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Abstract

We study the destabilising effect of dynamic hedging strategies on the
price of the underlying asset in the presence of transaction costs. Once
transaction costs are taken into account, continuous portfolio re-hedging
is no longer an optimal strategy. Using a non-optimising (local in time)
strategy for portfolio rebalancing, explicit dynamics for the price of the
underlying asset are derived, focusing in particular on excess volatility
and feedback effects of these portfolio insurance strategies. Moreover, it is
shown how these latter depend on the heterogeneity of the insured payoffs.
Finally, conditions are derived under which it may be still reasonable, from
a practical viewpoint, to implement Black-Scholes strategies.

1 Introduction
Standard option pricing literature relies on the hypothesis that the dynamics
of the underlying asset are independent of the hedging strategy. Dynamic delta
hedging strategies require to sell the underlying asset if its price decreases,
while they require to buy if its price increases. The hypothesis of independency
between strategies and price dynamics of the underlying asset corresponds to
the assumption that the market for the underlying asset is perfectly liquid.
Positive feedback effects from dynamic delta hedging strategies have been

studied recently assuming that the asset market for the underlying asset is only
"finitely liquid", that is, relaxing one of the major assumptions of the Black-
Scholes model that the market in the underlying asset is perfectly elastic1 (see,
for example, Frey and Stremme (1997), Schönbucher and Wilmott (2000), Sircar
and Papanicolaou (1998), Gennotte and Leland (1990), Donaldson and Uhlig
(1993)). It has been shown that in this case portfolio insurance activity has
a destabilising effect on the dynamics of the price of the underlying asset. In
particular, it increases the volatility of the price of the underlying asset. Frey
and Stremme (1997) study the feedback effects of dynamic hedging strategies
on the volatility of the market equilibrium price of the underlying asset. They
derive the tracking error, show that an overinvestment is required and derive
the best volatility used by program traders in calculating their trading strat-
egy. Sircar and Papanicolaou (1998) study the interaction between reference
traders and program traders and the feedback effects of program traders on
the underlying asset, deriving a feedback adjusted option price and the optimal
hedging strategy. Frey (1998), in a continuous time version of Jarrow (1992,
1994), study the replication of derivative securities from the viewpoint of large
traders, whose trades have a non-negligible effect on the asset price. In a similar
vein, Schönbucher and Wilmott (2000) discuss the pricing, hedging and replica-
tion of options if a larger trader, for whom the market is illiquid, interacts with

1Brennan and Schwartz (1989), on the contrary, study the effects of portfolio insurance on
financial markets abstracting from possible liquidity problems. They assume that agents are
only concerned with long-term prospects of the assets and do not change their expectations
in reaction to changes in current prices. As a result, markets are very liquid and the feedback
effects of hedging on volatility become very small.
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small traders. Among the contributions related to the role of portfolio insurance
strategies in the market, some relevant papers have demonstrated the possibility
of multiple equilibrium prices in illiquid markets. Gennotte and Leland (1990)
show that information differences among market participants can cause mar-
kets to be relatively illiquid and discontinuities (or "crashes") can occur even
with relatively little hedging. Like Gennotte and Leland (1990), Donaldson and
Uhlig (1993) show that the existence of atomistic porfolio insurers increase the
variance of possible equilibrium prices and can lead to situations with many po-
tential equilibrium prices for a single set of fundamentals, unless large porfolio
insurers act in a centralized way.
All the above-mentioned papers assume that program traders can buy and

sell assets without incurring transaction costs. But, as a matter of fact, transac-
tion costs are non-negligible in asset markets. Our paper, which is most closely
aligned with Frey and Stremme (1997), extends the literature on market equi-
librium models with feedback effects caused by dynamic hedging to the case of
transaction costs.
If we introduce transaction costs, then it is no longer optimal to adjust the

