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Nelson-Plosser revisited: the ACF

approach

Karim M. Abadir, Giovanni Caggiano, Gabriel Talmain¤

Imperial College London, University of Padua, University of Glasgow

ABSTRACT

We detect a new stylized fact about the common dynamics of macroeco-

nomic and financial aggregates. The rate of decay of the memory of these

series is depicted by their Auto-Correlation Functions (ACFs). They all share

a common four-parameter functional form that we derive from the dynamics

of an RBC model with heterogeneous firms. We find that, not only does

our formula fit the data better than the ACFs that arise from autoregressive

models, but it also yields the correct shape of the ACF. This can help pol-

icymakers understand better the lags with which an economy evolves, and

the onset of its turning points. (JEL E32, E52, E63).
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Since the seminal paper of Nelson and Plosser (1982), to be referred to

henceforth as NP, a growing literature has debated the nature of the dynam-

ics of macroeconomic time series. Naturally, one would like economic theory

to inform us on the type of processes which we could expect to encounter.

Baseline business cycle models can motivate trend-stationary or difference-

stationary processes, but adding more realistic structure to these models

generally means that it is hard to explicitly derive the dynamic process for

the aggregate variables of interest. However, Abadir and Talmain (2002),

to be referred to henceforth as AT, derived the process generating aggre-

gate output in an RBC model with heterogeneous firms, and characterized

its Auto-Correlation Function (ACF). ACFs depict the decay of memory

with time, as they evaluate the correlation of a series with its past. AT’s

model implied that the ACF of real GDP per capita should exhibit an initial

concave shape, followed by a sharp drop, a prediction which they validated

empirically for the UK and the US. They showed that linear Auto-Regressive

Integrated Moving-Average (ARIMA) models, as well as their three separate

components (including the special case of random walks), all exhibit different

types of decays of memory from the one they found. This simple yet accurate

shape for GDP invites us here to investigate the shape of the ACFs for all

the main macro variables, including all those in the NP dataset and others.

The ACF of AT was the leading term of an expansion of an elaborate

integral, and was only suitable as a rough approximation of the broad features

of GDP’s ACF. Another novel feature here (apart from considering all main

macro series in addition to GDP) is that we go beyond the 1-term asymptotic

approximation of the ACF of AT, taking into account the remaining terms

of the ACF expansion. The resulting functional form typically combines the

original shape in AT (plateau plus drop-off) with a cycle. As we shall see,

this augmented version of the ACF shape fits closely the ACF of all of the

variables studied by NP, and this fit is better than the one produced by AR
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processes, including the special case of the unit root. In addition, it also fits

very well the ACFs of variables not considered by NP, some of them known

to have notoriously difficult dynamics; e.g. investment, components of the

trade and fiscal deficits.

One of the legacies of NP was the unified modelling of the process gen-

erating many macroeconomic data. If anything, our paper reinforces this

message by offering a parsimonious functional form of only 4 parameters

that can model the ACF of most economic aggregates. This empirical reg-

ularity is truly impressive, and helps us detect new stylized facts that are

common to all macroeconomic series.

Our functional form is rich enough to produce a variety of observed

shapes. We find that most of the variables can be classified into only two

broad types. The shape of the ACF of most level variables is dominated

by the plateau-shape. The ACFs of the rate variables are dominated by an

attenuated cycle, the original AT form providing the attenuation. Interest-

ingly, the length of the estimated cycles matches those of the medium run

cycles proposed by Comin and Gertler (2006). One feature of the data that

comes in strongly when studying ACFs is the presence of a (business) cycle,

whether by our method or the more standard ones.

The shape of an ACF is important. An econometric model that does not

give rise to the shape of the ACF observed from the data is misspecified,

but this might be tolerated if the approximation is good enough.1 More

importantly, the pattern of retention of old information and absorption of

new one can be read off an ACF, and this is valuable information that we

cannot afford to misread. Getting the ACF shape right means that we will

be able to understand the lags with which macroeconomic variables evolve,

1In Section III, we will see the rare illustrations of this adequacy of AR models, with

bond yields and the nominal money stock. On the other hand, even the real money stock

is badly approximated by AR models.
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and how quickly situations turn. For example, this can enable us to design

monetary policies more effectively.

Section I reviews briefly the relevant literature, and how it relates to the

development of our method. Section II presents our estimation procedure.

