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Abstract

In this paper I propose a novel optimal linear filter for smoothing, trend and signal extraction

for time series with a unit root. The filter is based on the Singular Spectrum Analysis (SSA)

methodology, takes the form of a particular moving average and is different from other linear

filters that have been used in the existing literature. To best of my knowledge this is the

first time that moving average smoothing is given an optimality justification for use with

unit root processes. The frequency response function of the filter is examined and a new

method for selecting the degree of smoothing is suggested. I also show that the filter can

be used for successfully extracting a unit root signal from stationary noise. The proposed

methodology can be extended to also deal with two cointegrated series and I show how to

estimate the cointegrating coefficient using SSA and how to extract the common stochastic

trend component. A simulation study explores some of the characteristics of the filter for

signal extraction, trend prediction and cointegration estimation for univariate and bivariate

series. The practical usefulness of the method is illustrated using data for the US real GDP

and two financial time series.
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1 Introduction

In a series of papers Phillips (1996), (1998) and (2005) gave an alternative formulation and

modeling approach to stochastic processes with unit roots. Phillips’ original aim appears to

have been an attempt in formally showing that what he, in previous research, called ‘spurious

regression’ was nothing more than a manifestation of a specific underlying structure for the

asymptotic limit of the unit root process itself. His idea was ingenious because he showed us how a

unit root process can be expressed via deterministic functions of time. Using a known result about

the orthogonal decomposition of stochastic processes, the Karhunen-Loève (KL) decomposition,

Phillips formally analyzed the properties of a particularly simple regression where the realization

of a unit root process was regressed on a set of orthogonal trigonometric functions of time

and showed how to interpret the regression results, what the implications were for the notion

of ‘spurious regression’ and what the implications were for modeling and predicting stochastic

trends.

This pioneering work has not found widespread use in spite of a very important implication:

within that framework of Phillips one can meaningfully smooth a unit root process, extract the

underlying smoothed series and predict the smoothed series itself, as well as the residual devia-

tions of the original series from its smooth component. For economics and finance, where most

would admit that the majority of available data have unit root-type, non-stationary character-

istics, this is of practical significance: it allows one to perform standard time series operations

(smoothing and trend extraction) without having to face any theoretical problem. For example,

extracting stochastic trend components can be used in defining potential output from a real GDP

series or for defining a ‘fair price’ path for an asset and, in addition, allows for an analysis of the

resulting residual series using standard methods for stationary processes.

There is, of course, substantial previous literature that dealt with filtering and smoothing

of non-stationary (including unit root) processes in economics (and of course other fields) but

its focus was that of trend (“signal”) extraction and smoothing based on mainly cyclical (e.g.

business cycles) considerations and was related to the extraction of components of certain fre-

quencies. In addition, that line of research was not really focused on the unit root model (it

was dealt only as a special case). The work of Hodrick and Prescott (1997) and the filter named

after them is probably the best example of this line of research. Related work has been done

by King and Rebelo (1993), Baxter and King (1999) and Christiano and Fitzgerald (2003). It

is interesting to note that in the first three out of these four papers the words “business cycles”

appears in their titles! Pollock (2000) also relates to this line of research. Schleicher (2003)
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summarizes some of this past work. It is important to note here that these papers dealt with

optimal (in a mean squared error - MSE - sense) filters as well but from a different starting point

and with a different aim in mind that what is done in the present work. Earlier work on the

topic of smoothing non-stationary time series includes the seminal paper of Bell (1984) and the

subsequent paper of Kohn and Ansley (1987). A convenient, matrix-based representation of the

optimal MSE filter for the separation of a non-stationary signal from (stationary or not) noise

is given by McElroy (2005). Book summaries of smoothing and filtering using the state space

approach, which includes models for non-stationary time series, can be found in Harvey (1989)

and Durbin and Koopman (2001).

In this paper I expand on the ideas of Phillips and provide a number of new results on

smoothing stochastic processes with unit roots. Using the method of Singular Spectrum Analysis

(SSA), and a number of already existing results, I derive an asymptotically optimal linear filter

for smoothing and trend extraction for unit root processes. It turns out that this filter takes the

form of a particular moving average and I derive explicit expressions for the filtering weights.

This new result is important because it provides a theoretical justification for moving average

smoothing in the context of unit root processes and has large potential for empirical applications.

As in Phillips (2005) I also derive an h-step ahead, out-of-sample predictor for the smoothed

series, which turns out to be recursively defined as a simple average of the past (actual and

predicted) values of the smoothed series itself. In addition, I propose a new, data-based method

for selecting the degree of smoothing which is applicable in both the current approach and the

approach of Phillips. The proposed filter can also be used successfully in the context of non-

stationary signal extraction type problems. Finally, I show how the methodology of this paper

can handle common stochastic trend extraction in the context of a system of two cointegrating

series, with the cointegrating coefficient being estimated using SSA.

In developing the results that follow I use material that is now readily accessible through

books and monographs. Any results that are well known are not repeated; exceptions are:

(a) an outline of the SSA method, which is reviewed in the next section and (b) a few other

necessary items that are replicated in the appendix. The interested reader can consult the

following sources for additional information about the mathematical background: Rao (1973) for

matrix algebra results, including the spectral and singular value decompositions; Priestley (1981)

and Fuller (1995) for results on linear filters, moving averages and and orthogonal decompositions

of stationary processes (including diagonalization of autocovariance matrices) - Fuller (1995) also

has the necessary results on limits of sample moments of unit root processes; Golyandina et al.

(2001) is the only complete reference that deals with the core mathematics of SSA and should be
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consulted for detailed results about the application of SSA in a more general context as well as

for the specific results on SSA forecasting which are not provided later in the discussion. See also

Elsner and Tsonis (1996) for an earlier but much less complete book reference on SSA. Optimal

filtering in SSA for stationary series is discussed in Allen and Smith (1996).

The outline of the paper is as follows. In section 2 there is a brief review of the SSA method.

Section 3 contains the paper’s main results, where the SSA method is applied in the context of

a stochastic process with a unit root and the form of the asymptotically optimal linear filter is

derived, followed by with a discussion on its properties and related methodology. In section 4

I provide results from a simulation analysis while in section 5 there are empirical illustrations

using quarterly data on the US real GDP and weekly prices of Brent Oil and the Euro/US Dollar

exchange rate. Section 6 offers some concluding remarks. A summary of the notation used in

the paper and some necessary results are given in the appendix.

2 The SSA Method

In this section I provide a brief outline of the SSA method. SSA is the empirical implementation

of the KL orthogonal decomposition to sample data and equivalent to principal components (up

to a point) in multivariate analysis. Orthogonal decompositions similar to the one applied in

SSA have been known in time series for many years but were mainly used as theoretical tools

rather as inference methods. SSA has been used heavily in atmospheric sciences, where it was

essentially developed with this name, see Broomhead and King (1986), and where most of its

applications can be found. Two references that use SSA in the context of economic and financial

data are Lisi and Medio (1997) and Thomakos, Wang and Wille (2002).

2.1 The Trajectory Matrix

Consider a univariate stochastic processes {Xt}t∈Z and suppose that a realization of size n from

this process is available Xn
def= [x1, x2, . . . , xn]. Denote by k ≥ 2 the lead parameter, possibly

allowing it to be k = o(n), and define the (k × 1) lead column vectors xt as:

xt
def= [xt, xt+1, xt+2, . . . , xt+k−1]

> (1)

for t = 1, 2, . . . , N where N
def= n − k + 1. These vectors group together k time-adjacent obser-

vations and are supposed to describe the local state of the underlying process. Using the lead
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vectors form the (N × k) trajectory matrix T by stacking them as follows:

T =




x>1

x>2
...

x>N




(2)

Alternatively, T can defined through a set of k lead vectors of different dimension, namely the

(N × 1) lead vectors xt
def= [xt, xt+1, xt+2, . . . , xt+N−1]

> that form the columns of T . We can,

therefore, have the equivalent representation:

T = [x1,x2, . . . ,xk] (3)

It will be convenient to keep both equations (2) and (3) for the discussion that follows.1

Besides the application in SSA, the trajectory matrix can be used to unify a number of

common time series procedures, such as filtering and autoregressive modeling. For example, let

β denote any known, fixed (k × 1) vector and consider the following:

• For k = 2 and β
def= [−1, 1] we can obtain the first differences of the realization as Tβ.

