-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Research Papers in Economics

%:4 THE RiMINTI CENTRE FOR ECONOMIC ANALYSIS

WP 17-07

GARY KOOPY
University of Strathclyde, UK
and
The Rimini Centre for Economic Analysis

SIMON M. POTTER
Federal Reserve Bank of New York, USA

“PRIOR ELICITATION
IN MULTIPLE CHANGE-POINT MODELS”

Copyright belongs to the author. Small sections of the text, not exceeding three
paragraphs, can be used provided proper acknowledgement is given.

The Rimini Centre for Economic Analysis (RCEA) was established in March 2007.
RCEA is a private, non-profit organization dedicated to independent research in
Applied and Theoretical Economics and related fields. RCEA organizes seminars and
workshops, sponsors a general interest journal The Review of Economic Analysis, and
organizes a biennial conference: Small Open Economies in the Globalized World
(SOEGW). Scientific work contributed by the RCEA Scholars is published in the
RCEA Working Papers series.

The views expressed in this paper are those of the authors. No responsibility for them
should be attributed to the Rimini Centre for Economic Analysis.

The Rimini Centre for Economic Analysis
Legal address: Via Anghera, 22 — Head office: Via Patara, 3 - 47900 Rimini (RN) — Italy
www.rcfea.org - secretary @rcfea.org



https://core.ac.uk/display/6548644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Prior Elicitation in Multiple Change-point
Models*

Gary Koop!
Department of Economics
University of Strathclyde
email: Gary.Koop@strath.ac.uk

Simon M. Potter

Macroeconomics and Monetary Studies Function
Federal Reserve Bank of New York

email: simon.potter@ny.frb.org

September 2006, revised June 2007

Abstract

This paper discusses Bayesian inference in change-point models.
The main existing approaches either attempt to be noninformative by
using a Uniform prior over change-points or use an informative hi-
erarchical prior. Both these approaches assume a known number of
change-points. We show how they have some potentially undesirable
properties and discuss how these properties relate to the imposition
of a fixed number of change-points. We develop a new Uniform prior
which allows some of the change-points to occur out-of sample. This
prior has desirable properties, can reasonably be interpreted as “non-
informative” and handles the case where the number of change-points
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and University of Kansas. The views expressed in this paper are those of the authors
and do not necessarily reflect the views of the Federal Reserve Bank of New York or the
Federal Reserve System.
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is unknown. We show how the general ideas of our approach can be ex-
tended to informative hierarchical priors. With artificial data and two
empirical illustrations, we show how these different priors can have a
substantial impact on estimation and prediction even with moderately
large data sets.

1 Introduction

Change-point modeling has become popular due to an increasing awareness of
the importance of this issue for empirical practice.! For instance, papers such
as Ang and Bekaert (2002) and Stock and Watson (1996) have documented
widespread structural instability in many macroeconomic and financial time
series. The importance of this for empirical finance and macroeconomics
cannot be overstated. Empirical work which ignores this instability can miss
important patterns in the data and can result in misleading policy advice. As
one example (among many), there has recently been interest in the volatility
of US real activity which appears to have been greatly reduced in the last
few decades. This finding is sometimes referred to as the Great Moderation
of the business cycle. For instance, Kim, Nelson and Piger (2004) investigate
breaks in the volatility of various measures of aggregate activity. For most of
the measures they consider, they find strong evidence of an abrupt break in
the early 1980s. Stock and Watson (2002) find similar evidence for a change
in volatility, but find the decline to have been more gradual. Empirical
research which ignores this change in volatility risks, e.g., substantially over-
estimating the uncertainty in GDP growth forecasts.

We should define from the beginning what class of change-point models
are discussed in this paper. We consider ones where the parameters of the
likelihood function change at discrete points in time, 71, ..., 7)1 and, thus,
the data is divided into M regimes. So, for instance, if the likelihood function
is obtained from a regression model using data on a dependent variable y;
and explanatory variables (in the vector x;), we have

'In economics, the terminology “structural break” modeling is often used. We prefer
to use the concept of a change-point because the term “structural break” suggests some
underlying structure has changed. There are many cases in economics where reduced form
relationships can change with the underlying structure remaining constant.



Y =18y o if t <7y
yt:LU;ﬁQ +09€ ile—l-lStSTz

(1.1)

yr = 2By +omer it > Ta

where ¢, is i.i.d. standard Normal. Equation 1.1 defines a likelihood function
for the model (although the methods discussed in this paper can be used
with any likelihood function). Bayesian inference requires a prior and this is
what the present paper is about.

In this paper, we are focussing on prior elicitation with regards to the
change-points, 71,...,7)/_1 and not the parameters which characterize the
likelihood function within a regime (e.g. 5, ..., and o1, ...,0p). This is
not because we think prior elicitation for the latter parameters is unimpor-
tant, but merely to focus the discussion on the change-point issue. Indeed,
in Koop and Potter (2007), we have examined how priors linking coeffi-
cients across regimes can be very useful when forecasting (see also Pastor
and Stambaugh, 2001, and Pesaran, Pettenuzzo and Timmerman, 2007).2
(Classical, non-Bayesian, analyses of change-point models almost invariably
assume that, after a break occurs, anything can happen (e.g. 5, and (3, can
potentially be completely different) and the present paper makes a similar
assumption. The basic insights of the present paper would still hold if we
used more sophisticated priors which link parameters in different regimes in
some fashion.

Our starting point, in the next section of this paper, will be a prior
which is Uniform over the set of all possible change-points. For the Bayesian,
Uniform priors are often used to be noninformative; to express a lack of
prior information. Of course, it is well-known that it is difficult to define a
prior that is completely noninformative. Our approach is to consider priors
that preserve as much as possible the information in the likelihood function
about the location of the change-points. This can be thought of as the
Bayesian analogue of what the classical econometric literature does. That
is, a priort every change-point is treated as being equally likely and only
sample information is used to differentiate between change-points. In the

2Furthermore, time varying parameter (TVP) models are also a popular choice when
faced with structural instability and they involve close links across regimes through state
equations (e.g. 8, = [B;_1 + ut).



case of a single change-point, the definition of a Uniform prior is relatively
non-controversial. But with more than one change-point we show how an
apparently sensible “noninformative” prior can be very informative indeed
in a potentially undesirable manner. We use this insight to develop a new
prior which is “noninformative” in terms of preserving the information in the
likelihood function from the observed sample. However, a property of this
new prior is that it allows for change-points to occur after the end of the
current sample. We show how this apparently unusual property is actually a
very desirable one since it allows us to treat the number of change-points in
the current sample as unknown (and, thus, estimate it).

