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Abstract

We study the problem of an investor that buys an equity stake in an entrepreneurial
venture, under the assumption that the former cannot monitor the latter’s op-
erations. The dynamics implied by the optimal incentive scheme is rich and
quite different from that induced by other models of repeated moral hazard. In
particular, our framework generates a rationale for firm decline. As young firms
accumulate capital, the claims of both investor (outside equity) and entrepreneur
(inside equity) increase. At some juncture, however, even as the latter keeps on
growing, capital and firm value start declining and so does the value of outside
equity. The reason is that incentive provision becomes costlier as inside equity
grows. In turn, this leads to a decline in the constrained–efficient level of effort
and therefore to a drop in the return to investment. In the long run, the en-
trepreneur gains control of all cash–flow rights and the capital stock converges to
a constant value.
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1 Introduction

Think of an investor who provides seed financing to an entrepreneurial firm. The

success of her investment will depend crucially on the effort that the entrepreneur

puts in. Yet, the incentives of the two individuals are not perfectly aligned, as the

entrepreneur bears the whole cost of such effort while sharing the pecuniary returns

with the investor. When it is difficult to monitor the entrepreneur’s conduct, the in-

vestor will implement an incentive scheme that links rewards to observables. However,

if the entrepreneur is risk–averse, incentive provision will be costly.

This problem can be conveniently cast as a model of infinitely repeated bilateral

exchange with hidden action, along the lines of Spear and Srivastava (1987) and Wang

(1997). The only caveat is that in their models there is no notion of important features

of firm dynamics such as production and capital accumulation. The purpose of this

paper is to explicitly model both of them. We do so by assuming that the entrepreneur

is equipped with a production function that exhibits decreasing returns and is hit by

multiplicative shocks whose probability distribution depends in a natural way on

entrepreneurial effort.

The incentive scheme chosen by the investor belongs to the set of constrained–

efficient allocations, which in turn consist of sequences of effort provision, payouts,

and investment, that maximize the value of the investor’s claim (outside equity) for

given rewards to the entrepreneur.

Our analysis generates three key insights. The first is that the marginal value

of investment is decreasing in the value of the entrepreneur’s claim (inside equity).

The intuition is as follows. When the entrepreneur’s utility function belongs to the

CRRA class, incentive provision is costlier, the greater the value of her claim to the

venture’s cash flows. In turn this means that, everything else equal, the constrained–

efficient level of effort provision decreases as the entrepreneur accumulates wealth. By

reducing the likelihood of a high productivity shock, this results in a lower marginal

value of investment.

The second result, a corollary to the first, is what we call capital overshooting.

When agents discount future utility flows at the same rate and the entrepreneur’s

RRA coefficient is strictly less than 1, the stochastic process for firm size converges to

a singleton. This result is in common with other models in the literature on repeated

moral hazard. What is different here is that convergence may be from above. It

is well known that young firms tend to be relatively small. This means that their
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marginal product of capital is high, and so are their investment rates. Capital grows.

At the same time, optimal incentive provision implies that on average inside equity

also grows over time. These two forces have countervailing effects on effort, but the

first dominates. Effort provision increases and the distribution of the shock improves.

Firm value also increases. However, as inside equity increases, the marginal value

of investment decreases. Eventually, capital and effort start declining, and so does

firm value. In the limit all cash flows accrue to the entrepreneur. Capital, effort, and

inside equity are constant and strictly positive.

Finally, our theory produces a novel justification for the limited span of control

argument, which became popular thanks to the pioneering work by Lucas (1978).

Such argument consists in positing that the amount of productive resources that it is

efficient to put under a manager’s control is bounded. In our scenario, this outcome

results from the interaction between informational friction and capital accumulation.

Limiting the amount of resources under management is the optimal response to the

rise in the cost of incentive provision that follows from the increase in entrepreneurial

wealth.

Consistently with Rogerson (1985a), we find that the dynamics we have just de-

scribed is sensitive to our assumptions on preferences. When the entrepreneur is

either relatively more impatient or her RRA coefficient is greater than 1, the model

allows for a non–degenerate stationary distribution of firm size, firm value, and its

split between the two agents.

We consider two extensions of our framework. In one, productivity shocks are

persistent. Success in the current period improves the firm’s future prospects. This

version of the model has a stationary distribution where the value of outside equity

is still zero, but effort, investment, and inside equity are time–varying. In the other

extension, we assume that the marginal cost of effort depends non–trivially on capital.

We find that the qualitative features of firm dynamics we have just described survive

in this more general setup.

This paper contributes to a small but growing literature that explores the im-

plications of moral hazard for firm dynamics. Albuquerque and Hopenhayn (2004)

and Cooley, Marimon, and Quadrini (2004) consider scenarios where the entrepreneur

has limited commitment, while Clementi and Hopenhayn (2006), Brusco and Ropero

(2007), Quadrini (2003) and DeMarzo, Fishman, He, and Wang (2008) study the case

of hidden information.

Our framework has also close ties to models that allow for capital accumulation
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in environments where market incompleteness is caused by moral hazard. Among

these, the closest work is by Bohacek (2005), who provides conditions under which an

economy à la Atkeson and Lucas (1995) admits a stationary and ergodic distribution

of consumption.1 Other papers in this class include Marcet and Marimon (1992),

Khan and Ravikumar (2001), and Espino (2005).

Finally, our paper also belongs to a large literature, started by Holmstrom (1979)’s

seminal contribution, that analyzes constrained–efficient allocations in principal–agent

models with hidden action. Our work is part of the more recent tradition, started

by Rogerson (1985b), that explicitly considers repeated relationships. In particular,

our model extends Spear and Srivastava (1987), allowing for production and capital

accumulation. Notice that a number of papers in this tradition, among which Wang

(1997) and Clementi, Cooley, and Wang (2006), have interpreted the principal–agent

relationship as one between shareholders and executives. This alternative interpreta-

tion is also valid for our model.

The reminder of the paper is organized as follows. The model is introduced in

Section 2. The properties of the optimal contract are characterized in Section 3. We

find that the most efficient way of building intuition for those properties is to briefly

consider two special cases of our environment, namely one with no dynamics and one

with dynamics but no capital accumulation. Section 4 is dedicated to comparative

statics exercises. We then consider two extensions. In Section 5, we allow for the

marginal utility cost of effort to depend on the level of the capital stock. In Section

6 we assume that shocks are autocorrelated. Finally, Section 7 concludes.

2 Model

Time is discrete and is indexed by t = 1, 2, ... There are two agents, who we will refer

to as investor and entrepreneur, respectively. The latter is endowed with a production

technology, that produces a homogeneous good with capital as the only input. Output

(yt) is given by

yt = θtf(kt),

where kt ∈ [k, k] ∈ <+ and where θt ∈ Θ ⊆ <+ is a random variable distributed

according to the time–invariant distribution function G(θt|at). The variable at ∈ A ≡

1Our model is quite similar to his component planner problem. The main difference between such
problem and ours is that Bohacek (2005)’s component planner is not bound by a period–by–period
limited liability constraint. In other words, component planners rent capital on spot markets.
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[a, a] ∈ <+ denotes entrepreneurial effort. We assume that G has a density denoted by

g, which is twice continuously differentiable with respect to a, and that Θ is compact.

While the output of the production process is public information, the effort exerted

by the entrepreneur is her private information.

