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Abstract

This paper builds a model which has two extensions over a stan-
dard VAR. The �rst of these is stochastic search variable selection,
which is an automatic model selection device which allows for coe¢ -
cients in a possibly over-parameterized VAR to be set to zero. The
second allows for an unknown number of structual breaks in the VAR
parameters. We investigate the in-sample and forecasting performance
of our model in an application involving a commonly-used US macro-
economic data set. We �nd that, in-sample, these extensions clearly
are warranted. In a recursive forecasting exercise, we �nd moderate
improvements over a standard VAR, although most of these improve-
ments are due to the use of stochastic search variable selection rather
than the inclusion of breaks.
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1 Introduction

Since the so-called Minnesota revolution associated with the work of Chris
Sims and colleagues at the University of Minnesota [see Doan, Litterman and
Sims (1984), Litterman (1986) and Sims (1980)], Bayesian vector autoregres-
sions (VARs) have become a popular and successful forecasting tool [see,
among a myriad of others, Andersson and Karlsson (2007) and Kadiyala and
Karlsson (1993)]. Geweke and Whiteman (2006) provide an excellent survey
of the development of Bayesian VAR forecasting.
Despite the success of VARs relative to many alternatives, two problems

continue to undermine their forecast performance. These are the problems
of structural breaks and over-parameterization. The purpose of this paper is
to investigate whether extending a VAR to allow for structural breaks and
using stochastic search variable selection will help overcome these problems.
With regards to the problem of over-parameterization, VARs have so

many parameters that over-�tting is a serious risk. Good in-sample model
�t may not necessarily lead to good forecasting performance. Furthermore,
in a typical VAR, many coe¢ cients are close to zero and/or are imprecisely
estimated. This can lead to a great deal of forecast uncertainty (e.g. large
predictive standard deviations). As a result, most Bayesian VARs involve
informative priors (e.g. the Minnesota prior) which allow for shrinkage. In-
deed a wide variety of Bayesian and non-Bayesian approaches have empha-
sized the importance of shrinkage to improve forecast performance. Geweke
and Whiteman (2006) provide a general discussion of this issue and empirical
examples include Diebold and Pauly (1990) and Koop and Potter (2004).
In this paper, we investigate an alternative way of treating the over-

parameterization problem: stochastic search variable selection (SSVS). SSVS
can be thought of as a hierarchical prior where each of the parameters in the
VAR is drawn from one of two Normal distributions. The �rst of these has
a zero mean and a variance very near to zero (i.e. the parameter is virtually
zero and the corresponding variable is e¤ectively excluded from the model).
The second of these is a relatively noninformative prior (i.e. the parameter
is non-zero and the corresponding variable is included in the model). Such
�spike and slab�priors have become popular for model selection or model
averaging in regression models [see, e.g., Ishwaran and Rao (2005)]. George,
Sun and Ni (2008) develop a particular way of implementing SSVS in VAR
models and Korobilis (2008) presents an application in a factor model. In this
paper we use a VAR with SSVS (extended to allow for structural breaks as

2



described below) in a recursive forecasting exercise. Note that this approach
can be thought of as a way of doing shrinkage (i.e. some coe¢ cients are
shrunk virtually to zero, while others are left relatively unconstrained and
estimated in a data based fashion). In our recursive forecasting exercise it
also allows us to see if the set of variables which are useful predictors changes
over time.
With regards to the second problem, several recent papers have high-

lighted the fact that structural instability seems to be present in a wide vari-
ety of macroeconomic and �nancial time series [e.g. Ang and Bekaert (2002)
and Stock and Watson (1996)]. The negative consequences of ignoring this
instability for inference and forecasting has been stressed by, among many
others, Clements and Hendry (1998, 1999), Koop and Potter (2001, 2007) and
Pesaran, Pettenuzzo and Timmerman (2006). If a structural break occurs,
then pre-break data can potentially contaminate forecasts. In this paper, we
adopt an approach similar to Chib (1998) to modelling the break process.
This approach assumes that there is a constant probability of a break in
every time period and implies that our forecasts use only data since the most
recent break. Furthermore, as outlined in Koop and Potter (2007) and Pe-
saran, Pettenuzzo and Timmerman (2006), such an approach allows for the
possibility that a structural break might hit during the forecast period.
After building our model, which extends the VAR to allow for structural

breaks and uses the SSVS hierarchical prior, we use it in a recursive fore-
casting exercise using US data. In particular, we work with three variables:
the unemployment rate, the interest rate and the in�ation rate. The original
data runs from 1953Q1 through 2006Q3. We compare our full model (the
VAR with SSVS plus breaks) to two restricted versions: a standard VAR
with SSVS and a standard VAR without SSVS. We present in-sample results
which indicate that the full model outperforms both restricted variants. We
then present a battery of evidence from a recursive forecasting exercise. This
evidence shows that SSVS o¤ers an appreciable improvement in forecast per-
formance. Evidence that the inclusion of structural breaks improves forecast
performance in this data set is weaker.

3



2 The VAR with SSVS Prior and Structural
Breaks

The models used in this paper all begin with an unrestricted VAR which we
write as:

yt+h = Xt�+ "t; (1)

where yt+h is an n � 1 vector of observations on the dependent variables at
time t+h, � a K � 1 vector of VAR coe¢ cients, "t are independent N (0;�)
errors for t = 1; ::; T . Xt is the n � K matrix containing the dependent
variables at time t through time t � p + 1 (i.e. Xt contains information
available at time t) and an intercept [arranged appropriately to de�ne a
VAR(p)]. The forecast horizon is h.
To this foundation, we add the SSVS prior and allow for structural breaks.

In this section, we describe how this is done, with full details of our Bayesian
econometric methods, including the Markov chain Monte Carlo algorithm,
described in the appendix.