• For any k ≥ 2 and β
def= [1/k, 1/k, . . . , 1/k] we can obtain a k-order moving average for the

realization as Tβ.

• For autoregressive modeling let β∗ denote the parameter vector and u denote the vector

of innovations. Write Tβ∗ = u and define the (k × 1) and (k × k) restriction matrices:

q
def=




0

0
...

1




, Q
def=


 Ik−1

0>k−1


 (4)

so that the restricted parameter vector β is written as β∗ def= q−Qβ. Then, the least-squares

problem for estimating β is given by:

min
β

u>u = (q −Qβ)> T>T (q −Qβ) (5)

with the usual solution β̂ =
(
Q>T>TQ

)−1
Q>T>Tq.

1Since the analysis here is confined to univariate stochastic processes I will avoid using terms relating to principal

components analysis although the trajectory matrix can be seen as a way to obtain multivariate observations from

a univariate process.
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2.2 Diagonal Averaging

The trajectory matrix is a Hankel matrix, having constant, positive-sloping skew diagonal ele-

ments. As a result the underlying time series can be obtained back from the trajectory matrix

by a process called diagonal averaging. More formally, the trajectory matrix is obtained as a

result of an operation, say H(·), to the realization Xn, as:

H(Xn) 7→ T (6)

and the H(·) operator has to be invertible since we should be able to recover the original series

from the trajectory matrix. Therefore we can write:

H−1(T ) = D(T ) 7→ Xn (7)

where D(·) is the operator for diagonal averaging which we describe next.2

Transfer the lead vectors of the trajectory matrix from equation (2) into the k-block diagonal

of the (N × n) band matrix B as:

B(T ) ≡ B
def=




x>1 0 . . . 0

0 x>2 . . . 0

0 . . . . . . 0

0 . . . . . . x>N




(8)

and note that the column arithmetic averages (of the non-zero elements) are equal to the original

elements of the realization. We can formalize this operation as follows. Let JN denote the

(N × 1)-dimensional unit vector and let s denote a (n× 1) vector with elements that correspond

to inverse of the number of the non-zero elements in the rows of B, that is:

s> def= [1, 1/2, . . . , 1/k − 1,

n−2(k−1)︷ ︸︸ ︷
1/k, . . . , 1/k, 1/k − 1, . . . , 1/2, 1] (9)

Using JN and s the diagonal averaging operator can be defined as:

D(T ) def=
(
J>NB

)
¯ s> (10)

where ¯ is the Hadamard (element-by-element) product between two matrices.

The diagonal averaging operation, which is essential in what follows, is an optimal operation

in the following sense. For any matrix X, not necessarily a trajectory matrix, the Hankel matrix,

say Xo, that can best approximate X using the Frobenius matrix norm ‖ · ‖2
M (see the appendix

2To the best of my knowledge this representation of diagonal averaging has not yet appeared in the SSA

literature.
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for the definition) is obtained through diagonal averaging in the sense that (see Buchstaber,

1994, and Golyandina et al., 2001):

‖X −Xo‖2
M = min

Z ∈MH

‖X −Z‖2
M (11)

where MH is the set of conformable Hankel matrices and where the elements of Xo = H [D(X)].

2.3 Decomposition & Minimum Norm Approximation

Using known results about the singular value decomposition (SVD) of an (N × k) matrix such

as T we can decompose it as:

T =
k∑

i=1

√
λjvju>j = V Λ1/2U> (12)

where
√

λj denotes singular values and vj ,uj denotes the left and right singular vectors re-

spectively. The SVD decomposition has, however, an interpretation based on the cross-moment

matrix of T , that is T>T . For a zero-mean, stationary process this would be the symmetric ma-

trix of sample autocovariances of all orders from j = 1, 2, . . . , k. Denoting by γ̂(s) def= n−1xjxj+s,

for j = 1, 2, . . . , k and s = 0, 1, . . . , k − j the sample cross-moments and placing them into the

symmetric matrix Γ̂(k) we have that:

Γ̂(k) def=
1
n

(
T>T

)
(13)

The singular values of T are the (scaled square roots of the) eigenvalues from the spectral

decomposition of Γ̂(k) and the right singular vectors uj are the corresponding eigenvectors of

Γ̂(k), that is:

Γ̂(k) =
k∑

j=1

λjuju>j (14)

For a stationary process with finite second moments the matrix of the autocovariances contains

essentially all the information that we need for modeling and forecasting the realization Xn. It is

therefore appropriate to work with the decompositions of equations (12) and (14). The relative

magnitude of the eigenvalues of Γ̂(k) can tell us how much information is contained within the

cross-moments of the process. Consider, for example, the cumulative proportion of the first r

eigenvalues, i.e. `r
def=

r∑

j=1

λj/
k∑

j=1

λj . If this proportion is very high, say over 90%, then we should

be able to approximate Γ̂(k), and therefore T , with only r of the components in (12) or (14). It

can be shown, see the appendix, that this approximation is an operation of minimum norm and

is thus an optimal approximation.
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Using the properties of the SVD matrices and the first r < k components we obtain that the

minimum norm approximation of T is given by:

T r
def= T

r∑

j=1

uju>j = TQr, for Qr
def=

r∑

j=1

uju>j (15)

and we can see that this approximation is a linear operation on T . Moreover, T r has the property

that is is a sum of r orthogonal (uncorrelated) elementary rank-one matrices since we can also

write:

T r =
r∑

j=1

Tuju>j =
r∑

j=1

T j (16)

where T j
def= Tuju>j and T iT

>
j = 0, for i 6= j.

Using the diagonal averaging operator D(T r) we can recover an optimal approximation to the

original realization.3 This is clearly a smoothing operation and therefore we obtain an optimal

(minimum norm) filter for the original series which is denoted as:

D(T r) 7→ Xn,r (17)

or, equivalently, as {xt,r}n
t=1. The residual series is denoted by ut,r = xt − xt,r.

3 Optimal Smoothing for Unit Root Processes

3.1 Application of SSA

The previous section provided a brief outline of the SSA method. While SSA has been successfully

applied in time series analysis across different fields, there is no formal work about the properties

of SSA in the context of stochastic processes that contain a unit root. In this section I bridge

this gap with existing literature and show that SSA can be applied in the context of unit root

processes. In particular, I derive the asymptotically optimal (minimum norm) approximation

based on SSA and thus derive an optimal filter for smoothing unit root processes.

Consider a stochastic process {Xt}t∈N+
with a unit root, that is:

Xt = Xt−1 + ηt → Xt =
t∑

j=1

ηj (18)

with X0 = 0 and ηt a sequence of i.i.d. random variables with mean zero and variance σ2
η.

The i.i.d. assumption about ηt is innocuous and used for simplicity only as a number of other
3Note the double optimality involved here: both the SVD approximation is a minimum norm operation and

the diagonal averaging is a minimum norm operation.
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assumptions, such as mixing, do not alter the results that I obtain below. Suppose that a

realization Xn = [x1, x2, . . . , xn] is available for this process and that you wish to apply SSA

to it. What are the implications of the unit root assumption for the resulting decomposition

and minimum norm approximation? The answer can be readily obtained using known results

from the unit root literature. I then obtain new, explicit expressions for the asymptotic optimal

approximation/linear filter. These expressions can be used for smoothing and trend extraction,

as well as for trend prediction.

As before we need the matrix of autocovariances Γ̂(k). Under the unit root hypothesis this

matrix diverges as n →∞ but it converges to a stochastic matrix if scaled by n. Using standard

results, see the appendix, it can be shown that:

1
n
Γ̂(k) =

k∑

j=1

λjuju>j ⇒ σ2
ηwJk,k (19)

where ⇒ denotes weak convergence, w is a stochastic integral and Jk,k is a matrix of ones. This

limit matrix has a very simple spectral decomposition with one positive stochastic eigenvalue

given by σ2
ηwk and associated orthonormal eigenvector Jk/

√
k. Note that the stochastic nature

of the limit matrix is confined to the eigenvalue and not to the eigenvector. In fact we have:

Proposition 1. Under the assumptions of equation (18) we have that the eigenvalues

and eigenvectors of the decomposition of the matrix of autocovariances n−1Γ̂(k) obey

the following:

1. λ1 ⇒ σ2
ηwk, λj ⇒ 0, for 2 ≤ j ≤ k, and `1 ⇒ 1

2. u1 ⇒ J/
√

k

It follows that, in large samples, it will not make any difference whether one uses the empirical

eigenvector u1 or the asymptotic eigenvector Jk/
√

k.