At time t = 0, the investor provides the entrepreneur with capital k0. We assume

that any further investment must be financed with resources produced internally.

Therefore it must be the case that, at all t,

ct + xt ≤ θtf(kt),

where ct ≥ 0 is the entrepreneur’s consumption and xt ≥ 0 represents investment.

The law of motion for capital is the usual one:

kt+1 = (1 − δ)kt + xt,

where δ ∈ (0, 1) denotes the depreciation rate. The last two conditions imply the

following resource constraint:

ct ≤ θtf(kt) + (1 − δ)kt − kt+1.

We assume that the investor is risk–neutral, while the entrepreneur is risk–averse.

The latter’s static preferences are represented by the utility function u(ct)− a.2 The

function u is assumed to be bounded, strictly increasing and strictly concave. Agents

discount future utility streams at the common rate β ∈ (0, 1).3

We allow investor and entrepreneur to employ history–dependent pure strategies.

If we let h0 denote the empty history, then the history at time t ≥ 1 is given by the

sequence ht = h0 ∪ {(θs, ks)}
t
s=1. The investor’s task is to offer the entrepreneur an

incentive scheme (contract) σ = {at(h
t−1, kt), ct(h

t)}∞t=1 and a sequence of contingent

capital levels
{

kt+1(h
t−1, kt)

}∞

t=1
. This notation reflects the assumption, typical in

neoclassical macroeconomics, that investment is chosen at the beginning of every

period, before the realization of the shock. The entrepreneur’s strategy consists of

the sequence {at(h
t−1, kt)}

∞
t=1.

The continuation profile of a contract σ from date t+1 on, given ht, kt+1, is denoted

as σ|ht, kt+1. Conditional on the entrepreneur following the action recommendation

2All the formal results that follow are proven for a more general specification of the entrepreneur’s
preferences, the details of which are given in Appendix A. In particular, such specification allows for
the entrepreneur’s disutility from effort to depend on the size of the capital stock she manages. This
scenario will be considered in Section 5.

3In Section 4 we will relax this restriction by considering the case in which the entrepreneur is
relatively impatient.
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given by σ|ht, kt+1, her continuation value is denoted by ω(σ|ht, kt+1). The investor’s

is denoted by v(σ|ht, kt+1).

A contract σ is said to be feasible if, at all times and after any history, effort

recommendations belong to the set A and the resource constraint is satisfied. More

formally,

Definition 1 A contract σ is feasible if, for all t ≥ 1,

at(h
t−1, kt) ∈ A,∀ ht−1, (1)

and

0 ≤ ct(h
t) ≤ θtf(kt) + (1 − δ)kt − kt+1(h

t−1, kt),∀ h
t. (2)

The incentive compatibility constraint (3) rules out one–shot deviations from the

investor’s effort recommendation plan at all dates and after all histories.

Definition 2 A contract σ is incentive compatible if, ∀t ≥ 1 and ∀ ht−1, kt,

at(h
t−1, kt) ∈ arg max

a

∫

θ

{

u(ct(h
t)) − a+ βω(σ|ht, kt+1)

}

g(θt|a)dθt. (3)

The fact that the set A is a connected subset of <+ suggests that rewriting (3) as a

first–order condition may be handy. In the literature, this is known as the first–order

approach, which is not universally valid. To ensure its validity, we follow Rogerson

(1985a) and Spear and Srivastava (1987) in assuming that the Monotone Likelihood

Ratio Property and the Convexity of the Conditional Distribution Condition hold.

Let Ω be the set of pairs (k, ω) such that there exists a feasible and incentive

compatible contract that delivers ω, given k. That is, for ∆ ∈ <2 non–empty and

compact, let

Ω ≡
{

(k, ω) ∈ ∆ | ∃ σ s.t. (1),(2),(3), k0 = k, and ω(σ|h0) = ω
}

.

In Appendix A we show that Ω can be recovered by adapting the algorithm developed

by Abreu, Pierce, and Stacchetti (1990). Then, for every (k, ω) ∈ Ω, we define the

set of the investor’s expected discounted utilities that can be generated by a feasible

and incentive compatible contract:

Φ(k, ω) =
{

v(σ|h0) | (1), (2), (3), k0 = k, and ω(σ|h0) = ω
}

.

For given (k, ω), the investor’s problem is to choose a feasible and incentive com-

patible contract σ that attains the maximum element in Φ(k, ω).4 Denote such ele-

ment as v∗(k, ω). Proposition 2 shows that the function v∗(k, ω) is a fixed point of an

4Proposition 1 in Appendix A proves that Φ(k, ω) is compact.
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operator, denoted as T , which maps the space of bounded and continuous functions

v : Ω → < into itself, with the sup norm, and is given by

T (v)(k, ω) ≡ max
a∗,k′,c(θ),ω′(θ)

∫

Θ

{

θf(k) − c(θ) − k′ + (1 − δ)k + βv(k′, ω′(θ))
}

g(θ|a∗)dθ

s.t.

∫

Θ

{

u(c(θ)) − a+ βω′(θ)
}

g(θ|a∗)dθ = ω, (4)

a∗ ∈ arg max
a

∫

Θ

{

u(c(θ)) − a+ βω′(θ)
}

g(θ|a)dθ, (5)

0 ≤ c(θ) ≤ θf(k)− k′ + k(1 − δ) ∀θ ∈ Θ, (6)

a∗ ∈ A, (7)

(k′, ω′(θ)) ∈ Ω ∀θ ∈ Θ. (8)

Since the operator T satisfies Blackwell’s sufficient conditions for a contraction,

the contraction mapping theorem ensures that the fixed point is unique. Solving

for it also yields policy functions for recommended effort a(k, ω), entrepreneur’s cash

flows c(k, ω, θ), and continuation utility ω′(k, ω, θ), which can be used to recover the

constrained–efficient contract in a straightforward manner.

Unfortunately an analytical characterization of the constrained Pareto–optimal

contract is not possible. For this reason we make assumptions about functional forms

and parameters (see below) and characterize the contract by means of numerical

methods. The algorithms that were designed to approximate the set Ω and the value

function are described in Appendix B.

2.1 Numerical Implementation

Our functional forms assumptions for preferences and technology are standard in the

macroeconomics literature. We posit that u(·) belongs to the CRRA class, i.e. u(c) =
c1−χ

1−χ , χ > 0, χ 6= 1. The production function is f(k) = kα, α ∈ (0, 1). Furthermore,

we assume that A = [0, ā] and Θ = {θl, θh}, with θh > θl and G(θl|a) = e−a.5

While this choice of conditional distribution is dictated mostly by tractability, it has

appealing features. The probability of a good outcome is zero if no effort is exerted,

and goes to 1 as effort goes to infinity. Furthermore, the marginal effect of effort on

the probability of success is decreasing in the effort itself. From now on, all variables

that are contingent on the shock realization will be denoted with the subscripts l or

h.

