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How useful are historical data for forecasting the
long-run equity return distribution?

John M. Maheu and Thomas H. McCurdy∗

This Draft April 2007

Abstract

We provide an approach to forecasting the long-run (unconditional) distrib-

ution of equity returns making optimal use of historical data in the presence of

structural breaks. Our focus is on learning about breaks in real time and assess-

ing their impact on out-of-sample density forecasts. Forecasts use a probability-

weighted average of submodels, each of which is estimated over a different history

of data. The paper illustrates the importance of uncertainty about structural

breaks and the value of modeling higher-order moments of excess returns when

forecasting the return distribution and its moments. The shape of the long-run

distribution and the dynamics of the higher-order moments are quite different

from those generated by forecasts which cannot capture structural breaks. The

empirical results strongly reject ignoring structural change in favor of our fore-

casts which weight historical data to accommodate uncertainty about structural

breaks. We also strongly reject the common practice of using a fixed-length moving

window. These differences in long-run forecasts have implications for many finan-

cial decisions, particularly for risk management and long-run investment decisions.
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1 Introduction

Forecasts of the long-run distribution of excess returns are an important input into many

financial decisions. For example, Barberis (2000) and Jacquier, Kane, and Marcus (2005)

discuss the importance of accurate estimates for long-horizon portfolio choice. Our paper

models and forecasts the long-run (unconditional) distribution of excess returns using a

flexible parametric density in the presence of potential structural breaks. Our focus is on

learning about breaks in real time and assessing their impact on out-of-sample density

forecasts. We illustrate the importance of uncertainty about structural breaks and the

value of modeling higher-order moments of excess returns when forecasting the return

distribution and its moments. The shape of the long-run distribution and the dynam-

ics of the higher-order moments are quite different from those generated by forecasts

which cannot capture structural breaks. The empirical results strongly reject ignoring

structural change in favor of our forecasts which weight historical data to accommodate

uncertainty about structural breaks. We also strongly reject the common practice of

using a fixed-length moving window. These differences in long-run forecasts have im-

plications for many financial decisions, particularly for risk management and long-run

investment decisions such as those by a pension fund manager.

Existing work on structural breaks with respect to market excess returns has focused

on conditional return dynamics and the equity premium. Applications to the equity

premium include Pastor and Stambaugh (2001) and Kim, Morley, and Nelson (2005)

who provide smoothed estimates of the equity premium in the presence of structural

breaks using a dynamic risk-return model. In this environment, model estimates are

derived conditional on a maintained number of breaks in-sample. These papers focus on

the posterior distribution of model parameters for estimating the equity premium.

Lettau and van Nieuwerburgh (2007) analyze the implications of structural breaks in

the mean of the dividend price ratio for conditional return predictability; Viceira (1997)

investigates shifts in the slope parameter associated with the log dividend yield. Paye

and Timmermann (2006) and Rapach and Wohar (2006) present evidence of instability

in models of predictable returns based on structural breaks in regression coefficients

associated with several financial variables, including the lagged dividend yield, short

interest rate, term spread and default premium.

Additional work on structural breaks in finance includes Pesaran and Timmermann

(2002) who investigate window estimation in the presence of breaks, Pettenuzzo and

Timmermann (2005) who analyze the effects of model instability on optimal asset allo-

cation, Lettau, Ludvigson, and Wachter (2007) who focus on a regime change in macro-

economic risk, Andreou and Ghysels (2002) who analyze breaks in volatility dynamics,

and Pesaran, Pettenuzzo, and Timmermann (2006b) who explore the effects of structural

instability on pricing.

To our knowledge, none of the existing applications study the effects of structural
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change on forecasts of the unconditional distribution of returns. An advantage to working

with the long-run distribution is that it may be less susceptible to model misspecifica-

tion than short-run conditional models. For example, an unconditional distribution of

excess returns can be consistent with different underlying models of risk, allowing us to

minimize model misspecification while focusing on the implications of structural change.

We postulate that the long-run or unconditional distribution of returns is generated

by a discrete mixture of normals subject to occasional breaks that are governed by an

i.i.d. Bernoulli distribution. This implies that the long-run distribution is time-varying

and could be non-stationary. We assume that structural breaks partition the data into

a sequence of stationary regimes each of which can be captured by a submodel which

is indexed by its data history and associated parameter vector. New submodels are

introduced periodically through time to allow for multiple structural breaks, and for

potential breaks out of sample. The structural break model is constructed from a series

of submodels. This approach is based on Maheu and Gordon (2007) extended to deal

with multiple breaks out of sample. Short horizon forecasts are dominated by current

posterior estimates from the data, since the probability of a break is low. However,

long-horizon forecasts converge to predictions from a submodel using the prior density.

In other words, in the long run we expect a break to occur and we only have our present

prior beliefs on what those new parameters will be.

Our maintained submodel of excess returns is a discrete mixture of normals which

can capture heteroskedasticity, asymmetry and fat tails. This is the parameterization

of excess returns which is subject to structural breaks. For robustness, we compare our

results using this flexible submodel specification to a Gaussian submodel specification

to see if the more general distribution affects our inference about structural change or

our real time forecasts. Flexible modeling of the submodel density is critical in order to

avoid falsely identifying an outlier as a break.

Once we allow for structural breaks, it is not clear how useful historical data are for

parameter estimation and for out-of-sample density forecasts. Pesaran and Timmermann

(2007) and Pastor and Stambaugh (2001) discuss the use of both pre and post-break

data. In our case, each submodel identifies a possible break point and is estimated from

an associated history of data.

Since structural breaks can never be identified with certainty, submodel averaging

provides a predictive distribution, which accounts for past and future structural breaks,

by integrating over each of the possible submodels weighted by their probabilities. Indi-

vidual submodels only receive significant weight if their predictive performance warrants

it. We learn in real time about past structural breaks and their effect on the distribution

of excess returns. The model average combines the past (potentially biased) data from

before the estimated break point, which will tend to have less uncertainty about the

distribution due to sample length, with the less precise (but unbiased) estimates based

on the more recent post-break data. If a break occurred at 2000 but the submodel in-
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troduced in 1990, which uses data from 1990 onward for parameter estimation, provides

better predictions, then the latter submodel will receive relatively larger weight. As more

data arrive, we would expect the predictions associated with the submodel introduced

in 2000 to improve and thus gain a larger weight in prediction. In this sense the model

average automatically picks submodels at each point in time based on predictive con-

tent. This approach provides a method to combine submodels estimated over different

histories of data. Since the predictive density of returns integrates over the submodel

distribution, submodel uncertainty (uncertainty about structural breaks) is accounted

for in the analysis.

Our empirical results strongly reject ignoring structural change in favor of forecasts

which weight historical data to accommodate uncertainty about structural breaks. We

also strongly reject the common practice of using a fixed-length moving window. Ignoring

structural breaks leads to inferior density forecasts. So does using a fixed-length moving

window.

Structural change has implications for the entire shape of the long-run excess return

distribution. The preferred structural change model produces kurtosis values well above

3 and negative skewness throughout the sample. Furthermore, the shape of the long-

run distribution and the dynamics of the higher-order moments are quite different from

those generated by forecasts which cannot capture structural breaks. Ignoring structural

change results in misspecification of the long-run distribution of excess returns which

can have serious implications, not only for the location of the distribution (the expected

long-run premium), but also for risk assessments.

Our evidence clearly supports using a mixture-of-normals submodel with two com-

ponents over a single-component (Gaussian) submodel. There is another important

difference between the alternative parameterizations of the submodel. We show that

our discrete mixture-of-normals submodel specification is more robust to false breaks.

To see this, suppose one assumed a normal distribution for excess returns when in fact

the data generating process has fat tails. In this case, realizations in the tail of the main-

tained normal distribution could be mistakenly interpreted in real time as evidence of a

structural break. That is, as we learn about the distribution governing excess returns,

sometimes we infer a break that is later revised to be an outlier and not a structural

break. The richer specification of the two-component submodel is more robust to these

false breaks. One reason for this is that the two-component submodel is characterized

by a high and low variance state. This allows for heteroskedasticity in excess returns.

Therefore, outliers can occur and not be evidence of a break in the distribution of excess

returns.

One by-product of our results is inference about probable dates of structural breaks

associated with the distribution of market equity excess returns. Using the discrete

mixture-of-normals submodel parameterization, we identify breaks in 1929, 1934, 1940,

and 1969, as well as possible breaks in the mid-1970s, the early 1990s and sometime
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from 1998 through the end of the sample. Note that these breaks are detected in real

time and are not the result of a full-sample analysis. For example, using only data

up to 1931:04 there is strong evidence (probability over 0.75) that the most recent

structural break detectable at that time occurred in 1929. From 1991 forward, however,

there is considerable submodel uncertainty with several submodels receiving significant

probability weight. Since our model average combines forecasts from the individual

submodels, our objective is not to identify specific dates of structural breaks but rather

to integrate out break points to produce superior forecasts.

Although our focus is on the distribution of excess returns, we also explore the im-

plications of structural breaks for the predictive distribution of the equity premium. We

find that ignoring structural breaks results in substantially different premium forecasts,

as well as overconfidence in those forecasts. When a structural break occurs there is

a decrease in the precision of the premium forecast which improves as we learn about

the new premium level. Uncertainty about the premium comes from two sources: sub-

model uncertainty and parameter uncertainty. For example, our results show that the

uncertainty after the break in 1929 is mainly due to parameter uncertainty, whereas the

uncertainty in the late 1990s is from both submodel and parameter uncertainty.

The structural change model produces good density and point forecasts and illus-

trates the importance of modeling higher-order moments of excess returns. We investi-

gate short (1 month) to long horizon (20 years) forecasts of cumulative excess returns.

The structural break model, which accounts for multiple structural breaks, produces

superior out-of-sample forecasts of the mean and the variance. These differences will be

important for long-run investment and risk management decisions.