Section III applies it to macro variables and the results are compared to the

traditional ones. We show how our estimation method can be augmented to

incorporate checks for structural breaks and other deterministic trends. Our

earlier results turn out to be robust and accurate. Section IV concludes by

considering the implications for the implementation and timing of macroeco-

nomic policy.

I. Development of the literature

According to NP, most macroeconomic time series become stationary

after differencing once. Such series are called integrated of order 1, denoted by

I(1). The econometric implication of NP’s result is that trends are stochastic,

rather than deterministic and predictable, and that all shocks to trends are

permanent. The economic implication is that the fluctuations of the business

cycle can no longer be dissociated from long run growth. Another implication

is to invalidate the traditional idea that the conduct of stabilization policy

could be separated and had no implication for policies aimed at economic

growth.

Many authors, for instance Cochrane (1988) or Rudebusch (1993), have

pointed out that a difference-stationary series is not easily distinguishable

from a trend-stationary series, when attention is restricted to ARMAmodels.

Some authors, such as Diebold and Senhadji (1996), have shown that longer

spans can bring the weight of evidence onto one side, in their instance the

trend-stationary side. Others, such as Ireland (2001), have shown that trend-

stationary models with a root ρ very close to one (ρ = 0.9983) produce
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out-of-sample forecasts that are more accurate than the difference-stationary

alternative. Note that models with ρ so close to 1 still produce I(0) series,

where the memory decays exponentially, whereas ρ = 1 leads to I(1) series

having infinite (permanent) memory.

To bridge the gap between I(0) and I(1) models, and to deal with border-

line cases such as the one described in the previous paragraph, fractionally-

integrated models have been introduced and denoted by I(d) where d is not

necessarily an integer. A larger d indicates higher persistence (more mem-

ory), but for d < 1 the effect of shocks to the series eventually decay, unlike

when d = 1. Such models have been applied to macroeconomic series by

Diebold and Rudebusch (1989), Baillie and Bollerslev (1994), Gil-Alaña and

Robinson (1997), Chambers (1998), Michelacci and Zaffaroni (2000), and

Abadir, Distaso, and Giraitis (2005). The results show that d is generally

less than 1. However, fractionally-integrated models imply convex hyperbolic

decay rates for the ACFs.2 They give a good indication of the rate of decay

of ACFs in the tails (distant past), but do not tell us what happens in the

interim, an information that is of great interest to policymakers and that we

shall be modelling in the next sections.

Apart from I(d) models, there is an even larger area of support for the

view that macroeconomic series can indeed be stabilized if necessary. It is

a nonlinear model that was successfully initiated by Perron (1989), showing

that most of these series are best represented as stationary around determin-

istic trends, with infrequent structural breaks in the trend. This is confirmed

by recent evidence in Andreou and Spanos (2003).

Both trend and difference stationary models are linear processes. The

two extensions that followed, I(d) and breaks, tackled intermediate memory

2They also do not allow for long cycles, because the peak of the spectrum is at the

origin. However, some progress has been made on this aspect by Giraitis, Hidalgo, and

Robinson (2001) and Hidalgo (2005).
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and nonlinearity, respectively. In the rest of this paper, we present a method

that combines a different type of long-memory and nonlinearity in a simple

yet accurate way, arising from the economic model of AT.

II. Estimation procedure

There are two traditional ways to look at macroeconomic time series:

the time domain and the frequency domain. Here, we introduce estimation

in the related ACF domain. Many papers, including NP, have looked at

autocorrelations from a descriptive perspective, but reporting them only for

a few lags and not estimating their pattern. In this paper, we are going

to evaluate whether an extension of the functional form proposed in AT

represents the ACF of macroeconomic times series better than traditional

AR processes, even when structural breaks are allowed for.

The ACF ρ1, ρ2, . . . of a process fztgTt=1 is defined as the sequence of
correlations of the variable with its τ -th lag:

(1) ρτ ´
cov (zt, zt−τ )p
var (zt) var (zt−τ)

,

where ρ0 ´ 1 and cov(zt, zt−τ ) ´ E[(zt ¡ Ezt) (zt−τ ¡ Ezt−τ )]. This general
definition allows for a time-varying expectation of zt, but without imposing

any parametric structure on the evolution of E(zt). This definition was also

used in AT.

We begin with the simplest setup of an AR(p) process, which we will

show in footnote 6 to cover the random walk as a special case of the AR(1).