5The upper bound ā will be chosen so as to ensure it never binds.
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Under the assumptions listed above, the Bellman equation is as follows:

v(k, ω) = max
a∗,k′,{ci,ωi}i=h,l

(1 − e−a
∗

)[θhk
α − ch + βv(k′, ωh)] + e−a

∗

[θlk
α − cl + βv(k′, ωl)]

+ k(1 − δ) − k′ (P)

s.t. (1 − e−a
∗

) [u(ch) + βωh] + e−a
∗

[u(cl) + βωl] − a∗ = ω, (9)

a∗ ∈ arg max (1 − e−a) [u(ch) + βωh] + e−a [u(cl) + βωl] − a, (10)

0 ≤ ci ≤ θik
α − k′ + (1 − δ)k ∀ i = h, l, (11)

a∗ ∈ A, (12)
(

k′, ωi
)

∈ Ω ∀ i = h, l. (13)

The parameter values are reported in Table 1. Even though we set β, χ, α, and δ to

values that are standard in the macroeconomics literature, we wish to emphasize that

by no means should this be considered a calibration exercise.

The comparative statics exercises presented in Section 4 indicate that the choice

of χ is particularly relevant. In our benchmark, we set χ = 0.5 because of the rapidly

amassing experimental evidence in favor this value.6

k k̄ β χ α δ θh θl ω
0 3.5 0.95 0.5 0.3 0.1 1.5 0.4 10.5

Table 1: Parameter Values.

Figure 1 depicts the equilibrium value set Ω and the value function. As ex-

pected, the range of values that is feasible and incentive compatible to promise the

entrepreneur is wider, the higher the level of capital.

The value function is nothing but the expected discounted value of the cash flows

that will accrue to the investor. For this reason, it can be thought of as outside

equity. The illustration in the right panel shows that it is strictly increasing in the

level of capital and strictly decreasing in the entrepreneur’s promised utility ω. When

the value function is differentiable, these properties follow from the application of

the envelope theorem. In all of our computations, the value function is also globally

concave. However, since standard sufficient conditions for concavity are not satisfied

(the constraint set of the dynamic problem is not convex), we cannot assert this as a

general property.

6See for example Choi, Fisman, Gale, and Kariv (2007), Goeree, Holt, and Palfrey (2002), and
Holt and Laury (2002).
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Figure 1: Set Ω and Value Function.

Given a pair (k, ω) ∈ Ω, we denote as C(k, ω) the expected discounted cost to the

investor of delivering ω to the entrepreneur, when the current capital stock is k. The

function C(k, ω) is the solution to the following functional equation:

C(k, ω) = (1 − e−a
∗

)[c∗h + βC(k′∗, ω∗
h)] + e−a

∗

[c∗l + βC(k′∗, ω∗
l )],

where the asterisks designate the optimal choices generated by problem (P). The

function C(k, ω) is rendered in Figure 2.
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Figure 2: Inside Equity.

Notice that C(k, ω) is also the expected discounted value of the cash flows that

will accrue to the entrepreneur. For this reason, we will often refer to it as the value of
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inside equity. It is intuitive that it is increasing in both capital and promised utility.

3 Properties of the Optimal Contract

The purpose of this section is to illustrate the properties of the optimal incentive

scheme and its implications for firm dynamics. We find it convenient to start by

illustrating the optimal contracts that obtain in two simpler environments. In Section

3.1 we will consider the static case, i.e. the scenario where the relationship between

investor and entrepreneur lasts only one period. In Section 3.2 we will analyze the case

of infinitely repeated interaction without capital accumulation. Finally, in Section 3.3,

we will tackle the general case.

3.1 The Static Case

Let ui ≡ c1−χi /(1 − χ). With some abuse of notation, also define the inverse of

the utility function as c(u) = [(1 − χ)u]1/(1−χ). It yields the cost to the investor of

delivering a certain level of utility and is strictly increasing and strictly convex.

We find it convenient to let the investor choose utilities rather than cash–flows.

Then, whenever the recommended effort is strictly positive, her optimization program

writes as

max
uh,ul

(1 − e−a
∗

) [θhk
α − c(uh)] + e−a

∗

[θlk
α − c(ul)] − δk,

s.t. (1 − e−a
∗

)uh + e−a
∗

ul − a∗ = ω, (14)

a∗ = log(uh − ul), (15)

0 ≤ ui ≤ u(θik
α − δk), ∀ i = h, l.

The effort chosen by the entrepreneur is a simple, monotone increasing function of

the utility spread s ≡ uh − ul. A higher effort is implementable only by increasing

the gap between contingent rewards. Using (14) and (15) to express uh and ul as

functions of s, the problem simplifies further to

max
s

(

1 −
1

s

)

[θhk
α − c(uh)] +

1

s
[θlk

α − c(ul)] − δk,

s.t. uh = 1 + ω + log(s),

ul = 1 + ω + log(s) − s,

0 ≤ ui ≤ u(θik
α − δk) ∀ i = h, l.
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Notice that the choice of s pins down the payoffs of the lottery offered to the en-

trepreneur {1+ω+log(s), 1+ω+log(s)−s}, along with the the respective probabilities

{1 − 1/s, 1/s}.

Necessary condition for an interior solution to the above optimization problem is

1

s2
[θh − θl]k

α =
1

s2
[c(uh) − c(ul)] +

s− 1

s2
[

c′(uh) − c′(ul)
]

. (16)

The left–hand side is the marginal gain in expected revenues resulting from the in-

crease in the probability of a good outcome. The right–hand side is the marginal

increase in the cost of compensating the entrepreneur. The first term reflects the

increased probability of awarding uh rather than ul. The second term reflects the

marginal impact on the expected cost arising from an increase in the risk imposed

on the entrepreneur. By strict concavity of the utility function, this terms is also

positive.

Condition (16) can be used to characterize the comparative statics of s with respect

to ω and k, respectively. Notice first that a larger k implies a strictly higher marginal

revenue, but has no effect on the marginal cost. Therefore, the choice of s will be

strictly increasing in k. Now consider the effect of an increase in ω. The marginal

revenue does not change. The first term of the marginal cost always increases. This

follows from strict concavity of the utility function and from the fact that higher ω

implies higher utility in both states of nature. The effect on the second term depends

on the third derivative of the inverse of the utility function. It will be non–negative as

long as χ ≥ 1/2. This means that the latter inequality is also a sufficient condition,

although not necessary, for the optimal choice of s to be decreasing in ω. In fact, in

the case of our parameterization s is decreasing in ω for much lower values of χ.

We conclude that in the static model (i) higher capital elicits higher effort and (ii)

awarding larger spreads s is costlier the higher the level of promised utility. It follows

that the recommended level of effort decreases with ω.

3.2 Dynamics without Capital Accumulation

We now consider the case in which the time horizon is infinite, but there is no capital

accumulation. This scenario is very close to those analyzed by Spear and Srivastava

(1987) and Wang (1997). It differs from the former in that we impose limited liability,

i.e. the entrepreneur’s cash–flow must be non–negative. It differs from the latter, since

Wang assumes the effort choice to be binary. With slight abuse of notation, let now

s ≡ uh + βωh − (ul + βωl). When recommended effort is strictly positive, it is still

10



the case that a∗ = log(s). The value function v(ω) solves the following functional

equation:

v(ω) = max
s,ωh,ωl

(

1 −
1

s

)

[θhk
α − c(uh) + βv(ωh)] +

(

1

s

)

[θlk
α − c(ul) + βv(ωl)] − δk,

s.t. uh = ω + 1 + log(s) − βωh,

ul = ω + 1 + log(s) − s− βωl,

0 ≤ ui ≤ u(θik
α − δk) ∀ i = h, l,

ωi ∈ Ω ∀ i = h, l.