In contrast to the classical literature, the existing Bayesian literature
often uses informative hierarchical priors for the change-points. Perhaps the
most popular Bayesian approach is that of Chib (1998). In the third section
of this paper, we develop the insight of Chib (1998) on the relationship
between change-point models and hidden Markov chains with a particular
focus on the role of prior information. In particular, we show that a prior
which imposes a specified number of change-points also leads to potentially
undesirable behavior at the end of the sample. We discuss how such behavior
can be avoided with an extension of our new prior.

This discussion of prior elicitation may sound abstract and of little practi-
cal importance for the classical econometrician and practical Bayesian alike.
The former may feel prior elicitation issues are not relevant for classical econo-
metrics. However, the issues which we discuss (e.g. the imposition of a fixed
number of change-points) have their parallels in classical econometrics. Fur-
thermore, our “noninformative” prior could be used by the classical econo-
metrician to explore the likelihood surface for computationally demanding
change-point problems using a posterior simulation algorithm. The practical
Bayesian may feel that minor changes in the prior are unimportant if one
has a moderately large data sets. A key point of this paper is to show that
these are not minor changes, but ones that can have substantive effects on
posterior and predictive inference, with sample sizes of relevance in macro-
economics. We make this point by using artificial data sets and by providing
two empirical illustrations. The first of these uses US real GDP growth data
from 1947Q2 through 2006Q4 to investigate the Great Moderation of the
business cycle. The second uses the coal mining disaster data analyzed in
Chib (1998).



2 Uniform Priors for Change-points

2.1 Theoretical Considerations

The classical econometric literature on change-points (see, among many oth-
ers, Bai and Perron, 1998) typically gives equal weight, before seeing the
data, to every possible change-point (apart, from a “prior” restriction that
each regime must contain X% of the observations). The Bayesian wishing to
proceed in a comparably “noninformative” manner would turn to the class of
discrete Uniform distributions for prior elicitation. In the case where there
is a single change-point, 7;, such an approach is straightforward. Simply
setting:

p(n) = form=1,..T~1 (2.1)

yields an unambiguously “flat” prior and imposes exactly two regimes in the
sample (M = 2) since it says that the change-point must occur at some point
in the sample.

However, such a prior does not generalize well to more than one change-
point. We illustrate this in the case with two change-points, 71 and 75 where
T occurs later than 79. The apparently sensible extension of (2.1) would
write the prior as p (71,72) = p (71) p (72|71) where

p(T1) = T35 forri=1,...,.T —2 (2.2)
1
p(ralm)=———"formy=71+1,..,7 - 1. (2.3)
T — T1 — 1

This prior does impose exactly two regime changes in sample and the prior
for 79|71 appears noninformative over all values of 74 after the first change-
point. However, it can be verified that, if we integrate out 71, the marginal
prior for 75 is very non-Uniform, giving more weight to change-points late in
the sample:

1 1
=9j) = forj=2..T-—1. 24

=2

This prior (for a sample size of 100) is shown in Figure 1. Its shape is
the reverse of a Geometric distribution. Similar results and prior shapes



hold when we have M > 3 regimes in our sample. Is this property of this
Uniform prior undesirable? Of course, this depends on the empirical context
(something we will investigate below). However, there is a possibility that a
researcher could use this prior, thinking it is “noninformative”, but empirical
results could be affected by the greater prior weight for 7o near the end of
the sample.
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Figure 1

We will refer to priors such (2.2) and (2.3) as Restricted Uniform priors
since they restrict the prior to impose a fixed number of change-points on
the model. Let us now consider what would happen if we worked with a
prior which is “flat” in another sense. We again will illustrate using the two
change-point case. We refer to this new prior as the Unrestricted Uniform
prior since, as we shall see, it does not restrict the model to have a fixed



number of change-points in-sample. As with the Restricted Uniform prior
we begin with p (71,72) = p(71) p (72|71) and assume

1
p(Tl) = T 9 for lel,...,T—Q. (25)
However, we replace (2.3) by
p(Tao|T1) = T3 forro =71+ 1,...,T +711 —2. (2.6)

Note that this prior has the very sensible property that both p (73|71) and
p(71) are Uniform and have same number of points of support. This implies,
unlike the Restricted Uniform prior, there is no information on duration of
the second regime other than embedded in the support. That is, there is
no substantial pile-up of prior probability near the end of the sample as in
Figure 1. However, it also has the unconventional property that it allocates
prior weight to change-points outside the observed sample. We will argue
that this is a highly desirable property since, not only does this prior not
place excessive weight on change-points near the end of the sample, but also
there is a sense in which it allows us to handle the case where there is an
unknown number of change-points. That is, the prior given by (2.5) and
(2.6) does impose that there are two change-points, but since one of them
can occur out of sample, it implicitly allows for one (in-sample) change-point
as well. We will elaborate on these points below.

We now describe our general Unrestricted Uniform prior which allows for
a maximum of M — 1 change-points in-sample and adds one possible useful
generalization to (2.5) and (2.6). We write the Unrestricted Uniform prior

as p (71,72, ., Tm—1) = p(71) Zﬁ;lp (7;|7;—1) and assume

1
p(Tl) :m for 7, :1,...,[CT]. (27)
and
1
p(74|Tj-1) = E for m;j =7;1+1,...,7j_1 + [T] (2.8)

Note that this prior still has the desirable property that p (71) and p (7;|7,-1)
(for j = 2,..., M — 1) are all Uniform and have the same number of points
of support. The marginal distribution for the duration of each regime is
Uniform. Thus, it is truly noninformative with respect to the change-points.

7



It also introduces a scalar parameter ¢ which controls the maximum duration
of each regime. The notation [¢T'] indicates the smallest integer such that
¢T' < [¢T]. Thus, if ¢ = 7 we obtain the time varying-parameter (TVP)
model, whereas as ¢ becomes larger we obtain priors which place more weight
on models with fewer regimes. For instance, the prior in (2.5) and (2.6) had
a maximum of two change-points in-sample and set ¢ = T; 2 At the extreme,
the researcher might wish to consider values for ¢ in the interval [ ,2] as
this would nest everything from the TVP model (with a break every period)
through a model which allocates appreciable (i.e. 50%) prior weight to a
model with no change-points at all (in-sample). In practice, the researcher
would likely wish to consider a much narrow range of values for c.

In our previous work, Koop and Potter (2007), we argued that it may
not be sensible to restrict the maximum duration of regimes ex ante. With
the prior given in (2.7) and (2.8), provided ¢ > 1, the maximum duration
of regimes in-sample will not be restricted. Such a consideration could be
useful when selecting ¢ or in eliciting a prior for c.

