= argmax

�A1 ;�A2 ;w
lim
T!1

T�1
Z TX

t=1

log [wp (yt j Yt�1;�A1)

+ (1� w) p (yt j Yt�1;�A2)] p (YT j D) d� (YT ) . (18)

Let w� = argmaxw f (w). Note that

lim
T!1

T�1
Z TX

t=1

log
�
w��p

�
yt j Yt�1;�

��
A1

�
+(1� w��) p

�
yt j Yt�1;�

��
A1

��
p (YT j D) d� (YT )

� lim
T!1

T�1
Z TX

t=1

log
�
w�p

�
yt j Yt�1;�

�
A1

�
+(1� w�) p

�
yt j Yt�1;�

�
A1

��
p (YT j D) d� (YT )

= w�LS (Aj;D) + (1� w�)LS (Aj;D) .

Therefore the best log predictive score that can be obtained from a linear pool of the
models A1 and A2 is a lower bound on the log predictive score of a mixture model
constructed from A1 and A2. This result clearly generalizes to pools and mixtures of
n models.
To illustrate these relationships, suppose the data generating process D is yt s

N (1; 1) if yt�1 > 0, yt s N (�1; 1) if yt�1 < 0. In model A1, yt
iids N (�; �2) with

� � 1 and in model A2, yt
iids N (�; �2) with � � �1. Corresponding to (17) the

pseudo-true value of � is 1 in A1 and �1 in A2; the psuedo-true value of �2 is 3 in
both models. The expected log score, approximated by direct simulation, is -1.974 in
both models. This value is indicated by the lowest (green) horizontal line in Figure
7. The function f (w), also approximated by direct simulation, is indicated by the
concave (red) curve in the same �gure. The maximum, at w = 1=2, is f (w) = �1:866.
Thus fT (w) would indicate that neither model could coincide with D, even for small
T .
The mixture model (16) will interpret the data as independent and identically

distributed, and the pseudo-true values corresponding to (18) will be � = 1 for
one component, � = �1 for the other, and �2 = 1 in both. The expected log
score, approximated by direct simulation, is �1:756, indicated by the middle (blue)
horizontal line in Figure 7. In the model A = D, yt j (yt�1; A) has mean �1 or 1, and
variance 1. Its expected log score is � (1=2) [log (2�)� 1] = �1:419, indicated by the
upper (black) horizontal line in the �gure.
The example illustrates that max f (w) can fall well short of the mixture model

expected log score, and that the latter can, in turn, be much less than the data
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generating process expected log score. It is never possible to show that A = D: only
to adduce evidence that A 6= D.

7 Conclusion

In any decision-making setting requiring prediction there typically are competing
models. If one is willing to condition on one of the models available being true, then
econometric theory is comparatively tidy. Because classical economic decision-making
conditions on the available data and treats the future as random, a Bayesian approach
is complete and coherent. Non-Bayesian approaches do not have this advantage, but
often can be given Bayesian interpretations. They lead to the same conclusions in
some instances, but tend to su¤er from technical hurdles arising from the failure to
condition on the past. In both approaches, it is typically the case that one of a �xed
number of models will come to dominate as sample size increases without bound.
In many situations �arguably, most �there is ample evidence that none of the

models under consideration is true. This study develops an approach to model com-
bination designed for such settings. It shows that linear prediciton pools generally
yield superior predictions as assessed by a conventional log score function. An impor-
tant characteristic of these pools is that prediciton model weights do not necessarily
tend to zero or one asymptotically, as is the case for posterior probabilities. In the
example studied here three of the six models in the pool have positive weights, all
substantial, in a very large sample.
Optimal log scoring of prediciton pools has three practical advantages. First,

it is easy to do: compared with the cost of specifying the consitutuent models and
conducting formal inference for each, it is practically costless. Second, the behavior of
the log score as a function of model weights can show clearly that none of the models
under consideration is true, or even close to true as measured by Kullback-Leibler
distance. Third, linear prediction pools provide an easy way to improve predicitons
as assessed by the log score function. The example studied in this paper illustrates
how acknowledging that all the available models are false can result in improved
predictions, even as the search for better models goes on.
The last result is especially important. Our examples showed how models that are

clearly inferior to others in the pool nevertheless substantially improve prediction by
being part of the pool rather than being discarded. The analytical results in Section
4 and the examples in Section 5 establish that the most valuable model in a pool
need not be the one most strongly favored by the evidence interpreted under the
assumption that one of several models is true. It seems to us that this is a lesson
that should be heeded generally in decision-making of all kinds.
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Table 1: Log predictive scores of the alternative models

Gaussian GARCH EGARCH t-GARCH SV HMNM
�10570:80 �9574:41 �9549:41 �9317:50 �9460:93 �9336:60

Table 2: Optimal pools of two predictive models

Gaussian GARCH EGARCH t-GARCH SV HMNM

Gaussian
�9539:72
�9541:42

�9505:57
�9507:73

�9317:50
�9318:65

�9460:45
�9461:99

�9336:60
�9337:48

GARCH
0:957
0:943

�9514:26
�9516:47

�9317:12
�9317:48

�9417:88
�9419:84

�9310:59
�9313:55

EGARCH
0:943
0:920

0:628
0:386

�9296:08
�9298:29

�9380:07
�9383:15

�9280:34
�9282:68

t-GARCH
1:000
0:984

0:944
0:931

0:677
0:861

�9317:50
�9318:15

�9284:72
�9287:28

SV
0:986
0:971

0:494
0:384

0:421
0:453

0:000
0:007

�9323:88
�9325:50

HMNM
1:000
0:996

0:628
0:611

0:529
0:670

0:289
0:307

0:713
0:787

Entries above the diagonal are log scores of optimal pools. Entries below the
diagonal provide the weight of the model in that row in the optimal pool. The top
entry in each pair re�ects optimization using the entire sample and the bottom entry
re�ects continuous updating of weights using only the data available on each date.
Bottom entries below the diagonal indicate the average weight over the sample.

Table 3: Optimal pools of 6 and 5 models

Gaussian GARCH EGARCH t-GARCH SV HMNM log score
0.000 0.000 0.319 0.417 0.000 0.264 -9264.83
0.000 0.060 X 0.653 0.000 0.286 -9284.30
0.000 0.000 0.471 X 0.000 0.529 -9280.34
0.000 0.000 0.323 0.677 0.000 X -9296.08

The �rst six columns provide the weights for the optimal pools and the last column
indicates the log score of the optimal pool. �X� indicates that a model was not
included in the pool.
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Figure 1: Log predictive score as a function of model weight in some two-model pools
of S&P 500 predictive densities 1976-2005. Prediction models are described in the
text.
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Figure 2: Log predictive score as a function of model weight in some two-model pools
of S&P 500 predictive densities 1976-2005. Prediction models are described in the
text.
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Figure 3: Evolution of model weights in some some two-model pools of S&P 500
predictive densities 1976-2005. Prediction models are described in the text.
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Figure 4: Panel (a) is a counterexample to the converse of Proposition 5. Panel (b)
is a counterexample to a conjectured strengthening of Proposition 5.
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Figure 5: Contours of the log-score function (6) for the three models dominant in the
six-model prediciton pool for S%P 500 returns 1972-2005. Residual weight accrues
to the HMNM model. The three small circles indicate optimal two-model pools.
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Figure 6: Evolution of model weights in the six-model pool of S&P 500 predictive
densities 1976-2005. Prediction models are described in the text.
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Figure 7: Expected log scores for individual models, a linear model pool, a mixture
model, and the data generating model.
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