Differentiating with respect to s yields the analogue of condition (16):

1

s2
[θh − θl]k

α +
β

s2
[v(ωh)− v(ωl)] =

1

s2
[c(uh) − c(ul)] +

s− 1

s2
[

c′(uh) − c′(ul)
]

. (17)

The forces that shape the optimal spread of utilities across states are essentially

the same as in the static case. The only difference is that the marginal benefit

of increasing effort also depends on the difference between the investor’s contingent

continuation values.

The main innovation is that now the investor has the opportunity to distribute

utility awards both across states and over time. If the value function is differentiable,

necessary conditions for an interior solution are

c′(ui) =

(

1 −
1

si

)

c′(uih) +

(

1

si

)

c′(uil), i = h, l, (18)

where si, uih, and uil denote next period’s choices contingent on the current state

of nature being i. Condition (18) is analogous to condition 2.2 in Rogerson (1985b).

As in Rogerson (1985b), the value of χ determines the dynamics of entrepreneurial

consumption. For χ < 1, payments to the entrepreneur follow a sub–martingale, while

for χ > 1 they follow a super–martingale. This result, however, does not necessarily

generalize to scenarios where the limited liability constraint binds. This is relevant

to us, as in our parameterization that constraint does bind for large enough ω.

Figure 3 plots the optimal policies for the entrepreneur’s current and promised

utility, respectively. The investor strives to equate the marginal costs of rewarding

the entrepreneur across periods. For this reason all utility awards, both current and

future, are increasing in ω. If the intuition gained in the static case generalized to

the one under analysis here, one would also expect the spread between contingent

utility awards to decrease with ω, both in the present and in the future. According

to Figure 3, this happens for relatively low ω, but not for larger values. For relatively
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high levels of the state variable, the gap between uh and ul actually widens. The

reason is that, as just argued, the limited liability constraint ul ≤ u(θlk
α − δk)

binds. This implies a tension between the objectives of minimizing the distance

between marginal costs of utility awards across periods and across states. When the

limited liability constraint binds, raising the entrepreneur’s expected current payoff

necessarily requires increasing the spread in current utilities. Our conjecture is that

if the investor was able to borrow in the bad state of nature, so that the resources

available to her were the same as in the good state, optimal recommended effort and

the utility spread s would converge to zero as ω goes to the upper bound of Ω. That

is, eventually the entrepreneur would achieve perfect insurance (and would exert not

effort).7
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Figure 3: Compensation Policies.

In spite of the fact that, as argued above, the sufficient condition for entrepreneurial

consumption to be a sub–martingale does not hold always, our simulations show that

ω converges to the maximum element in the set Ω. By the limited liability constraint,

this also implies that the investor’s payoff converges to zero, its lower bound.

3.3 Dynamics with Capital Accumulation

We now turn to the general case with capital accumulation. Figure 4 depicts the

policy functions for current and promised utility. In the left panel, we have plotted

ui(k, ω), i = h, l. In the right panel, we have pictured the contingent variation in

promised utility ωi(k, ω) − ω, i = h, l. For given capital stock, the entrepreneur’s

7This modification would require writing the limited liability constraints as 0 ≤ ci ≤ [1−e−a∗ ]θkα+
e−a∗kα

− δk ∀ i = h, l.
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Figure 4: Compensation Policies.

contingent compensation schedules display the same qualitative features as those in

the case with no accumulation. The spread between continuation utilities appears to

be decreasing in ω, while the spread between current utilities is decreasing in ω for

low values and increasing for high values. Once again, this is due to the fact that the

limited liability constraint binds in the bad state of nature.

The optimality conditions for s and ui, i = h, l, are the analogues of equations

(17) and (18). Refer to the left panel of Figure 5. Consistent with the intuition

developed in previous sections, recommended effort is increasing in the capital stock

and decreasing in the level of promised utility ω.
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Figure 5: Policy Functions for Effort and Net Investment.

The novelty is capital accumulation. The policy function for net investment is

rendered in the right panel of Figure 5, were we plotted max[0, k′(k, ω) − k]. The

13



most interesting feature is that, for given capital, net investment is declining in ω.

We can use the optimality conditions to understand why this is the case.

When the value function is differentiable, the first–order condition for the capital

choice is
(

1 −
1

s

)

∂v(k′, ωh)

∂k′
+

1

s

∂v(k′, ωl)

∂k′
≥

1

β
. (19)

By the envelope theorem, it follows that

∂v(k, ω)

∂k
=

[(

1 −
1

s

)

θh +
1

s
θl

]

αkα−1 + (1 − δ) > 0. (20)

Differentiating with respect to ω yields

∂2v(k, ω)

∂k∂ω
=

1

s2
(θh − θl)αk

α−1 ∂s

∂ω
.

Since ∂s/∂ω < 0, the latter says that the marginal value of increasing capital is

decreasing in ω. The higher ω, the lower the utility spread s and the probability of

success. In turn, this leads to a lower marginal value of investment.

Now fix k and consider the effect of increasing ω on the optimal choice of invest-

ment. This is tantamount to differentiating (19) with respect to ω. The first term,

1
s2

[

∂v(k′,ωh)
∂k′ − ∂v(k′,ωl)

∂k′

]

∂s
∂ω , is positive. An higher ω today leads to a lower utility

spread s, which in turn increases the probability of a bad outcome. Since ωh > ωl, this

means that the effect on the marginal gain is positive. On the other hand, since ωh and

ωl are strictly increasing in ω, the second term
(

1 − 1
s

) ∂2v(k′,ωh)
∂k′∂ωh

∂ωh

∂ω
+ 1

s
∂2v(k′,ωl)
∂k′∂ωl

∂ωl

∂ω
is

negative. In our simulations, the latter effect dominates. Investment decreases with

ω.

The simulation of the system starting from an arbitrary point in the state space

sheds more light on the forces shaping its dynamics. Refer to Figure 6. The state

space is partitioned in four subsets. The policy for capital is such that k′(k, ω) > k in

regions A and B, and k′(k, ω) < k otherwise. The dynamics of promised utility is such

that in regions B and C, ωh(k, ω) > ω > ωl(k, ω). In region A, ω always increases. In

region D, it always decreases. In light of our previous discussion, it is not surprising

that the locus separating regions B and C, along which net investment is identically

zero, is downward sloping for most values of k.

For relatively low initial conditions, the scatter plot illustrates the dynamics of

the state variables. The paths followed by the other relevant variables are shown in

Figure 7. When k and ω are relatively low, the marginal product of capital is high

and providing incentives is relatively inexpensive. Therefore the returns to investment
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are high. Capital grows in both states of nature. During the transition towards the

locus separating the partitions B an C, all other variables also increase on average.

However, increases in both ω and k lead to a progressive reduction in the marginal

gain from capital accumulation. Once reached the locus, incentive provision becomes

so expensive to discourage investment. From that moment onwards, positive shocks

15



lead to contemporaneous increases in current and future payouts to the entrepreneur,

and to lower investment and lower effort in the next period. The opposite is true,

conditional on negative shocks. Therefore, inside equity, effort, and capital are pos-

itively correlated with each other. The continuation value of the investor’s claim is

negatively correlated with all of them. Because of the sub–martingale property de-

scribed above, on average ω increases and capital decreases. As a consequence, effort

and outside equity also decrease on average.

Eventually the system converges to a stationary point where outside equity is

zero and the entrepreneur’s promised utility lies on the upper contour of the set Ω.