Proceeding for simplicity with the asymptotic eigenvector we have that the minimum norm

approximation of equation (15) now becomes:

T 1,∞ = TQ1,∞, for Q1,∞
def=

1
k
TJkJ

>
k (20)

The matrix T 1,∞ has a special structure that reveals the nature of the underlying smoothing

operation that takes place. In particular, note that:

T 1,∞ =




k−1
∑k

t=1 xt

k−1
∑k+1

t=2 xt

...

k−1
∑n

t=N xt




J>k (21)
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so that it has identical columns and its rows are k-period rolling averages of the realization.

Therefore, application of the diagonal averaging operator D(T 1,∞) will produce a smoothed

series D(T 1,∞) 7→ Xn,1
def= {xs,1}n

s=1 that will be based on these averages. In particular, after

some algebra, we obtain an explicit expression for the smoothed series as:

xs,1
def=





1
sk

∑s
j=1

∑k+(j−1)
t=j xt, s ≤ k − 1

1
k2

∑k
j=1

∑s+(j−1)
t=s−k+j xt, k ≤ s ≤ n− k + 1

1
(n−s+1)k

∑n
j=s

∑s
t=s−k+1 xt, s > n− k + 1





(22)

The above representation has a very interesting structure since (a) it is composed from local

cumulative k-period averages and (b) these cumulative averages do not have the same number

of terms (that is, the same degree of smoothness) at the beginning and end of the series. These

properties show that the asymptotically optimal filter automatically preserves the original struc-

ture of the series (cumulation of η’s maps into cumulation of averages) and takes into account

end effects. An example will clarify the structure of the smoothed series xs,1. Take k = 4 and

note that we have:

x1,1 = x1+x2+x3+x4
4 ,

x2,1 = x1+2x2+2x3+2x4+x5
8 ,

x3,1 = x1+2x2+3x3+3x4+2x5+x6
12 ,

x4,1 = x1+2x2+3x3+4x4+3x5+2x6+x7
16 ,

...

The smoothed series takes the form of a symmetric moving average with weights that decline

(increase) linearly from the center value of the average, the weights summing-up to one. In

addition, it automatically takes care of the end of the series so that the first smoothed value is

a forward moving average and the last smoothed value is a backward moving average.

3.2 Properties of the Smoothed Series

Note that when k ≤ s ≤ n − k + 1, i.e. when excluding the end-points of the smoothed series,

we can express the moving average in a standard linear filter format as:

xs,1 = ψ(L)xs =
1
k2

k−1∑

j=−k+1

(k − |j|)xs+j , for k ≤ s ≤ n− k + 1 (23)

and, furthermore, note that this average can be thought of as the solution to the local optimiza-

tion problem:

xs,1 = argmin
µs

k+1∑

j=−k+1

fj(xs+j − µs)2 (24)
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where fj is the frequency of occurrence of each xs+j in the average. The associated polynomial

of the filter ψ(L) can be factored as:

ψ(L) =
1
k2

Lk−1ψ∗(L−1), for ψ∗(z) def= 1 +
k−1∑

j=1

[
(j + 1)zj + (k − j)z(k−1)+j

]
(25)

The roots of the filter polynomial are determined by the roots of ψ∗(z) = 0 and it can be shown

that they are all equal to unity in absolute value and, in particular: if k is even then it has two

repeated real roots at z = −1 and the rest are repeated complex roots of the same conjugate

pair; if k is odd it has only repeated complex roots from different conjugate pairs.

It is also straightforward to compute the frequency response function of the filter polynomial

ψ(L) so as to examine the effects of different degrees of smoothing in the original series. The

frequency response function is defined as the Fourier transform of the filter polynomial and we

have:

R(ω) def=
1
k2

k−1∑

j=−k+1

(k − |j|) exp(−2πiωj) =
1
k


1 +

2
k

k−1∑

j=1

j cos(2πωj)


 (26)

where ω is the frequency. It is now easy to visually see the effects of smoothing as a function of

the frequency ω.

In Figure 1 I plot |R(ω)|2 against frequency for various values of k = 8, 16, 20, 40. Assuming

that k is selected as k =
√

n these values correspond to the following sample sizes: 16 years

of quarterly observations, 64 years of quarterly or 21 years of monthly observations, and over 5

years of daily observations. As expected, we see that the smoother enhances the low frequency

component of the original series but for low values of k allows for some power to pass from

higher frequencies. It is possible to select the value of k so as to significantly reduce the power

at certain frequencies. For example, taking k equal to the cycle period (e.g. 4 for quarterly or

12 for monthly data) we can smooth the original series retaining the low frequency component

and erasing most of the cyclical component, if one exists. In Figure 2 I plot |R(ω)|2 against

frequency for k = 4, 12 and mark the frequency that corresponds to the period noted before.

We can also examine the properties of the residual series us,1
def= xs − xs,1. First note that,

using the factorization of the filter polynomial in equation (25), we have that, for k ≤ s ≤ n−k+1:

us,1 = [1− ψ(L)]xs =
[
1− k−2Lk−1ψ∗(L−1)

]
xs (27)

so that the residuals can be thought of as k − 1-period ‘quasi-differences’. Note that these

residuals contain forward looking information about the series, they are computed using terms

after xs. In this sense one can possibly call them ‘predictive residuals’. In Figure 3 I plot the

sample realization from a unit root process with ηt ∼ N (0, 0.22), n = 500 and k = [
√

n] = 22, and
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the sample autocorrelation function of the original series and the residual series. The differences

in the behavior between the two series are apparent. Moreover, note that after the removal

of the smooth component there is a substantial amount of serial correlation that remains in

the residual series. However, this autocorrelation can be adequately addressed using a standard

autoregressive model to account for the cyclical patterns in the residual autocorrelation function.

All the above present an entirely new result that justifies the use of moving averages as

optimal smoothers in the context of unit root processes. The implications for the use of moving

averages in smoothing and trend extraction of economic and financial time series are evident:

the proposed method allows for a precise extraction of the main k components of a stochastic

trend using an optimization-based approach, with explicit expressions for the resulting smoothing

weights and specific properties attached to the smoothed and residual series.

3.3 Connection with Phillips’ Approximation and Signal Extraction Problems

There are certain similarities and differences between the approach taken in the work of Phillips,

say e.g. (2005), the approach of “non-stationary signal extraction”, e.g. Bell (1984), and the

current approach. The main similarities between the current approach and Phillips’ approach

is that the smoothing of the unit root process is based on asymptotic considerations and that

both approaches use versions of the Karhunen-Loève (KL) decomposition. In particular, here

I use the asymptotic minimum norm approximation (the sample KL version) and the resulting

eigenvector to construct the smoothed series xs,1. Phillips motivates his smoother by the use of

the KL decomposition to the limit process of the appropriately scaled xt given by:

1√
n

x[n·] ⇒ B(r) def=
√

2
∞∑

j=1

sin [(j − 1/2)πr]
(j − 1/2)π

ξj (28)

for r ∈ [0, 1] and the ξj being i.i.d. normal random variables ξj ∼ N (0, σ2). The above theoretical

relationship can be empirically fitted using observations from a realization and can also be used

for trend prediction. Letting
{

φj(r)
def=
√

2 sin [(k − 1/2)πr]
}∞

j=1
denote the system of orthogonal

deterministic functions of time we have the linear regression:

xt
def= x̂t,k + ût,k =

k∑

j=1

b̂jφj(t/n) + ût,k (29)

where k denotes the number of ‘trend coordinates’ that are to be used in reconstructing the

series. For k → ∞ and k = o(n) we have that the above regression can reproduce the entire

realization. For low values of k one can extract the underlying trend components. Note that the

regression coefficient estimators b̂j converge to random variables in this context, not constants

(see Phillips (2005) and references therein for details).
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While in essence both approaches are trying to do the same thing, i.e. smooth the realization

of a unit root process, there are also two differences between them. First, the approach of

Phillips (2005) is a global approach, as it is based on the application of global least squares to

the entire realization for extracting the trend components. The smoothing is a by-product of this

global fitting, essentially through the use of the trigonometric basis functions. In contrast, the

current approach is a local approach as it is based on the application of local smoothing via the

use of moving averages. Of course both approaches can achieve the same degree of smoothing

by appropriate choices of the smoothing parameter k. A second difference is that the method

in Phillips (2005) does not come out of an optimization framework and does not come with a

‘structural’ interpretation. With ‘structural’ interpretation I simply mean that the approach

that is proposed here is related to a well-understood notion of smoothing, that of a moving

average. It is obvious that both methods have well-defined interpretations in the context of the

unit root assumption. Finally, note that the choice of the smoothing parameter is opposite in

the two methods: in the SSA-based method of the previous section more smoothing is performed

by allowing k to increase; in Phillips’ method more smoothing is performed by allowing k to

decrease.