We will also deal with adding deterministic trends and/or breaks at the end

of next section. To start, consider a stationary AR(p) process

xt = a0 + a1xt−1 + ¢ ¢ ¢+ apxt−p + εt,
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where fεtg is a sequence of IID(0, σ2) residuals. The ACF of this process is
denoted by ρARτ . The first p values are given by the Yule-Walker equations

(2)

2666666664

1 ρAR1 ρAR2 ¢ ¢ ¢ ρARp−1

ρAR1 1 ρAR1
. . .

...

ρAR2 ρAR1 1
. . . ρAR2

...
. . . . . . . . . ρAR1

ρARp−1 ¢ ¢ ¢ ρAR2 ρAR1 1

3777777775

2666666664

a1

a2

a3
...

ap

3777777775
=

2666666664

ρAR1

ρAR2

ρAR3
...

ρARp

3777777775
;

e.g. see Granger and Newbold (1986). This is a linear system of p equations in

the p values
©
ρAR1 , . . . , ρARp

ª
that can therefore be determined uniquely; e.g.

see Abadir and Magnus (2005). Since the system is linear, it is numerically

straightforward to evaluate the first p values of the ACF of the AR(p). The

remaining values are given by the recursive relation

(3) ρARτ = a1ρ
AR
τ−1 + ¢ ¢ ¢+ apρ

AR
τ−p,

for all τ > p.

The alternative to the AR is an extension of the ACF functional form

proposed in AT. The new ACF is

(4) ρATτ =
1¡ a [1¡ cos (ωτ)]

1 + bτ c
,

where we have the parameters a, b, c, ω. The extension of the AT form into

(4) is explained as follows. The model of AT showed that GDP and other

variables driven by it follow a new type of long-memory process that reverts

to a possibly time-varying mean. The functional form of the ACF in AT is

just the denominator of (4), obtained as the leading term of an expansion

with alternating signs; see expressions (A.3) of AT and their subsequent

derivations. Here, we capture these higher-order oscillating terms with the

numerator of (4) in order to approximate the complete ACF formula more

accurately. The denominator still controls the decay of memory. When a = 0

or ω = 0, we are back to the old form of the ACF.
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We want to decide which of the two models best represents the ACF

data. We will need to start by selecting the order p of the AR model for

each time series under consideration. The AR model has p parameters and

our model has 4. Since the two models do not necessarily have the same

degrees of freedom, we need to use an information criterion to determine

which model fits best in the ACF domain.3 We use the Schwarz information

Criterion (SC), which is known to be consistent. The alternatives are the

Akaike criterion and the Hannan—Quinn criterion. The former was shown

by Nishii (1988) to be inconsistent. The latter is designed to determine the

orders p and q of ARMA(p, q) processes and, since the AT process does not

belong to this class, we use the broader Schwarz criterion instead.4

Given the empirical ACF of a series, we can estimate by nonlinear least

squares the two theoretical ACFs seen earlier. We find that p · 4 in all

the cases at hand.5 Only a few data points from fztg contribute to the
calculation of the tail end of the empirical ACF. Consequently, the tail of

the empirical ACF is typically very erratic and is not a reflection of the true

3One can also estimate the parameters of an AR process from the time domain. By

construction, the resulting fit for the ACF would not be as good as fitting directly the ACF,

although the resulting estimates would be of comparable magnitudes, as one recognizes

from the empirical results in Section III. Our choice to fit ACFs for both models keeps an

even field for the comparison.
4Our aim in this paper is to compare and rank the fits of the ACFs, not to conduct

hypothesis tests on an ACF or its parameters. For this, the reader is referred to Brock-

well and Davis (1991) where Bartlett’s formula gives the required distribution theory for

empirical ACFs, implying their consistency as estimators of ½¿ . The corresponding distri-

butional results for the ACF parameters follows by the Delta method. This is covered in

Caggiano (2006), as are resampling and subsmpling approaches to estimating confidence

bands for ACFs.
5It was often the case in the ACFs that we fitted for the AT form to have a ¼ 1, so we

could have done away with one more parameter and reduced the penalty in SC to only 3

parameters instead of 4. We preferred not to do so, in order to give AR models their best

shot.
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ACF. A common practice in time series is to discard a proportion of the end

lags of the empirical ACF; see for instance Box and Jenkins (1976). Here, we

discard the last 1/4 of these lags and use the rest for fitting the ACFs. This

leaves plenty of data points to estimate the ACF parameters that measure the

initial slope, curvature, amplitude, and first turning point (hence frequency);

which can be inferred from the early part of the ACFs.