The constrained–efficient arrangement prescribes that in the limit the entrepreneur

controls the totality of the cash–flow rights. Notice further that, even in such predica-

ment, she will not achieve full insurance and therefore her effort will be strictly pos-

itive. The latter result is a consequence of our assumptions on limited liability. As

already noted in Section 3.2, if the investor had access to a competitive insurance

market, the entrepreneur would end up receiving full insurance and exerting no ef-

fort.

Staring at Figure 8 confirms what we have learned so far. We have initialized the

system by assigning to the state variables the same initial conditions used to construct

Figure 7. Then we have conducted a large number of 80–period long simulations.

Figure 8 reports the simple averages. Early on all variables tend to increase. However,

once ω reaches a certain value, effort, capital, profits and the value of the investor’s

claim start decreasing.

We close this Section by emphasizing two implications of our theory that we find

of particular interest. The first is that it provides a novel rationale for the assumption

of limited span of managerial control, i.e. for the idea that the amount of productive

resources that it is efficient to put under a manager’s control is bounded (see Lucas

(1978)). Even in the case in which the production function displayed constant returns

to scale, our theory would still predict that firm size converges. This is the case

because the process for ω would still be a sub–martingale, and promised utility would

eventually become so high (and incentive provision so costly) to discourage further

investment.

The second property is what we call capital overshooting. Our theory predicts

that, on the transition to its rest point, capital overshoots its long–run value. As far

as we know, this feature is unique to our framework. In other papers that study firm

dynamics in environments with repeated hidden information, capital is always weakly
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Figure 8: Average Dynamics.

lower then its long–run value.8

4 Comparative Statics

In this section, we document how the optimal contract and the implied dynamics

change when we select alternative values for either the coefficient of relative risk

aversion χ, or the entrepreneur’s discount factor, or the support of the conditional

distribution Θ.

4.1 The case of χ > 1

The analysis conducted so far shows that the optimal contract is back–loaded. That

is, the payoff to the entrepreneur is stochastically increasing over time. How general

is this feature?

In a simpler environment, without capital accumulation, Rogerson (1985b) showed

that it is not robust to increases in the relative risk aversion beyond 1 (χ > 1, in our

notation).9

8See for example Brusco and Ropero (2007), Clementi and Hopenhayn (2006), Quadrini (2003)
and DeMarzo, Fishman, He, and Wang (2008).

9See his Proposition 3.
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Our numerical results tell us that the same holds true here. Figure 9 depicts the

frequency distribution that obtains by running a very long simulation of our model

for χ = 2. Differently from the benchmark case discussed above, the optimal contract

implies a non–degenerate stationary distribution, with most of the mass clustered

around a downward–sloping curve which is the analogue of the locus partitioning the

set Ω in Figure 6. Once again, this feature reflects the fact that the marginal gain

from investing is decreasing in the promised utility ω.
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Figure 9: Stationary Distribution for χ = 2.

The intuition behind this result is rather simple. As the risk aversion coefficient

increases, the intertemporal elasticity of substitution decreases. In turn, this implies

that distorting intertemporally the entrepreneur’s consumption profile by postponing

her consumption is costlier. Constrained–optimality requires the lender to leave more

resources to the entrepreneur early on.

4.2 An Impatient Entrepreneur

Throughout Section 3 it was assumed that entrepreneur and investor discount future

utility flows at the same rate. Here we consider the case in which the entrepreneur

discounts future utility at the rate ρ < β. To start with, Ω, the set of implementable

utility levels is now smaller. The reason is that incentive provision is more expensive.
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Figure 10: Average Dynamics for χ = 2.

In a sense, the investor’s ability to spread compensation over time is compromised.

Figure 11 compares the policy functions with those obtained in the benchmark

case. Given the entrepreneur’s preference for early consumption, the optimal contract

calls for a change in the time profile of her cash flows in favor of the current period. In

part, this is accomplished by increasing the distribution to the entrepreneur in the low

state. Since the limited liability constraint binds, this translates into fewer resources

available for investment. The distribution contingent on high state also increases, to

an extent that increases the income risk imposed on the entrepreneur. In turn this

increases the marginal cost of eliciting effort. This is why the latter drops.

The implications for dynamics is that, similarly to the case of χ > 1, the ergodic

set is no longer degenerate. There will be a stationary distribution, whose shape

resembles that depicted in Figure 9.

4.3 The Role of Risk

Figure 12 gives a rendering of the impact of simultaneously lowering θh and raising

θl, thereby reducing the gap between the two realizations of the productivity shock.

Once again, the policy functions are compared to those that obtain in the benchmark

case of which in Section 3.
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Figure 11: Policy Functions. Solid: benchmark. Dashed: ρ = 0.945

Net investment increases. The reason is that, for higher θl, more resources are

available for distribution to the entrepreneur in the current period, conditional on low

shock realization. For given intertemporal distribution of payoffs to the entrepreneur,

this allows to narrow the gap between current conditional cash flows accruing to the

entrepreneur. In turn this means that, for all continuation values ω′, the marginal

gain from investment will be higher.

The decrease in effort is the net result of two opposing forces. On the one end,

as just argued, a higher θl results in a lower marginal cost of eliciting effort. On the

other hand, the marginal benefit of effort also drops, as the gap θh − θl closes. The

latter turns out to dominate.

5 On Capital and the Utility Cost of Effort

So far we have assumed that the marginal impact of effort on expected revenues is

proportional to eaf(k), an expression which is clearly increasing in the size of the firm.

However, we have posited that the marginal utility cost of exerting effort is invariant

with respect to firm size. If we think of one unit of effort as the accomplishment of

one task, it is easy to think of situations in which the latter assumption looks sensible.

Think, for example, at the hiring of a new factory floor technician. The effort required
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Figure 12: Policy Functions. Solid: benchmark. Dashed: θh = 1.45, θl = 0.45.

should be independent of the number of technicians already employed. However, there

are also instances in which the same assumption is not as appealing. This is the case,

for example, when the decision involves the purchase of a new software for budget

control. The idea is that the larger the firm, the wider the set of software systems with

which a new one has to dialogue. Therefore the associated cost should be higher.10

In this section, we allow for a more general specification of the utility cost of effort.

The entrepreneur’s preferences are now given by u(c) − akϕ. The marginal cost of

exerting effort will be increasing or decreasing with size, depending on the sign of the

parameter ϕ.

Recall that in the benchmark scenario, everything else equal, recommended effort

is increasing in the level of capital. This is the case, because capital only impacts

(positively) the marginal revenue effect of increasing the utility spread s. Introducing

the interaction of capital and effort in the entrepreneur’s utility function has the

potential of enriching the range of the model’s empirical implications. When ϕ > 0,

the marginal utility cost of effort is increasing in capital. In turn, that will make

effort less attractive for the entrepreneur. The opposite will happen for ϕ < 0. This

intuition is confirmed by the expression for optimal effort. Given the utility spread s

10See Baker and Hall (2004) for an insightful digression on this issue.
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and the level of capital k, the entrepreneur will choose a∗(k, ω) = log(s) − ϕ log(k).

The first–order condition for s now reads

[θh − θl]k
α + β[v(ωh) − v(ωl)] = [c(uh) − c(ul)] + (s − kϕ)

[

c′(uh) − c′(ul)
]

, (21)

with

ωh =
1

β
[ω + kϕ(1 − log(kϕ)) + kϕ log(s) − uh] ,

ωl =
1

β
[ω + kϕ(1 − log(kϕ)) + kϕ log(s) − s− ul] .