2.1 Stochastic Search Variable Selection

SSVS is usually motivated as a method for selecting variables in a regression
model. However, it can also be interpreted as a hierarchical prior for (1).
In this section, we will describe the basic ideas of SSVS as it relates to the
VAR coe¢ cients, � = (�1; ::; �K)

0. However, we also apply SSVS to the o¤-
diagonal elements of �, allowing for each of these to be shrunk virtually to
zero (we do not allow for the diagonal elements of � to be shrunk to zero
since then it would be singular). Full details are given in the appendix.
The SSVS prior for each VAR coe¢ cient is a mixture of two Normals:

�jj
j �
�
1� 
j

�
N
�
0; �20j

�
+ 
jN

�
0; �21j

�
; (2)

where 
j is a dummy variable which equals 1 if �j is drawn from the �rst
Normal and equals 0 if it is drawn from the second. The prior is hierarchical
since 
 = (
1; ::; 
K)

0 is treated as an unknown vector of parameters and
estimated in a data-based fashion. The SSVS aspect of this prior arises by
choosing the �rst prior variance, �20j, to be �small�(so that the coe¢ cient is
virtually zero) and the second prior variance, �21j, to be �large�(implying a
relatively noninformative prior for the corresponding coe¢ cient). Just how
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�small�and �large�prior variances can be chosen is discussed in, e.g., George
and McCulloch (1993, 1997). Basically, the small prior variance is chosen to
be small enough so that the corresponding explanatory variable is, to all
intents and purposes, deleted from the model. In this paper, we use what
George, Sun and Ni (2008) call a �default semi-automatic approach�which
requires no subjective prior information from the researcher (see the appendix
for details).1

To understand how SSVS can be used when forecasting, note that 
j
can be interpreted as an indicator for whether the jth VAR coe¢ cient is
in the model or not. SSVS methods allow, at each point in time in a re-
cursive forecasting exercise, for the calculation of Pr

�

j = 0jData

�
. SSVS

can either be used as a model selection device (e.g. we can choose to fore-
cast using the restricted VAR which includes only the coe¢ cients for which

Pr
�

j = 0jData

�
>
1

2
), or it can be used to do model averaging. That is,

our MCMC algorithm provides us with draws of 
j for j = 1; ::; K. Each
draw implies a particular restricted VAR which we can use for forecasting.
By averaging over all MCMC draws we are doing Bayesian model averaging.
But we stress that Pr

�

j = 0jData

�
can be di¤erent at di¤erent points in

time in the recursive forecasting exercise and, thus, the weights attached to
di¤erent models are changing over time.

2.2 Allowing For Structural Breaks

Given the �nding of widespread structural instability in many macroeconomic
time series models, it is important to allow for structural breaks (in both the
conditional mean and the conditional variance) of the VAR. Accordingly,
we extend the VAR with the SSVS prior to allow for breaks to occur. Our
approach will allow for a constant probability of a break in each time period.
With such an approach, the number of breaks, M � 1, is unknown (and
estimated in the model). This leads to a model with structural breaks at
times � 1; ::; �M�1 (and, thus, M regimes exist). Thus, (1) is replaced by:

1Previously, we have referred to SSVS as allowing for coe¢ cients to be �virtually zero�
or explanatory variables being �to all intents and purposes zero�since �20j is not precisely
zero. In the remainder of this paper, we will omit such qualifying words and phrases like
�virtually�or �to all intents and purposes�.
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yt+h = Xt�
(1) + "t; "t � N(0;�(1)) for t = 1; ::; � 1

yt+h = Xt�
(2) + "t; "t � N(0;�(2)) for t = � 1 + 1; ::; � 2

.

.
yt+h = Xt�

(M) + "t; "t � N(0;�(M)) for t > �M�1.

(3)

There are many models which could be used for the break process [see,
among many others, Chib (1998), Kim, Nelson and Piger (2004), Koop and
Potter (2007, 2008), Maheu and Gordon (2007), Maheu and McCurdy (2007),
McCulloch and Tsay (1993), Pastor and Stambaugh (2001) and Pesaran,
Pettenuzzo and Timmerman (2006)]. In this paper, we adopt a speci�cation
closely related to that used in Chib (1998). It assumes that there is constant
probability of a structural break occurring, q, in every time period. This is
a simple, but attractive choice, since (unlike many other approaches) it does
not impose a �xed number of structural breaks on the model.2 Furthermore,
it allows us to predict the probability that a structural break occurs during
our forecast period. Thus, it helps address one of the major concerns of
macroeconomic forecasters: how to forecast when structural breaks might
be occurring. In practice, our method will involve (with probability 1 � q)
forecasting using the VAR model which holds at time � (the period the
forecast is being made) and (with probability q) forecasting assuming a break
has occurred. Similar in spirit to Maheu and McCurdy (2007) and Maheu
and Gordon (2007), we assume that if a break occurs then past data provides
no help with forecasting and, accordingly, forecasts are made using only prior
information.3

Complete details are provided in the appendix.

3 Empirical Results

In this section, we present results working with a standard set of variables. In
particular, our US data set runs from 1953Q1 through 2006Q3 and contains

2Formally, our algorithm requires the choice of a maximum number of breaks (with the
actual number of breaks occuring in-sample being estimated from the data). We choose
this maximum to be large enough so as not to reasonably constrain the number of breaks.

3In contrast, Koop and Potter (2007) and Pesaran, Pettenuzzo and Timmerman (2006)
develop di¤erent models where, even after a structural break occurs, past data has some
predictive power.Which alternative is preferable depends on the nature of the break process
in the empirical problem under study.
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the unemployment rate (seasonally adjusted civilian unemployment rate, all
workers over age 16), interest rate (yield on three month Treasury bill rate)
and in�ation rate (the annual percentage change in a chain-weighted GDP
price index).4 This set of variables (possibly transformed) has been used by,
among many others, Cogley and Sargent (2005), Koop, Leon-Gonzalez and
Strachan (2007) and Primiceri (2005). Figure 1 shows graphs of the three
variables.