portfolio continuously. There are two main approaches in the literature tak-
ing the effects of transaction costs into account: the first considers discrete
adjustments of the portfolio, where the time step of portfolio rebalancing is ex-
ogenously given, while the second considers traders as continuously monitoring
the price of the underlying asset, although adjusting their portfolio only if the
gain from adjustment is greater than the cost of adjustment. This latter ap-
proach can be subdivided into two further approaches: the first is called local in
time (Leland (1985), Hoggard, Whalley and Wilmott (1994)), while the second
is called global in time (Davis, Panas and Zariphopoulou (1993), Whalley and
Wilmott (1997), Constantinides and Zariphopoulou (1999), (2001)). The former
is a non-optimizing approach, where re-hedging is based on minimizing the vari-
ance of the hedged portfolio, while the latter is an optimizing one and is based
on utility maximization and stochastic optimal control. The option value is ob-
tained by a comparison of the maximum utilities of trading with and without the
obligation of fulfilling the option contract at expiry (see, for example, Wilmott
(2000) for a review). In this framework, Davis, Panas and Zariphopoulou (1993)
consider European option pricing with proportional transaction costs charged
on sales and purchases of stock. Whalley and Wilmott (1997) provide an as-
ymptotic analysis of Davis, Panas and Zariphopoulou (1993) in the limit of
small transaction costs. Constantinides and Zariphopoulou (1999, 2001) derive
in closed form bounds to the reservation price of a call option for a large class
of utility functions.
All these papers are concerned with the pricing of derivatives in the presence

of transaction costs, but do not deal with the hedging effects in a market model.
Our paper considers a "finitely liquid" market model and, following a local in

time approach, assumes that hedging takes place at flexible stochastic trading
periods, instead of fixed interval times, and that transaction costs are fixed
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costs, instead of proportional costs2.
Once transaction costs are taken into account, an appropriate hedging strat-

egy has to be found since it is no longer optimal to rehedge immediately the
portfolio as the price of the asset changes. In his seminal paper Leland (1985)
first introduced proportional transaction costs and developed a pricing model
with a modified option replicating strategy depending on the level of transac-
tion costs and the revision interval. Such strategy replicates the option inclusive
of transaction costs, with an error that is uncorrelated with the market and is
claimed to approach zero as the revision period becomes shorter. Inclusive of
transaction costs, the bid-ask spread of the underlying asset becomes larger and
the accentuation of up and down movements of the asset price is modelled as
if the volatility of the actual asset price is higher. Kabanov and Safarin (1997)
calculate the limiting error in Leland’s hedging strategy for the approximate
pricing of the European call. They partially correct a result in Leland (1985),
showing that such limiting error equals zero only when the level of transaction
costs decreases to zero as the revision interval tends to zero. Bensaid, Lesne,
Pages and Scheinkman (1992) deal with a discrete time model with proportional
transaction costs and derive sequentially optimal portfolios, finding dominating
strategies of the (S,s)-type and a range within which the derivative price should
lie, defining its bid-ask spread.
Most above-mentioned papers with transaction costs assume a given fixed

revision interval. In this paper instead we consider a stochastic revision interval.
For this purpose we introduce adjustment hazard functions for each program
trader, in a way which is new in this literature. Following Whalley and Wilmott
(1993) and Henrotte (1993) we define a confidence level for the deviation of the
risky asset position from the perfect hedge such that for each agent inaction is
optimal as long as the hedging unbalance level is below a tolerance level H̃0,
while the position should be rebalanced once the hedging unbalance level is
above H̃0. The parameter H̃0 gives a measure of the maximum expected risk in
the portfolio.
We will assume that H̃0 is partly deterministic and partly stochastic: the

former captures the influence of transaction costs, while the latter captures
stochastic contingencies. Given these assumptions, we can define an adjustment
hazard function for each program trader. Following Caballero and Engel (1993,
1999) we study the aggregate dynamics of the adjustment hazard rates. Then,
we study the resulting price dynamics of the risky asset. We show that the
average size of the adjustment depends on the adjustment size function, which
depends on transaction costs as well. Our main results are in keeping with
the literature on increased market volatility from hedging strategies; however,
we specify in which way markets are finitely liquid when transaction costs are
introduced and the role of transaction costs in determining the size and the
frequency of adjustment.
The paper is organised as follows. In Section 2 the adjustment hazard func-

2The model could be extended trivially in order to consider also proportional transaction
costs.
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tion is formally introduced and the model is presented. Section 3 contains the
main results. Finally, Section 4 concludes.