The comparative statics of s with respect to k is now more involved and nothing

ensures that utility spread and effort are increasing in capital. In fact, we will show

an example in which both are lower, the smaller the capital stock.

Letting the utility cost of effort depend on size impacts all features of the constrained–

efficient contract. By the envelope condition, we now have that

∂v(k, ω)

∂k
=

[(

1 −
kϕ

s

)

θh +
kϕ

s
θl

]

αkα−1+(1−δ)−

[(

1 −
kϕ

s

)

c′(uh) +
kϕ

s
c′(ul)

]

ϕa∗kϕ−1,

Compare this expression with (20), its counterpart in the benchmark scenario. Recall

that a ≥ 0 implies s ≥ kϕ. Increasing capital has still a positive effect on revenues,

given by the first two addenda. The last addendum reflects the effect on the costs

of delivering compensation. Its sign will be that of the parameter ϕ. When ϕ < 0,

i.e. when the marginal utility cost of effort is decreasing in size, the marginal impact

on costs will be negative. It follows that we will have ∂v(k,ω)
∂k ≥ 0 as in Section 3.

However, when ϕ ≥ 0, increasing capital will adversely affect that cost. In principle,

there may exist levels of ϕ large enough that the marginal gain of adding capital is

indeed negative.

Figure 13 illustrates how the system’s dynamics changes when we consider strictly

positive values for ϕ. It shows averages for a large number of 80–period long simula-

tions, in the cases of ϕ = 0, 0.1, and 0.3, respectively. As expected, a larger ϕ means

slower capital accumulation and lower payoffs for the investor. With the exception of

the first few periods, the entrepreneur’s payoff and its effort exertion are also lower.11

6 Auto–Correlated Shocks

The model we have analyzed so far assumes that a successful performance of the en-

trepreneur only affects the probability distribution of the shock θ in the same period.

11For ϕ = 0.3, effort is actually increasing in ϕ. This is the only novel qualitative feature resulting
from ϕ > 0. The reason is that for k < 1, the marginal utility cost of increasing effort is decreasing
in ϕ.
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Figure 13: Average Dynamics. Dashed: ϕ = 0.1. Dash–Dot: ϕ = 0.3

Although it is shared by most of the literature on dynamic hidden action models,12

one may find this assumption to be particularly removed from reality. In this sec-

tion we address this concern by assuming that a successful outcome also alters the

probability distribution in the future. We posit that next period’s distribution con-

ditional on success in the current period, G(θ′|a′, θh), stochastically dominates the

same distribution conditional on failure, i.e. G(θ′|a′, θl), for all a′. In the numerical

implementation, we assume that prob(θ′ = θh|θ = θi) = 1 − e−ψia, with ψh > ψl.
13

Figure 14 illustrates value and policy functions along the ω dimension, for given

capital stock. Solid lines refer to ψh = 1.4, while dashed line refer to ψl = 0.8. All

the other parameters are as described in Table 1. As expected, effort, investment,

and outside equity are lower conditional on ψ = ψl. Perhaps more interestingly,

cash–flows accruing to he entrepreneur both in the current and future periods are

higher, conditional on ψ = ψl. That is, ci(k, ω, ψl) > ci(k, ω, ψh) and ωi(k, ω, ψl) >

ωi(k, ω, ψh) for all ω and for i = h, l. The result that cl(k, ω, ψl) > cl(k, ω, ψh) is a

direct consequence of two facts: (i) the limited liability constraint binds in the low

12For example, see Spear and Srivastava (1987) and Wang (1997).
13Notice that our modeling choice is different from that of Fernandes and Phelan (2000). In their

case, next period’s distribution depends on current effort (which is private information), rather than
on current realization (public information).
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state of nature and (ii) investment is lower conditional on ψ = ψl.

Contingent variations in promised utility are lower when ψ = ψh because of the

negative complementarity between the two state variables, which we have described

in Section 3. Since the marginal gain of raising ω is decreasing in k and the choice of

k′ is higher when ψ = ψh, the optimal choices of ωh and ωl will have to be lower.
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Figure 14: Policy Functions. Case with State–Dependent Shock Distribution

Figure 15 illustrates the effects of persistence on the dynamics of all relevant vari-

ables. Similarly to the cases considered above, the value of outside equity converges

to zero and the entrepreneur ends up controlling all cash–flow rights. However, the

ergodic set for the state variables is now a non–degenerate subset of Ω’s upper con-

tour. As the investor’s payoff settles down to its long–run value, the other variables

are time–varying. Since a good shock today implies a more favorable probability

distribution tomorrow, promised utility, investment, and recommended effort are all

higher following a good shock.

7 Conclusion

In this paper we have characterized the firm dynamics implied by constrained–efficient

contracts between a risk–neutral investor and a risk–averse entrepreneur under the

assumption that the latter’s effort is not publicly observable.
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Figure 15: Sample Path. Case with State–Dependent Shock Distribution

A robust feature of the model is the sub–modularity of the value function. That

is, the marginal gain from investing declines with the level of promised utility. This

happens because the cost of incentive provision is increasing in ω. In turn, this means

that the higher ω, the lower constrained–efficient effort and the probability of success,

and therefore the lower the return to capital accumulation.

Consistent with a widely cited result by Rogerson (1985b), when the entrepreneur’s

relative risk aversion coefficient is less than 1 and the two agents are equally impa-

tient, on average ω and the value of inside equity grow over time. Because its marginal

product of capital is relatively high, a small firm will see its capital grow over time.

However, because of the sub–modularity property, the rise in the value of inside eq-

uity will imply a drop in the return to investment, which eventually will lead to a

decline in the capital stock. In this sense, our theory provides a rationale for firm’s

decline. This feature distinguishes our model from others in which repeated moral

hazard shapes firm dynamics. In those, firm size never overshoots its long–run level.

Interestingly, the constrained–efficient contract prescribes that in the long run the

entrepreneur becomes the only claimant to the firm’s cash flows.

A key mechanism in our theory is that providing incentives to exert effort becomes

costlier as the manager increases her stake in the firm. We believe that it would be

interesting to extend our framework by allowing for the possibility of termination.
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That is, by empowering the investor to liquidate the entrepreneur and hire someone

else to run operations. The insights provided by Spear and Wang (2005) may prove

useful in carrying out this task.
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A Proofs and Lemmas

The results that follow are shown under the assumption that the entrepreneur’s pref-

erences are represented by the utility function u(ct,m(at)l(kt)), which is assumed

to be bounded, strictly increasing and strictly concave in ct, and strictly decreas-

ing in m(at)l(kt). We assume that m(at) is increasing and convex in at and that

l : <+ → <+. We also assume that u(ct,m(at)l(kt)) is additively separable in the

arguments ct and m(at)l(kt).

Proposition 1 Φ(k,w) is compact, ∀(k, ω) ∈ Ω.