The paper is organized as follows. The next section describes the data sources.

Section 3 introduces a flexible discrete mixture-of-normals model for excess returns as

our submodel parameterization. Section 4 reviews Bayesian estimation techniques for the

mixture submodel of excess returns. The proposed method for estimation and forecasting

in the presence of structural breaks is outlined in Section 5. Results are reported in

Section 6; and conclusions are found in Section 7.

2 Data

The equity data are monthly returns, including dividend distributions, on a well diver-

sified market portfolio. The monthly equity returns for 1885:2 to 1925:12 were obtained

from Bill Schwert; details of the data construction can be found in Schwert (1990).

Monthly equity returns from 1926:1 to 2003:12 are from the Center for Research in

Security Prices (CRSP) value-weighted portfolio, which includes securities on the New

York stock exchange, American stock exchange and the NASDAQ. The returns were con-

verted to continuously compounded monthly returns by taking the natural logarithm of

the gross monthly return.
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Data on the risk-free rate from 1885:2 to 1925:12 were obtained from annual interest

rates supplied by Jeremy Siegel. Siegel (1992) describes the construction of the data in

detail. Those annual interest rates were converted to monthly continuously compounded

rates. Interest rates from 1926:1 to 2003:12 are from the U.S. 3 month T-bill rates

supplied by the Fama-Bliss riskfree rate file provided by CRSP.

Finally, the monthly excess return, rt, is defined as the monthly continuously com-

pounded portfolio return minus the monthly riskfree rate. This monthly excess return is

scaled by multiplying by 12. Table 1 reports summary statistics for the scaled monthly

excess returns. Both the skewness and kurtosis estimates suggest significant deviations

from the normal distribution.

3 Mixture-of-Normals Submodel for Excess Returns

In this section we outline our maintained model of excess returns which is subject to

structural breaks. We label this the submodel, and provide more details on this def-

inition in the next section. Financial returns are well known to display skewness and

kurtosis and our inferences about forecasts and structural breaks may be sensitive to

these characteristics of the shape of the distribution. Our maintained submodel of excess

returns is a discrete mixture of normals. Discrete mixtures are a very flexible method to

capture various degrees of asymmetry and tail thickness. Indeed a sufficient number of

components can approximate arbitrary distributions (Roeder and Wasserman (1997)).

The k-component mixture submodel of excess returns is represented as

rt =





N(µ1, σ
2
1) with probability π1

...
...

N(µk, σ
2
k) with probability πk,

(3.1)

with
∑k

j=1 πj = 1. It will be convenient to denote each mean and variance as µj, and σ2
j ,

with j ∈ {1, 2, ..., k}. Data from this specification are generated as: first a component

j is chosen according to the probabilities π1, ..., πk; then a return is generated from

N(µj, σ
2
j ). Note that returns will display heteroskedasticity. Often a two-component

specification is sufficient to capture the features of returns. Relative to the normal

distribution, distributions with just two components can exhibit fat-tails, skewness and

combinations of skewness and fat-tails. We do not use this mixture specification to

capture structural breaks, but rather as a flexible method of capturing features of the

unconditional distribution of excess returns which is our submodel that is subject to

structural breaks.

Since our focus is on the moments of excess returns, it will be useful to consider

the implied moments of excess returns as a function of the submodel parameters. The

relationships between the uncentered moments and the submodel parameters for a k-
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component submodel are:

γ = Ert =
k∑

i=1

µiπi, (3.2)

in which γ is defined as the equity premium; and

γ
′
2 = Er2

t =
k∑

i=1

(µ2
i + σ2

i )πi (3.3)

γ
′
3 = Er3

t =
k∑

i=1

(µ3
i + 3µiσ

2
i )πi (3.4)

γ
′
4 = Er4

t =
k∑

i=1

(µ4
i + 6µ2

i σ
2
i + 3σ4

i )πi. (3.5)

for the higher-order moments of returns. The higher-order centered moments γj =

E[(rt − E(rt))
j], j = 2, 3, 4, are then

γ2 = γ
′
2 − (γ)2 (3.6)

γ3 = γ
′
3 − 3γγ

′
2 + 2(γ)3 (3.7)

γ4 = γ
′
4 − 4γγ

′
3 + 6(γ)2γ

′
2 − 3(γ)4. (3.8)

As a special case, a one-component submodel allows for normally-distributed returns.

Only two components are needed to produce skewness and excess kurtosis. If µ1 = · · · =
µk = 0 and at least one variance parameter differs from the others the resulting density

will have excess kurtosis but not asymmetry. To produce asymmetry and hence skewness

we need µi 6= µj for some i 6= j. Section 4 discusses a Bayesian approach to estimation

of this submodel.

4 Estimation of the Submodels

In the next two subsections we discuss Bayesian estimation methods for the discrete

mixture-of-normals submodels. This is the parameterization that is subject to structural

breaks, as modeled in 5 below. An important special case for the submodel specification

is when there is a single component, k = 1, which we discuss first.
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4.1 Gaussian Case, k = 1

When there is only one component our submodel for excess returns reduces to a normal

distribution with mean µ, variance σ2, and likelihood function,

p(r|µ, σ2) =
T∏

t=1

1√
2πσ2

exp

(
− 1

2σ2
(rt − µ)2

)
(4.1)

where r = [r1, ..., rT ]
′
. In the last section, this model is included as a special case when

π1 = 1.

Bayesian methods require specification of a prior distribution over the parameters

µ and σ2. Given the independent priors µ ∼ N(b, B)Iµ>0, and σ2 ∼ IG(v/2, s/2),

where IG(·, ·) denotes the inverse gamma distribution, Bayes rule gives the posterior

distribution of µ and σ2 as

p(µ, σ2|r) ∝ p(r|µ, σ2)p(µ)p(σ2) (4.2)

where p(µ) and p(σ2) denote the probability density functions of the priors. Note that

the indicator function Iµ>0 is 1 when µ > 0 is true and otherwise 0. This restriction

enforces a positive equity premium as indicated by theory.

Although closed form solutions for the posterior distribution are not available, we can

use Gibbs sampling to simulate from the posterior and estimate quantities of interest.

The Gibbs sampler iterates sampling from the following conditional distributions which

forms a Markov chain.

1. sample µ ∼ p(µ|σ2, r)

2. sample σ2 ∼ p(σ2|µ, r)

In the above, we reject any draw that does not satisfy µ > 0. These steps are repeated

many times and an initial set of the draws are discarded to minimize startup conditions

and ensure the remaining sequence of the draws is from the converged chain. See Chib

(2001), Geweke (1997), and Robert and Casella (1999) for background information on

Markov Chain Monte Carlo methods of which Gibbs sampling is a special case; and see

Johannes and Polson (2005) for a survey of financial applications. After obtaining a set

of N draws {µ(i), (σ2)(i)}N
i=1 from the posterior, we can estimate moments using sample

averages. For example, the posterior mean of µ, which is an estimate of the equity

premium conditional on this submodel and data, can be estimated as

E[µ|rT ] ≈ 1

N

N∑
i=1

µ(i). (4.3)

To measure the dispersion of the posterior distribution of the equity premium we could

compute the posterior standard deviation of µ in an analogous fashion, using sample
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averages obtained from the Gibbs sampler in
√

E[µ2|r]− E[µ|r]2. Alternatively, we

could summarize the marginal distribution of the equity premium with a histogram or

kernel density estimate.

This simple submodel which assumes excess returns follow a Gaussian distribution

cannot account for the asymmetry and fat tails found in return data. Modeling these

features of returns may be important to our inference about structural change and

consequent forecasts. The next section provides details on estimation for submodels

with two or more components which can capture the higher-order moments of excess

returns.

4.2 Mixture Case, k > 1

In the case of k > 1 mixture of normals, the likelihood of excess returns is

p(r|µ, σ2, π) =
T∏

t=1

k∑
j=1

πj
1√
2πσ2

j

exp

(
− 1

2σ2
j

(rt − µj)
2

)
(4.4)

where µ = [µ1, ..., µk]
′
, σ2 = [σ2

1, ..., σ
2
k]
′
, and π = [π1, ..., πk]. Bayesian estimation of

mixtures has been extensively discussed in the literature and our approach closely follows

Diebolt and Robert (1994). We choose conditionally conjugate prior distributions which

facilitate our Gibbs sampling approach. The independent priors are µi ∼ N(bi, Bii), σ2
i ∼

IG(vi/2, si/2), and π ∼ D(α1, ..., αk), where the latter is the Dirichlet distribution. We

continue to impose a positive equity premium by giving zero support to any parameter

configuration that violates γ > 0.

Discrete mixture models can be viewed as a simpler model if an indicator variable

zt records which observations come from component j. Our approach to Bayesian es-

timation of this submodel begins with the specification of a prior distribution and the

augmentation of the parameter vector by the additional indicator zt = [0 · · · 1 · · · 0] which

is a row vector of zeros with a single 1 in the position j if rt is drawn from component

j. Let Z be the matrix that stacks the rows of zt, t = 1, ..., T .

With the full data rt, zt the data density becomes

p(r|µ, σ2, π, Z) =
T∏

t=1

k∑
j=1

zt,j
1√
2πσ2

j

exp

(
− 1

2σ2
j

(rt − µj)
2

)
. (4.5)

Bayes theorem now gives the posterior distributions as

p(µ, σ2, π, Z|r) ∝ p(r|µ, σ2, π, Z)p(µ, σ2, π, Z) (4.6)

∝ p(r|µ, σ2, π, Z)p(Z|µ, σ2, π)p(µ, σ2, π). (4.7)

The posterior distribution has an unknown form, however, we can generate a sequence
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of draws from this density using Gibbs sampling. Just as in the k = 1 case, we sample

from a set of conditional distributions and collect a large number of draws. From this

set of draws we can obtain simulation-consistent estimates of posterior moments. The

Gibbs sampling routine repeats the following steps for posterior simulation.