There are more differences than similarities with other methods that have as their basic idea

that of “signal extraction” or the isolation of a particular, well-defined component of the under-

lying stochastic process Xt using the realization Xn. An important, theoretical and practical

difference, is that all such methods require the a priori specification of a parametric model for

the “signal” and the ”noise” (whose precise definition varies by discipline). Without postulating

such a model it is not possible to apply any of the optimal filters that appear in the relevant

literature. Such a model comes with along with parameter estimation, estimation uncertainty,

the possibility of structural breaks, misspecification, etc. This is not to claim that problems like

structural breaks cannot occur within the unit root framework; they do. However, the simplicity

of the unit root model, and the proposed smoothing method of this paper, do have a certain

sense of robustness to such problems.

To illustrate the differences between smoothing in the signal extraction framework and the

current framework consider a simple example: the random walk plus noise model (also known

as local level model). Let Yt denote the observable stochastic process and let Xt denote the

unobservable signal, which has a unit root. They are assumed to be related by the following

state space model:

Yt = Xt + εt

Xt = Xt−1 + ηt

(30)
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where εt ∼ i.i.d.(0, σ2
ε ) is the observational noise and where ηt ∼ i.i.d.(0, σ2

η) is the signal noise,

with εt independent of ηs for all (t, s). The properties of this model depend on the “signal-to-

noise” ratio q
def= σ2

η/σ2
ε : as q → 0 the signal is buried in noise and is difficult to recover; as q →∞

the model collapses to the standard unit root model of equation (18). Accurate MSE extraction of

the signal component requires estimation (via the Kalman filter) of the two variance parameters

and then fixed point smoothing. Is the method proposed in this paper capable of separating the

signal from the noise in this set-up? To examine this let us construct the relevant trajectory

matrices and the corresponding autocovariance matrices. Denoting the trajectory matrices in

standard fashion as T Y , T X and T ε and the corresponding matrices of sample autocovariances

as Γ̂j(k) for j = Y, X, ε we immediately obtain:

T Y = T X + T ε

Γ̂Y (k) = Γ̂X(k) + Γ̂ε(k) + Γ̂X,ε(k) + Γ̂ε,X(k)
(31)

where Γ̂X,ε(k), Γ̂ε,X(k) are the cross-covariances between the signal and the noise trajectories.

Under the assumptions of equation (30), and using standard results, we have that asymptotically

Γ̂ε(k) ⇒ σ2
ε Ik and Γ̂ε,X(k) ⇒ χ, where χ is a stochastic matrix. However, since Γ̂X does not

converge unless scaled by n we end up having n−1Γ̂ε(k) ⇒ 0k,k, n−1Γ̂ε,X(k) ⇒ 0k,k and therefore:

1
n
Γ̂Y (k) ≈ 1

n
Γ̂X(k) ⇒ σ2

ηwJk,k (32)

exactly as in equation (19). This result has not appeared in the SSA or filtering literature

and is of practical significance: using SSA for a unit root process contaminated with noise we

can extract the underlying non-stationary signal directly, at least asymptotically. Combining

previous results on stationary SSA with the results from the previous sections we can also select

k, the degree of smoothing appropriately: as q → 0 then k → n/2 with n →∞; as q →∞ then

k = o(n), e.g. k =
√

n.

For comparison with the SSA approach I reproduce below McElroy’s (2005) matrix-based

formulas for Kalman fixed point smoothing for the local level model. Letting ∆ denote the

(n× n− 1) matrix with -1 on its principal diagonal and 1 in its first lower diagonal and Y n
def=

[y1, y2, . . . , yn] denote the (1×n) vector of observations we have that the (n×n) matrix of optimal

smoothing coefficients is given by:

F n(σ2
ε , σ

2
η) ≡ F n

def= σ−2
η

(
∆∆>σ−2

ε + Inσ−2
η

)−1
=

(
∆∆>q + In

)−1
(33)

so that the optimal MSE signal estimate is given by X̂n
def= E [X|Y ] = Y nF n.

Figure 4 illustrates the above using a sample realization from equation (30) with both εt

and ηt being normally distributed and q = 1%, the noise variance being 100 times greater that
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the signal variance, and with k =
√

n as before. The lower panel of the figure shows the true

signal and the two smoothed series, the one based on SSA and the other on the application

of fixed point smoothing (with the parameters estimated). It is clear from the figure that the

non-parametric SSA smoother performs on par with the parametric fixed point smoother. We

further explore the performance of the proposed methodology in the context of signal extraction

in the simulation section.

Remark 1. In the signal extraction framework one can accommodate a comparison between

the proposed method and the Hodrick-Prescott (1997) HP-filter that is used frequently in trend

extraction and smoothing in economics. It can be shown, see for example Schlicht (2005),

Dermoune et al. (2007) and earlier references therein, that the HP filter can be derived from a

signal extraction model similar to equation (30) but where the signal process Xt has two instead

of one unit roots, i.e. (1−B)2Xt = ηt, with B being the backshift operator. The filtered values

can be computed using exactly the same formula as in equation (33) before with ∆ being defined

as (n × n − 2) with -2 on its principal diagonal and 1’s on the first upper and lower diagonals.

Schlicht (2005) and Dermoune et al. (2007) also proposed methods to consistently estimate σ2
η,

σ2
ε and q from the data. The method proposed in this paper can easily be used in the HP model

context and we illustrate this in the empirical applications’ section.

3.4 Trend Prediction

Both the signal extraction approach and Phillips’ (2005) approach can be used to extrapolate

the smoothed series and thus make signal/trend predictions. The signal extraction formulas are

well known and thus omitted. Phillips (2005) also provides an explicit expression for the h-step

ahead predictor for the fitted k trend components, say x̂t+h,k.

Below I give the h-step ahead trend predictor based on the SSA method and the resulting

smoothed series. Using known results from SSA about the continuation of reconstructed com-

ponents, see Golyandina et al. (2001), the formula the defines the extrapolation coefficients is

given by:

α =
1

1− ν2

r∑

j=1

uk,juk−1
j (34)

where ν
def= u2

k,1 + u2
k,2 + · · · + u2

k,r is the sum of squares of the last element of the eigenvectors

j = 1, 2, . . . , r (called the verticality coefficient) and where uk−1
j denotes the (k−1×1) vector with

the first k− 1 elements of eigenvectors j = 1, 2, . . . , r. Successful continuation of a reconstructed

component, i.e. the smoothed series, requires that ν2 < 1.
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In the current context we have that r = 1 and u1 has the particularly simple form u1 =

Jk/
√

k. Note that the verticality coefficient becomes ν2 = 1/k which is always less than one

and thus the predictor is well defined. Doing some algebra we finally get that the prediction

parameter vector α simplifies to α = [1/(k − 1), 1/(k − 1), . . . , 1/(k − 1)]> and the the smoothed

series h-step ahead prediction is defined recursively as a simple average of its past k − 1 values,

that is:

x̂s+h,1 =
1

k − 1

k−1∑

j=1

x̂s+h−j,1 (35)

3.5 Selecting the degree of smoothing

A practical problem is how to select the degree of smoothing. Both the current methodology

and Phillips’ methodology cannot use an MSE-like criterion for selecting the degree of smoothing

since there is no underlying model that defines a signal. Is there any other way in which we can

select the degree of smoothing based on an optimization criterion? I propose such a criterion

below, applicable both to the current methodology and to Phillips’ methodology, and structure

the problem as follows. To maintain the idea of smoothing and trend extraction k should be

kept relatively high (low) and an appropriate value should be selected based on a different

objective function than the residual error variance, i.e. the MSE. A suitable alternative could

be the following. Assume that you would like to fit the “correct trend on average”. You would

then expect to obtain about an equal amount of positive and negative residuals: sometimes the

actual series would be higher than the smoothed trend and sometimes it would be lower. An

objective function that fits this idea is the (absolute value of the) average sign of the residuals

from the selected smoothed trend. Minimizing this function we can not only obtain a meaningful

“optimal” value of k but we can also compute appropriate residual error bands.