III. Estimation results

A. Comparison of the AT and AR models

We obtained annual data for all our macro variables from the Bureau of

Economic Analysis (BEA), the Bureau of Labor Statistics (BLS), and the

Federal Reserve Economic Data (FREDr). In order to minimize the possi-

bility of error due to data manipulation, we do not splice series. Although

the lack of splicing means that some of our series start later than the corre-

sponding ones in NP, all of our series end in 2004 which adds 34 years of data

over the 1970 end date in NP. With so much additional data, we had enough

observations in the high quality datasets provided by the BEA, the BLS, and

the FRED to conduct our analysis. This also allowed us to stick to annual

data, rather than a higher frequency, so that our conclusions are in no way

affected by treatments of seasonality. From these series, we calculated the

real counterparts of the variables, and the growth rates of the level variables.

We then computed the ACFs of the logarithm of the level variables, and the

ACFs of the rate variables. (The programs and data files that we use are

appended to the paper in electronic format.)

Table 1 presents the Schwarz criterion for the AT and the best AR model,

the order p of the best AR(p), and the R2 of the two models. In terms of

R2, the fit of the AT model is always superior. When taking into account

the number of degrees of freedom through the Schwarz criterion, the AT fit
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is superior in all cases except for the nominal money stock and bond yields,

where AR has a slight advantage. Even so, the fit of the two models for these

cases is basically the same, and the AR has a better SC only because it has

one parameter less than AT; see also footnote 5. However, comparing the fit

for the growth rate of the money stock, AT clearly dominates AR by SC and

R2. Also, the AR fit for the real money stock is nowhere near as good as the

AT fit.

This impressive fit for money is particularly striking in Figure 1, where we

also report the fiscal components (government expenditure and tax), wages,

and prices (CPI and GDP deflator). We see that the fit for prices is also

outstanding. From the figure, we see a broad picture emerging whereby the

memory of macro variables is of neither of the two types that AR models

can produce: exponential speed of decay for I(0) or approximately linear for

I(1).6 For example, the best AR approximation for real money is basically

a unit root with the implied linear ACF (clearly not the pattern displayed

by the empirical ACF in the graph) and, for real wages, it is a cycle which

dampens too fast because the roots of the AR are stationary.

In Figure 2, we see that GDP has dynamics that are much better approx-

imated by AT than AR. This is true for nominal, real, and per capita GDP.

The same is true also for employment and industrial production. In the case

of nominal industrial production, we can see an unusual pattern of dynamics

in the data: cycling that persists for a long time (does not decay fast), but

that starts with an early drop in memory that misleads linear models (such

as ARMA) into thinking that the memory will continue to decay fast. This

type of persistent cyclical behavior is picked up by our ACF, but not by

6The ACF of a unit-root process is (1 + ¿=t)¡1=2 ¼ 1¡ k¿ where k ´ 1=(2t) is a small

constant when the process started in the distant past; see AT for details. For a given

sample, this ACF can be approximated numerically by the stationary AR’s ACF since

®¿ ´ exp ((log®) ¿) ¼ 1 + (log®)¿ by the exponential expansion when log® ¼ 0 (i.e.

® ¼ 1).
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the ACF of the autoregressive model which produces cyclical but stationary

roots (exponentially-fast decay of memory).

Figure 3 illustrates a series that has given so much difficulty to macro-

economic modelers, and which is not in the original NP dataset. Investment,

both in nominal and real terms, evolves along the lines suggested here, not as

ARmodels would imply. Notice how closely the ACF of investment resembles

the ACF of nominal industrial production seen in Figure 2.

Figure 4 displays common stock prices, a variable that was in the NP

dataset. Our ACFs show that there is no stochastic trend of the unit-root

type, but rather a long and asymmetric cycle. The memory drops off very

rapidly after some point, unlike the prediction of unit-root models. The high

autocorrelation at low lags will force a root close to one when AR models are

fitted. However, inspections of the ACF indicates that this is not appropriate.

Our findings are in line with the results, for individual stocks, that were first

noted by De Bondt and Thaler (1985, 1987, 1989).