1. sample µi ∼ p(µ|σ2, π, Z, r), i = 1, ..., k

2. sample σ2
i ∼ p(σ2

i |µ, π, Z, r), i = 1, ..., k

3. sample π ∼ p(π|µ, σ2, Z, r)

4. sample zt ∼ p(zt|µ, σ2, π, r), t = 1, ..., T .

Step 1–4 are repeated many times and an initial set of the draws are discarded to

minimize startup conditions and ensure the remaining sequence of the draws is from the

converged chain. Our appendix provides details concerning computations involved for

each of the Gibbs sampling steps.

5 Modeling Structural Breaks

In this section we outline a method to deal with potential structural breaks. Our ap-

proach is based on Maheu and Gordon (2007). We extend it to deal with multiple breaks

out of sample. Recent work on forecasting in the presence of model instability includes

Clark and McCracken (2006) and Pesaran and Timmermann (2007). Recent Bayesian

approaches to modeling structural breaks include Koop and Potter (2007), Giordani and

Kohn (2007) and Pesaran, Pettenuzzo, and Timmermann (2006a). An advantage of our

approach is that we can use existing standard Gibbs sampling techniques and Bayesian

model averaging ideas (Avramov (2002), Cremers (2002), Wright (2003), Koop (2003),

Eklund and Karlsson (2005)). As such, Gibbs sampling for discrete mixture models

can be used directly without any modification. As we discuss in Section 5.3, submodel

parameter estimation is separated from estimation of the process governing breaks. Esti-

mation of the break process has submodel parameter uncertainty integrated out, making

it a low dimensional tractable problem. Finally, our approach delivers a marginal like-

lihood estimate that integrates over all structural breaks and allows for direct model

comparison with Bayes factors.

5.1 Submodel Structure

Intuitively, if a structural break occurred in the past we would want to adjust our use

of the old data in our estimation procedure since those data can bias our estimates and

forecasts. We assume that structural breaks are exogenous unpredictable events that

result in a change in the parameter vector associated with the maintained submodel, in
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this case a discrete mixture-of-normals submodel of excess returns. In this approach we

view each structural break as a unique one-time event.

The structural break model is constructed from a series of identical parameterizations

(mixture of normals, number of components k fixed) that we label submodels. What

differentiates the submodels is the history of data that is used to form the posterior

density of the parameter vector θ. (Recall that for the k = 2 submodel specification,

θ = {µ1, µ2, σ
2
1, σ

2
2, π1, π2}.) As a result, θ will have a different posterior density for each

submodel, and a different predictive density for excess returns. Each of the individual

submodels assume that once a break occurs, past data are not useful in learning about

the new parameter value, only future data can be used to update beliefs. As more

data arrives, the posterior density associated with the parameters of each submodel are

updated. Our real time approach incorporates the probability of out-of-sample breaks.

Therefore, new submodels are continually introduced through time. Structural breaks

are identified by the probability distribution on submodels.

Submodels are differentiated by when they start and the number of data points they

use. Since structural breaks can never be identified with certainty, submodel averaging

provides a predictive distribution, which accounts for past and future structural breaks,

by integrating over each of the possible submodels weighted by their probabilities. New

submodels only receive significant weights once their predictive performance warrants it.

The model average optimally combines the past (potentially biased) data from before

the estimated break point, which will tend to have less parameter uncertainty due to

sample length, with the less precise (but unbiased) estimates based on the more recent

post-break data. This approach provides a method to combine submodels estimated

over different histories of data.

To begin, define the information set Ia,b = {ra, ..., rb}, a ≤ b, with Ia,b = {∅}, for

a > b, and for convenience let It ≡ I1,t. Let Mi be a submodel that assumes a structural

break occurs at time i. The exception to this is the first submodel of the sample M1 for

which there is no prior data. As we have mentioned, under our assumptions the data

r1, ..., ri−1 are not informative about parameters for submodel Mi due to the assumption

of a structural break at time i, while the subsequent data ri, ..., rt−1 are informative. If

θ denotes the parameter vector, then p(rt|θ, Ii,t−1,Mi) is the conditional data density

associated with submodel Mi, given θ, and the information set Ii,t−1.

Now consider the situation where we have data up to time t − 1 and we want to

consider forecasting out-of-sample rt. A first step is to construct the posterior density

for each of the possible submodels. If p(θ|Mi) is the prior distribution for the parameter

vector θ of submodel Mi, then the posterior density of θ for submodel Mi, based on the

information Ii,t−1, has the form,

p(θ|Ii,t−1, Mi) ∝
{

p(ri, ..., rt−1|θ, Mi)p(θ|Mi) i < t

p(θ|Mi) i = t,
(5.1)
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i = 1, ..., t. For i < t, only data after the assumed break at time i are used, that is,

from i to t − 1. For i = t, past data are not useful at all since a break is assumed to

occur at time t, and therefore the posterior becomes the prior. Thus, at time t − 1 we

have a set of submodels {Mi}t
i=1, which use different numbers of data points to produce

predictive densities for rt. For example, given {r1, ..., rt−1}, M1 assumes no breaks in

the sample and uses all the data r1, ..., rt−1 for estimation and prediction; M2 assumes a

break at t = 2 and uses r2, ..., rt−1; ....; Mt−1, assumes a break at t−1 and uses rt−1; and

finally Mt assumes a break at t and uses no data. That is, Mt assumes a break occurs

out-of-sample, in which case, past data are not useful.

In the usual way, the predictive density for rt associated with submodel Mi is formed

by integrating out the parameter uncertainty,

p(rt|Ii,t−1,Mi) =

∫
p(rt|Ii,t−1, θ, Mi)p(θ|Ii,t−1,Mi)dθ, i = 1, ..., t. (5.2)

For Mt the posterior is the prior under our assumptions. Estimation of the predictive

density is discussed in Section 5.6.

5.2 Combining Submodels

As noted in section 1, our structural break model must learn about breaks in real time

and combine submodel predictive densities. The usual Bayesian methods of model com-

parison and combination are based on the marginal likelihood of a common set of data

which is not the case in our setting since the submodels {Mi}t
i=1 are based on different

histories of data. Therefore, we require a new mechanism to combine submodels. We

consider two possibilities in this paper. First, that the probability of a structural break

is determined only from subjective beliefs. For example, financial theory or non-sample

information may be useful in forming these beliefs. Our second approach is to propose

a stochastic process for the arrival of breaks and estimate the parameter associated

with that arrival process. We discuss the first approach in this subsection; in the next

subsection we deal with our second approach which requires estimation of the break

process.

Before observing rt the financial analyst places a subjective prior 0 ≤ λt ≤ 1, that

a structural break occurs at time t. A value of λt = 0 assumes no break at time t, and

therefore submodel Mt is not introduced. This now provides a mechanism to combine

the submodels. Let Λt = {λ2, ..., λt}. Note that Λ1 = {∅} since we do not allow for a

structural break at t = 1.

To develop some intuition, we consider the construction of the structural break model

for the purpose of forecasting, starting from a position of no data at t = 0. If we wish to

forecast r1, all we have is a prior on θ. In this case, we can obtain the predictive density

for r1 as p(r1|I0) = p(r1|I0,M1) which can be computed from priors using (5.2). After

observing r1, p(M1|I1, Λ1) = p(M1|I1) = 1 since there is only 1 submodel at this point.
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Now allowing for a break at t = 2, that is, λ2 6= 0, the predictive density for r2 is the

mixture

p(r2|I1, Λ2) = p(r2|I1,1,M1)p(M1|I1, Λ1)(1− λ2) + p(r2|I2,1,M2)λ2.

The first term on the RHS is the predictive density using all the available data times the

probability of no break. The second term is the predictive density derived from the prior

assuming a break, times the probability of a break. Recall that in the second density

I2,1 = {∅}. After observing r2 we can update the submodel probabilities,

p(M1|I2, Λ2) =
p(r2|I1,1,M1)p(M1|I1, Λ1)(1− λ2)

p(r2|I1, Λ2)

p(M2|I2, Λ2) =
p(r2|I2,1,M2)λ2

p(r2|I1, Λ2)
.

Now we require a predictive distribution for r3 given past information. Again, allow-

ing for a break at time t = 3, λ3 6= 0, the predictive density is formed as

p(r3|I2, Λ3) = [p(r3|I1,2,M1)p(M1|I2, Λ2) + p(r3|I2,2,M2)p(M2|I2, Λ2)] (1− λ3) + p(r3|I3,2,M3)λ3.

In words, this is (predictive density assuming no break at t = 3)×(probability of no

break at t = 3) + (predictive density assuming a break at t = 3)×(probability of a

break at t = 3). Once again p(r3|I3,2,M3) is derived from the prior. The updated

submodel probabilities are

p(M1|I3, Λ3) =
p(r3|I1,2,M1)p(M1|I2, Λ2)(1− λ3)

p(r3|I2, Λ3)
(5.3)

p(M2|I3, Λ3) =
p(r3|I2,2,M2)p(M2|I2, Λ2)(1− λ3)

p(r3|I2, Λ3)
(5.4)

p(M3|I3, Λ3) =
p(r3|I3,2,M3)λ3

p(r3|I2, Λ3)
. (5.5)

In this fashion we sequentially build up the predictive distribution of the break model.

As a further example of our model averaging structure, consider Figure 1 which displays

a set of submodels available at t = 10, where the horizontal lines indicate the data

used in forming the posterior for each submodel. The forecasts from each of these

submodels, which use different data, are combined (the vertical line) using the submodel

probabilities. Since at period t = 10, there are no data available for period 11, the point

M11 on Figure 1 represents the prior density in the event of a structural break at t = 11.

If there has been a structural break at say t = 5, then as new data arrive, M5 will receive

more weight as we learn about the regime change.