4The data were obtained from the Federal Reserve Bank of St. Louis website,
http://research.stlouisfed.org/fred2/.
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Figure 1: The Data
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We allow for 4 lags in our VAR. This large lag length choice is motivated
by our use of SSVS. That is, even if the true lag length is less than 4, the use
of SSVS means that coe¢ cients on longer lags can be set to zero. We use
forecast horizons h = 1; 4 and 8. Note that yt+h is our dependent variable and
we repeat our entire modeling exercise three times, once for each forecasting
horizon. Our in-sample results are for the h = 1 case.
Note also that we are working with VARs as opposed to models which

allow for cointegration. All of our variables are rates so unit root issues
are likely of little importance. Ignoring unit root and cointegration issues
is common practice in Bayesian macroeconomic studies. For instance, most
of the work associated with Christopher Sims works with VARs [see, e.g.,
the citations at the beginning of the introduction or, more recently, Sims
and Zha (2006)] treating cointegration as a particular parametric restriction
that may or may not hold and likely to have little relevance for forecasting
at short to medium horizons. Similar considerations presumably motivate
recent in�uential recent empirical macroeconomic papers such as Cogley and
Sargent (2001, 2005) and Primiceri (2005) who work with VARs.
Our �default semi-automatic approach�to SSVS (see appendix) speci�es

a prior for the VAR coe¢ cients. The prior for the break probability we use
is given in the appendix.
We divide our discussion of empirical results into two sub-sections. In

the �rst of these, we brie�y present in-sample estimation results using the
full sample. In the second, we present results for our recursive forecasting
exercise.
We present empirical results for three models: the VAR with SSVS and

breaks, the VAR with SSVS but no breaks and the VAR. The second model
is obtained by restricting q = 0 and the third model additionally imposes

j = 1 for all parameters. The prior for any restricted model is identical
to the prior in the unrestricted model, conditional on the restriction being
imposed.

3.1 In-Sample Results

Figure 2 plots the probability that a break occurs in each time period. There
is evidence of two breaks, one in the mid to late 1960�s and one in the
mid 1980s. That is, Figure 2 implies that the cumulative probability that a
break occurs sometime in 1964-1970 is virtually one and the same holds for
the 1983-1987 period. The BICs also indicate support for the model with
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breaks. The BICs for the VAR, the VAR with SSVS but no breaks and the
VAR with SSVS and breaks are 506.426, 388.685 and 374.904, respectively,
indicating strong support for the model with breaks.5

Figure 2: Posterior Probability of a Break Occurring

Appendix B contains additional empirical results using the full sample. In
particular, it contains the posterior probability of inclusion of each parameter
(i.e. the probability that 
j = 1) as well as posterior means and standard

5In models with hierarchical priors such as ours, issues arise with how you count the
number of parameters in the penalty for complexity term in BIC (see, e.g., Carlin and
Louis, 2000, pages 220-223). To avoid these complications, in models with SSVS priors we
count all coe¢ cients which are included in the model with at least 16% probability.
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deviations for every coe¢ cient in every one of the three regimes in the VAR
with SSVS and breaks. The interested reader can look through these tables
in detail. Here we note two points. Firstly, it is the case that the SSVS prior
is excluding (with high probability) many of the VAR coe¢ cients in each
regime. This indicates that it is an e¤ective way of ensuring parsimony in
the over-parameterized VAR (although, interestingly, SSVS is not deleting
o¤-diagonal elements of the error covariance matrices). Secondly, in the
model with breaks, although there is some evidence that some of the VAR
coe¢ cients di¤er across regimes, most of the change is coming in the error
covariance matrices. That is, change in the error covariance matrix is causing
the breaks, not change in the VAR coe¢ cients.

3.2 Forecasting

In this section, we present results from a recursive forecasting exercise. The
recursive exercise will involve using data through time � to forecast � + h
for h = 1; 4 and 8. This will be carried out for � = � 0; ::; T � h where � 0 is
1974Q4.
Our end goal is the predictive density using information through time

� . We use notation where y��+h is the random variable we are wishing to
forecast (and y�+h is the actual realization of y��+h). Thus, p

�
y��+hjX� ; ::; X1

�
is the predictive density of interest. The properties of this density can be
obtained using our MCMC algorithm. We let � denote all the parameters of
the VAR with breaks and �m be the VAR parameters in the mth regime and
�(r)m for r = 1; ::; R denote MCMC replications (subsequent to the burn-in
replications). Then, if no structural break occurs between � + 1 and � + h,
standard MCMC theory and the structure of our model imply:

p
�
y��+hjX� ; ::; X1

�
=
1

R

RX
r=1

p
�
y��+hjX� ; ::; X1; �

(r)
m

�
(4)

as R!1. Note that p
�
y��+hjX� ; ::; X1; �

(r)
m

�
has a standard analytical form:

p
�
y��+hjX� ; ::; X1; �

(r)
m

�
= fN(y

�
�+hjX��

(r)
m ;�(r)m ); (5)

where fN denotes the normal density.
When we allow for structural breaks to occur with probability q, a slight

extension is required. At each draw of our MCMC algorithm, we have the
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VAR coe¢ cients and error covariance matrix in the last regime (i.e. using
data since the last structural break) and a draw of q. With probability 1� q,
the predictive density is given by (5). With probability q a break has occurred
and the predictive is based on the SSVS prior (see the Technical Appendix
for details).
Once we have p

�
y��+hjX� ; ::; X1

�
we have to choose some methods for

evaluating forecast performance. We use mean squared forecast error, mean
absolute forecast error, predictive likelihoods and hit rates for this purpose.
The �rst two of these are based on point forecasts and are de�ned as:

MSFE =

PT�h
�=�0

[y�+h � E (y�+hjX� ; ::; X1)]
2

T � h� � 0 + 1

and

MAFE =

PT�h
�=�0

jy�+h � E (y�+hjX� ; ::; X1)j
T � h� � 0 + 1

:

Mean squared forecast error can be decomposed into the variance of forecast
errors plus their bias squared. To aid in interpretation, we also present this
bias squared (with the variance term being MSFE minus this).
Predictive likelihoods are motivated and described in many places such as

Geweke and Amisano (2007). The basic predictive likelihood is the predictive
density for y��+h evaluated at the actual outcome y�+h. We use the sum of
log predictive likelihoods for forecast evaluation:

T�hX
�=�0

log
�
p
�
y��+h = y�+hjX� ; ::; X1

��
where each term in the summation can be approximated using MCMC output
in a method similar to (4).
Table 1 presents MSFE and bias squared, Table 2 presents MAFE and