Figure 5 contains the remainder of the ACFs from Table 1. These include

components of the trade deficit, which are so eagerly followed by practitioners

because of their impact on policymakers’ decisions. Again, our dynamics are

much more accurate than the ones arising from ARs.

One final observation can be made. An AR(1) with a positive AR root

has a globally-convex ACF, while an AR(2) or AR(3) with complex-conjugate

roots has a locally concave ACF within each half-cycle (although the ACF

decays at an exponential rate, hence “convexly” in the long run). This is

why ACF estimation produces few AR(1) models in Table 1.

B. Comparison of the two models after accounting for structural breaks

In this part, we show that our results are not an artifact of the presence

of a structural break. We show that, for a dataset in which there are no

structural breaks, the information criterion for the AT model is still better
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than for the AR model.7 We now switch to the original NP dataset which

has been extensively studied. Perron (1989) did not detect any structural

breaks in the period 1946-1970 for velocity, and in the period 1930-1970 for

all of his other series. We now apply the previous analysis to these periods.

Table 2 compares the two models. We find that the AT model produces a

better information criterion than AR models, for all the variables, even bond

yields and the money stock. In the previous dataset (Section IIIA), the two

models were hard to tell apart for these two variables. However, we now find

that our model still fits very well, even better than before, while the AR fit

for these two variables has worsened.

C. Comparison of the two models for data that may contain deterministic

trends

It is possible to incorporate deterministic trends in the analysis. If a

series is suspected of having a trend, then the data can be detrended and the

procedure of Section IIIA repeated. In addition, we can compare the models

with and without trend by adjusting the penalty factor of SC when using

detrended data. For example, if a simple linear trend is removed, then one

more parameter is added to the penalty factor of SC. The intercept is the

mean which is always estimated by definition in (1), and so it does not require

an additional penalty. The comparison of models with and without trends

should be in terms of SC and not R2, unless R2 is augmented to incorporate

the trend’s contribution to the explained sum of squares (normal SC does

not depend on this quantity).

Table 3 compares the two models when a linear trend may be present.

Variables in rates, such as unemployment rates, are excluded from this table,

7It is also possible to estimate ACFs for series with an identified break, by a similar

procedure to the one to be introduced in Section IIIC. This can be done for AR and AT

models, but it did not add much to the analysis here, and it was therefore omitted.
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since their generating process cannot possibly contain a simple linear trend.

The only case where AR has a better SC than AT is for detrended log of

real exports, with ¡3.26 < ¡3.17. However, this is a case where a model
with trend is worse than a model without. This is evidenced by comparing

the four SCs of real exports in Tables 1 and 3: the best of the four models

is the AT without a trend, which has the best SC of ¡7.22. Incidentally,
comparing the SCs of Tables 1 and 3, the only instances where accounting

for a linear trend improves the AT fit (in the sense of SC) are the cases of

real industrial production and real wages.

IV. Implementation and timing of macroeconomic policy

This paper does not concern itself with welfare, so we cannot study di-

rectly optimal economic policy. However, our study is still helpful in the

implementation of economic policy because it reveals the dynamics of macro-

economic series. Our model predicts that changes in economic policy take

time to work through the system, but not in a gradual way as was previously

thought: the result is seeming inertia in the direction taken by the economy,

followed by a seemingly sudden turning point. But this pattern is predictable

with a good degree of confidence. Our ACFs’ patterns have been substan-

tiated by past events and have relevance for current and future debates on

the timing and magnitude of macroeconomic policy interventions. They are

different from existing models that misinterpret the inertia, projecting it into

the future, hence missing these sudden turns.

From the previous section, the shape of the ACF of level variables (such

as GDP) indicates that any impulse will decay only very slowly until the

end of the ACF’s plateau is reached, and that the course of these variables

takes a long time to alter. Hence, economic policy should be guided by

the long lags over which it operates. For instance, if the size of an economic
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intervention is enough to turn around GDP quickly, the momentum imparted

to it will lead to a period of overheating. Likewise, an economic policy that

imparts, period after period, a stimulus to the economy will eventually build

up momentum. Therefore, if a policy intervention is needed to counter the

signs of a slowdown, it should:

1. occur as soon as possible to give time to the policy to operate;

2. impart a stimulus sufficient to achieve the objective, taking into account

the increments that will keep occurring afterwards due to inertia; and

3. revert to a neutral stance well before the objective is achieved, letting

the economy ease onto its intended path.