Intuitively, the posterior and predictive density of recent submodels after a break will

change quickly as new data arrive. Once their predictions warrant it, they receive larger
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weights in the model average. Conversely, posteriors of old submodels will only change

slowly when a structural break occurs. Their predictions will still be dominated by the

longer and older data before the structural break. Note that our inference automatically

uses past data prior to the break if predictions are improved. For example, if a break

occurred at t = 2000 but the submodel M1990, which uses data from t = 1990 onward for

parameter estimation, provides better predictions, then the latter submodel will receive

relatively larger weight. As more data arrive, we would expect the predictions associated

with submodel M2000 to improve and thus gain a larger weight in prediction. In this

sense the model average automatically picks submodels at each point in time based on

predictive content.

Given this discussion, and a prior on breaks, the general predictive density for rt, for

t > 1, can be computed as the model average

p(rt|It−1, Λt) =

[
t−1∑
i=1

p(rt|Ii,t−1,Mi)p(Mi|It−1, Λt−1)

]
(1− λt) + p(rt|It,t−1,Mt)λt. (5.6)

The first term on the RHS of (5.6) is the predictive density from all past submodels that

assume a break occurs prior to time t. The second term is the contribution assuming a

break occurs at time t. In the latter, past data are not useful and only the prior density

is used to form the predictive distribution. The terms p(Mi|It−1, Λt−1), i = 1, ..., t − 1

are the submodel probabilities, representing the probability of a break at time i given

information It−1, and are updated each period after observing rt as

p(Mi|It, Λt) =

{
p(rt|Ii,t−1,Mi)p(Mi|It−1,Λt−1)(1−λt)

p(rt|It−1,Λt)
1 ≤ i < t

p(rt|It,t−1,Mt)λt

p(rt|It−1,Λt)
i = t.

(5.7)

In addition to being inputs into (5.6) and other calculations below, the submodel prob-

abilities also provide a distribution at each point in time of the most recent structural

break inferred from the current data. Recall that submodels are indexed by their starting

point. Therefore, if submodel Mt′ receives a high posterior weight given It with t > t
′
,

this is evidence of the most recent structural break at t
′
.

Posterior estimates and submodel probabilities must be built up sequentially from

t = 1 and updated as new data become available. At any given time, the posterior mean

of some function of the parameters, g(θ), accounting for past structural breaks can be

computed as,

E[g(θ)|It, Λt] =
t∑

i=1

E[g(θ)|Ii,t,Mi]p(Mi|It, Λt). (5.8)

This is an average at time t of the submodel-specific posterior expectations of g(θ),

weighted by the appropriate submodel probabilities. Submodels that receive large pos-

terior probabilities will dominate this calculation.
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Similarly, to compute an out-of-sample forecast of g(rt+1) we include all the previous

t submodels plus an additional submodel which conditions on a break occurring out-of-

sample at time t + 1 assuming λt+1 6= 0. The predictive mean of g(rt+1) is

E[g(rt+1)|It, Λt+1] =
t∑

i=1

E[g(rt+1)|Ii,t,Mi]p(Mi|It, Λt)(1− λt+1) (5.9)

+E[g(rt+1)|It+1,t,Mt+1]λt+1.

Note that the predictive mean from the last term is based only on the prior as past data

before t + 1 are not useful in updating beliefs about θ given a break at time t + 1.

5.3 Estimation of the Probability of a Break

We now specify the process governing breaks and discuss how to estimate it. We assume

that the arrival of breaks is i.i.d. Bernoulli with parameter λ. With this additional

structure, and given a prior p(λ), we can update beliefs given sample data. From a com-

putational perspective an important feature of this approach is that the break process

can be separated from the submodel estimation. The posterior of the submodel pa-

rameters (5.1) is independent of λ. Furthermore, the posterior for λ is a function of

the submodel predictive likelihoods, which have parameter uncertainty integrated out.

Therefore, the likelihood is a function of only 1 parameter, so the posterior for λ is

p(λ|It−1) ∝ p(λ)
t−1∏
j=1

p(rj|Ij−1, λ) (5.10)

where p(rj|Ij−1, λ) is from (5.6) with Λj = {λ2, ..., λj} = {λ, ..., λ} which we denote as λ

henceforth. To sample from this posterior we use a Metropolis-Hastings routine with a

random walk proposal. Given λ = λ(i), the most recent draw from the Markov chain, a

new proposal is formed as λ
′
= λ + e where e is a symmetric density. This is accepted,

λ(i+1) = λ
′
, with probability min{p(λ

′ |It−1)
p(λ|It−1)

, 1} and otherwise rejected, λ(i+1) = λ(i).

After dropping a suitable burn-in sample, we treat the remaining draws {λ(i)}N
i=1 as a

sample from the posterior. A simulation-consistent estimate of the predictive likelihood

of the break model is

p(rt|It−1) =

∫
p(rt|It−1, λ)p(λ|It−1)dλ (5.11)

≈ 1

N

N∑
i=1

p(rt|It−1, λ
(i)). (5.12)

15



Posterior moments, as in (5.8), must have λ integrated out as in

E[g(θ)|It] = EλE[g(θ)|It, λ] =
t∑

i=1

E[g(θ)|Ii,t,Mi]Eλ[p(Mi|It, λ)], (5.13)

where Eλ[·] denotes expectation with respect to p(λ|It). Recall that the submodel pos-

terior density is independent of λ. It is now clear that the submodel probabilities after

integrating out λ are Eλ[p(Mi|It, λ)] which could be denoted as p(Mi|It).

5.4 Forecasts

To compute an out-of-sample forecast of some function of rt+1, g(rt+1), we include all the

previous t submodels plus an additional submodel which conditions on a break occurring

out-of-sample at time t + 1. The predictive density is derived from substituting (5.6)

into the right-hand side of (5.11). Moments of this density are the basis of out-of-sample

forecasts. The predictive mean of g(rt+1), as in (5.9), after integrating out λ is

E[g(rt+1)|It] = EλE[g(rt+1)|It, λ] (5.14)

=
t∑

i=1

E[g(rt+1)|Ii,t,Mi]Eλ[p(Mi|It, λ)(1− λ)] (5.15)

+E[g(rt+1)|It+1,t,Mt+1]Eλ[λ].

E[g(rt+1)|Ii,t,Mi] is an expectation with respect to a submodel predictive density and is

independent of λ. Eλ[·] denotes an expectation with respect to p(λ|It). These additional

terms are easily estimated with Eλ[p(Mi|It, λ)(1− λ)] ≈ 1
N

∑N
i=1 p(Mi|It, λ

(i))(1− λ(i)),

and Eλ[λ] ≈ 1
N

∑N
i=1 λ(i).

Multiperiod forecasts are computed in the same way,

E[g(rt+2)|It] =
t∑

i=1

E[g(rt+2)|Ii,t,Mi]Eλ[p(Mi|It, λ)(1− λ)2] (5.16)

+E[g(rt+2)|It+1,t,Mt+1]Eλ[λ(1− λ)] + E[g(rt+2)|It+2,t,Mt+2]Eλ[λ]

which allows for a break at time t + 1 and t + 2. Note that the last two expectations

with respect to returns in (5.16) are identical and derived from the prior. Grouping

them together gives the term E[g(rt+2)|It+1,t,Mt+1]Eλ[λ(1 + (1 − λ))]. Following this,

the h−period expectation is

E[g(rt+h)|It] =
t∑

i=1

E[g(rt+h)|Ii,t,Mi]Eλ[p(Mi|It, λ)(1− λ)h] (5.17)

+E[g(rt+h)|It+1,t,Mt+1]Eλ[λ
h−1∑
j=0

(1− λ)j].
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As h → ∞ the weight on the prior forecast E[g(rt+1)|It+1,t, Mt+1] goes to 1, and the

weight from the submodels that use past data goes to 0. In essence, this captures the

idea that in the short-run we may be confident in our current knowledge of the return

distribution; but in the long-run we expect a break to occur, in which case the only

information we have is our prior beliefs.

5.5 Predictive Distribution of the Equity Premium

Although the focus of this paper is on the predictive long-run distribution of excess

returns, the 1st moment of this density is the long-run equity premium. There is an

extensive literature that uses this unconditional premium. Much of this literature uses

a simple point estimate of the premium obtained as the sample average from a long

series of excess return data. For example, Table 1 in a recent survey by Mehra and

Prescott (2003) lists four estimates of the equity premium using sample averages of data

from 1802-1998, 1871-1999, 1889-2000, and 1926-2000. In addition, many forecasters,

including those using dynamic models with many predictors, report the sample average

of excess returns as a benchmark. For example, models of the premium conditional:

on earnings or dividend growth include Donaldson, Kamstra, and Kramer (2006) and

Fama and French (2002); on macro variables, Lettau and Ludvigson (2001); and on

regime changes Mayfield (2004) and Turner, Startz, and Nelson (1989). Other examples

of premium forecasts include Campbell and Thompson (2005), and Goyal and Welch

(2007). In this subsection, we explore the implications for the predictive distribution of

the unconditional equity premium of our approach to forecasting the long-run distribu-

tion of excess returns in the presence of possible structural breaks.

The predictive mean of the equity premium can be computed using the results in the

previous section by setting g(rt+1) = rt+1. Note, however, that we are interested in the

entire predictive distribution for the premium, for example, to assess the uncertainty

about the equity premium forecasts. Using the discrete mixture-of-normals specification

as our submodel with k fixed, the equity premium is γ =
∑k

i=1 µiπi. Given It−1 we can

compute the posterior distribution of the premium as well as the predictive distribu-

tion. It is important to note that even though our mixture-of-normals submodel is not

dynamic, allowing for a structural break at t differentiates the posterior and predictive

distribution of the premium. Therefore, since we are concerned with forecasting the

premium, we report features of the predictive distribution of the premium for period t,

given It−1, defined as,

p(γ|It−1) =
t−1∑
i=1

p(γ|Ii,t−1,Mi)Eλ[p(Mi|It−1, λ)(1− λ)] + p(γ|It,t−1,Mt)Eλ[λ]. (5.18)

This equation is analogous to the predictive density of returns (5.11).