Table 3 presents the forecast performance metric based on predictive likeli-
hoods for our three models, three variables and three forecast horizons. They
tell a similar story. Adding SSVS to the benchmark VAR typically improves
forecast performance, but adding breaks does not. We elaborate on these
points next.
Tables 1 and 2 indicate that (with the exception of in�ation at longer

horizons), the SSVS prior is helping to improve forecast performance. Rel-
ative to results found in other forecasting studies, a reduction in the square
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root of MSFE of 10% indicates a substantial improvement in forecast per-
formance. For the unemployment rate, SSVS is leading to improvements of
this magnitude (particularly at short and medium horizons). For the interest
rate, there are also appreciable improvements in forecast performance. Even
for the in�ation rate (a variable which is notoriously di¢ cult to forecast), at
short horizons, including SSVS does lead to some forecast improvement.
However, the inclusion of breaks does not improve forecast performance in

this data set. In fact, with one exception, it leads to a deterioration of forecast
performance. This sort of �nding is common in forecasting studies (see,
e.g., Dacco and Satchell, 1999). Models with high dimensional parameter
spaces which �t well in-sample, often do not forecast well. Even use of the
SSVS prior, which is intended to help overcome the problems caused by
over-parameterization, does not fully overcome this problem in this data set.
The results relating to forecast bias in Table 1 shed more light on the poor

forecasting performance of the model with breaks. It can be seen that all
of our models are producing forecasts which are on average approximately
unbiased. It is clearly the variance component that is driving the MSFE.
This is consistent with the idea that the predictive density for the SSVS-
with-breaks model is too dispersed. After a break occurs, our model begins
estimating a new VAR using only data since the break. The advantages and
disadvantages of such a strategy have been discussed in the literature. A
particularly lucid exposition is provided in Pastor and Stambaugh (2001) in
an empirical exercise involving the equity premium:

In standard approaches to models that admit structural breaks,
estimates of current parameters rely on data only since the most
recent estimated break. Discarding the earlier data reduces the
risk of contaminating an estimate ... with data generated under a
di¤erent [process]. That practice seems prudent, but it contends
with the reality that shorter histories typically yield less precise
estimates. Suppose a shift in the equity premium occurred a
month ago. Discarding virtually all of the historical data on eq-
uity returns would certainly remove the risk of contamination by
pre-break data, but it hardly seems sensible in estimating the
current equity premium. Completely discarding the pre-break
data is appropriate only when the premium might have shifted to
such a degree that the pre-break data are no more useful ..., than,
say, pre-break rainfall data, but such a view almost surely ignores
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economics [Pastor and Stambaugh, 2001, pages 1207-1208].

Our approach, by discarding all pre-break data, reduces the risk that our
forecasts are contaminated by data from a di¤erent data generating process,
but our resulting predictives are less precisely estimated. At least in the
present application, this latter factor is clearly causing problems. Note that
there do exist other Bayesian approaches which allow for pre-break data to
play at least some role in post-break estimation (thus potentially leading to
more precise forecasts). Examples include Pesaran, Pettenuzzo and Timmer-
man (2006) and Koop and Potter (2007).

Table 1: Forecast Evaluation Using Mean Squared Forecast Error
Forecast horizon Dep. variable Model

VAR SSVS SSVS + breaks
MSFE

unemp 0.104 0.086 0.113
1 interest 1.005 0.975 1.077

in�ation 0.112 0.106 0.126
unemp 0.620 0.484 1.343

4 interest 4.197 3.745 7.483
in�ation 1.777 1.799 2.196
unemp 1.469 1.331 1.248

8 interest 8.232 8.152 12.984
in�ation 3.286 4.410 5.286

Bias squared
unemp 0.00063 0.00003 0.02984

1 interest 0.00019 0.00006 0.01659
in�ation 0.00364 0.00434 0.00040
unemp 0.00001 0.00001 0.00035

4 interest 0.01350 0.01044 0.00152
in�ation 0.15163 0.19365 0.65499
unemp 0.00278 0.01953 0.01365

8 interest 0.01592 0.08554 0.58556
in�ation 0.26425 0.64445 1.14304
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Table 2: Forecast Evaluation Using Mean Absolute Forecast Error
Forecast horizon Dep. variable Model

VAR SSVS SSVS + breaks
unemp 0.210 0.200 0.255

1 interest 0.608 0.606 0.657
in�ation 0.248 0.240 0.251
unemp 0.633 0.577 0.843

4 interest 1.509 1.446 1.945
in�ation 0.898 0.911 1.179
unemp 0.905 0.883 0.924

8 interest 2.166 2.215 2.850
in�ation 1.274 1.485 2.096

The poor forecast performance of the model with breaks exhibited in Ta-
bles 1 and 2, could partly be due to the fact that they are based on point
forecasts.6 As we saw in the preceding section, most of the evidence for
breaks seems to arise due to breaks in the conditional variance (i.e. the error
covariances are changing over time), not the conditional mean (i.e. the VAR
coe¢ cients are exhibiting little change over time). Loosely speaking, point
forecasts largely re�ect the conditional mean, not the conditional variance.
Hence, the breaks in conditional variance are not contaminating our fore-
casts from the VARs without breaks. However, the log predictive likelihoods
incorporate all aspects of the predictive distribution and, hence, Table 3 in-
dicates that this argument does not tell the whole story. That is, even using
predictive likelihoods, we are �nding the model which allows for breaks does
not forecast well.
As a �nal exercise, to see how well our predictive densities are �tting in

the tails of the distribution, we calculate hit rates for a rare but important
event. This event is that the unemployment and in�ation rate both rise. A
�Hit�is de�ned as occurring if the event occurs and the point forecast also lies
in the region de�ned by the even. The �Hit Rate�is the proportion of Hits.
Table 4 presents the Hit Rates for our various models and forecast horizons.
These Hit Rates are all reasonably high, being in excess of 0.70. At very
short horizons, the VAR using SSVS and breaks does have an appreciably
higher hit rate, although this �nding does not occur at longer horizons.