Values for ¢ and M can be selected by the researcher. However, it is
also possible to treat them as unknown parameters and they can either be
estimated or integrated out in the standard Bayesian fashion. To see how
this would be done, suppose we have data on a time series variable, y; for
t=1,...,Tandlet Y; = (y1,...,%) denote the history through time 7. The
marginal likelihood for given values of ¢, M and the change-points is given
by:

p(Yr|r1, s Tio1, ¢, M) (2.9)

The exact form of this marginal likelihood will depend on the likelihood and
prior for the parameters in each regime (below we will provide examples).
Suppose first that the researcher has selected specific values of ¢ and M. It is
possible to base empirical results on a particular choices of 71, ..., 7)1 (e.g.
one can choose the values of 71, ..., 73;/_1 which yield the maximum value for
the marginal likelihood). However, the Bayesian would prefer to integrate out
the change-points so that empirical results reflect the uncertainty associated
with them. The rules of probability imply:

p(Yple, M) = Z > p(Yrlry, a1, ¢, M) p (71, ooy Tag—ale, M),
TM—1

(2.10)



where each summation is over all possible values of the appropriate change-
point. The marginal likelihood in (2.10) could be used as a basis for empirical
work. Provided an analytical form for (2.9) exists and M is not too large,
(2.10) can be calculated in a straightforward manner by simply evaluating
(2.9) at every possible change-point and taking the weighted averaged in
(2.10). Alternatively, various simulation algorithms (see, e.g., Koop and
Potter, 2003, Giordani and Kohn, 2006) for drawing the change-points can
be used to evaluate (2.10).

Now let us suppose the researcher is interested in treating ¢ and M as
random variables. This requires knowledge of their posterior, p (¢, M|Y 7).
But Bayes’ rule tells us that:

p(e, M|Y7) xp(Yr|le, M)p(c, M). (2.11)

Thus, (2.10) and a prior for ¢ and M can be used to evaluate the requisite
posterior. Since ¢ and M are scalar parameters, (2.11) can be calculated by
evaluating each component on the right-hand side at a grid of values for ¢ and
every possible choice for M. Alternatively, a posterior simulation algorithm
(e.g. a Metropolis-Hastings algorithm) can be developed for c.

Our preferred empirical strategies are either to simply select values for ¢
and M or to select a value for M (i.e. choose M — 1 as the maximum number
of in-sample regimes that the researcher thinks is plausible) and treat ¢ as
an unknown parameter. For instance, many classical structural break papers
using macroeconomic data allow for one or two breaks. Combining this
consideration with a desire not to restrict the maximum duration of regimes
ex ante, would suggest setting M = 3 and ¢ > 1.

We have now derived two priors: the Restricted and Unrestricted Uniform
priors. We have seen how the former of these has an undesirable property (i.e.
the pile-up of prior probability near the end of the sample) while the latter
has an apparently unusual property (i.e. the fact that some of the change-
points can occur out-of-sample). We will now provide a theoretical discussion
of this latter property (an empirical consideration of both properties will be
provided shortly). It is worth stressing that out-of-sample change-points
cause no technical nor computational problems for the Bayesian. Bayesian
analysis involves a prior and a likelihood function. The likelihood function
reflects data information. If, say, 75, occurs out-of-sample then there will be
no data information about 7o and, thus, no likelihood information. However,
there still will be prior information about 75. Provided the prior is proper



(as is the case for all priors used in this paper), a valid posterior density
for 79 exists. This is merely a reflection of the well-known Bayesian result
that non-identification does not pose a difficulty for Bayesians, but that the
posterior for a non-identified region of the parameter space will typically be
equal to the prior (see, e.g., Poirier, 1998).3

In one sense, our Unrestricted Uniform prior can be thought of as a simple
trick for reducing the “pile-up of prior probability at the end-of-sample”
problem of the Restricted Uniform prior. We would argue that this reason
alone makes it a useful addition to the literature. However, the value of
the Unrestricted Prior goes well beyond this in that it allows for us treat
the number of change-points in-sample as unknown. For the same reason as
the Restricted Uniform prior will have the “pile-up of prior probability at the
end-of-sample” problem, any model with a fixed number of change-points will
exhibit this problem. Thus, we argue that it is important to develop models
where the number of change-points is unknown and estimated from the data.
The discussion after (2.6) makes clear that the Unrestricted Uniform prior
treats the number of change-points in-sample as unknown. Other models do
exist with this property (e.g. Giordani and Kohn, 2006, Koop and Potter,
2007 and McCulloch and Tsay, 1993). However, the existing literature uses
priors which are informative over the change-points. To our knowledge, the
Unrestricted Uniform prior is the only existing prior which in noninformative
over the change-points. Our empirical section will show how this prior works
in practice.

2.2 Empirical Illustrations Using Uniform Priors

We illustrate our Restricted and Unrestricted Uniform priors in the context
of the AR(p) model with change-points (i.e. equation 1.1 with z; containing
an intercept and p lags of the dependent variable). A prior is required for the
coefficients in each regime and, for these, we choose the natural conjugate
prior so that (conditional on 71, ..., 771, ¢ and M) analytical results for the
marginal likelihood (i.e. equation 2.9), posterior and predictive distributions
are available (see, e.g., Koop, 2003, chapter 3).Throughout this section, we
use a relatively noninformative prior which reflects a weak belief in station-
arity for the AR coefficients. Of course, in a more substantive empirical

3Formally, the prior for a non-identified parameter is equal to its posterior, unless it is
a priori correlated with an identified parameter.
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exercise, a prior sensitivity analysis could be done or a more objective prior
elicitation procedure used (e.g. the g-prior or a prior based on a training
sample). To be precise, our prior for the intercept and AR coefficients in
each regime is:

2 2

and

072 ~G(1,1),

where G (a,b) denotes the Gamma distribution with mean ab and variance
ab®. Note that the prior for the error precision is relatively noninformative
(its degrees of freedom parameter is two) but has mean one. In our example
using real GDP growth, our data is measured as a percentage so that this
prior covers a reasonable region of the parameter space.

There are many ways we could compare our different models and priors
(and we illustrate several below). However, especially since many of the
problems with priors which impose a fixed number of change-points occur at
the end of the sample, predictive results are of particular relevance and these
receive much emphasis in all of our empirical illustrations.

2.2.1 Illustrations Using Artificial Data

In this section, we will illustrate several aspects of our priors using artificial
data generated from two different data generating processes (DGPs). Both
of our DGPs have T' = 100 and the error variances in each regime are set to
one. The conditional mean within each regime is given by an AR(1) model
with intercept set to zero. Our DGPs thus differ only in the number of
change-points and the value taken for the AR(1) coefficient (which we will
label 3; for j = 1,..., M) in each regime.

We calculate results for the Restricted and Unrestricted Uniform priors
for M =1,2,3 (with AR(1) processes within each regime). The M = 1 case
is simply the AR(1) model without a change-point. For the Unrestricted
Uniform prior we set ¢ = 2. Given the likelihood and natural conjugate prior
assumed, analytical results are available and we can simply evaluate the
marginal likelihood for given change-points in (2.9) at every possible change-
point and average as in (2.10) to produce an overall marginal likelihood for
each model.