From the Gibbs sampling output for each of the submodels, and the posterior of λ,
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we can compute the mean of the predictive distribution of the equity premium as,

E[γ|It−1] =
t−1∑
i=1

E[γ|Ii,t−1,Mi]Eλ[p(Mi|It−1, λ)(1− λ)] + E[γ|It,t−1,Mt]Eλ[λ]. (5.19)

Note that this is the same as (5.15) when g(rt+1) is set to rt+1 in the latter. In a

similar fashion, the standard deviation of the predictive distribution of the premium can

be computed from
√

E[γ2|It−1]− (E[γ|It−1])2. This provides a measure of uncertainty

about the premium.

In Section 6.5 below, we provide results for alternative forecasts of the equity pre-

mium. γ̂A,t−1 uses all available data weighted equally (submodel M1) and thus assumes

no structural breaks occur, γ̂W,t−1 is analogous to the no-break forecast in that it weights

past data equally but uses a fixed-length (10 years of monthly data) moving window of

past data rather than all available data, and γ̂B,t−1 uses all available data optimally after

accounting for structural breaks. These forecasts are

γ̂A,t−1 = E[γ|It−1,M1] (5.20)

γ̂W,t−1 = E[γ|It−1,Mt−120] (5.21)

γ̂B,t−1 = E[γ|It−1]. (5.22)

Recall that the γ̂B forecasts integrate out all submodel uncertainty surrounding struc-

tural breaks using (5.19).

5.6 Implementation of the Structural Break Model

Estimation of each submodel at each point in time follows the Gibbs sampler detailed

in Section 4. After dropping the first 500 draws of the Gibbs sampler, we collect the

next 5000 which are used to estimate various posterior quantities. We also require the

predictive likelihood to compute the submodel probabilities (5.7) to form an out-of-

sample forecast, for example, using (5.15). To calculate the marginal likelihood of a

submodel, following Geweke (1995) we use a predictive likelihood decomposition,

p(ri, ..., rt|Mi) =
t∏

j=i

p(rj|Ii,j−1,Mi). (5.23)

Given a set of draws from the posterior distribution {θ(s)}N
s=1, where

θ(s) = {µ1, ..., µk,σ
2
1, ..., σ

2
k,π1, ..., πk}, for submodel Mi, conditional on Ii,j−1, each of the

individual terms in (5.23) can be estimated consistently as

p(rt|Ii,j−1,Mi) ≈ 1

N

N∑
s=1

p(rt|θ(s), Ii,j−1,Mi). (5.24)
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This is calculated at the end of each Gibbs run, along with features of the predictive

density. Note that (5.24) enters directly into the calculation of (5.7). For the discrete

mixture-of-normals specification, the data density is,

p(rt|θ(s), Ii,t−1, Mi) =
k∑

j=1

πj
1√
2πσ2

j

exp

(
− 1

2σ2
j

(rt − µj)
2

)
. (5.25)

The predictive likelihood of submodel Mi is used in (5.7) to update the submodel

probabilities at each point in time, and to compute the individual components p(rj|Ij−1)

of the structural break model through (5.11) and hence the marginal likelihood of the

structural break model as,

p(r1, ..., rt) =
t∏

j=1

p(rj|Ij−1). (5.26)

5.7 Model Comparison

Finally, the Bayesian approach allows for the comparison and ranking of models by Bayes

factors or posterior odds. Both of these require calculation of the marginal likelihood.

The Bayes factor for model B versus model A is defined as BFB,A = p(r|B)/p(r|A),

where p(r|B) is the marginal likelihood for model B and similarily for model A. A Bayes

factor greater than one is evidence that the data favor B. Kass and Raftery (1995)

summarize the support for model B from the Bayes factor as: 1 to 3 not worth more

than a bare mention, 3 to 20 positive, 20 to 150 strong, and greater than 150 as very

strong.

5.8 Selecting Priors

An advantage of Bayesian methods is that it is possible to introduce prior information

into the analysis. This is particularly useful in our context as finance practitioners and

academics have strong beliefs regarding the distribution of excess returns and particu-

larly its mean. Theory indicates that this equity premium must be positive and, from

the wide range of estimates surveyed by Derrig and Orr (2004), the vast majority of the

reported estimates are well below 10%. The average survey response from U.S. Chief

Financial Officers for recent years is below 5% (Graham and Harvey (2005)). It is also

well known that the distribution of returns displays skewness and kurtosis.

There are several issues involved in selecting priors when forecasting in the presence

of structural breaks. Our model of structural breaks requires a proper predictive density

for each submodel. This is satisfied if our prior p(θ|Mi) is proper. Some of the submodels

condition on very little data. For instance, at time t− 1 submodel Mt uses no data and

has a posterior equal to the prior. There are also problems with using highly diffuse

priors, as it may take many observations for the predictive density of a new submodel
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to receive any posterior support. In other words, the rate of learning about structural

breaks is affected by the priors. Based on this, we use informative proper priors.

A second issue is the elicitation of priors in the mixture submodel. While it is

straightforward for the one-component case, it is not obvious how priors on the compo-

nent parameters affect features of the excess return distribution when k > 1. For two

or more components, the likelihood of the mixture submodel is unbounded which make

noninformative priors inappropriate (Koop (2003)).

In order to select informative priors based on features of excess returns, we conduct

a prior predictive check on the submodel (Geweke (2005)). That is, we analyze moments

of excess returns simulated from the submodel. We repeat the following steps

1. draw θ ∼ p(θ) from the prior distribution

2. simulate {r̃t}T
t=1 from p(rt|It−1, θ)

3. using {r̃t}T
t=1 calculate the mean, variance, skewness and kurtosis

Table 2 reports these summary statistics after repeating the steps 1–3 many times us-

ing the priors listed in the footnote of Table 3. The prior can account for a range of

empirically realistic sample statistics of excess returns. The 95% density region of the

sample mean is approximately [0, 0.1]. The two-component submodel with this prior is

also consistent with a wide range of skewness and excess kurtosis. In selecting a prior for

the single-component submodel we tried to match, as far as possible, the features of the

two-component submodel. All prior specifications enforce a positive equity premium.

Although it is possible to have different priors for each submodel, we use the same

calibrated prior for all submodels in our analysis. Our main results estimate λ and use

the prior λ ∼ Beta(0.05, 20). This favors infrequent breaks and allows the structural

break model to learn when breaks occur. We could introduce a new submodel for

every observation but this would be computationally expensive. Instead, we restrict the

number of submodels to one every year of data. Our first submodel starts in February

1885. Thereafter, new submodels are introduced in February of each year until 1914,

after which new submodels are introduced in June of each year due to the missing 4

months of data in 1914 (see Schwert (1990) for details). Therefore, our benchmark prior

introduces a new submodel every 12 months with λt = λ; otherwise λt = 0. We discuss

other results for different specifications in Section 6.7.

6 Results

This section discusses the real-time, out-of-sample, forecasts starting from the first ob-

servation to the last. First, we report the alternative model specifications, priors, and

results as measured by the marginal likelihoods. The preferred specification is the struc-

tural break model with λ estimated and using a k = 2 submodel, which we focus on for
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the remainder of the paper. Then we summarize the results for submodel probabilities

from which we can infer probable structural break points and evaluate submodel uncer-

tainty, as well as compute an ex post measure of mean useful historical observations.

The next subsection summarizes the dynamics of higher-order moments of the excess

return distribution implied by our preferred model. This is followed by results for the

predictive distribution for the equity premium when structural breaks are allowed versus

not. We then present an assessment of multi-period out-of-sample mean and variance

forecasts generated by the structural break versus no-break models. Finally, we present

results from a robustness analysis.

6.1 Model Specification and Density Forecasts

A summary of the model specifications, including priors, is reported in Table 3. The first

panel of this table reports results using the Gaussian submodel specification (k = 1);

whereas the second panel results refer to the case with the more flexible two-component

(k = 2) mixture-of-normals specification for submodels. In each panel we report re-

sults for the no-break model which uses all historical data weighted equally, a no-break

model which uses a 10-year moving window of equally-weighted historical data, and our

structural change models that combine submodels in a way that allows for breaks. We

report results for several alternative parameterizations of the structural change model

depending on how often we introduce new submodels (one versus five years) and whether

or not we estimate the probability of structural breaks, or leave it at a fixed value.

Table 3 also records the logarithm of the marginal likelihood values, log(ML), for

each of the models based on our full sample of historical observations. Recall that

this summarizes the period-by-period forecast densities evaluated at the realized data

points. That is, it is equal to the sum of the log predictive likelihoods over the sample.

This is the relevant measure of out-of-sample predictive content of a model (Geweke

and Whiteman (2006)). According to the criterion summarized in Section 5.7, there is

overwhelming evidence in favor of allowing for structural breaks. Based on the log(ML)

values reported in Table 3, the Bayes factor for the break model against the no-break

alternative is around exp(167) for the one-component submodel specification. Even with

the more flexible two-component submodel specification, the Bayes factor comparing the

model that allows a structural break every year versus the no-break alternative is a very

large number, exp(−1191.77 + 1241.09) = exp(49.32). Therefore, we find very strong

evidence for structural breaks, regardless of the specification of the submodels (k = 1

versus k = 2).

Note that in each case, the best structural break model is the one that allows a break

every year. Figure 2 plots the posterior mean for estimates of λ over the entire sample.

The ex ante probability of a break is higher throughout the sample for the less flexible

k = 1 submodel parameterization. For example, at the end of the sample, the estimated
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λ is 0.131 (k = 1) versus 0.106 for the k = 2 submodel parameterization. This indicates

that the less flexible k = 1 specification finds more breaks.