6Boxplots of the point forecasts are given in Appendix B.
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Table 3: Log Predictive Likelihoods
Forecast horizon Model

VAR SSVS SSVS + breaks
1 -1.457 -1.250 -1.572
4 -4.658 -4.406 -7.205
8 -7.395 -7.320 -10.540
Table 4: Hit Rates
Forecast horizon Model

VAR SSVS SSVS + breaks
1 0.729 0.725 0.754
4 0.743 0.736 0.769
8 0.765 0.769 0.720

4 Conclusions

In this paper, we develop a model which has two major extensions over a
standard VAR. The �rst of these is SSVS and the second is breaks in all the
model parameters. The motivation for the �rst is that VARs have a large
number of parameters (with many of them being insigni�cant in empirical
applications). This can lead to over-parameterization problems: over-�tting
in-sample along with imprecise inference. The hope is that SSVS will mitigate
these problems. The motivation for the second is that structural breaks
are often observed to occur in macroeconomic data sets and a forecasting
procedure which ignores them could be seriously misleading.
We investigate the in-sample and forecasting performance of our model

in an application involving a standard trivariate VAR with three popular
macroeconomic variables. Our �ndings are mixed, but are moderately en-
couraging. In-sample, the VARwith SSVS and breaks clearly performs better
than either a VAR with SSVS or a standard VAR. In our recursive forecasting
exercise, the use of SSVS in the VAR does bring substantial improvements
relative to a standard VAR. However, there is little evidence that the further
addition of breaks improves forecasting performance.
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Appendix A: Technical Details
The following are the models and associated Markov chain Monte Carlo

algorithms used in the empirical section. We begin by establishing the nota-
tion relating to the data. yt is an n�1 vector containing data on n dependent
variables and xt is a k � 1 vector containing the accompanying explanatory
variables. For the VAR(p) with an intercept, xt =

�
1; y0t�1; ::; yt�p

�0
and

k = 1 + pn.
The VAR with SSVS Prior
The Likelihood Function
The VAR model can be written in matrix form as:

Y = XA+ "; (A.1)

where Y is a T�n matrix with tth row given by y0t+h, X is a T�k matrix with
tth row given by x0t, A is a k�n matrix of coe¢ cients and " is a T �n matrix
with tth row given by "0t. The likelihood function is de�ned by assuming "t
(an n� 1 vector of errors) to be i.i.d. N (0;�).
The Prior
SSVS can be interpreted as de�ning a hierarchical prior for all of the

elements of A and �. Each element in the hierarchy is a mixture of two
normals, one with a small variance (implying the coe¢ cient is not in the
model) and one with a large variance (implying the coe¢ cient is included in
the model). We adopt a particular way of applying SSVS based on George,
Sun and Ni (2008) and much of the material in this part of the appendix is
based on their paper.
With regards to the VAR coe¢ cients, let � = vec (A) with elements �j

for j = 1; ::; kn: The prior for � has the form:

�j
 � N (0; DD) ; (A.2)

where 
 is a kn � 1 vector of unknown parameters with typical element

j 2 f0; 1g, and D is a diagonal matrix with (j; j)th element given by dj
where

dj =

�
�0j if 
j = 0
�1j if 
j = 1

: (A.3)

Note that George, Sun and Ni (2008) extend (A.2) so that the prior covari-
ance matrix is DRD where R is a correlation matrix which can be appro-
priately chosen to allow for prior correlations between the VAR coe¢ cients.
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In this paper, we assume R = I and, thus, the VAR coe¢ cients are a priori
independent of one another.
Note that this prior implies a mixture of two Normals:

�jj
j �
�
1� 
j

�
N
�
0; �20j

�
+ 
jN

�
0; �21j

�
: (A.4)

We use what George, Sun and Ni (2008) call the �default semi-automatic
approach�to selecting the prior hyperparameters �0j and �1j and the reader is
referred to this paper for additional justi�cation for this approach. Basically,
�0j should be selected so that �j is essentially zero and �1j should be selected
so that �j is empirically substantive. The default semi-automatic approach

involves �0j = c0

q dvar (�j) and �1j = c1

q dvar (�j) where dvar (�j) is an
estimate of the variance of the coe¢ cient in an unrestricted VAR (e.g. the
ordinary least squares quantity or an estimate based on a preliminary MCMC
run of the VAR using a non-informative prior). The pre-selected constants
c0 and c1 must have c0 << c1 and we set c0 = 1

10
and c1 = 10.

For 
, the SSVS prior posits that each element has a Bernoulli form
(independent of the other elements of 
) and, hence, for j = 1; ::; kn, we have

Pr
�

j = 1

�
= q

j

Pr
�

j = 0

�
= 1� q

j

: (A.5)

We set q
j
= 1

2
for all j. This is a natural default choice, implying each

coe¢ cient is a priori equally likely to be included as excluded.
We can decompose the error covariance matrix as:

��1 = 		0; (A.6)

where 	 is upper-triangular. The SSVS prior involves using a standard
Gamma prior for square of each of the diagonal elements of 	 and the SSVS
mixture of normals prior for each element above the diagonal. Note that this
implies that the diagonal elements of 	 are always included in the model,
ensuring a positive de�nite error covariance matrix. This form for the prior
also greatly simpli�es posterior computation. Precise details are provided in
the next paragraph.
Let the non-zero elements of	 be labelled as  ij and de�ne  = ( 11; ::;  nn)

0,
�j =

�
 1j; ::;  j�1;j

�0
and � = (�02; ::; �

0
n)
0. For the diagonal elements, we as-

sume prior independence with:
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 2jj � G
�
aj; bj

�
; (A.7)

where G
�
aj; bj

�
denotes the Gamma distribution with mean

aj
bj
and variance

aj
b2j
. We specify aj = 2:2 and bj = 0:24.