11



Our first DGP, DGP;, does not have any change-points and sets 3, = 0.5
and illustrates how our Unrestricted Uniform prior yields more sensible in-
ference than the Restricted Uniform prior. Figure 2 plots the posterior mean
of 3, for these two priors with M = 2. Since ¢ = 2, the Unrestricted Uniform
prior says that there is a 50% probability that the change-point occurs out of
sample. Thus, in essence, it is allocating 50% of the prior probability to the
(correct) model with no change-points. In Figure 2, the point estimate of the
AR(1) coefficient resulting from the Unrestricted Uniform prior is close to a
horizontal line near the true value of 5; = 0.5, although the prior is pulling
slightly towards the prior mean of zero. The Restricted Uniform prior, which
says that there is a 100% probability of a change-point occurring, is far dif-
ferent, especially at the end of the sample (note that the posterior mean of
the AR(1) coefficient is pulled down below 0.2 by the end of the sample).
This shows the risks of incorrectly imposing a change-point on a model when
none exists. We stress that the Unrestricted Uniform prior will never run
this risk.

Figure 3, which plots the posterior for the change-point using the Unre-
stricted Uniform prior with M = 2 shows how this prior achieves this sensible
result. Most of the posterior probability is allocated out-of-sample indicating
that no change-points occur in-sample. The posterior out-of-sample is simply
equal to the prior (and is, thus, flat) but this does not cause and problems
for estimation (see Figure 1) nor (as we shall see) prediction (see Table 1).

Table 1 presents the log of marginal likelihoods for the various models for
this DGP. As expected, the true model (with no change-point) has a higher
marginal likelihood. Regardless of whether M = 2 or M = 3 the Unrestricted
Uniform prior yields a higher marginal likelihood than the Restricted Uniform
Prior, despite the fact that it is noninformative over a much larger support.

Table 1 also presents predictive means and standard deviations for yr;
for the various models and priors we are using. Since DGP; has no change-
points, we would expect the predictive results for the AR(1) to be most
reliable. Note that the Unrestricted Uniform priors are producing predic-
tive results which are much closer to the AR(1) results than those from the
Restricted Uniform prior. Clearly, incorrectly imposing a fixed number of
change-points in-sample (as the Restricted Uniform prior does) can have
negative implications for posterior and predictive inference. The use of the
Unrestricted Uniform prior allows us to avoid this risk.

12



AR coeff.

0.4

0.45

0.4

025

025

0z

Faosteriar Mean of AR(1) Coefficient

Restricted Friar

— Unrestricted prior

50 [=1u} 7o 20 a0
Time

Figure 2: The AR Coefficient when the DGP has No Breaks

13

100



o012

0.01

0.002

0.006

FPostedor Probakbility

.00

0002

u]

0

Fasteriar for Change-FPoint for Unrestricted Unifarm Prior

20 40 =10 20 100
Time

120 140

160 180 200

Figure 3: The Posterior for the Change-point when the DGP has No

Breaks

Table 1: Log Marginal Likelihoods for Different Uniform Priors for DGP;

Log Marginal Predictive Predictive

Likelihood Mean St. Deviation
AR(1) -143.67 -0.17 1.00
Restricted (M = 2) -145.99 -0.16 1.06
Restricted (M = 3) -147.75 -0.21 1.07
Unrestricted (M = 2) | -145.32 -0.17 1.01
Unrestricted (M = 3) | -146.13 -0.18 1.05

Our second DGP, DGPs, is the same as DGP; with the exception that
By = 0.0 (which holds for ¢ < 50) and B, = 0.75 (for other values of ).
For this DGP, M = 2 is the correct choice and results presented in Table

2 indicate this.

14
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the highest marginal likelihoods and their predictive densities have the same
mean and standard deviation (to two decimal places). More interesting is
what happens when M = 3. For this case, the Unrestricted Uniform prior is
producing a predictive mean and standard deviation which are very similar
to the M = 2 results, whereas the Restricted Uniform prior is producing very
different results. Clearly, the Restricted Uniform prior is yielding reasonable
results when M is selected correctly and a well-defined change-point occurs
in the middle of the sample. But in other cases the Restricted Uniform prior
can be misleading, but the Unrestricted Uniform prior always yields sensible
results.

It is also worth noting that in DGP, with the Restricted Uniform prior,
the marginal likelihood for the (correct) M = 2 model is only slightly higher
than that of the (incorrect) M = 3 model. Thus, in a Bayesian model
averaging exercise involving only the Restricted Uniform prior, the incorrect
M = 3 case will get substantive weight. Furthermore, this is only one DGP.
If one were to use other randomly generated DGPs it would, of course, be
possible to select the wrong model. With the Unrestricted Uniform prior we
do not run these risks.

For the sake of brevity, we do not reproduce figures comparable to Figures
2 and 3 for DGP5. If we had, they would have shown that the Unrestricted
Uniform prior with M = 3 would have yielded sensible posterior results
for the AR(1) coefficient, capturing the abrupt regime switch in the DGP.
Furthermore, the posterior for the second change-point allocates almost all of
its probability out-of-sample. Overall, we are finding strong support for our
story that the Unrestricted Uniform prior is an effective way of estimating
the number of change-points in-sample (as opposed to imposing it on the
model) and reducing the “pile-up of prior probability at the end-of-sample”
problem associated with the Restricted Uniform prior.

Table 2: Log Marginal Likelihoods for Different Uniform Priors for DGP5
Log Marginal Predictive Predictive
Likelihood Mean St. Deviation

AR(1) -153.76 0.17 1.09

Restricted (M = 2) -149.18 0.46 1.01

Restricted (M = 3) -150.21 0.29 1.27

Unrestricted (M = 2) | -149.88 0.46 1.01

Unrestricted (M = 3) | -150.06 0.45 1.04
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2.2.2 Empirical Illustration Using Real GDP Growth Data

There are many papers which investigate structural breaks in real GDP
growth. Of particular interest is the volatility of US real activity and the
question of whether it has decreased over time. In this section we shall inves-
tigate this issue using U.S. real GDP growth from 1947Q2 through 2006Q4.
We use an AR(2) in each regime and the priors for the coefficients are de-
scribed at the beginning of this section.

Given the findings of Kim, Nelson and Piger (2004) and a wish not to
restrict the maximum duration of each regime in-sample, we select M = 3
and ¢ = 1. This allows for up to three regimes in-sample, and since the
maximum regime duration is 7' it also allows for no change-points to occur
in-sample. Given that this paper relates to change-point modeling and the
related empirical literature relates to changes in volatility, Figures 4a, b and c
present the posteriors for 71,75 as well as the posterior mean of the volatility
(i.e. the standard deviation of the error) at each point in time.