Proof. Fix the pair (k, ω). We already know that Φ(k,w) is bounded. It is left to

prove that it is also closed. Let {Vn} ⊆ Φ(k,w), where Vn → V∞ when n → ∞. We

need to show that V∞ ∈ Φ(k,w). In words, we need to demonstrate that there exists

a contract σ∞ that satisfies (1), (2), (3), ω(σ∞|h0) = w, and v(σ∞|h0) = V∞. Now we

will construct such an optimal contract σ∞. By the definition of Φ(k,w), there exists

a sequence of contracts {σn} = {ant (h
t−1), cnt (h

t)} and capital {knt+1(h
t−1)}, where

the constraints (1), (2), and (3), ω(σn|h
0) = w are satisfied for every n. Therefore

V∞ = lim
n→∞

∞
∑

t=1

βt−1

∫

[θtf(kt) − cnt (h
t) − knt+1(h

t−1) + (1 − δ)kt]g(θt|a
n
t (h

t−1))dht

For t = 1, notice that {an1 (h0), cn1 (h1)} and {kn2 (h0)} are finite collections of bounded

sequences. Therefore, there exist collections of subsequences {a
nq

1 (h0), c
nq

1 (h1)} and

{k
nq

2 (h0)} such that

lim
nq→∞

a
nq

1 (h0) = a∞1 (h0), lim
nq→∞

c
nq

1 (h1) = c∞1 (h1), and lim
nq→∞

k
nq

2 (h0) = k∞2 (h0).

We now consider t = 2. Notice that {an2 (h1), cn2 (h2)} and {kn3 (h1)} are finite col-

lections of bounded sequences, and we can define {a∞2 (h1), c∞2 (h2)} and {k∞3 (h1}

similarly as we did for t = 1. If we iterate this procedure for t = 3, 4, ..., and let

σ∞ = {a∞t (ht−1), c∞t (ht)} along with k = {k∞t+1(h
t−1)}, then it is easy to verify that

the constructed contract σ∞ is what we desired for.

Proposition 2 v∗(k, ω) = T (v∗)(k, ω).

Proof. Fix ω, the lifetime discounted utility ensured by the optimal contract

to the agent, and k, the optimal capital level of the firm. First, we show that
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T (v∗)(k, ω) ≤ v∗(k, ω). This inequality is true if there exists a feasible and incen-

tive compatible contract σ such that ω(σ|h0) = ω and v(σ|h0) = T (v∗)(k, ω). The

desired contract σ can be constructed in the following way. Let a(k, ω), c(θ, k, ω),

k′(k, ω), and ω′(θ, k, ω) denote the solution of the maximization problem associated

with the definition of T (v∗)(k, ω). Now, let a1(h
0) = a(k, ω), c1(h

1) = c(θ1, k, ω), and

k2(h
0) = k′(k, ω), ∀h1 along with k1 = k0. For the realization of θ in t = 1, denoted θ1

for the purpose of this proof, there exists a feasible and incentive compatible contract

σθ1 that ensures a level of expected discounted utility ω′(θ1, k, ω) to the agent, and

v∗(k′(k, ω), ω′(θ1, k, ω)) to the principal. Thus, we can say that σ|h1 = σθ1, ∀h
1. It is

obvious that the constructed contract σ is what is desired.

We now need to show that v∗(k, ω) ≤ T (v∗)(k, ω). Let σ∗ be an optimal contract

that ensures a level of expected discounted utility of ω to the agent, given k. In

consequence, we can say that

v∗(k, ω) = v(σ∗|h0),

or

v∗(k, ω) =

∫

Θ

{

θ1f(k1) − c∗1(θ1) − k∗2(h
0) + (1 − δ)k1 + βv∗(k∗2(h

0), σ∗|h1)
}

g(θ|a∗1(h
0))dθ,

or, finally,

v∗(k, ω) ≤ T (v∗)(k, ω),

where the last inequality is obtained by letting a(k, ω) = a∗(h0), c(θ, k, ω) = c∗1(θ1),

ω′(θ, k, ω) = ω′∗|h0) along with k′(k, ω) = k∗2(h
0) and k1 = k0. This solution satisfies

the constraints (4), (5), (6), (7), and (8).

A.1 The APS Algorithm

In this Appendix, we show how results from Abreu, Pierce, and Stacchetti (1990) can

be adapted to our environment in order to define an iterative algorithm that allows

for the numerical approximation of the set Ω.

For any arbitrary Σ ∈ <2, define the operator B as

B(Σ) = {(k,w) | ∃
{

a, k′, c(θ), ω′(θ)
}

s.t. (4), (5),(6), (7), and (k′, wω′(θ)) ∈ Σ,∀θ}

Notice that the operator B is monotone, i.e. Σ1 ⊆ Σ2 implies that B(Σ1) ⊆ B(Σ2).

Following Abreu, Pierce, and Stacchetti (1990), we say that Σ is self–generating if

Σ ⊆ B(Σ).
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Proposition 3 (a) Ω is self–generating. (b) If Σ is self–generating, then B(Σ) ⊆ Ω.

Proof. To prove (a), let (k, ω) ∈ Ω. There exists a contract σ = {at(h
t−1), ct(h

t)}

and a sequence {kt+1(h
t−1)} which satisfy the constraints (1), (2), (3), and ω(σ|h0) =

ω. We now say that

a(k, ω) = a1(h
0); k′(k, ω) = k2(h

0); c(θ, k, ω) = c1({θ}), ∀θ; ω′(θ, k, ω) = ω2(σ|{θ}), ∀θ.

It is obvious that {a(k, ω), c(θ, k, ω), k′(k, ω), ω′(θ, k, ω)}, defined above, satisfies

the constraints (4), (5), (6), (7), and (8). Therefore, (k, ω) ∈ B(Ω), which demon-

strates that (a).

To prove (b), let Σ be self–generating, and let (k, ω)h0 ∈ B(Σ). We have to

construct a contract σ = {at(h
t−1), ct(h

t)} and a sequence kt+1(h
t−1) = kh0 that

satisfy the constraints (1), (2), (3), and ω(σ|h0) = ωh0. We construct such a contract

recursively. First, there exist {a(kh0 , ωh0), c(θ, kh0 , ωh0), k′(kh0 , ω h0), ω′(θ, kh0 , ωh0)}

that satisfies (5), (7), (8), and

∫

Θ

{

u(c(θ, kh0 , ωh0),m(a(kh0 , ωh0))l(k)) + βω′(θ, kh0 , ωh0)
}

g(θ|a(kh0 , wωh0))dθ = ωh0,

0 ≤ c(θ, kh0 , ωh0) ≤ θf(k) − kh0 + (1 − δ)k.

For t = 1, let a1(h
0) = a(kh0 , ωh0) and c1(h1) = c(θ1, kh0 , ωh0), ∀h1. Also, let

k′h0 = kh1 = k′(kh0 , ωh0) and ωh1 = ω′(θ, kh0 , ωh0), ∀h1. Notice that (kh1 , ωh1) ∈ Σ ∈

B(Σ) implies the existence of {a(kh1 , ωh1), c(θ, kh1 , ωh1), k′(kh1 , ωh1), ω′(θ, kh1 , ωh1)}

that satisfies (5), (7), (8), and

∫

Θ

{

u(c(θ, kh1 , ωh1),m(a(kh1 , ωh1))l(k)) + βω′(θ, kh1, ωh1)
}

g(θ|a(kh1 , ωh1))dθ = ωh1,

0 ≤ c(θ, kh1 , ωh1) ≤ θf(k)− kh1 + (1 − δ)k.