The hierarchical prior for � takes the same mixture of normals form as �.
In particular, the SSVS prior has

�jj!j � N (0; FjFj) ; (A.8)

where !j = (!1j; ::; !j�1;j)
0 is a vector of unknown parameters with typical

element !ij 2 f0; 1g, and Fj = diag (f1j; ::; fj�1;j) where

fij =

�
�0ij if !ij = 0
�1ij if !ij = 1

; (A.9)

for j = 2; ::; n and i = 1; ::; j � 1.
Note that this prior implies a mixture of two Normals for each o¤-diagonal

element of 	:

 ijj!ij � (1� !ij)N
�
0; �20ij

�
+ !ijN

�
0; �21ij

�
: (A.10)

As we did with �0j and �1j (the prior hyperparameters in the SSVS for
the VAR coe¢ cients), we use a semi-automatic default approach to selecting

�0ij and �1ij.That is, we set �0ij = c0

q dvar
�
 ij
�
and �1ij = c1

q dvar
�
 ij
�

where dvar
�
 ij
�
is an estimate of the variance of the appropriate o¤-diagonal

element of � from an unrestricted VAR (e.g. the ordinary least squares
quantity or the posterior variance from a preliminary run of the unrestricted
VAR using a noninformative prior). The pre-selected constants c0 and c1 are
set (as before) to be c0 = 1

10
and c1 = 10.

For ! = (!02; ::; !
0
n)
0, the SSVS prior posits that each element has a

Bernoulli form (independent of the other elements of !) and, hence, we have

Pr (!ji = 1) = q
ji

Pr (!ji = 0) = 1� q
ji

: (A.11)

We make the default choice of q
ji
= 1

2
for all j and i.

This completes our discussion of the SSVS hierarchical prior for the VAR.
Note that we also work with an unrestricted VAR. To ensure comparability
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of priors across the two models, our unrestricted VAR is a limiting case of
the VAR with SSVS prior. That is, our unrestricted VAR is as above except
that 
j = !ji = 1 for all i and j.
Posterior Computation
Posterior computation can be carried out using the MCMC algorithm

described in George, Sun and Ni (2008). This algorithm involves the following
posterior conditional distributions. Note that, to keep the notation as simple
as possible, we are suppressing the conditioning arguments, but stress that
these are the full conditional posteriors necessary to describe a valid MCMC
algorithm.
For the VAR coe¢ cients we have

� � N
�
�; V �

�
; (A.12)

where

V � =
�
(		0)
 (X 0X) + (DD)�1

	�1
;

� = V � [f(		0)
 (X 0X)g b�] ;
b� = vec

� bA�
and

bA = (X 0X)
�1
X 0Y:

The conditional posterior for 
 has 
j being independent Bernoulli ran-
dom variables:

Pr
�

j = 1

�
= qj

Pr
�

j = 0

�
= 1� qj

; (A.13)

where

qj =

1

�1j
exp

�
�
�2j
2�21j

�
q
j

1

�1j
exp

�
�
�2j
2�21j

�
q
j
+
1

�0j
exp

�
�
�2j
2�20j

��
1� q

j

� :
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The conditional posterior for  can be obtained by noting that the con-
ditional posterior for  2jj (for j = 1; ::; n) are independent of one another
with

 2jj � G

�
aj +

T

2
; bj

�
; (A.14)

where

bj =

8<: b1 +
v11
2
if j = 1

b1 +
1

2

n
vjj � v0j

�
Vj�1 + (DjDj)

�1��1 vjo if j = 2; ::; n :

The preceding equation uses a notation where

V = (Y �XA)0 (Y �XA)

has elements vij, vj = (v1j; ::; vj�1;j)
0 and Vj is the upper left j � j block of

V .
The conditional posterior of � has the conditional posteriors of �j (for

j = 2; ::; n) being independent of one another with:

�j � N
�
�j; V j

�
; (A.15)

where

V j =
�
Vj�1 + (DjDj)

�1� ;
�j = � jjV jvj:

Finally, the conditional posterior for ! has !ji being independent Bernoulli
random variables:

Pr (!ji = 1) = qji
Pr (!ji = 0) = 1� qji

; (A.16)

where
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qji =

1

�1ji
exp

 
�
 2ji
2�21ji

!
q
ji

1

�1ji
exp

 
�
 2ji
2�21ji

!
q
ji
+

1

�0ji
exp

 
�
 2ji
2�20ji

!�
1� q

ji

� :
In summary, an MCMC algorithm for the VAR with SSVS involves se-

quentially drawing from (A.12), (A.13), (A.14), (A.15) and (A.16).
The VAR with SSVS Prior and Structural Breaks at Known

Points in Time
As an intermediate step to using the SSVS prior in a VAR subject to

structural breaks, suppose that the breaks occur at known points in time.
After each break occurs, a new regime applies and both the VAR coe¢ -
cients and error covariance matrix can be completely di¤erent than before
the break. Regimes will be characterized by discrete random variables, st
(for t = 1; ::; T ) which takes on values f1; 2; : : : ;Mg. Let Si = (s1; : : : ; si)

0

and Si+1 = (si+1; : : : ; sT )
0. Using our previously-given notation for the de-

pendent and explanatory variables, the likelihood function for our model is
de�ned by assuming p (ytjxt; st = m) = p (ytjxt; �m) for m = 1; : : : ;M . We
are using the generic notation �m to denote the parameters in regime m.
In our VAR, �m =

n
�(m); 
(m);  (m); �(m); !(m)

o
where the parameters have

the same de�nitions as above except that we are using (m) superscripts to
denote parameters in each regime.
Bayesian inference, including posterior simulation, in this model is a

straightforward extension of our previous results. That is, conditional on
ST , the data is broken into M regimes. Using only the data in regime m, we
can use the algorithm described in the previous section. This can be repeated
for m = 1; ::;M . Formally, we could write out this algorithm by putting (m)
superscripts on everything (i.e. on all data quantities, parameters, prior hy-
perparameters) in the previous section, but for the sake of brevity we do not
do so here.
The VAR with SSVS Prior and Structural Breaks at Unknown

Points in Time
Our previous discussion of the model with structural breaks at known

points in time suggests that a wide variety of hierarchical priors can be used
for ST . An MCMC algorithm will involve taking our previous algorithm for
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the VAR with SSVS prior and adding a block which draws from ST . This
is indeed the case. In this paper, we use an approach that is similar to the
popular hierarchical prior for ST developed in Chib (1998). Chib�s approach
to structural break modeling has been used by many including Pastor and
Stambaugh (2001) and Pesaran, Pettenuzzo and Timmerman (2006).
To implement this setup, we begin by selectingM , the maximum number

of regimes. We assume that st is Markovian. That is,

Pr (st = jjst�1 = i) =

8>>><>>>:
1� q if j = i 6=M;

q if j = i+ 1;

1 if i = j =M;

0 otherwise.