An examination of Figure 4c¢ shows that there does seem to be strong
evidence of a change-point in the early 1980s (i.e. £ (71|Y7) = 1983.2 with
posterior standard deviation of 3.8). This is reflected in the plot of the
volatility which shows the Great Moderation decrease found by others in the
early 1980s. Most evidence indicates that the second change-point occurs
out-of sample, showing how, with the Unrestricted Uniform prior, M — 1
can play the role of a maximum number of change-points with the actual
number occurring in-sample being estimated. In particular, the posterior for
To implies that there is a 96.5% probability that the second change-point
occurs out-of-sample (and, thus, that there is one change-point in-sample).
The remaining 3.5% of the posterior probability indicates that there is a
second change-point in volatility in the early- to mid-1980s.

It is also worth noting that the fact that our change-points are treated
as random parameters means that changes in coefficients over time do not
have to be abrupt. For instance, if we set 7; = 1983 (with 75 being out-
of-sample), then the graph of volatility would have been a step function.
However, in Figure 4c, the decline in volatility is much more gradual than
a step function. We are finding appreciable probability (e.g. one percent
or more) of a change-point in all quarters between 1982 and 1985. Thus,
the stochastic treatment of change-points can be quite useful when modeling
gradual evolution of coefficients in that even a small number of change-points
can allow for quite flexible behavior.
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Figure 4c: Results using Unrestricted Uniform Prior with M = 3

A good benchmark to compare our Unrestricted Uniform prior (with
M = 3) results is the Restricted Uniform prior with M = 3. Figures ba,
b and c present results for this prior in the same format as Figures 4a, b
and c. If nothing else, a comparison of these figures makes the point that
priors matter. At first pass, the Restricted and Unrestricted Uniform pri-
ors might seem like very similar “noninformative” priors. Clearly they are
yielding quite different posteriors. In contrast to the Unrestricted Uniform
prior, the Restricted Uniform prior is yielding much evidence that the first
change-point is occurring at the beginning of the sample and it is the sec-
ond change-point that is occurring in the early 1980s (although there is also
some evidence that 75 is occurring at the end of the sample). This differ-
ence in posterior inference about change-points between the two priors can,
of course, have consequences for posterior inference about other parameters
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or for prediction. In terms of volatility findings, although the main “Great
Moderation in the early 1980s” pattern is found using both Unrestricted and
Restricted Uniform priors, non-negligeable differences between these two pri-
ors are found at both the beginning and the end of the sample. Furthermore,
Table 3 presents predictive means and standard deviations for y;,; obtained
using the two priors. Although the predictive means are quite similar to one
another, the predictive standard deviation is substantially larger using the
Restricted Uniform prior. This is due to the small upturn in volatility at
the end of the sample found using this prior. This small upturn is due to
the fact that the Restricted Uniform Prior is finding a small probability of
a change-point occurring at the end of the sample. This finding, in turn, is
due to the pile up of prior probability at the end of the sample which arises
with the Restricted Uniform prior.
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Figure 5a: Results using Restricted Uniform Prior with M = 3
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Figure 5c: Results using Restricted Uniform Prior with M = 3

Table 3 presents marginal likelihoods and predictive results for a wider
range of models. Note that, for ¢ = 1, the Restricted and Unrestricted Uni-
form priors with M = 2 are the same. Using our approach, there seems
strong evidence in favor of one change-point occurring in-sample. One mes-
sage from this table is that, with the Unrestricted Uniform prior, we can
correctly obtain this result even if we set M = 3. Another message is that
the Restricted Uniform prior can lead you astray (as evidenced, e.g., by an
examination of predictive means and standard deviations) unless you get the
the number of change-points exactly correct. Our preferred strategy is to
select a maximum number of regimes, M, and then use the Unrestricted
Uniform prior to tell us the number of change-points in-sample. This seems
to work well with this data set. An alternative strategy would be to use the
Restricted Uniform prior with several values for M and then select the value
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for M which yields the highest marginal likelihood (or do Bayesian model
averaging over different values for M). In this case, these two strategies yield
roughly the same results (although Bayesian model averaging would attach
almost five percent of the probability to the misleading M = 3 results). How-
ever, with model selection there is always the chance of selecting an inferior
model. Furthermore, this example provides strong evidence for one change-
point and, as we have seen, the “pile-up of prior probability at the end of the
sample” problem occurs most prominently when more change-points occur.

Table 3: Log Marginal Likelihoods and
Predictive Properties for Different Uniform Priors
Log Marginal Predictive Predictive
Likelihood Mean St. Deviation
AR(2) -327.75 0.71 0.93
Restricted (M = 2) -302.60 0.61 0.49
Restricted (M = 3) -305.90 0.58 0.62
Unrestricted (M = 2) | -302.60 0.61 0.49
Unrestricted (M = 3) | -303.05 0.61 0.49

In the previous material, we have chosen particular values for ¢ for the
Unrestricted Uniform prior. We remind the reader that it is possible to
treat ¢ as an unknown parameter and either choose a particular value for
it (e.g. choose the posterior mode of ¢) or integrate it out (see equation
2.11 and surrounding discussion). For this empirical application we do not
present detailed results using either approach since they are similar to those
presented above (provided c is big enough to allow for 75 to occur out-of-
sample). Figure 6 plots the posterior of ¢ (for M = 3).
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Figure 6: Results using Unrestricted Uniform Prior with M = 3

3 Other Priors for Change-Points

The main purpose of this paper is to discuss priors for change-points which
are noninformative, comparable to the methods used by classical econome-
tricians. However, it is worth noting that several informative priors are
popularly used with change-point models. In this section, we briefly describe
some approaches and show how similar issues arise with them. In particular,
if a precise number of change-points is imposed in-sample then one can end
up with priors which are informative (particularly near the end of the sam-
ple) in an undesirable way. This can have a substantial impact on posterior
inference in empirically-reasonable data configurations. It is preferable to
treat the number of change-points as unknown and estimate it. In a similar
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manner as the Restricted Uniform prior has undesirable properties which can
be eliminated if we use an Unrestricted Uniform prior, we discuss how other
existing approaches can be extended.

Perhaps the most influential Bayesian change-point model in economet-
rics is developed in Chib (1998).* Variants on this model are commonly-used
in empirical work in economics and finance (e.g. Pastor and Stambaugh,
2001, and Kim, Nelson and Piger, 2004). See also Pesaran, Pettenuzzo and
Timmerman (2007) and Maheu and Gordon (2007) for recent extensions of
relevance for forecasting in change-point models. Chib’s model grew out of
early work by Chernoff and Zachs (1964). The latter presented a model
where, in each period there is a constant probability of a change to a new
regime. If a change occurs the mean of the dependent variable is perturbed
by a mean zero Normally distributed shock, if no change occurs the mean
remains the same. Chib (1998) generalized the Chernoff and Zachs approach
so that the probability of change could vary through time by treating the
change-point problem using hidden Markov chains. In the approach of Chib
(1998), the problem of locating the change-points is converted into the prob-
lem of determining the duration of a Markov regime. As argued by Chib, this
allows for the estimation of models, using modern Bayesian methods, with
multiple change-points that appear infeasible under the standard approach
to change-point problems.