2 The basic model
Suppose that there are two types of traders operating in a market, where there
is a risky asset and a riskless one (a pure discount bond): program traders
and reference traders. Program traders use a dynamic hedging strategy, while
reference traders are small price takers, which include market makers and market
timers, providing liquidity for market transactions. In what follows, we do not
model the reference traders’ investment problem explicitly, but rather model the
aggregate behaviour of them. We assume that there is a continuum of reference
traders, such that the effects of transaction costs on the aggregate demand
function of reference traders are negligible. The reference traders are unaware
of the program traders’ presence and of their trading strategy (so that we can
avoid strategic trading). Furthermore, we suppose that reference traders have
perfect information about the fundamentals of the risky asset. The aggregate
demand function of reference traders is denoted by D (t, Ft, St), where S is the
price of the risky asset, t is time and F can be interpreted in different ways. For
example, Frey and Stremme (1997) and Sircar and Papanicolaou (1998) assume
F to be the aggregate income of reference traders, while Platen and Schweizer
(1994) assume F to be an unspecified liquidity demand, and others assume F to
be the fundamental value of the firm. We follow this latter approach, and make
the following assumptions about the aggregate demand of reference traders:

Assumption 1.

a) D (t, Ft, St) is a smooth function

b) there exists d > 0 such that ∂D
∂S 6 −d

c) ∂D
∂F > 0

Assumption 1.b) indicates that as the price of the asset increases, demand
decreases, so that, everything else being equal, the reference traders would like
to hold more assets if the price is low and fewer if it is high. Assumption 1.c)
means that as the fundamental value of the asset increases, demand increases
as well. In Assumption 1.b) the derivative of demand with respect to price is
negative. Economically, ruling out the derivative to be zero means that de-
mand does react to price changes; otherwise it would not be possible to find an
equilibrium by adjusting the price and the market would be illiquid. Actually,
Assumption 1.b) implies that the derivative of demand with respect to price is
bounded below. This latter requirement can be relaxed, following a compactness
argument, where Assumption 1.b) is satisfied by a suitable sequence of Dn(.),
n = 1, 2, ...converging uniformly to D.
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Let us normalize the total supply of the risky asset to one. Thus, in the
absence of program traders, equilibrium is guaranteed by the following market
clearing condition

D (t, Ft, S
∗
t ) = 1 (1)

For every pair (t, Ft) the equation (1) has exactly one solution in St denoted
by ϕ (t, Ft). Thus, the equilibrium price of the asset, i.e. S∗t = ϕ (t, Ft), is a
function of its fundamental value. We will call S∗t the normal price of the asset.
We are looking for a diffusion process for the asset price of the form

dSt = µS (St, t) dt+ σS (St, t) dWt (2)

where Wt denotes a Wiener process. Once we have specified the demand func-
tion of the reference traders and the stochastic process for the fundamental value
we can determine the dynamics of the asset price S∗t .
We will assume that the dynamics of the fundamental value of the risky asset

follow a diffusion process of the form

dFt = µF (Ft, t) dt+ σF (Ft, t) dWt. (3)

Using the equilibrium condition (1), the dynamics of the fundamental value (3)
and the fact that we are looking for a diffusion process for the risky asset of the
type (2), we have that, in equilibrium, the following condition has to be satisfied

0 = (DSσS (S
∗
t , t) +DFσF (Ft, t)) dWt+

+(DSµS (S
∗
t , t) +DFµF (Ft, t)+

+1
2DSS (σS (S

∗
t , t))

2 + 1
2DFF (σF (Ft, t))

2+
+DSFσS (S

∗
t , t)σF (Ft, t) +Dt) dt

(4)

In order to satisfy condition (4) we need the stochastic as well as the deter-
ministic term in equation (4) equal to zero; therefore, we obtain the following
moments for the risky asset price dynamics:

σS (S
∗
t , t) = −σF (Ft, t)

DF

DS

µS (S
∗
t , t) = − 1

DS

"
Dt +DFµF (Ft, t) +

1

2
DSS

µ
σF (Ft, t)

DF

DS

¶2
+ (5)

+
1

2
DFF (σF (Ft, t))

2 −DSF (σF (Ft, t))
2 DF

DS

¸
Thus, the price dynamics of the risky asset S∗t follow a diffusion process (4),
where σS (S∗t , t) and µS (S

∗
t , t) are given by expressions (5).