(A.17)

In words, the time series variable goes from regime to regime. Once it has
gone through the mth regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime i to
regime i + 2. Once it reaches the M th regime it stays there. The di¤erence
between the prior used in this paper and Chib�s (1998) approach is, that we
choose M = T and do not assume that every regime is visited.
Equation (A.17) de�nes a hierarchical prior for the states. To complete

the model, a prior for q is required. A popular choice is a Beta prior:
B (�1; �2). We select �1 = 1 and �2 = 0:01 which is a relatively noninfor-
mative choice.
Bayesian inference in our model and the model of Chib (1998) is based

on an MCMC algorithm. If � = (�01; : : : ; �
0
M)

0 then the algorithm proceeds
by sequentially drawing from

�jY; ST ; q; (A.18)

ST jY;�; q (A.19)

and

pjY;�; ST : (A.20)

We have already described how to draw from (A.18). Simulation from
(A.19) is done using a method developed in Chib (1996). This involves noting
that:
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p (ST jY;�; q) = p (sT jY;�; q) p
�
sT�1jY; ST ;�; q

�
(A.21)

� � � p
�
stjY; St+1;�; q

�
� � � p

�
s1jY; S2;�; q

�
:

Draws from st can be obtained using the fact [see Chib (1996)] that

p
�
stjY; St+1;�; q

�
/ p (stjyt;�; q) p (st+1jst; q) : (A.22)

Since p (st+1jst; q) is the transition probability and the integrating constant
can be easily obtained (conditional on the value of st+1, st can take on only
two values), we need only to worry about p (stjyt;�; q). Chib (1996) recom-
mends the following recursive strategy. Given knowledge of p (st�1 = mjxt;�; q)
(and remembering that, in the VAR case, xt contains an intercept and lags
of the dependent variable), we can obtain:

p (st = jjyt;�; q) =
p (st = jjxt;�; q) p (ytjxt; �j)Pj

m=j�1 p (st = mjxt;�; q) p (ytjxt; �m)
; (A.23)

using the fact that

p (st = jjxt;�; q) = (1� q) � p (st�1 = j � 1jxt;�; q)+ q � p (st�1 = jjxt;�; q) ,
(A.24)

for j = 1; ::;M .
Thus, the algorithm proceeds by calculating (A.22) for every time period

using (A.23) and (A.24) beginning at t = 1 and going forward in time (the
so-called forward iteration). Then the states themselves are drawn using
(A.21), beginning at period T and going backwards in time (we will refer to
this as the backward iteration).
To be precise, the algorithm begins with p (s1 = 1jx1;�; q) = 1 and then

uses (A.24) to calculate p (st = kjxt;�; q) for t = 2; ::; T . This allows for
everything in (A.23) to be calculated except for p (ytjxt; �m). But this is
just the normal p.d.f. from the SSVS-VAR likelihood for the tth observation
(evaluated at the MCMC draw of �m). Thus, (A.23) can be evaluated and
plugged into (A.22) to obtain the discrete p.d.f. p (stjY; St+1;�; q) for t =
1; ::; T: Draws from these p.d.f.s can be used in the ordering of (A.21) to draw
the states (conditional on all the other parameters of the model).

27



Finally, derivations in McCulloch and Tsay (1993) imply that the condi-
tional posterior for q is Beta:

q � B
�
�1; �2

�
;

where

�1 = �1 + T � sT

and

�2 = �2 + sT :

With regards to prediction, with the exception of the model with struc-
tural breaks, the strategy outlined in the body of the text, using (4) and (5)
applied. When breaks are present, the predictive density, conditional on the
MCMC draws of the parameters, is a mixture of (5) (with probability 1� q)
and the prior based quantity (with probability q). Since q is small, this prior
quantity has little e¤ect but cannot be evaluated analytically due to the hi-
erarchical structure of the prior. For ease of computation, we approximate
it using

fN(y
�
�+hj~�; ~�);

where ~� and ~� are the mean vector and covariance matrix of a large number
of draws from the prior predictive density.
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Appendix B: Additional Empirical Results

Table B1: Probability of Inclusion of VAR coe¢ cients
(VAR with SSVS, but no breaks)

Dependent variable
unemp. rate interest rate in�ation

constant 1.000 0.102 0.796
unemp(-1) 1.000 0.982 0.863
unemp(-2) 1.000 0.913 0.479
unemp(-3) 0.114 0.082 0.181
unemp(-4) 0.123 0.225 0.260
interest(-1) 0.255 1.000 0.060
interest(-2) 0.154 0.091 0.056
interest(-3) 0.772 0.762 0.047
interest(-4) 0.143 0.117 0.055
in�ation(-1) 0.044 0.913 1.000
in�ation(-2) 0.032 0.557 1.000
in�ation(-3) 0.033 0.148 0.063
in�ation(-4) 0.065 0.284 0.049
Table B2: Probability of Inclusion of O¤-Diagonal
Elements of Error Cov. (VAR with SSVS, but no breaks)

unemployment rate interest rate
unemp
interest 1.000
in�ation 1.000 0.907
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Table B3: Probability of Inclusion of VAR coe¢ cients
(VAR with SSVS and breaks)

Regime I Regime II Regime III
Dep. variable: unemp

constant 0.998 0.143 0.436
unemp(-1) 1.000 1.000 1.000
unemp(-2) 0.363 0.329 0.104
unemp(-3) 0.353 0.215 0.128
unemp(-4) 0.202 0.147 0.171
interest(-1) 0.704 0.292 0.739
interest(-2) 0.359 0.103 0.321
interest(-3) 0.424 0.883 0.628
interest(-4) 0.624 0.212 0.379
in�ation(-1) 0.268 0.400 0.633
in�ation(-2) 0.255 0.100 0.250
in�ation(-3) 0.345 0.069 0.140
in�ation(-4) 0.546 0.075 0.127