To explain the approach of Chib (1998), we extend our earlier nota-
tion. Remember that we have data on a time series variable, y, for t =
1,...,T andlet Y; = (y1,...,%;) denote the history through time i. Regime
changes depend upon a discrete random variable, s;, which takes on values
{1,2,..., M}. The likelihood function is defined by assuming p (y;|Y;_1, s, = m) =
p(y|Yi_1,0,,) for a parameter vector 6, for m = 1,..., M. Thus, change-
points occur at times 7, defined as

Tm=At:sep1=m+1,ss=m}form=1...,M—1. (3.1)

To avoid confusion, it is worth stressing that change-point models can be
parameterized in different ways. With our Uniform priors, we parameterized
directly in terms of the change-points (i.e. 71,...,73_1). But one can also
work in terms of states which denote each regime (i.e. s;). It is also possible
to write models in terms of durations of regimes. In the following material,

4Other key early Bayesian work in the statistics literature includes Carlin, Gelfand,
and Smith (1992), Barry and Hartigan (1993) and Stephens (1994).
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we use all of these parameterizations, depending on which best illustrates the
points we are making. However, we do stress that they are equivalent. So,
for instance, a time series of 100 data points with a break at the 60" can be
expressed as 71 = 60, or s, =1 for t =1, ...,60,and s, = 2 for t = 61, ..., 100,
or d; = 60 and dy = 40 (where d,,, denotes the duration of regime m).

Chib (1998) puts a particular structure on this framework by assuming
that s; is Markovian. That is,

pi ifj=i#M
1—p;, ifj=014+1

1 ifi=M

0 otherwise

Pr(s; = jlsi—1 =1) = (3.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the m'" regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime m to
regime m+2. Once it reaches the M'™ regime it stays there (i.e. it is assumed
that the number of change-points in the sample is known). In Bayesian
language, (3.2) describes a hierarchical prior for the vector of states.’

There are many advantages to adopting the framework of Chib (1998).
For instance, previous models typically involved searching over all possible
sets of change-points. This is what we have done with our Uniform priors
in the previous section.® If the number of change-points is even moderately
large, then computational costs can become overwhelming. By using the
Markov mixture model, the posterior simulator is recovering information
on the most likely change-points given the sample and the computational
burden is greatly lowered, making it easy to estimate models with many
change-points. As a digression, it is worth acknowledging that not all non-
Bayesian approaches require searching over all possible sets of change-points.
The influential approach of Bai and Perron (1998) is less computationally
burdensome. Bai and Perron start from the observation that there are 7'(7 +
1)/2 ways of partitioning the sample. Bai and Perron then show how an
efficient dynamic programming method can be used to find the global least
squares minimizer in the special case of all parameters in a linear conditional

A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no effect on statistical inference (see, e.g.,
Bayarri, DeGroot and Kadane, 1988).

6 Although, as discussed in Section 2, it is possible to develop posterior simulation
algorithms which do not require this.
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mean changing at each change-point with no restrictions on the coefficients
changes. In this special case they require only O(7?) computations to find
the least squares minimizer. But for more general cases (especially involving
volatility changes), computational problems can be serious with change-point
models. Bayesian inference in the model of Chib (1998) is based on a Markov
Chain Monte Carlo (MCMC) algorithm with data augmentation and we refer
the reader to Chib’s paper for details.

Chib chose to model the transition probabilities of the states as having a
constant hazard. This is similar to Chernoff and Zachs (1964) who assumed
a constant probability of transition (although Chib allowed the transition
probability to be different for different regimes). One consequence of the
constant hazard is that regime duration satisfies a Geometric distribution.
The Geometric distribution is decreasing in the duration and, thus, the im-
plied distribution of the change-points also adopts this property. Thus, this
prior is not noninformative in the sense that the Uniform prior is. For many
applications, Chib’s prior might be sensible. However, for others it may be
too restrictive. For instance, in the case of a single change-point, 74, is it
always the case that earlier values of 7; should be preferred to later? The
classical change-point literature implicitly reveals a preference for priors on 7¢
which are Uniform (i.e. before seeing the data, every value for 71, apart from
initial conditions and endpoints, is treated as being equally likely). Such in-
formal discussion suggests we should at least investigate the consequences of
this particular choice of hierarchical prior and consider possible alternatives.

Equation (3.2) defines a hierarchical prior for the states. To complete
the model, a prior for p,, is required. Chib (1998) and subsequent papers
have assumed this to be a Beta prior with hyperparameters d,,d,.” In this
section, we will refer to the change-point model with hierarchical prior given
by (3.2) with a Beta prior for the transition probabilities as the Chib model.
Note, also, that in the following material, we discuss hierarchical priors for
various features (e.g. in the Chib model, the hierarchical prior for durations
is Geometric and depends upon the transition probabilities which have a
Beta prior) as well as marginal priors (e.g. in the Chib model, we can
derive a marginal prior for the durations by integrating out the transition
probabilities using their Beta prior). It is important for the reader to keep
clear these two types of priors. Note that the marginal prior probability for

"See, e.g., Poirier (1995), pages 104-105 for the definition and properties of the Beta
distribution.
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the regime durations for the Chib model is:

él +dm - 1>é2 + 1)
B(é17é2)

p(dm):B( d=1,2...,. (3.3)

where B(4,,9,) = % is the Beta function. It can be confirmed that if
d5 < 1 then the expected duration does not exist. Further, p(d,,) > p(d,,+1)
so that this distribution is monotonically decreasing. This illustrates a point
we have mentioned above: this prior implies that regime durations of d,, are
more likely than d,, +1 . Note that this property is present both both in the
hierarchical prior, p (d,,|pm), and the marginal prior, p (d,,).

The hierarchical prior in (3.2) can be combined with a likelihood function
within each regime (e.g. equation 1.1) to produce a change-point model with
M regimes. However, note that so far there is nothing in (3.2) alone which
imposes that exactly M regimes occur in-sample. Indeed, if p; > 0, (3.2)
implies there is some probability that a change to a new regime will never
occur in finite time. One way to see this is to consider the duration of each
regime. As we have seen, by construction the duration of each regime, d,,,
has a Geometric distribution and, thus, the expected duration is given by
1/(1 — py). Without further restrictions, there is positive probability that
even the second regime will not be reached in a sample size of T. Such a
change-point model would be analogous to our Unrestricted Uniform prior
where some of the change-points could occur out of sample (and indeed such
a prior would be desirable for this very reason).