Note that using the two-component (k = 2 mixture-of-normals) specification for

submodels always results in log(ML) values that are significantly higher than using the

Gaussian submodel specification (k = 1). These results provide very strong support for

the two-component submodel specification. Therefore, for the remainder of the paper,

we will focus on results for that more flexible submodel specification with λ estimated

from the data.

In Figure 3 we illustrate the rejection of the no-break forecasts by plotting, at each

point in time, the difference in the cumulative predictive likelihood from the break model

versus the no-break alternative. Up to 1930 there was no significant difference. There is

a large difference after 1930 but also smaller on-going improvements in the performance

of the break model versus the no-break alternative until the end of the sample.

At various points above we mentioned the common practice of using a fixed-length

moving window of historical data to reduce the impact of potential structural changes

on forecasts. Table 3 reports that our structural change models, which optimally weight

historical data, very strongly reject a 10-year moving window of equally-weighted his-

torical data. The Bayes factor is exp(−1204.17 + 1281.94) = exp(77.77) using a k = 1

submodel specification, and exp(29) using a k = 2 submodel specification.

6.2 Submodel Probabilities: Inferred Structural Breaks

The probability associated with submodel Mi at time t can be interpreted as the proba-

bility that there was a break point at date i given data up to time t. The 3-dimensional

plots in Figures 4 to 6 illustrate these probabilities over some selected time periods for

all available submodels. In these plots, the axis labelled Submodel Mi refers to the

submodels identified by their starting observation i. The probability associated with

a particular submodel at a point in time can be seen as a perpendicular line from the

Time axis. As examples, we plot the submodel probabilities over time for some specific

submodels in Figure 7. These time-series plots of selected submodel probabilities, corre-

spond to a perpendicular slice through the submodel axis over time for that particular

submodel in the 3-dimensional plots (Figures 4 to 6).

Recall that the number of submodels is increasing with time; a new submodel is

introduced every 12 months. The submodel probability distribution is the cross-section

of the available submodels at a particular point in time. Figures 8 and 9 illustrate the

distribution of submodel probabilities at particular points in time, in this case the start

of 1960 and at the end of the sample, respectively.

Submodel probabilites are displayed, for the k = 2 case, for three different subperiods

in the top panel of Figure 4, and in Figures 5 and 6 respectively. Comparisons with the

k = 1 case (Gaussian submodel specification) are provided by contrasting the top and
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bottom panels of Figure 4 for the subperiod 1885-1910; and in Figure 10 which plots the

probability for the 1893 submodel in the k = 1 versus k = 2 case. This plot illustrates the

danger of falsely identifying a break if the submodel specfication is not flexible enough.

As shown in the top panels of Figure 4 and Figure 7, for the first 45 years of the

sample the first submodel, M1885, receives most of the probability. There was some

preliminary evidence of a possible break in 1893. For example, starting in 1894:1 the

1893 submodel gets a probability weight of 0.45 but it drops the following month to 0.12

with the 1885 submodel returning to a weight of 0.85, although 1893 still gets greater

than 0.10 weight until 1902:9. Thus learning as new data arrive can play an important

role in revising previous beliefs regarding possible structural breaks. Recall that these

probability assessments are based on data available in real time. As such, they represent

the inference available to financial analysts at the time.

To illustrate the importance of a flexible parameterization of the submodel for the

unconditional distribution of excess returns, consider the time-series of probability for

the M1893 submodel when we use the Gaussian (k = 1) submodel specification. As

shown in Figure 10, for the k = 1 case the probability of a break in 1893:2 shoots up

from 0.003 in 1893:6 to 0.91 by 1893:8. However, by the start of 1903 the probability

assigned to submodel M1893 has fallen to less than 0.10. whereas the M1895 submodel is

again assigned the majority of the probability weight. Using a Gaussian submodel spec-

ification, that doesn’t allow the unconditional distribution of excess returns to have fat

tails and/or skewness, can lead to outliers being identified, in real time, as breaks. This

inference is later revised as more data becomes available. However, as described above

and displayed in Figure 10, our flexible (k = 2 mixture-of-normals) parameterization of

the submodel is less susceptible to this problem of temporarily identifying false breaks

in real time. This example underscores the importance of accurately modeling financial

returns prior to an analysis of structural breaks. In other words, misspecified models

may provide evidence of structural breaks when the underlying DGP is stable.

The first submodel of the sample, M1885, continues to receive most of the support

until 1929. There is very strong evidence of a structural break in 1929. By 1930:10,

the M1929 submodel has a probability weight of greater than 0.50 and 0.76 by 1931:4,

which indicates fast learning about the change in the distribution of excess returns. As

discussed further below, the identified break in the excess return distribution in 1929 is

primarily due to higher-order moments such as volatility (see Figure 12). However, the

break has implications for the predictive distribution for the long-run equity premium,

as well as higher-order moments of excess returns.

There is an increase in submodel uncertainty during the 1930s. From 1935 to mid-

1943, the 1934 submodel receives some weight, as high as 0.70 by 1937:3. However, this

break is short-lived, the next major break occurs in 1940. As shown in the 3rd panel

of Figure 7, the M1940 submodel receives the most probability weight (in excess of 0.50)

until 1970.
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In the early 1970s there is evidence of a break in 1969. The M1940 submodel lost

its position of having the most probability weight for the first time in 1970:04 when

the M1969 submodel is assigned a weight of 0.62 as opposed to 0.16 for the M1940 sub-

model. However, during the first half of the 1970s there was considerable submodel

uncertainty. For example, by 1976:6 the probability weight is almost equally shared by

the M1969, M1973 and M1974 submodels, afterwhich the 1969 and 1975 submodels share

the significant probability weight until the early 1990s.

Finally, there is submodel uncertainty again from 1991 to the end of the sample.

The probability of a break during this period is about 0.50 with the highest proba-

bility assigned to the M1991, M1992, and eventually the M1998 submodels. By the end

of the sample M1999, M2000, and M2003 also receive significant weight. This submodel

uncertainty can be seen in the bottom right-hand corner of Figure 6 and, more compre-

hensively, in Figure 9 which illustrates the entire distribution of submodel probabilites

at the end of 2003. Figure 8 shows that usually the structural change model is quite

decisive in allocating weight to a particular submodel. This plot shows the submodel

probability distribution at time 1960 which assigns most of the weight to the 1940 sub-

model. However, Figure 9 conveys the submodel uncertainty at the end of the sample.

We do not have enough data yet to infer the exact date of recent structural breaks in

the distribution of excess returns. However, it does not matter for our real-time fore-

casts since we use all of the information, appropriately weighted, and integrate out that

submodel uncertainty.

In summary, we find evidence for breaks in 1929, 1934, 1940, and 1969, as well as pos-

sible breaks in the mid-1970s, the early 1990s and sometime from 1998 through the end

of the sample. Our results highlight several important points. First, the identification of

structural breaks depends on the data used, and false assessments may occur which are

later revised when more data become available. This is an important aspect of learn-

ing about structural breaks in real time. Second, our evidence of submodel uncertainty

indicates the problem with using only one submodel for any particular forecast. In a

setting of submodel uncertainty, the optimal approach is to use the probability-weighted

submodel average which integrates out the submodel uncertainty.

Finally, we can compare dates identified by our real-time approach to those found by

Pastor and Stambaugh (2001) and Kim, Morley, and Nelson (2005) who use the whole

sample and derive smoothed (ex post) estimates of the equity premium. Note that these

papers assume a normal density, which we find strong evidence against, and impose a

particular structure between the conditional mean and variance, which we do not. Based

on a sample from 1926-1999, Kim, Morley, and Nelson (2005) find a permanent decrease

in volatility in the 1940s which induces a structural break in the premium through their

risk-return model. In addition to a risk-return link, Pastor and Stambaugh (2001) also

impose a prior that the premium and prices (realized returns) move in opposite directions

during transition from one level of the premium to the next. Using data from 1834-1999,
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they find several breaks including 1940 and one in the early 1990s for which there is also

evidence in our case.

6.3 Results for Mean Useful Historical Observations

The evidence in the previous subsection suggests that we should not put equal weights

on historical data for optimal forecasts in the presence of possible structural breaks.

Although our structural break forecasts consider all of the available historical data,

the submodel average assigns probability weights to individual submodels only when

their contribution to the marginal likelihood warrants it. Therefore, the distribution of

submodel probabilities allows us to derive an ex post measure of the average number

of useful observations at each point in time. This ’mean useful observations’ measure

(MUOt) is defined as

MUOt =
t∑

i=1885

(t + 1− i)p(Mi|It). (6.1)

Note that
∑t

i=1885 ip(Mi|It), in equation (6.1), is the mean of the submodel distribution

at time t.

For example, Figure 8 illustrates the distribution of submodel probabilities at 1960,

at which time a probability of 0.63 was assigned to the 1940 submodel. Therefore, at

1960, the mean of the submodel distribution will be about 1940 and the mean useful

observations will be about 21 years. Note, however, that our structural change model

considers all of the available historical data but assigns very small weights to submodels

prior to 1940 (longer samples) as well as to submodels after 1940 (shorter samples).

Our ’mean useful observations’ measure defined by (6.1) is analogous to that in

Pesaran and Timmermann (2002) who use a reverse-order CUSUM test to identify the

most recent structural break and consequently the number of useful observations. For

example, using a sample of monthly observations from 1954:1 to 1997:12, they find

breaks in 1969, 1974 and 1990 which is consistent with our results discussed in section

6.2.