In the next Section we are going to study the aggregate demand of program
traders. Then, we plug the aggregate demand of program traders into expression
(1) and study its implications for the price dynamics of the risky asset.
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2.1 Aggregate demand of program traders

In this Section we specify the aggregate demand of program traders, which follow
a dynamic hedging strategy. For simplicity, all program traders act collectively,
so that the hedging strategy for a portfolio of payoffs is just the portfolio of
the hedging strategies for the individual payoffs, and we can consider just a
representative program trader. As we argued in Section 1, in the case of no
transaction costs, continuous adjustment of the portfolio is optimal. But once
we introduce transaction costs, and in particular fixed costs of adjustment,
continuous adjustment of the portfolio is no longer optimal.
Let us define a confidence level H̃0 and suppose it is a function H̃0 (c,H0),

where c > 0 is the deterministic component, while H0 is the stochastic compo-
nent. The deterministic component c captures the influence of the size of the
transaction costs on the confidence level. An increase in the transaction costs
increases c. The stochastic component H0 captures the influence of stochastic
contingencies on the confidence level.
Denote by G the portfolio of the representative program trader and by

V (S, σ, τ ,K) the option value, where S is the current underlying asset price, K
is the strike price, τ is the time to maturity and σ is volatility.
We define a probability of adjusting the portfolio in the following way

Pr
³
H̃0 (c,H0) 6

¯̄
ηt+dt

¯̄ ¯̄̄ |ηt| < H̃0 (c,H0)
´
= h (η, c) dt

where η = η (S, σ, τ ,K) = ∆ (S, σ, τ ,K)−G, and ∆ (S, σ, τ ,K) = ∂V (S,σ,τ,K)
∂S .

We assume that the distribution of H0 is the same for each program trader,
and thus, the probability of portfolio rehedging depends just on the hedging
unbalance level η and on the level of the deterministic component c. We make
the following assumptions about the adjustment hazard function h (η, c):

Assumption 2.

a) h (·) is a smooth function
b) hη (η, c) > 0 and hc (η, c) < 0

c) limc→0 h (η, c) = 1 and limc→∞ h (η, c) = 0.

Assumption 2.b) states that the probability of adjustment increases as the
hedging unbalance level increases and/or as the size of the transaction costs
decreases. Assumption 2.c) implies that, if the size of the transaction costs is
vanishing small, then the probability of portfolio adjustment converges towards
one, that is, we have continuous adjustment or dynamic delta hedging, while,
if the transaction costs are infinitely large, then the probability of portfolio
adjustment becomes vanishing small.
The hedging unbalance level η has a common element for each program

trader, which is the price of the underlying S, while there are also idiosyncratic
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components such as the strike priceK and time to maturity τ . Thus, as the price
of the underlying asset changes, the hedging unbalance level for each program
trader changes as well, while the way it changes depends on the distribution of
strike prices and of the time to maturity.
By aggregating program traders over their hedging unbalance levels we have

that the average demand of the risky asset over a time interval dt becomes

g (S, σ, c, t) =

Z
<
ηh (η, c) f (η) dη

where f (η) is the distribution of the hedging unbalance level over the program
traders. This latter distribution is not time-invariant since, as the time goes on
τ changes, and thus, according to the distribution of τ , the distribution of η
changes. We are going to assume a continuous and random influx and outflux
of program traders from the asset market, and heterogeneity in the distribution
of strikes. Thus, we have that the average demand over a small time period dt
of program trader is given by

Ψ (S, σ, c) =

Z
<2+×R

η (S, σ, τ ,K)h (η (S, σ, τ ,K) , c) f (η)υ (dK ⊕ dτ ⊕ dη) (6)

where υ has a smooth density function with respect to a Lebesgue-measure.
Thus, expression (6) represents the demand for the underlying asset of the
program traders over a small time period dt. We are interested to see how this
demand changes as the price of the underlying changes.
Consider the change in the price of the risky asset of size dS. Using expres-

sion (6) we have:

Ψ (S + dS, σ, c) =
R

<2+×R
[∆ (S + dS, σ, τ ,K)−∆ (S, σ, τ ,K) + η]×

×h (∆ (S + dS, σ, τ ,K)−∆ (S, σ, τ ,K) + η, c)×
×f (η)υ (dK ⊕ dτ ⊕ dη)

Taking Taylor expansion of ∆ (S + dS, .) and h (∆ (S + dS, .)−∆ (S, .) + η)
around S and η respectively, we have

∆ (S + dS, .)−∆ (S, .) = ∆SdS +
1

2
∆SS (dS)

2

and

h (∆ (S + dS, .)−∆ (S, .) + η, c) = h (η, c) + hη (η, c)
³
∆SdS +

1
2∆SS (dS)

2
´
+

+1
2hηη (η, c)

³
∆SdS +

1
2∆SS (dS)