Interestingly, a number of recent policy oriented papers have advocated poli-

cies which react promptly to new information; see Mishkin (1999), Clarida,

Galí and Gertler (1999), Bernanke and Gertler (2001). Similarly, recent

speeches from Fed governors have started to favour the recommendations

that we enumerated earlier; e.g. see Mishkin (2008) on the observed non-

linear macroeconomic dynamics and Bernanke (2008) on the sudden turning

points in the economy and the need for quick reactions. Since the end of

2007, Fed actions have been more aggressively expansionary to counter the

threat of a recession, and our recommendations show that this is the right

course of action.

Mishkin (2007), speaking from an empirical perspective, stresses that

“what drives many macroeconomic phenomena that are particularly inter-

esting is heterogeneity of economic agents”. It is worth recalling that our

new ACF’s functional form arose from solving explicitly a general equilib-

rium model with heterogeneous agents.
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Table 1: Comparison of the AT and AR models.

AT model AR model AT AR
Yes GDP (nom.) 76 55 -11.93 -8.66 2 99.5% 85.6%
Yes GDP (real) 76 55 -10.27 -9.33 2 95.5% 86.8%
Yes GDP per capita (real) 76 55 -11.54 -8.05 2 99.6% 83.2%
Yes Industrial production (nom.) 76 55 -9.67 -8.39 2 96.2% 84.2%
No Industrial production (real) 76 55 -3.57 -2.80 2 92.2% 80.4%
Yes Employment 57 41 -11.06 -10.59 3 95.8% 92.7%
Yes Unemployment rate 57 41 -3.41 -2.79 1 78.1% 46.6%
Yes GDP deflator 76 55 -9.23 -6.58 2 99.2% 86.2%
Yes Consumer prices (CPI) 76 55 -9.07 -6.35 2 99.0% 81.9%
Yes Wages (nom.) 41 29 -11.86 -11.61 3 90.1% 85.7%
Yes Wages (real) 41 29 -3.28 -2.82 3 92.0% 85.8%
Yes Money stock (nom.) 46 33 -11.41 -11.46 3 89.5% 88.8%
No Money stock (real) 46 33 -6.99 -6.57 1 84.3% 67.0%
Yes Velocity 46 33 -6.98 -6.54 3 96.0% 93.1%
Yes Bond yield (nom.) 76 55 -2.86 -2.85 3 87.3% 86.2%
No Bond yield (real) 76 55 -4.66 -2.72 3 95.8% 68.2%
Yes Common stock prices (S&P 500) (nom.) 76 55 -7.93 -4.63 2 98.8% 61.3%
No Investment (nom.) 76 55 -8.90 -7.88 2 95.4% 85.2%
No Investment (real) 76 55 -6.61 -6.02 2 86.8% 72.6%
No Exports (nom.) 76 55 -8.02 -6.80 2 95.1% 80.8%
No Exports (real) 76 55 -7.20 -6.54 2 91.3% 80.5%
No Imports (nom.) 76 55 -8.62 -8.05 2 95.5% 90.9%
No Imports (real) 76 55 -6.05 -5.29 2 96.7% 91.7%
No Government current expenditures (nom.) 76 55 -11.35 -8.34 1 98.6% 63.9%
No Government current expenditures (real) 76 55 -9.60 -7.80 3 94.5% 64.2%
No Current tax receipts (nom.) 76 55 -12.14 -9.37 1 98.5% 69.6%
No Current tax receipts (real) 76 55 -9.55 -6.78 3 97.6% 58.5%
No Inflation (growth rate of CPI) 75 54 -3.74 -2.77 3 88.2% 66.4%
No Growth rate of money stock (nom.) 45 32 -3.62 -3.14 1 80.3% 56.0%
No Growth rate of money stock (real) 45 32 -3.29 -3.20 2 65.1% 52.3%
No Growth rate of wages (nom.) 40 28 -2.83 -2.44 1 75.8% 48.8%
No Growth rate of wages (real) 40 28 -3.72 -2.19 2 89.0% 35.4%

Schwarz criterion
AR(p)

R 2In
N-P? Series T n

Note: T is the sample size, n is the number of ACF lags used for fitting,

and p is the number of AR lags selected by SC.



Table 2: Comparison of the AT and AR models, breaks excepted.