More formally, for any value k ∈ {kmin, . . . , kmax} define the average sign of the fitted resid-

uals4 as:

m̂(k) def=
1
n

n∑

t=1

sign(ut,1) (36)

Since the sign function can be decomposed as sign(x) = I(x > 0) − I(x < 0), for I(·) being

the indicator function, we can also decompose m̂(k) as m̂(k) = m̂+(k) −m−(k), the respective

averages of the positive and negative residuals. A plausible ‘optimal’ choice for k is that value

that minimizes the absolute value of m̂(k), that is the value that produces, on average, an equal

4I use the notation for the residuals of the proposed method in the paper, ut,1 but the same can be done with

the residuals from Phillips’ method but,k.
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number of positive and negative residuals, that is m̂+(k) ≈ m̂−(k). This value, say k∗, would

give the trend component of the series that will be an approximately “unbiased” estimate of the

series’ main trend component. We have then that k∗ would be given as solution to the following

optimization problem:

k∗ : argmin
k∈{kmin,...,kmax}

|m̂(k)| (37)

There is no rule for selecting kmin and kmax but one can follow the suggestions in the end of

section 3.3 after equation (32). For Phillips’ approach kmin can be taken to be 1 but this will

not work for the SSA approach where kmin ≥ 2.5

If one wants to use predicted trend values, say x̂t+h,1 in selecting k∗ then a suitable approach

is historical simulation, which can be done as follows. Split the available realization in two parts

of n0 +n1 = n observations, an estimation and an evaluation sample respectively. Using a rolling

window of n0 observations compute n1 − h h-step ahead out-of-sample trend predictions. Then,

for each value of k, compute:

m̂1(k) def= (n1 − h)−1
n−h∑

t=n0+1

sign(ût+h,1) (38)

where ût+h,1
def= xt+h − x̂t+h,1 and find k∗ from minimizing |m̂1(k)|.

Based on the predictions from k∗ one can form the corresponding residual deviations û∗t+h,1
def=

xt+h − x̂∗t+h,1 and compute their standard deviation, say sk∗ . Using the standard deviation one

can construct trend prediction bands [L(τ), U(τ)] given by:

[L(τ), U(τ)] def=
[
x̂∗t+h,1 − τ · sk∗ , x̂

∗
t+h,1 + τ · sk∗

]
(39)

for any τ ∈ R+. An interesting empirical question that relates to these prediction bands is their

coverage ratio, i.e. the fraction of out-of-sample observations that fall within the bands during

the evaluation sample. This ratio is defined as:

CR(τ) def= (n1 − h)−1
n−h∑

t=n0+1

I {L(τ) ≤ xt+h ≤ U(τ)} (40)

I further explore this method for selecting k and its properties in the simulation section that

follows.

3.6 Cointegration and common stochastic trend extraction

The methodology proposed in the earlier sections of the paper can be extended to handle common

stochastic trend extraction in the context of a simple bivariate cointegrating system - systems
5In fact in both approaches kmin can be selected to achieve any minimum degree of smoothing, e.g. 5.
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of larger dimension should, in principle, be handled in a similar fashion but I do not pursue

this here. Phillips (2005) has, in the context of his methodology, a much more comprehensive

treatment of cointegration in the context of stochastic trend extraction.

Consider a unit root process Zt that is the (unobservable) common stochastic trend compo-

nent of two other non-stationary processes Yt and Xt that are related by the following system of

equations:

Yt = αZt + εt

Xt = Zt + ut

Zt = Zt−1 + ηt

(41)

with εt ∼ i.i.d.(0, σ2
ε ), ut ∼ i.i.d.(0, σ2

u) and ηt ∼ i.i.d.(0, σ2
η) where I assume for simplicity that

εt, us, η` are independent for all (t, s, `).

It is easy to see that Yt and Xt are cointegrated, i.e. a linear combination of them forms a

stationary process, with the scalar parameter α being the cointegrating coefficient. To see this

note that:

Yt − αXt = αZt + εt − αZt − αut →
Yt = αXt + ζt

(42)

where ζt
def= εt − αut is a stationary process. The inference problems here are (a) estimation of

the α parameter and (b) extraction of a smoothed version of the common stochastic trend Zt.

It should be immediately clear that (b) above can easily be handled by a straightforward

application of the signal extraction approach of equations (30) to (32) to the Xt process. However,

there is potential loss of information in doing this since Zt enters into both Yt and Xt and the

two series are connected — not to mention the case where εt, us, η` are not i.i.d. and dependent

between them. Therefore a more efficient approach would be to use information from both

processes in extracting Zt and in what follows I propose an SSA-based way to handle both (a)

and (b) above.

The estimation of α can be accomplished immediately if we use the properties of the matrix

of the autocovariances for each process. Using a similar notation to equations (30) to (32), and

the corresponding properties of the series, note that we have:

n−1Γ̂Y (k) ≈ α2n−1Γ̂Z(k) ⇒ α2σ2
ηwJk,k

n−1Γ̂X(k) ≈ n−1Γ̂Z(k) ⇒ σ2
ηwJk,k

(43)

The above relationships suggest a simple estimator for α based on the empirical (estimated)

eigenvalues of the two autocovariance matrices. We have:
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Proposition 2. Under the assumptions of equation (41) and the properties of Propo-

sition 1 we have that a consistent, SSA-based, estimator of the cointegrating cofficient

α is given by the square root of the ratio of the two leading estimated eigenvalues of

n−1Γ̂Y (k) and n−1Γ̂X(k) as:

α̂
def=

√
λ̂1,Y /λ̂1,X ⇒ α (44)

The finite sample properties of the above estimator are briefly examined in the simulation analysis

of the next section.

Once an estimator of α is available we can combine information from both Yt and Xt in ex-

tracting a smoothed version of the unobserved common stochastic trend Zt. This is accomplished

by averaging as before:

Yt + αXt = 2αZt + εt + ut →
Ψt(α) def= (2α)−1(Yt + αXt) = Zt + ξt

(45)

where ξt
def= (2α)−1(εt + ut). We can now apply SSA to the empirical counterpart of Ψt(α), i.e.

ψt(α̂) or combine the individually SSA-smoothed Yt and Xt series directly as:

ψs,1(α̂) def= (2α̂)−1(ys,1 + α̂xs,1) (46)

The resulting ψs,1(α̂) series would be the smooth approximation to the common stochastic trend

component Zt and will utilize information from both Yt and Xt. If no smoothing is desired then

the common stochastic trend component is directly approximated by ψt(α̂). The performance of

the above smoother is also briefly examined in the simulation analysis that follows.

4 Simulation Analysis

In this section I evaluate the proposed methodology using three simulations. For the first simu-

lation I use as the data generating process the local level model of equation (30) with different

values for the signal-to-noise ratio q and different assumptions on the distribution of ηt. For

a sample size of n = 250 observations I perform signal extraction using: (a) the Kalman fixed

point smoother of equation (33); (b) the SSA approach of this paper with fixed k and k∗; (c) the

approach of Phillips with fixed k and k∗; and (d) exponential smoothing. For (a) and (d) the

relevant parameters are estimated from the data. I perform 500 replications and report average

mean-squared and mean-absolute errors for the residuals from the true signal. Specifically, if

x̂t,ij denotes the signal estimate for the ith replication for the jth method I compute:

AMSEj
def=

1
500

500∑

i=1

[
1
n

n∑

t=1

(xt,i − x̂t,ij)2
]

, AMAEj
def=

1
500

500∑

i=1

[
1
n

n∑

t=1

|xt,i − x̂t,ij |
]

(47)
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For the same simulations I also report the average value of the selected k∗ using the methodology

of the previous section. These results are summarized in Tables 1, 2 and 3.