Time-series of our MUOt measure are displayed in Figure 11. The 45-degree line

corresponds to the no-break specification which uses all available data at each point in

time. Consistent with our discussion in the previous subsection, the structural break

model uses most of the data until around 1930 where the average number of useful

observations drops dramatically. Around 1940 the useful observations begin to steadily

increase till further declining in the 1970s and 1990s. In this figure, a moving window

model would be represented as a horizontal line. For example, a moving window estimate

using the most recent 10 years of data would be a horizontal line at 120. According to

our model, this estimate would not be optimal during any historical time period.
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6.4 Higher-Order Moments

As discussed in sections 6.1 and 6.2 above, allowing for asymmetries and fat tails in the

submodel specification (k = 2) results in some differences in submodel probabilities, and

superior density forecasts relative to the special case with k = 1. Figure 12 displays the

posterior mean of the variance, skewness, and kurtosis of the excess returns distribution

at each point in the sample using only information available to that time period. We

show the time-variation in these higher-order moments implied by both our structural

change model and the no-break alternative, using a k = 2 mixture-of-normals submodel

specification in both cases. The no-break model cannot accommodate structural changes

so the break in 1929 shows up in that case as a large permanent change in both skewness

and kurtosis in the long-run distribution of excess returns.

6.5 Predictive Distribution of the Equity Premium

The purpose of our paper is to provide forecasts of the distribution of excess returns that

accommodate uncertainty about past and future structural breaks. However, as outlined

in section 5.5 above, we can also evaluate the implications for the predictive distribution

of the equity premium. If there were no structural breaks, and excess returns were

stationary, it would be optimal to use all available data weighted equally. However, in

the presence of breaks, our forecast of the premium, and our uncertainty about that

forecast, could be very misleading if our modeling/forecasting does not take account of

those structural breaks.

Panel A of Figure 13 illustrates out-of-sample forecasts (predictive mean) of the

equity premium, period-by-period, for both the structural break model and the no-

break alternative. These are the forecasts γ̂B,t−1, computed from equation (5.19), which

optimally use past data in the presence of possible structural breaks, versus γ̂A,t−1,

computed from equation (5.20), which assumes no breaks. Henceforth, we refer to

γ̂A,t−1, which is associated with submodel M1885, as the no-break specification. The

premium forecasts are similar until the start of the 1930s where they begin to diverge.

The 1940 structural break results in clear differences in the equity premium forecasts

for the break and no-break models. The premium forecasts from the structural break

model rise through the 1940s to the 1960s. Toward the end of the sample the premium

decreases to values substantially lower than the no-break model. The final premium

forecast at the end of the sample is 3.79% for the preferred structural break model.

The second panel of Figure 13 displays the standard deviation of the predictive

distribution of the premium. This is a measure of the uncertainty of our premium

estimate in panel A. For the no-break model, uncertainty about the equity premium

forecast originates from parameter uncertainty only, while for the structural break model

it comes from both parameter and submodel uncertainty. Here again there are differences

in the two specifications. The model that uses all data and ignores structural breaks
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shows a steady decline in the standard deviation of the premium’s predictive distribution

as more data become available. That is, for a structurally stable model, as we use more

data we become more confident about our premium forecast. However, the standard

deviation of the predictive distribution for the premium from the break model shows

that this increased confidence is misleading if structural breaks occur. As the second

panel of Figure 13 illustrates, when a break occurs our uncertainty about the premium

increases.

In subsection 5.5 above, we referred to an additional method often used to estimate

the long-run equity premium. The estimator γ̂W,t−1, computed as in equation (5.21),

recognizes that the distribution of excess returns may have undergone a structural break.

However, this method just uses a 10-year moving window with equal weights on histor-

ical data for estimation. Relative to the no-break alternative, these forecasts have the

advantage of dropping past data which may bias the forecast, but with the possible dis-

advantage of dropping too many data points, resulting in a reduction in the accuracy of

the premium estimate. In addition, this estimator is implicitly assuming that structural

breaks are reoccurring at regular intervals by using a fixed-length window of data at

each point in time. Figure 14 compares 10-year moving window forecasts, at each point

in time, to our forecasts that allow breaks, γ̂B,t−1 computed from (5.19). Note that the

simple moving-window sample average is too volatile to produce realistic results. In

some periods the sample average is negative while in other periods it is frequently in

excess of 10%.

6.6 Forecasts of Long-Horizon Returns

As illustrated in Figures 12 and 13, the dynamics of the moments of the excess return

distribution inferred from the structural break model are substantially different than

those for the no-break model. For example, as discussed in section 6.4 above, being

unable to accommodate breaks in the variance causes large permanent changes in skew-

ness and kurtosis. These differences are likely to have significant effects on out-of-sample

forecasts important for risk management.

To further illustrate this point, we computed out-of-sample mean and variance fore-

casts for the h-month cumulative return,
∑h

i=1 rt+i. The mean forecast is
∑h

i=1 Et[rt+i],

and the variance forecast is
∑h

i=1 Vart[rt+i]. They are evaluated against the realized

cumulative return and the cumulative realized volatility
∑h

i=1 RVt+i. RVt+i is computed

using the sum of intra-month squared daily returns. This is done for the no-break and

break model. The break model allows for out-of-sample breaks every 12 months and

forecasts are calculated as in Subsection 5.4.

Table 5 reports forecast results for the k = 2 submodel specification and starting the

out-of-sample forecasts at month 701 (half-way through the sample at 1943:9). For an

horizon of h = 120 months, the root mean squared error (RMSE) for the mean forecast
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from the break model is 7.36 versus 7.51 for the no-break model. The variance forecast

is 22.5 for the structural change model versus 28 for the no-break alternative. For a

forecast horizon of 20 years (240 months), the corresponding RMSE results are 11.47

versus 11.86 for the mean and 56.61 versus 67.71 for the variance. In other words, the out-

of-sample mean and variance forecasts using the model that accommodates structural

breaks dominate those from a forecasting procedure that ignores breaks. Of course the

superior density forecasts for the structural change models reported in Table 3 are not

just due to superior mean and variance forecasts but rather due to improved fit of the

entire distribution of excess returns. For example, a risk manager may also be interested

in the improved fit of the tails of the distribution discussed in section 6.4 above.

6.7 Robustness

Table 2 reports sample statistics for the excess return distribution when parameters are

simulated from the assumed distributions for priors described in subsection 4.2. These

empirical moments seem reasonable. For robustness, we also tried some alternative pri-

ors. For example, as discussed at the end of subsection 5.8, we set the prior probability

of breaks, λt, to .01 which favors infrequent breaks. As indicated in Table 4, we redid all

of our estimation and forecasting favoring more frequent structural breaks by assuming

that λt = .02. Recall that we allow for one break per year so that this corresponds to an

expected duration of 50 years between breaks. The results were very similar. In particu-

lar, the log(ML) for the best model was -1194 when λt=.02 instead of -1196 for λt = .01.

Table 4 also shows results when we consider more diffuse priors for other parameters.

They all provide strong evidence against the no-break model and are consistent with

previous results.

Another possibility is to re-set priors each period to the most recent posterior. As

an example in this direction, whenever a new submodel is introduced we set the prior

parameters for the premium to the previous posterior mean and variance of γ. That

is, during any period a new submodel is introduced, the prior on γ begins centered on

the most recent posterior for γ based on available data. We did this for the λ = 0.01

case using the k = 1 submodel specification. The main difference in the premium

forecasts for this case was that the premium was slightly less variable and also had a

reduced standard deviation of the predictive distribution for the premium. However, the

marginal likelihood is -1216.18 which is slightly worse than our original prior in Table 3

for k = 1, and still inferior to the k = 2 specification.

7 Conclusion

In summary, we provide an approach to forecasting the unconditional distribution of

excess returns making optimal use of historical data in the presence of possible structural
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breaks. We focus on learning about structural breaks in real time and assessing their

impact on out-of-sample forecasts. As a byproduct, this procedure identifies, in real time,

probable dates of structural change. Since structural breaks can never be identified

with certainty, our approach is to use a probability-weighted average of submodels,

each of which is estimated over a different history of data. Our forecasts consider all

of the available historical data but only assign weight to individual submodels when

their contribution to the marginal likelihood warrants it. Since the predictive density of

returns integrates over the submodel distribution, uncertainty about structural breaks is

accounted for in the analysis. The paper illustrates the importance of uncertainty about

structural breaks and the value of modeling higher-order moments of excess returns when

inferring structural breaks and forecasting the return distribution and its moments.

We use a two-component discrete mixture-of-normals specification for the submodel.

This is the parameterization of excess returns which is subject to structural breaks.

For robustness, we compare our results using this flexible submodel specification to the

nested Gaussian submodel specification to see if the more general distribution affects our

inference about structural change or our real-time forecasts. Our evidence clearly sup-

ports a structural break model using the more flexible parameterization of the submodel.

This richer two-component submodel is also more robust to false breaks.

The empirical results strongly reject ignoring structural change in favor of our fore-

casts which weight historical data to accommodate uncertainty about structural breaks.

We also strongly reject the common practice of using a fixed-length moving window. Ig-

noring structural breaks leads to inferior density forecasts. So does using a fixed-length

moving window of historical data.

Structural change has implications for the entire shape of the long-run excess return

distribution. The preferred structural change model produces kurtosis values well above

3 and negative skewness throughout the sample. Furthermore, the shape of the long-run

distribution and the dynamics of the higher-order moments are quite different from those

generated by forecasts which cannot capture structural breaks. As we show, ignoring

structural change results in misspecification of the long-run distribution of excess returns

which can have serious implications for long-run forecasts and risk assessments.

To answer the question in the title of our paper, our paper says that one should use

all available data but weight data histories optimally according to their contribution

to forecasts at each point in time. For most of our sample, older data tends to get

low weights fairly quickly but a critical result is that it is very suboptimal to use a

fixed-length moving window to capture this effect. Our results show that the value of

historical data varies considerably over time. Our paper provides a way of using all

available data but assigning appropriate weights to the component data histories. We

show the implications of differences in the no-break versus optimal forecasts. These

differences are significant and may be important for risk management and long-horizon

investment decisions.