Nevertheless, the existing literature using the Chib model does impose
M regimes in-sample. This can be done through restricting the prior. To see
what form these restrictions take, note that (3.2) on its own implies

PI‘[ST = M|ST_1 = M] = 1,PI’[8T = M|ST_1 =M — ]_] =1 — PMm-—1-

In words, this says “if at time T'— 1, you are in regime M — 1, there is nothing
which guarantees you will go to regime M next period”. But this can easily
be restricted to:

Prisp = M|sp_y = M| =Pr[sp = M|sp_1 =M — 1] =1 (3.4)

which says “if at time 7" — 1, you are in regime M — 1, then you must
switch regimes to ensure that exactly M regimes occur in-sample”. Such
a restriction is enough to ensure the model with M = 2 has exactly one
change-point. For M = 3 we require the additional restriction:
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Prisr-1 =M —1|spa =M —2] =1

and analogous additional restrictions are required for M > 3.

In the working paper version of this paper,® we provide further details
on both these priors (i.e. the unrestricted Chib model and the Chib model
with prior restrictions imposed to ensure exactly M — 1 change-points occur
in-sample). In particular, we show how the algorithm of Chib (1996) can
be used even with such prior restrictions. Furthermore, we show how these
prior restrictions can be undesirable in the sense of placing a great deal of
prior weight in favor of change-points near the end of the sample. Since the
reasons for this “pile up of prior probability at the end of the sample” are
much the same as for the Restricted Uniform prior, we will not repeat this
material here. They will be illustrated empirically below. But we do stress
that the same issues as discussed in the previous section hold with the Chib
model, and indeed for any model which imposes an exact number of regimes
in-sample.

Before turning to an empirical illustration, it is worthwhile stressing that
extending Chib’s model to allow for change-points to occur out-of-sample
is trivial. One can simply not impose prior restrictions such as (3.4). One
aspect of the model developed in Koop and Potter (2007) has a similar prop-
erty.” That is, in our previous work we use a Poisson distribution for the
duration distribution. This allows for change-points to occur out-of-sample
in a similar manner as our Unrestricted Uniform prior. The Poisson distri-
bution, however, implies a prior distribution for the change-points which is
far from flat and, hence, may not be suitable for the Bayesian wishing to
have a “noninformative” prior over the change-points. McCulloch and Tsay
(1993) and Giordani and Kohn (2006) are other approaches to change-point
modeling which do not impose a fixed number of change-points in-sample.
The basic idea of both these approaches is that there is some probability of a
change-point occurring each period (e.g. McCulloch and Tsay, 1993, simply
have a Bernoulli probability of change, p, which is the same in every period)

8 Available at http://personal.strath.ac.uk/gary.koop/.

9Much of Koop and Potter (2007) relates to hierarchical prior elicitation relating to
regime coefficients (e.g. to link coefficients in different regimes together in a sensible
manner). Our previous paper also develops hierarchical priors for parameters of duration
distributions (e.g. so that the duration of a past regime can provide some information
about the likely duration of the current regime). Such considerations are not discussed in
this paper, although they could easily be added to our Unrestricted Uniform prior.
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and, thus, the number of switches which actually occur in-sample is unknown
and estimated from the data. Like Koop and Potter (2007), these models do
not have flat priors over the change-points.

3.1 Empirical Illustration Using Coal Mining Data

In this section, following Chib (1998), we investigate the empirical perfor-
mance of our priors in a commonly-used data set. We consider the coal
mining disaster data of Jarrett (1979) and consider the cases of zero, one
or two change-points using the Chib model as well as the Restricted and
Unrestricted Uniform priors.

The prior for the Chib model requires the selection of prior hyperpara-
meters for the transition probabilities, §; and §,. To aid in prior elicitation,
an examination of (3.3) indicates that, for values of 9, close to zero and ¢,
relatively large, we have p(d,,) ~ p(d,, + 1) for larger values of d,,. Perhaps
reflecting a preference for priors which are “flat” over possible change-points,
in many applications (for example Chib, 1998, Kim and Nelson, 1999, and
Kim, Nelson and Piger, 2004) 0, has been set to a small value less than 1.
In Chib (1998) the choice §, = 0.1 and §; = 8 was made. We will also use
these values for the case with one change-point. Note that this implies that
the marginal prior of regime duration is approximately flat, but the expected
duration does not exist (see discussion after equation 3.3). Hence, such a
choice of prior hyperparameters may get around the possibly unattractive
property that the prior is informative for the change-points (e.g. it favors
shorter durations to longer ones), but raises the possibility that the problems
relating to the restrictive prior required to ensure exactly M regimes exist
may be exacerbated.

As we have seen, the model of Chib requires us to add restrictions analo-
gous to (3.4) to ensure that number of change-points assumed in the model
do in fact occur. In the case of M = 2, this can be done by truncating
the distribution of the duration of regime 1 at d; = T — 1 and assigning all
the remaining probability to this point (see equation 3.4). In the coal mining
disaster data there are 112 observations, hence, for the one change-point case
we can use (3.3) to get

110
Plry=111] = Pldy = 111] = 1 - ) _

d=1

B(7T+d,1.1)

sEor ~ 076 (3.5)
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Thus, the prior required to impose exactly one change-point is allocating a
great deal of weight to regime changes at the end of the sample. The prior
required to impose exactly two change-points has a similar property. For this
two change-point case, we follow Chib (1998) and assume independent Beta
priors for the two transition probabilities, each with hyperparameters 5 and
0.1 (and impose prior restrictions on the endpoints analogous to equation
3.5). In this case as well, there is a huge spike in the prior at the end of the
sample.

To carry out our application, we need to specify a likelihood and a method
for posterior analysis. Since this data is a count of mining disasters by year
a Poisson likelihood is reasonable. Chib assumes the priors on the Poisson
intensities in the different regimes, 6,,, to be G(gm,ﬁm) form=1,..., M.
Throughout the following material, we use the same values for Qs Bm as
in Chib (1998). That is, for the zero and one change-point cases, we set
a,, = 2,6m = 1. For the two change-point case, we set o, = S,Bm = 1.
Under these assumptions the posterior of the change-points can be found (see
Chib, 1998, or the appendix to the working paper version of this paper).

With regards to the Unrestricted Uniform prior we set M = 3 and ¢ =
%, values consistent with previous work with this data which has indicated
one or two change-points. For the Chib model and Restricted Uniform prior
we try M =2 and M = 3 (as well as the model with no change-points). For
the sake of brevity, we do not present figures for the priors, although it is
worth stressing that the priors for change-points in the Chib model has the
huge spikes near the end noted previously (see equation 3.5).