The results in Table 1 are extremely encouraging. The fixed k =
√

n filter is very competitive

to the Kalman fixed point filter, which is optimal for the data generating process. For the AMSE

on the top panel of the table we can observe that as q increases the performance of the optimal

k∗ filter also becomes very competitive to the Kalman filter, eventually matching it. For the

AMAE on the bottom panel of the table we see a similar situation as with the AMSE results.

Overall we can say that (a) the fixed k SSA-based filter of this paper can be used reliably for this

type of data generating process; and (b) the optimal k∗ SSA-based filter is to be preferred when

the signal-to-noise ratio is relatively large. Phillip’s smoother is trailing after the SSA smoother,

its performance being slightly worse. The exponential smoother performs well only for q = 1,

as expected. Finally, the results in Table 2 summarize the average k∗ that was selected across

replications.

In Table 3 I present a variation of the results in Table 1. Here I take the signal noise to have

been generated by a Student t(2) distribution scaled by a factor ση. This distribution does not

have finite second moments so the meaning of q is not the same as before. Nevertheless it is

instructive to look at the performance of the various filters. We can see that the performance of

almost all filters deviates more substantially than before from the performance of the Kalman

fixed point filter and their differences do not significantly diminish as q increases (this was

expected since for any value of q the signal has infinite variance.) It is only the optimal k∗ SSA-

based filter that can come close to the Kalman fixed point filter and its performance improves

as q increases.

For the second simulation I examine the out-of-sample prediction approach for selecting the

degree of smoothing given in equations (38) to (40). I generate 500 replications from a unit root

model of size n = 250 observations. I then use a rolling window of n0 = 200 observations and

an evaluation period of n1 = 50 observations to construct trend prediction bands as in equation

(39) and to examine the coverage ratio of equation (40). I take τ = 1, i.e. to consider prediction

bands one standard deviation away from the trend. The results in Table 4 below present: the

average coverage ratio (ACR), its standard deviation (SD), the median coverage ratio (Q0.50),

the 10% and 90% quantiles of the coverage ratio (Q0.10 and Q0.90), and the average selected value

of k∗.

The results between the SSA approach and Phillip’s approach are similar. The average

coverage ratio is about 66% and its distribution is symmetric (the median coverage ratios are

practically the same as the mean coverage ratios). This is quite suggestive, given the underlying
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normality of ηt, since the coverage probability of a standard normal distribution between ±1

(standard deviations) is about 68%. In addition we can observe that, on average across repli-

cations, the standard deviation of the coverage ratio is proportional to the difference between

the two quantiles, i.e. (Q0.90−Q0.10)/SD ≈ 1.22 (1.17 for SSA and 1.28 for Phillips); the corre-

sponding ratio in a standard normal distribution is 1.65. These descriptive statistics, which are

based only on 50 observations, are very supporting the proposed methodology for selecting the

degree of smoothing in an out-of-sample context: they indicate that the trend selected in this

way is approximately “unbiased”.

I conclude this section with results from a third simulation, about the finite sample properties

of the estimator of the cointegrating coefficient given by Proposition 2 in equation (44) and the

properties of the smoother ψs,1(α̂) in equation (46). I use the system in equation (41) as the data

generating process with different values for the parameters and the sample size. I consider three

sample sizes n = {100, 200, 400} and five values of α = {0.10, 0.25, 0.75, 1.00, 2.00}. I perform 500

replications, as before, and I compute (a) the average mean absolute deviation of the estimates

from their true parameter value and (b) the relative average mean-squared error between the

actual common stochastic trend and the corresponding smoother of equation (46). In both cases

I take k =
√

n. Specifically, for the average mean absolute deviation I compute:

AMAD
def=

1
500

500∑

i=1

|α̂i − α| (48)

The results given in Table 5 indicate that the proposed estimator does a reasonably good job

in estimating the true cointegrating parameter and is indeed consistent. It is possible that its

performance in small samples is better in an intermediate range of values for α: for n = 100 the

largest AMAD is found for the two extremes, i.e. for α = 0.10 and α = 2.00. This disappears

for the larger samples.

For the relative average mean-squared error I do the following. In each replication run I

compute the smoother of equation (46) as well as the smoothers based on Xt alone and on Yt/α̂

alone, that can also approximate Zt. For each of the smoothers, say ẑt,1, I compute:

AMSE(ẑt,1)
def=

1
500

500∑

i=1

[
1
n

n∑

t=1

(Zt − ẑt,1)2
]

(49)

and then report the relative average mean-squared errors as:

RAMSEY
def=

AMSE(yt,1/α̂)
AMSE(ψt,1(α̂))

, and RAMSEX
def=

AMSE(xt,1)
AMSE(ψt,1(α̂))

(50)

For the results in Table 6 I use the following parameter combination6: σ2
ε = σ2

u = 0.22, σ2
η = 0.12

6Other parameter combinations produced similar results and are available on request.
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and the three noise series were drawn from three independent normal distributions. Two results

about the performance of ψt,1(α̂) are immediately evident:

• if α takes small values, here α = 0.10 and α = 0.25, and we are close to the no cointegration

case then using ψt,1(α̂) will improve the results compared to using yt,1/α̂ alone but not

compared to using xt,1 alone — this is of course expected since in that case its essentially

Xt that contains the useful information about Zt.

• if, on the other hand, α takes larger values then using ψt,1(α̂) is better than using either

of the individual smoothers.

All in all the results in Tables 5 and 6 are supportive of the proposed methodology for bivariate

cointegrated systems, both for estimation of the cointegrating coefficient and for extracting a

smoothed version of the common stochastic trend component.

5 Empirical Illustrations

In this section I present two empirical illustrations of the proposed methodology. First I compare

the SSA-based filter of this paper with the Hodrick-Prescott (HP) filter for the series of quarterly

observations of the U.S. real GDP (series GDPC96 from the Federal Reserve Bank of St. Louis

Database, in billions of chained 2000 dollars). The series has n = 244 quarterly observations

from 1947:Q1 to 2007:Q4. Then I use the SSA-based filter for smoothing and trend extraction

for the weekly prices of Brent crude Oil and of the Euro/US Dollar exchange rate.7 The series

have n = 477 weekly observarions from 01/04/1999 to 02/19/2008.

5.1 U.S. Real GDP

The HP filter has been used widely in smoothing trending economic time series and the original

1997 paper was followed by a large literature on optimal filtering. Here we show that the SSA-

based filter of this paper performs on par with the HP filter, either when a naive value is used

for the smoothing parameter q or when the value of the smoothing parameter is optimized.

Consider first the case where q = 1600, the value suggested by Hodrick and Prescott in their

1997 paper for quarterly data, and compare it with the SSA-based filter with k fixed to k =
√

n.

Figure 5 contains the results. There are several things to notice: first, see that both filters

7These series are used in the EurOil Index project found at http://econ.uop.gr/ ∼thomakos/EurOil Index.html

where more information can be found.
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achieve practically the same degree of smoothing over the entire length of the series and produce

practically identical residuals, with the exception of the end of the series. This is due to the

construction of the two filters: in the SSA case the last value of the smoothed trend is an

unweighted backward moving average, see equation (22). This can be seen as a shortcoming of

the SSA-based filter which brings us to a question: are the two filters, as applied, comparable?

The answer is clearly no!

As noted in Remark 1 at the end of section 3.3, the underlying stochastic model on which

the HP filter is based is for a time series with two not one unit root. Therefore the results of

Figure 5 are OK but are not directly comparable. To make a meaningful comparison we need to

apply the SSA filter in the first differences of the GDP series and then cumulate the extracted

signal. The results from this approach are presented in Figure 6.

We can now make a meaningful comparison between the two filters and we can see that

they now match everywhere, both in the smooth trends and the corresponding residuals; see the

differences in the scatterplots between Figure 5 and Figure 6. We therefore see that the proposed

SSA-based filter achieves the same degree of smoothness as the standard HP filter, after taking

into account the stochastic model under which the HP filter operates.