29



8 Appendix

This appendix provides additional details concerning computations for each of the Gibbs

sampling steps for the submodels. Conditional on Zt and σ2 the conditional posterior

for µj j = 1, ..., k is

µj|Z, σ2, r ∼ N(M,V −1) (8.1)

M = V −1

(
σ−2

j

T∑
t=1

zt,jrt + B−1
jj bj

)
(8.2)

V = σ−2
j Tj + B−1

jj . (8.3)

where Tj =
∑T

t=1 zt,j. The conditional posterior of σ2
j is,

σ2
j |Z, µ, r ∼ IG

(
vj + Tj

2
,

∑T
t=1(rt − µj)

2zt,j + sj

2

)
, j = 1, ..., k. (8.4)

Only the observations attributed to component j are used to update µj and σ2
j . With

the conjugate prior for π, we sample the component probabilities as,

π ∼ D(α1 + T1, ..., αk + Tk). (8.5)

Finally, to sample zt,i, note that,

p(zt,i|r, µ, σ, π) ∝ πi
1√
2πσ2

i

exp

(
− 1

2σ2
i

(rt − µi)
2

)
, i = 1, ..., k, (8.6)

which implies that they can be sampled as a Multinomial distribution for t = 1, ..., T .

It is well known that in mixture models the parameters are not identified. For exam-

ple, switching all states Z and the associated parameters gives the same likelihood value.

Identification can be imposed through prior restrictions. However, in our application,

interest centers on the moments of the return distribution and not the underlying mix-

ture parameters. The moments of returns are identified. If for example, we switch all the

parameters of component 1 and 2 we still have the same premium value γ =
∑k

i=1 µiπi.

Therefore, we do not impose identification of the component parameters but instead

compute the mean, variance, skewness and kurtosis using (3.3)-(3.8) after each iteration

of the Gibb sampler. It is these posterior quantities that our analysis focuses on. In the

empirical work, we found the Markov chain governing these moments to mix very effi-

ciently. As such, 5000 Gibbs iterations, after a suitable burnin period provide accurate

estimates.
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Table 1: Summary Statistics for Scaled Monthly Excess Returns
Sample Obs Mean Variance Stdev Skewness Kurtosis

1885:02-2003:12 1423 0.0523 0.4007 0.6330 -0.4513 9.9871

Table 2: Sample Statistics for Excess Returns Implied by the Prior Distribution
Mean Median Stdev 95% HPDI

Sample Mean 0.0369 0.0354 0.0320 (-0.0238, 0.1007)
Sample Variance 0.5808 0.5056 0.3312 ( 0.1519, 1.1786)
Sample Skewness -0.3878 -0.3077 0.4718 (-1.4077, 0.3534)
Sample Kurtosis 8.1369 6.4816 5.9317 ( 2.7169, 18.7218)

This table reports summary measures of the empirical moments from the mixture sub-
model (k = 2) when parameters are simulated from the prior distribution. The priors are
µi ∼ N(bi, Bii), σ2

i ∼ IG(vi/2, si/2), and π ∼ D(α1, ..., αk), as described in section 4.2. The
hyperparameters are found in the footnote to Table 3. First a draw from the prior distri-
bution gives a parameter vector from which T observations of excess returns are simulated
{r̃t}T

t=1. From these data we calculate the sample mean, variance, skewness and kurtosis of
excess returns. This process is repeated a large number of times to produce a distribution of
each of the excess return moments. Finally, from this empirical distribution we report the
mean, median, standard deviation and the 95% highest posterior density interval (HPDI).
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Table 3: Model Specifications and Results
model prior about breaks log(ML)

k = 1 λt = 0, no breaks -1371.22

k = 1 λt = 0, no breaks -1281.94
10-year moving window

k = 1 λt = 0.01, every 5 years -1235.33
otherwise λt = 0

k = 1 λt = 0.01, every year -1216.08
otherwise λt = 0

k = 1 λ estimated, break every year -1204.17
otherwise λ = 0

k = 2 λt = 0, no breaks -1241.09

k = 2 λt = 0, no breaks -1220.78
10-year moving window

k = 2 λt = 0.01, every 5 years -1202.01
otherwise λt = 0

k = 2 λt = 0.01, every year -1196.30
otherwise λt = 0

k = 2 λ estimated, break every year -1191.77
otherwise λ = 0

This tables displays: the number of components, k, in the submodel; the prior on the
ocurrence of structural breaks, λt; and the logarithm of the marginal likelihood, log(ML),
for all specifications based on the full sample of observations used in estimation. The priors
are µ ∼ N(b,B)Iµ>0, σ2 ∼ IG(v/2, s/2) for k = 1; and µi ∼ N(bi, Bii), σ2

i ∼ IG(vi/2, si/2),
π ∼ D(α1, ..., αk) for k = 2. Hyperparameters are b = 0.03, B = 0.032, v = 9.0, s = 4.0 for
the k = 1 case; and b1 = 0.05, b2 = −0.30, B11 = 0.032, B22 = 0.052, v1 = 10.0, s1 = 3, v2 =
8.0, s2 = 20.0, α1 = 7, α2 = 1 for the k = 2 case. We impose a positive equity premium by
giving zero support to any parameter configuration that violates γ =

∑2
i=1 µiπi > 0. When

λ is estimated, it has a prior of Beta(0.05, 20).
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Table 4: Model Robustness, k = 2
changes in prior log(ML)

λt = 0.02 -1194.02

B11 = 0.122, B22 = 0.22 -1197.21

v1 = 5, v2 = 4 -1201.43

B11 = 0.122, B22 = 0.22, v1 = 5, v2 = 4 -1203.09

This tables displays, for the k = 2 case, the log marginal likelihood for changes
to the benchmark prior b1 = 0.05, b2 = −0.30, B11 = 0.032, B22 = 0.052, v1 =
10.0, s1 = 3, v2 = 8.0, s2 = 20.0, α1 = 7, α2 = 1 and λt = 0.01 for one month of
every year and otherwise λt = 0.

Table 5: Out-of-sample forecasts, k = 2
RMSE

∑h
i=1 Et[rt+i] forecast of

∑h
i=1 rt+i

h months break nobreak
1 0.5171 0.5178
12 1.9352 1.9481
120 7.3571 7.5141
240 11.4729 11.8636

∑h
i=1 Vart[rt+i] forecast of

∑h
i=1 RVt+i

1 0.4916 0.5250
12 2.7656 3.3698
120 22.4951 28.0098
240 56.6081 67.7051

Root-Mean-Squared Error (RMSE) associated with period-by-period forecasts
of the mean and variance of the h-month cumulative return over the 2nd half
of the sample (from month 701 to the end of the sample). Realized volatility,
RVt+i is estimated as the sum of intra-month daily squared returns.
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Figure 1: Individual Submodels and the Submodel Average

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

S
ub

m
od

el
s

Time

Submodel average

This figure is a graphical depiction of how the predictive density of excess returns is con-
structed for the structural break model. This corresponds to equation (5.6). The predictive
density is computed for each of the submodels M1, ...,M10 given information up to t = 10.
The final submodel M11, postulates a break at t = 11 and uses no data but only a prior
distribution. Each submodel is estimated using a smaller history of data (horizontal lines).
Weighting these densities via Bayes rule (vertical line) gives the final predictive distribution
(model average) of excess returns for t = 11.

Figure 2: Estimates of λ through Time
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Figure 3: Difference in the Cumulative Sum of the Log Predictive Likelihoods
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This figure displays the difference at each point in time in the logarithm of the marginal
likelihood (logarithm of equation 5.26) for the break versus the no-break models with k = 2
submodel specifications.
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Figure 4: Submodel Probabilities through Time, 1885:2-1910:1
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Figure 5: Submodel Probabilities through Time, 1925:1-1945:1
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Figure 6: Submodel Probabilities through Time, 1970:1-2003:12
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Figure 7: Submodel Probabilities over Time, k = 2
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Figure 8: Submodel Probability Distribution at 1960:01, k = 2
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Figure 9: Submodel Probability Distribution at 2003:12, k = 2
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Figure 10: Probabilities for M1893: Example of a False Break
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Figure 11: Mean useful Observations, k = 2.
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This figure shows the mean useful observations MUOt defined as MUOt =
∑t

i=1885(t + 1−
i)p(Mi|It), which is the expected number of useful observation for model estimation at each
point in time. p(Mi|It) is the posterior submodel probability for Mi given the information
set It and

∑t
i=1885 ip(Mi|It) is the mean of the submodel distribution at time t. If there

are no structural breaks then MUOt would follow the 45-degree line. A fixed-length moving
window would correspond to a horizontal line at the window length number of observations.
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Figure 12: Higher-Order Moments of Excess Returns through Time
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Displayed are the posterior means of the moments of the excess return distribution as in-
ferred from the structural break model with k = 2 submodel specification. Each moment
is estimated using only information in It at each point in time. The moments in equations
(3.6)-(3.8) are computed for each Gibbs draw from the posterior distribution for each of the
submodels Mi. The submodel specific moments are averaged using equation (5.13). This is
repeated at each observation in the sample starting from t = 1. The evolution of the ex-
cess return moments reflect both learning (as more data arrive) and the effect of structural
breaks.
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Figure 13: Predictive Distribution of the Premium through Time, k = 2.
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Panel A displays the out-of-sample forecasts (predictive mean) of the equity premium period-
by-period for both the structural break model, as in equation (5.19), and the no-break alter-
native. Panel B displays the corresponding standard deviation of the predictive distribution
of the equity premium.

Figure 14: Comparison of Premium Forecasts
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This figure compares the forecasts (predictive mean) of the long-run equity premium from
the structural break model, along with the sample average that uses a moving window of 10
years of data. The sample average at time t is defined as 1

120

∑120
i=1 rt−i+1.
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