Dep. variable: interest
constant 0.159 0.168 0.109
unemp(-1) 0.168 0.799 0.139
unemp(-2) 0.089 0.404 0.061
unemp(-3) 0.084 0.165 0.211
unemp(-4) 0.382 0.669 0.336
interest(-1) 1.000 1.000 1.000
interest(-2) 0.455 0.158 0.430
interest(-3) 0.262 0.539 0.466
interest(-4) 0.258 0.606 0.351
in�ation(-1) 0.050 0.819 0.099
in�ation(-2) 0.037 0.226 0.042
in�ation(-3) 0.037 0.120 0.046
in�ation(-4) 0.054 0.219 0.074

Dep. variable: in�ation
constant 0.985 0.694 0.199
unemp(-1) 0.931 0.149 0.152
unemp(-2) 0.127 0.105 0.088
unemp(-3) 0.140 0.062 0.109
unemp(-4) 0.112 0.092 0.083
interest(-1) 0.148 0.083 0.080
interest(-2) 0.120 0.097 0.074
interest(-3) 0.139 0.074 0.071
interest(-4) 0.229 0.176 0.057
in�ation(-1) 1.000 1.000 1.000
in�ation(-2) 0.426 0.930 0.346
in�ation(-3) 0.368 0.161 0.343
in�ation(-4) 0.300 0.091 0.264
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Table B4: Probability of Inclusion of O¤-Diagonal
Elements of Error Cov. (VAR with SSVS and breaks)

unemployment rate interest
Regime I

unemp
interest 1.000
in�ation 0.999 0.957

Regime II
unemp
interest 1.000
in�ation 1.000 0.944

Regime III
unemp
interest 0.436
in�ation 1.000 0.104
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Table B5: Posterior Means (standard devs) of VAR coe¢ cients
(VAR with SSVS and breaks)

Regime I Regime II Regime III
Dep. variable: unemp

constant 1.443 (0.465) 0.018 (0.088) 0.114 (0.155)
unemp(-1) 0.836 (0.180) 0.966 (0.133) 0.949 (0.089)
unemp(-2) -0.095 (0.155) -0.068 (0.122) -0.004 (0.043)
unemp(-3) -0.090 (0.157) -0.030 (0.069) -0.015 (0.059)
unemp(-4) 0.034 (0.095) -0.005 (0.037) -0.009 (0.048)
interest(-1) -0.177 (0.159) -0.015 (0.030) -0.084 (0.062)
interest(-2) 0.029 (0.135) -0.001 (0.015) -0.023 (0.071)
interest(-3) 0.096 (0.145) 0.088 (0.044) 0.084 (0.079)
interest(-4) 0.141 (0.154) 0.011 (0.031) 0.027 (0.047)
in�ation(-1) -0.034 (0.112) 0.032 (0.040) 0.071 (0.068)
in�ation(-2) -0.063 (0.166) 0.010 (0.027) 0.028 (0.062)
in�ation(-3) -0.064 (0.240) 0.004 (0.022) 0.009 (0.041)
in�ation(-4) 0.175 (0.215) 0.002 (0.016) 0.002 (0.029)

Dep. variable: interest
constant 0.030 (0.195) 0.038 (0.254) 0.026 (0.117)
unemp(-1) -0.039 (0.108) -0.902 (0.636) -0.037 (0.126)
unemp(-2) 0.024 (0.093) 0.354 (0.541) 0.003 (0.072)
unemp(-3) 0.015 (0.062) 0.045 (0.253) -0.099 (0.256)
unemp(-4) 0.078 (0.102) 0.379 (0.334) 0.167 (0.271)
interest(-1) 0.906 (0.173) 0.574 (0.175) 1.219 (0.131)
interest(-2) -0.156 (0.219) 0.005 (0.052) -0.123 (0.181)
interest(-3) 0.052 (0.139) 0.144 (0.165) -0.099 (0.133)
interest(-4) 0.045 (0.107) 0.199 (0.195) -0.055 (0.092)
in�ation(-1) 0.004 (0.030) 0.372 (0.253) 0.017 (0.058)
in�ation(-2) 0.005 (0.045) -0.088 (0.225) 0.007 (0.052)
in�ation(-3) 0.005 (0.039) 0.014 (0.170) 0.004 (0.057)
in�ation(-4) 0.005 (0.033) -0.057 (0.144) -0.013 (0.060)

Dep. variable: in�ation
constant 1.042 (0.346) 0.310 (0.283) 0.033 (0.087)
unemp(-1) -0.167 (0.070) -0.020 (0.065) -0.023 (0.077)
unemp(-2) 0.009 (0.044) 0.002 (0.055) 0.011 (0.065)
unemp(-3) 0.013 (0.034) -0.000 (0.035) 0.021 (0.064)
unemp(-4) 0.006 (0.023) 0.006 (0.033) 0.003 (0.028)
interest(-1) -0.001 (0.022) -0.000 (0.010) 0.001 (0.011)
interest(-2) 0.000 (0.023) 0.003 (0.016) -0.000 (0.014)
interest(-3) 0.007 (0.038) -0.001 (0.012) -0.000 (0.014)
interest(-4) -0.019 (0.052) -0.007 (0.020) 0.000 (0.009)
in�ation(-1) 1.103 (0.162) 1.521 (0.125) 1.134 (0.122)
in�ation(-2) -0.137 (0.198) -0.524 (0.190) -0.089 (0.146)
in�ation(-3) -0.076 (0.121) -0.031 (0.101) -0.058 (0.097)
in�ation(-4) -0.033 (0.075) 0.000 (0.029) -0.030 (0.066)
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Table B6: Posterior Means (standard devs) of Error Covariance
(VAR with SSVS and breaks)

unemployment rate interest rate in�ation
Regime I

unemp 2.296
(0.257)

interest 1.416 2.642
(0.406) (0.290)

in�ation 0.259 -0.020 4.532
(0.433) (0.387) (0.482)

Regime II
unemp 3.046

(0.272)
interest 2.015 1.087

(0.428) (0.111)
in�ation -0.152 -0.150 2.307

(0.438) (0.132) (0.194)
Regime III

unemp 5.231
(0.442)

interest 2.896 2.825
(0.681) (0.231)

in�ation 0.615 -0.336 4.728
(0.746) (0.316) (0.386)
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Figure B1: Boxplots of Point Forecasts for All Variables, Models and
Forecast Horizons
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