An interesting byproduct of this approach, of applying the SSA filter in the first differences of

the GDP series, is the extracted smooth trend. Figure 7 has this trend for both k =
√

n and for

k = 4, the latter corresponding to the quarterly frequency of the data - see the squared frequency

response for k = 4 in Figure 2. We also present for comparison the smooth trend obtained from

applying Kalman fixed point smoothing based on the local level model of equation (30) - the

estimated signal-to-noise ratio is q̂ = 0.068 which makes signal extraction in first differences a

more interesting exercise than in levels. Both short and long-term cycles in U.S. output are

evident in the three panels of the figure that show the smooth trends. Note the similarity of

the SSA-based smooth trend for k =
√

n and the KFP-based smooth trend - remember that the

close performance of these two filtering methods in the context of a similar signal-to-noise ratio

was seen in the simulations of the previous section.

In concluding this section I note that all the above analysis was repeated with both k and q

(in HP filter) selected in an optimal fashion but the results were qualitatively similar to the ones

already presented and are available on request.
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5.2 Oil Prices and the Euro/US Dollar Exchange Rate

The two financial time series analyzed in this section are different in nature from the U.S. Real

GDP series of the previous section. Unlike the GDP series which was quite smooth and a

model with two unit roots was more appropriate, the Oil and Euro/US Dollar series exhibit

characteristics consistent with one unit root. In this section I present some graphical results

from SSA-based smoothing of the two series and also for the construction of prediction error

bands for the extracted trends using the methodology at the end of section 3.5.

Figures 8 and 9 contain the results from smoothing the weekly Oil series. Two values for k

are used the fixed value k =
√

n = 21 and the optimal value k∗ = 9. The data with the smooth

trends and the corresponding residual series are in Figure 8 while the autocorrelation functions

of the residuals are given in Figure 9. Note the similarity between the results in these two figures

and the results from a sample realization from a unit root process in Figure 3. In particular note

that there is significant residual autocorrelation that exhibits a cyclical pattern. Figures 10 and

11 contain the related results from smoothing the Euro/US Dollar exchange rate series. The

optimal value of k in this case was k∗ = 8. The underlying patterns are very similar to that of

the Oil series, i.e. are consistent with an underlying unit root process. Whether the cyclicality

of the residuals in both series can be (partly) attributed to market conditions or its an artifact

of the unit root behavior is of course an open question.

In Figure 12 I present the results from a rolling, one week ahead, out-of-sample trend pre-

diction with corresponding one (τ = 1) standard deviation bands. I use a rolling window of

n0 = 277 weeks and an evaluation window of n1 = 200 weeks in the figure. The sk∗ ’s, the pre-

diction error standard deviations are $5.32 and $0.03, over the 200 weeks evaluation period. The

coverage ratio CR(1) of equation (40) was equal to 65% for the Oil and 69% for the Euro/US

Dollar series, a proportion quite consistent with the simulation results presented in Table 4. It is

interesting to note that for both series their last actual values exceed the predicted trend values;

Oil, in particular, is at the upper prediction band. Both series have (as of 02/27/2008) exceeded

their trend values.

Finally, I use the methodology of section 3.6 to examine the possibility of extracting a smooth,

common stochastic trend component between the two series. After standardizing the data, to

express them in a comparable numerical scale, I apply the smoother of equation (46) and present

the result in Figure 13. The averaging operation can clearly be seen in the figure as the smooth

trend component runs between the two series. It captures quite well the common evolution of

these two assets that have moved closely together over time.
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While I make no formal claims about the presence of cointegration, and the possible effects

that standardization has on the data, it is very interesting to note that the estimator α̂ that

was proposed in equation (44) is almost identical for the estimator that one obtains using the

methodology in Phillips (2005). Using the same value for k in both methods I find that, for the

standardized data, α̂ = 1.0592 while Phillips’ estimator is 1.0878. The closeness of the estimates

is quite suggestive about the properties of the two methods.

6 Concluding Remarks

Applying the methodology of Singular Spectrum Analysis (SSA) I derive an optimal linear filter

for stochastic processes with a unit root. The filter takes the form of a particular moving

average and is different from other linear filters that have been used in the existing literature

for smoothing time series that have non-stationary characteristics, including unit roots. To best

of my knowledge this is the first time that moving average smoothing is given an optimality

justification for use with unit root processes.

The frequency response function of the filter is examined, a new method for selecting the

degree of smoothing is suggested and I also derive the trend prediction function, which takes a

particularly simple form. I compare the proposed filter with Phillips’ (2005) methodology for

extracting trends from time series unit roots and also with the well known Hodrick-Prescott

(1997) (HP) filter used widely for smoothing economic time series. I then show that it can be

used for extracting a non-stationary signal from stationary noise with the same degree of success

as the filter that corresponds to the data generating process itself.

I also provide an extension of the proposed methodology to the case where we have a sys-

tem with two series that share a common, non-stationary component and are cointegrated. An

SSA-based, consistent estimator of the cointegrating coefficient is suggested along with the cor-

responding smoother of the common trend.

A simulation study explores some of the characteristics of the filter under a controlled envi-

ronment and I illustrate its practical usefulness using data for the US real GDP and two financial

time series, Oil prices and the Euro/US Dollar exchange rate. For the GDP data I show how to

use the SSA-based filter of this paper to get the same results as the HP filter and indicate an

alternative method for extracting the cyclical component of output.

Further research is needed for examining the full potential of the proposed method. Interest-

ing extensions of the current work include: finding the appropriate SSA-based filter for processes
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with two rather than one unit root, so as to match the data generating process that underlies the

application of the HP filter; examining the spectral shape and autocorrelation function of the

residual series obtained after smoothing to see whether their apparent periodicities are genuine

or an artifact of the underlying unit root process; comparing the performance of the proposed

SSA-based filter with other existing filters in the literature; further working on the potential of

SSA for application in larger systems of cointegrated series.
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Appendix

A1. Matrix and vector notation, special matrices

Matrices are denoted by uppercase, italic bold letters such as X, Y etc. and the transpose of

any such matrices by X>, X> etc. Generic vectors as well as the vectors making the rows of any

(N × k) matrix are denoted by lowercase, italic bold letters such as x>i for i = 1, 2, . . . , N and I

write X
def= [x1, x2, . . . ,xN ]>. The vectors making the columns of any such matrix are denoted by

lowercase, non-italic bold letters such as xj , for j = 1, 2, . . . , k and I write X
def= [x1,x2, . . . ,xk].

The identity matrix of order k is denoted by Ik and its columns are denoted by ij for

j = 1, 2, . . . , k. An (N × k) matrix of unities is denoted by JN,k and any of its columns (rows)

by JN (J>k ). Evidently JN,k = JNJ>k .

A2. Vector and matrix norms

The inner product of any two vectors x, y ∈ RN is defined as usual 〈x, y〉 def= x>y and by ‖x‖2 I

denote the corresponding Euclidean norm ‖x‖2 def= x>x. A matrix norm can be defined via the

vector norm as follows: any (N × k) matrix X
def= [x1,x2, . . . ,xk] can be expressed as a (Nk× 1)

vector x by stacking its columns using the vec(·) operator as x = vec(X) def=
[
x>1 ,x>2 , . . . ,x>k

]>
.

The norm of x is then given by ‖x‖2 =
k∑

j=1

‖xj‖2. We take the norm of x to be the appropriate

matrix norm for X and write:

‖X‖2
M

def=
k∑

j=1

‖xj‖2 =
N∑

i=1

k∑

j=1

x2
ij (51)

A3. Spectral and singular value decompositions of a matrix

For any (N × k), N > k, matrix X of rank r ≤ k define the rank r, (k × k) symmetric matrix

Ck as Ck
def= X>X and denote its spectral decomposition as follows:

Ck = UΛU> =
r∑

j=1

λjuju>j (52)

where U
def= [u1,u2, . . . ,uk] denotes the (k × k) matrix of orthonormal eigenvectors, ‖uj‖ = 1

and u>i uj = 0, and Λ denotes the diagonal matrix of its eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and

λr+1 = λr+2 = · · · = λk = 0.