We can iterate for t = 2, 3, 4, ... to construct the complete profile σ. We can then

observe that, by construction, for any arbitrary t ≥ 0 and ht,

ω(σ|ht) − ωht =

∫

Θ
β[ω(σ|ht∗1) − ωht∗1]g(θ|a(kht , ωht))dθt∗1

Since 0 < β < 1 and the utilities are bounded, the above equation implies that

ω(σ|ht) = ωht ∀ t ≥ 0 and ∀ ht.

Hence, the contract that we have constructed is what is desired.
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Now define a closed and bounded set Ω0 such that Ω ⊆ Ω0. Recall that k ∈ [k, k̄] ∈

<+. Let

Ω0 = {(k, ω) | k ∈ [k, k̄] and ω ∈ [ω, ω̄(k)]},

where ω is set to an arbitrarily small positive number. We do not need to assume that

u(·) is positive–valued, since a positive monotone transformation can achieve this if

needed. Also, let ω(k) ≡ u(c,m(a)l(k))
1−β , where a = min{A} and c = θf(k), θ = max{Θ}.

Proposition 4 shows that (i) the set Ω is a fixed point of the operator B and that

(ii) the sequence constructed by iterating on B starting with Ω0 converges to the set

Ω.

Proposition 4 (a) Ω = B(Ω). (b) Let X0 = Ω0, and let Xn+1 = B(Xn), for

n = 0, 1, 2, ... Then, lim
n→∞

Xn = Ω.

Proof. Part (a) is obvious. To show part (b), we will first show that the sequence

{Xn} is convergent. Obviously, B(X0) ⊆ X0. Next, we operate B on both sides

of this expression and obtain Xn+1 = B(Xn) ⊆ Xn, ∀n, because B is monotone

increasing. Hence, {Xn} is a bounded and monotone decreasing set sequence with

X∞ = lim
n→∞

Xn =
∞
∩
n=0

Xn. Now, we show that Ω ⊆ X∞. Given that Ω ⊆ X0, the

monotonicity property of B ensures that B(Ω) ⊆ B(X0). However, it must be true

that Ω = B(Ω), by part (a), and B(X0) = X1, by construction. Then, Ω ⊆ X1.

By iteration we obtain Ω ⊆ Xn, ∀n ≥ 0, and consequently, Ω ⊆ X∞. Now, we

demonstrate that X∞ ⊆ Ω. Given the properties of the sequence {Xn}, we have that

B(X∞) = X∞. Hence, X∞ is self–generating, and X∞ = B(X∞) ⊆ Ω.

B Algorithm

In this section we provide a brief description of the algorithm that was used to compute

a numerical approximation to the value function v(k, ω). Given that the equilibrium

value set Ω is not square, it is not efficient to approximate the value function by

means of bi–dimensional splines. For this reason, we will restrict the choice of capital

to a finite number of levels and approximate the value function on the ω dimension

by means of cubic splines.

We start by defining a fine grid for the capital stock. Denote it as K ≡ {kj}
nk

j=1

and let the related set of indexes be J ≡ {j}nk

j=1. The upper bound of K must be

chosen in such a way that the corresponding net investment will be negative for all ω.

For this to be the case, it is sufficient to set it equal to the efficient capital stock when

30



θ = θh with probability 1 in all periods. That is, we let knk
=

(

αθh

δ

)
1

1−α
. The next

task consists in approximating the equilibrium value set of the transformed problem.

B.1 Approximation of the Equilibrium Value Set

From the analysis conducted in Section 2, it follows that for every j ∈ J , the set

of feasible and incentive compatible values will be given by an interval [ω, ω̄j] ∈ <+.

This means that our task reduces to approximate the mapping Ω : K → <+ which is

given by the sequence {ω̄j}j∈J . The mapping Ω can be shown to be increasing and

strictly concave.

Following Abreu, Pierce, and Stacchetti (1990), we start by defining an initial

guess Ω0 = {ω̄0j}j∈J . We impose that Ω0 is weakly increasing, weakly concave,

and such that ω̄0j ≥ ω̄j for all j. These requirements are satisfied by letting ω̄0j =
u(θhk

α
nk

−δknk
)

1−β . Then, for every j, q ∈ J such that θlk
α
j +kj(1−δ)−kq ≥ 0, we compute

bjq ≡ max
a,{ui,ωi}i=h,l

(

1 − e−a
)

[uh + βωh] + e−a[ul + βωl] − a (22)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq),

ω ≤ ωi ≤ ω̄nq

and

ω̄n+1,j ≡ max
j

{bjq} . (23)

The operator defined by (22)–(23) generates a sequence {Ωn} that converges to Ω .

Our approximation will be Ωm such that ||Ωm − Ωm−1||∞ < 10.0−8.

Notice that, conditional on effort being zero, the above optimization problem

simplifies to

max
ul,ωl

ul + βωl

s.t. 0 ≤ ul ≤ u(θlk
α + k(1 − δ) − kj),

ω ≤ ωl ≤ ω̄nj.

Obviously the solution calls for ul = u(θlk
α
j + kj(1 − δ) − kq) and ωl = ω̄nq. Alterna-

tively, when effort is strictly positive, a = log(s), where s ≡ (uh + βωh − ul − βωl).

The optimization problem then becomes

max
s,uh,ωh

uh + βωh − 1 − log(s)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq),

ω ≤ ωi ≤ ω̄nq.
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In this case the solution calls for ui = u(θik
α
j + kj(1 − δ) − kq) and ωi = ω̄nq.

B.2 Approximation of the Value Function

For every j ∈ J , we define a coarse grid Zj = {ωjz}
nω

z=1 over the interval [ω, ω̄j ].

We also define an initial guess for the value function: v0j : Zj → <+. For all other

ω ∈ [ω, ω̄j ], the guess is approximated by a cubic spline which we denote as v0j(ω).

We impose that v0j(ω) is decreasing and concave in ω for all j ∈ J and that the

function is increasing and concave in capital. Then, for all z and every j, q ∈ J such

that θlk
α
j + kj(1 − δ) − kq ≥ 0, we compute

djzq ≡ max
a∗,{ui,ωi,}i=h,l

(1 − e−a
∗

)[θhk
α − c(uh) + βvnq(ωh)] + e−a

∗

[θlk
α − c(ul) + βvnq(ωl)]

+ kj(1 − δ) − kq, (24)

s.t. (1 − e−a
∗

)[uh + βωh] + e−a
∗

[ul + βωl] − a∗ = ωjz,

a∗ = arg max (1 − e−a)[uh + βωh] + e−a[ul + βωl] − a,

0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq) ∀ i = h, l,

a∗ ≥ 0,

ω ≤ ωi ≤ ω̄q ∀ i = h, l,

and

vn+1,jz ≡ max
q

{djzq} . (25)

The operator defined by (24)–(25) generates a sequence Vn ≡ {vnj}j∈J . Our

approximation of the value function on the grid will be Vm such that ||Vm−Vm−1||∞ <

10.0−8. Notice that when recommended effort is positive, the above optimization

problem simplifies to

max
s,{ui}i=h,l

(

1 −
1

s

)

[θhk
α − c(uh) + βvnq(ωh)] +

1

s
[θlk

α − c(ul) + βvnq(ωl)]

+ kj(1 − δ) − kq,

s.t. ωh = [ωjz + 1 + log(s) − uh]/β,

ωl = [ωjz + 1 + log(s) − s− ul]/β,

0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq) ∀ i = h, l,

ω ≤ ωi ≤ ω̄q ∀ i = h, l.
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