AT AR AT AR
GDP (nominal) 42 29 -7.29 -6.59 2 87.1% 68.6%
GDP (real) 42 29 -7.01 -6.72 3 61.5% 49.9%
GDP per capita (real) 42 29 -5.89 -5.71 3 64.3% 59.6%
Industrial production (nominal) 42 29 -6.99 -6.52 3 56.5% 36.7%
Employment 42 29 -6.27 -6.06 3 67.6% 62.7%
GDP deflator 42 29 -5.66 -4.58 2 89.4% 62.2%
Consumer prices (CPI) 42 29 -5.41 -3.70 2 94.2% 61.4%
Wages (nominal) 42 29 -7.80 -5.84 2 97.5% 78.8%
Wages (real) 42 29 -8.25 -6.39 1 96.1% 67.5%
Money stock (nominal) 42 29 -8.76 -7.21 3 95.8% 79.7%
Velocity 25 17 -5.23 -5.17 2 88.0% 84.2%
Bond yield (nominal) 42 29 -5.54 -4.51 2 99.3% 97.8%
Common stock prices (S&P 500) (nominal) 42 29 -6.17 -5.14 2 99.2% 97.4%

Series T n
SC

AR(p)
R 2

Note: T is the sample size, n is the number of ACF lags used for fitting,

and p is the number of AR lags selected by SC.

Table 3: Comparison of the AT and AR models, detrended data.

AT model AR model
GDP (nom.) -4.46 -3.52 2
GDP (real) -4.08 -1.73 2
GDP per capita (real) -4.66 -3.43 4
Industrial production (nom.) -4.77 -2.37 2
Industrial production (real) -3.66 -2.73 3
Employment -4.39 -3.64 2
GDP deflator -3.15 -2.34 2
Consumer prices (CPI) -3.44 -2.43 2
Wages (nom.) -6.98 -2.48 2
Wages (real) -4.37 -3.99 3
Money stock (nom.) -6.80 -2.84 2
Money stock (real) -2.68 -2.07 1
Velocity -3.88 -3.38 2
Common stock prices (S&P 500) (nom.) -5.18 -3.87 2
Investment (nom.) -3.79 -2.64 2
Investment (real) -4.89 -2.12 2
Exports (nom.) -3.49 -3.37 2
Exports (real) -3.07 -3.17 1
Imports (nom.) -3.28 -2.56 2
Imports (real) -2.79 -2.62 1
Government current expenditures (nom.) -4.56 -3.17 2
Government current expenditures (real) -3.86 -1.99 1
Current tax receipts (nom.) -3.76 -2.93 2
Current tax receipts (real) -5.69 -4.16 2

Schwarz criterion
Series AR(p)

Note: p is the number of AR lags selected by SC.
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Figure 1. Actual ACFs, and their fits by AT and AR models:

real government expenditure and tax, real money, real wages, CPI, and

GDP deflator.
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Figure 2. Actual ACFs, and their fits by AT and AR models:

GDP (real, nominal, and real per capita), employment, and

industrial production (real and nominal).
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Figure 3. Actual ACFs, and their fits by AT and AR models:

investment (real and nominal).
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Figure 4. Actual ACF and its fit by AT and AR models: S&P 500.



-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

lags

AC
F

Unemployment AT_fit AR_fit

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

lags

AC
F

Wages (nominal) AT_fit AR_fit

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

lags

A
C
F

Money stock (nominal) AT_fit AR_fit

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

lags

AC
F

Velocity AT_fit AR_fit

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

lags

AC
F

Bond yield (nominal) AT_fit AR_fit

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

A
CF

Bond yield (real) AT_fit AR_fit

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Exports (nominal) AT_fit AR_fit

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Exports (real) AT_fit AR_fit

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Imports (nominal) AT_fit AR_fit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Imports (real) AT_fit AR_fit

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Government Expenditure (nominal) AT_fit AR_fit

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

Lags

AC
F

Tax Receipts (nominal) AT_fit AR_fit

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

lags

AC
F

Inflation AT_fit AR_fit

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

lags

A
CF

Money growth (nominal) AT_fit AR_fit

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Lags

AC
F

Money growth (real) AT_fit AR_fit

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

lags

AC
F

Wages growth (nominal) AT_fit AR_fit

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

lags

AC
F

Wages growth (real) AT_fit AR_fit

Figure 5. Actual ACFs, and their fits by AT and AR models:

all the other variables.