For the case where only a single change-point is assumed to exist infor-
mation in the likelihood function dominates. Hence, the Chib model and the
Restricted Uniform prior yield essentially the same posterior so, for the sake
of brevity, they are not plotted. However, when we assume two change-points
we begin to see the effects of prior assumptions. The posteriors for 7; and
749 for the Chib model and Unrestricted Uniform prior are plotted in Figures
7a and b'" and 8a and b, respectively. For 7, the posteriors under the two
priors are not too different, although the informativeness of the prior used in
the Chib model is clearly having an impact at the beginning of the sample.
However, for 75 the two priors are yielding substantively different posteriors.
Note in particular that the posterior of 75 for Chib’s model has a huge spike

10The coal mining data ends in 1962, but Figures 7a and b are truncated in 1900 since
the probability that 71 occurs after 1900 is essentially zero.
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at the end of the sample (i.e. in 1962). This is due to the prior (see equations
3.4 or 3.5) which imposes exactly two change-points in-sample. We do not
present results for the Restricted Uniform Prior with M = 3, but note that
the pile up of probability in the posterior for 7o near the end of the sample
is much less appreciable than for the Chib model. Thus, we are finding prior
sensitivity even when staying in the class of models which impose a precise
number of change-points.
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Figure Ta: Posterior of First Change-point using Coal Mining Disaster
Data
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Figure 7b: Posterior of First Change-point using Coal Mining Disaster
Data
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Figure 8a: Posterior of Second Change-point using Coal Mining Disaster Data

34



Posterior of T, for Unrestricted Uniform Prior with k=3
0.1 . T . T T

0.09

0.0g

0.07

0.06

0.05

0.04

0.03

0.02 +

0.01

1
1800 1850 1800 1840 2000 2050 2100
Figure 8b: Posterior of Second Change-point using Coal Mining Disaster Data

The reader may suspect that our findings of prior sensitivity are occurring
in a model which is not supported by this data. To investigate this issue,
Table 4 reports marginal likelihoods for the various models. Note that, as
with the AR model used in the previous empirical illustrations, these can be
calculated analytically since, conditional on the change-points, a closed form
expression for the marginal likelihood exists (see the appendix to the working
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paper version of this paper available at http://personal.strath.ac.uk/gary.koop/).
These conditional marginal likelihoods can be averaged over the change-
points using the appropriate prior to yield an exact (unconditional) marginal
likelihood (see equation 2.10).

Table 4 presents strong evidence that at least one change-point is present.
The one and two change-point models receive roughly equal support. Note
also that the models with Uniform priors receive more support from the data
than the Chib model. Thus, we are finding sensitivity to the prior in a model
which does receive appreciable support from the data.

Table 4: Log Marginal Likelihoods for Different Models/Priors
No change—points —205.03
Chib model (M = 2) —177.34
Restricted Umform (M =2) —175.74
Chib model (M = 3) —178.14
Restricted Umform (M ) —176.20
Unrestricted Uniform (M = 3) | —176.10

Another way of examining the effect of the various priors is to exam-
ine the predictive distribution, p (yr41/Yr), for an out-of-sample observa-
tion. The appendix to the working paper version of this paper describes how
Bayesian predictive inference can be done in the Chib model with Poisson
likelihoods in each regime. For the Chib model and the Restricted Uniform
prior, we do Bayesian model averaging across models with differing number
of change-points. This can be done in a straightforward fashion by weight-
ing the resulting predictive distribution by the posterior probabilities of the
various change-point models. The latter can be directly calculated from the
log marginal likelihoods in Table 4. Predictions using the Unrestricted Uni-
form prior already implicitly average across models with differing numbers
of change-points.

It can be seen that the calculation of the predictive distributions depends
crucially on the prior over the change-points assumed. Figures 9a, b and
c are predictive distributions using our three different classes of prior. For
the Chib model and Restricted Uniform prior, we average over one and two
change-point models. The Chib model prior yields a forecast distribution
which is very different from either of the Uniform priors. Note that the Chib

model places probability of more than — on two or more disasters per year.

However, our Uniform priors yield forecast distributions (see Figure 9b and
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1
9c) which indicate roughly — chance of two or more mining disasters per year.

This reinforces a central message of this paper: priors matter in change-point
models.

It is worth mentioning that an unrestricted version of the prior used in
the Chib model can be derived in an analogous manner to what we have done
with our Uniform priors (i.e. by not imposing a restriction such as (3.4) and
allocating prior weight outside of the observed sample). For brevity we do
not do this here. Such a prior does not have the poor properties seen in the
top panel of Figure 9 and the resulting posteriors look a bit more like those
found using the Uniform priors. But substantive differences exist and, in this
application, marginal likelihoods indicate that Uniform priors are preferred.
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Figure 9a: Predictive Distribution for Coal Mining Disaster Data
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Figure 9b: Predictive Distribution for Coal Mining Disaster Data
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Figure 9c: Predictive Distribution for Coal Mining Disaster Data

Finally, as with our GDP growth example, it is worth noting that, in-
stead of selecting ¢ for the Unrestricted Uniform prior, we can treat it as
an unknown parameter and estimate it (or integrate it out). For forecast-
ing, the use of such a hierarchical prior has a great advantage in that the
updating of ¢ implies that information in-sample can be used for predicting
the likelihood of a break out-of-sample. Many authors have argued that the
poor forecasting performance of many macroeconomic models is largely due
to structural breaks (see, among many others, Clements and Hendry, 1999, or
Pesaran, Pettenuzzo and Timmerman, 2007). In light of this issue, a model,
such as the one introduced here, which attempts to model the probability of
out-of-sample change is potentially of great use.'!

!1'Hierarchical priors for regime-specific likelihood parameters, 6,,, can also be of use in
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In the coal mining disaster data, there is fairly clear evidence of one or
two breaks, but not more. If we set M = 3 and p(cla) =U (%, 2) we obtain
predictive distributions which are quite similar to those given in Figures 9b
and c. Furthermore, the posterior mode occurs at ¢ = % and, for this value,
the log of the marginal likelihood is —175.65 which is better than any of the
other priors. Marginal likelihoods have a strong reward for parsimony and
it is reassuring to see that this (less parsimonious) model is out-performing
the (more parsimonious) one change-point models despite the fact that Table
4 indicates only weak evidence in favor of the presence of a second change-
point. And it is worth stressing that, with our Unrestricted Uniform prior, we
did not need to assume a fixed number of change-points (in-sample). We are
successfully recovering the reasonable inferences from other models, without
making the assumptions that were necessary in those other models.

4 Conclusions

In this paper, we have discussed prior elicitation in change-point models. We
have shown how some common and apparently sensible priors have poten-
tially undesirable properties. Relaxing these priors to eliminate these prop-
erties results in priors which allocate probability to change-points occurring
out-of-sample. Much of the paper is devoted to showing how this apparently
odd property actually is highly desirable, leading to a model which effec-
tively allows for the number of change-points to be unknown. Of particular
interest is our Unrestricted Uniform prior which can be thought of as a rea-
sonable noninformative prior (what an objective Bayesian may wish to use
or comparable to what the classical econometrician does). We present ex-
tensive empirical work which shows that the issue of prior elicitation can be
of substantive importance in change-point models and that our Unrestricted
Uniform prior yields results which are more sensible than other approaches.
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