Next, define the (N×N) matrix V
def= [v1,v2, . . . ,vN ] to be the matrix of orthonormal eigen-

vectors of the rank r, (N ×N) matrix XX> and note that only the first r is these eigenvectors
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correspond to the non-zero eigenvalues of XX>. It can be shown that for j = 1, 2, . . . , r we

have that vj
def= Xuj/

√
λj and that X has a representation as a sum of r rank-one elementary

matrices of the form:

X =
r∑

j=1

√
λjvju>j (53)

The above corresponds to the singular value decomposition (SVD) of X and has the following

optimality property. LetMq, q < r, denotes the set of (N×k) matrices of the form Y =
q∑

j=1

ajb>j ,

for {bj}q
j=1 an orthonormal collection of vectors. Then, the optimal approximation with respect

to ‖ · ‖2
M of X by a matrix in Mq is given by the SVD of X as follows:

‖X − Y o‖2
M = min

Y ∈Mr

‖X − Y ‖2
M , for Y o

def=
q∑

j=1

√
λjvju>j (54)

See Rao (1973) and Golyandina et al. (2001) for more detailed results and explanations about

the spectral and the SVD decompositions.

A4. Limits of sample cross-moments for a unit root process

Let Xt denote a unit root process so that Xt = Xt−1 + ηt with X0 = 0 and ηt a stationary

process. For simplicity assume that ηt forms a sequence of i.i.d. random variables with mean

zero and variance σ2
η, although all results continue to hold for ηt obeying mixing conditions. Let

n denote the length of a realization from xt and let k be either fixed or k = o(n). If we denote

by γ̂(k) the sample cross-moment of order k, γ̂(k) def= n−1
n∑

t=k+1

xtxt−k we seek the asymptotic

limit of γ̂(k). The required limit is obtained from known results, see for example Fuller (1995),

as follows. First, rewrite γ̂(k) as:

γ̂(k) =
1
2n

n∑

t=k+1

x2
t +

1
2n

n∑

t=k+1

x2
t−k −

1
2n

n∑

t=k+1

(xt − xt−k)2 (55)

and then note that both the first and second term on the right-hand side of the above equation

converge when scaled by n to the following stochastic integral:

1
2n2

n∑

t=k+1

x2
t +

1
2n2

n∑

t=k+1

x2
t−k ⇒ σ2

ηw
def= σ2

η

∫ 1

0
W (r)2 (56)

where W (r) denotes standard Brownian motion and ⇒ signifies weak convergence in the appro-

priate space. Since the last term on the right-hand side of equation (55) converges in probability

to a constant we have that, for all k, n−1γ̂(k) ⇒ σ2
ηw. Therefore, the (k×k) variance-covariance

matrix Γ̂(k) converges to the following stochastic matrix:

1
n
Γ̂(k) ⇒ σ2

ηwJk,k (57)
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The Jk,k matrix has one positive eigenvalue equal to λ1 = k and all other eigenvalues equal to

zero, λj = 0 for 2 ≤ j ≤ k. The eigenvector corresponding to λ1 is given by u1 = Jk/
√

k.
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Tables

Table 1. Dispersion of residuals from true signal, n = 250,

εt ∼ N (0, σ2
ε ) and ηt ∼ N (0, σ2

η)

Average Mean Squared Error

q KFP SSA-
√

n PP-
√

n ES SSA-O PP-O

0.01 0.22 0.25 0.31 0.50 0.80 0.32

0.10 0.06 0.08 0.09 0.15 0.09 0.18

1.00 0.02 0.07 0.07 0.06 0.03 0.17

Average Mean Absolute Error

q KFP SSA-
√

n PP-
√

n ES SSA-O PP-O

0.01 0.38 0.40 0.44 0.55 0.68 0.45

0.10 0.20 0.22 0.24 0.30 0.24 0.33

1.00 0.11 0.20 0.21 0.20 0.14 0.31

Notes to Table 1. The column nomenclature is as follows: KFP denotes Kalman fixed point smoothing; SSA-
√

n

and PP-
√

n denote SSA and Phillips’ smoothing with k fixed to
√

n; SSA-O and PP-O denote SSA and Phillips’

smoothing with k∗ selected via equation (37).

Table 2. Selected Degree of Smoothing k∗

n=250 n=500

q SSA-O PP-O SSA-O PP-O

0.01 6 7 7 9

0.10 6 7 8 10

1.00 6 8 8 11

Note to Table 2. For column nomenclature see note of Table 1.
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Table 3. Dispersion of residuals from true signal, n = 250,

εt ∼ N (0, σ2
ε ) and ηt ∼ t(2)ση

Mean Squared Error

q KFP SSA-
√

n PP-
√

n ES SSA-O PP-O

0.01 0.58 0.93 1.13 1.50 1.03 2.18

0.10 0.16 0.63 0.68 0.61 0.31 1.40

1.00 0.03 0.68 0.75 0.47 0.24 1.59

Mean Absolute Error

q KFP SSA-
√

n PP-
√

n ES SSA-O PP-O

0.01 0.57 0.61 0.68 0.83 0.74 0.95

0.10 0.30 0.49 0.53 0.49 0.35 0.78

1.00 0.14 0.49 0.53 0.33 0.26 0.81

Note to Table 3. Column nomenclature and table entries as in Table 1.

Table 4. Coverage Ratio Statistics &

Out-of-sample Selection of Degree of Smoothing

Xt = Xt−1 + ηt , ηt ∼ N (0, σ2
η)

Method ACR SD Q0.10 Q0.50 Q0.90 k∗

SSA-O 0.66 0.06 0.58 0.66 0.72 4

PP-O 0.63 0.07 0.54 0.64 0.72 7

Notes for Table 4. Column nomenclature is as follows: ACR is the average coverage ratio; SD is its corresponding

standard deviation; Qα is the α% quantile of the coverage ratio; k∗ is the average selected optimal k. Row

nomenclature as in Table 1. Table entries are averages across replications.
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Table 5. Average Mean Absolute Deviation of estimator α̂ from true value

n α = 0.10 α = 0.25 α = 0.75 α = 1.00 α = 2.00

100 0.095 0.052 0.043 0.051 0.075

200 0.037 0.023 0.021 0.023 0.041

400 0.014 0.010 0.011 0.012 0.020

Notes for Table 5. Table entries report the AMAD of equation (48) on the performance of the estimator bα of the

cointegrating parameter given in equation (44).

Table 6. Relative Average Mean Squared Error for the smoother ψt(α̂)

n α = 0.10 α = 0.25 α = 0.75 α = 1.00 α = 2.00

RAMSEY

100 1.716 1.454 1.091 1.047 0.992

200 1.694 1.351 1.054 1.025 0.997

400 1.613 1.240 1.029 1.013 0.999

RAMSEX

100 0.579 0.826 1.029 1.046 1.066

200 0.599 0.871 1.013 1.028 1.036

400 0.676 0.920 1.009 1.014 1.019

Notes for Table 6. Table entries report the RAMSE of equation (50) on the relative performance of the smoother for

the common stochastic trend component given equation (46). Values greater than 1 indicate superior performance

of ψt(bα) relative to the smoothers based on the individual series alone.
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Figure 1: Squared Frequency Response |R(ω)|2 for various values of k
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Figure 2: Squared Frequency Response |R(ω)|2 - erasing specific frequencies
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Figure 3: Sample realization from a unit root process and its smooth and residual components
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U.S. Real GDP and Smooth Trends
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Figure 5: SSA and HP Smoothing of the U.S. Real GDP - smoothing parameters are fixed to

k =
[√

244
]

= 15 and q = 1600 respectively
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U.S. Real GDP and Smooth Trends, SSA in differences
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Figure 6: SSA and HP Smoothing of the U.S. Real GDP, SSA filter applied in differences -

smoothing parameters are fixed to k =
[√

244
]

= 15 and q = 1600 respectively
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Data & Smooth Trend of Differences in U.S. Real GDP 
 SSA and KFP
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Figure 7: SSA and KFP-based smooth trend extracted from first difference of U.S. Real GDP -

smoothing parameter is fixed to k =
[√

244
]

= 15 and k = 4 respectively
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Figure 8: Data for weekly prices of Brent Oil, SSA-based smooth trends and residuals
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Figure 9: Autocorrelation functions for residual series from Figure 8
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Figure 10: Data for weekly prices of Euro/US Dollar exchange rate, SSA-based smooth trends

and residuals
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Figure 11: Autocorrelation functions for residual series from Figure 10
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Figure 12: Rolling out-of-sample trend predictions and one standard deviation prediction bands
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Figure 13: Oil and Euro weekly series, standardized, and common trend component
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