2
´2
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Now we can calculate dΨ (S, σ, c) = Ψ (S + dS, σ, c)−Ψ (S, σ, c) as follows

dΨ (S, σ, c) =
R

<2+×R

nh
∆SdS +

1
2∆SS (dS)

2
i
[h (η, c) + hη (η, c) (∆SdS+

+1
2∆SS (dS)

2
´
+ 1

2hηη (η, c)
³
∆SdS +

1
2∆SS (dS)

2
´2¸

+

+ηhη (η, c)
³
∆SdS +

1
2∆SS (dS)

2
´
+

+1
2ηhηη (η, c)

³
∆SdS +

1
2∆SS (dS)

2
´2¾

f (η)υ (dK ⊕ dτ ⊕ dη)

Since (dS)θ = 0 for θ > 2 we obtain, after rearranging terms

dΨ (S, σ, c) = dS
R

<2+×R
[h (η, c) + ηhη (η, c)]∆Sf (η)υ (dK ⊕ dτ ⊕ dη)+

+1
2 (dS)

2 R
<2+×R

{[h (η, c) + ηhη (η, c)]∆SS+

+ [2hη (η, c) + ηhηη (η, c)] (∆S)
2
o
f (η)υ (dK ⊕ dτ ⊕ dη)

This latter expression can be rewritten as follows

dΨ (S, σ, c) = H1 (S, σ, c) dS +
1

2
H2 (S, σ) (dS)

2 (7)

where

H1 (S, σ, c) =

Z
<2+×R

h̃ (η, c)∆S (S, σ,K, τ) f (η) υ (dK ⊕ dτ ⊕ dη) (8)

H2 (S, σ, c) =

Z
<2+×R

n
h̃ (η, c)∆SS + h̃η (η, c) (∆S)

2
o
f (η)υ (dK ⊕ dτ ⊕ dη)

and where h̃ (η, c) = ∂
∂ηηh (η, c) = h (η, c) + ηhη (η, c) and h̃η =

∂
∂η h̃ (η, c) =

2hη (η, c) + ηhηη (η, c).
Let us introduce the following technical assumption:

Assumption 3. There exist functions υ1 and υ2 such that υ (dK ⊕ dτ ⊕ dη) =
υ1 (dη)υ2(k, τ)dKdτ where υ1 and υ2 have a smooth density function with re-
spect to a Lebesgue measure; υ2 has a compact support in R+ × [0,∞) .

Assumption 3 implies that the distribution of strike prices/times to maturity
and hedging unbalance levels is relatively heterogeneous. It will become clear
that under Assumption 3 we can control the feedback effects on market volatility
(see Proposition 2).
With Assumption 3, we can rewrite expression (8) as follows

H1 (S, σ, c) = H̃ (c) Γ̃ (S, σ) (9)
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where

H̃ (c) =

Z
<
h̃ (η, c) f (η)υ1 (dη) (10)

Γ̃ (S, σ) =

Z
<2+
∆S (S, σ,K, τ)υ2 (k, τ) dKdτ (11)

H̃ (c) indicates the stationary average size of the adjustment, given a change
in the hedge unbalance level. ∆S (S, σ,K, τ) is known in the option pricing lit-
erature as the parameter gamma, and it indicates, in the absence of transaction
costs, how often a position must be rehedged in order to maintain a delta-neutral
position. Thus, Γ̃ (S, σ) is the stationary average value of the gamma, which
indicates, in the absence of transaction costs, how often in the stationary state,
a position must be adjusted on average in order to keep delta-neutral positions.

H1 (S, σ, c) indicates the stationary average adjustment, given a change in
the price of the risky asset. H1 (S, σ, c) depends: a) on the average size of ad-
justment, and thus on the properties of the adjustment hazard function and
on the stationary state distribution of unbalance levels, and b) on the fre-
quency of adjustment, which depends on the stationary average sensibility of
the delta with respect to the price of the underlying. Notice that Assump-
tion 2 implies that ∂

∂cH1 (S, σ, c) < 0 and limc→0H1 (S, σ, c) = Γ̃ (S, σ), while
limc→∞H1 (S, σ, c) = 0. In other words, H1 (S, σ, c) is a decreasing function of
c.
Furthermore, if the size of the transaction costs is vanishing small, then

H1 (S, σ, c) converges towards the stationary average value of the gamma and so
we are back to the case of dynamic hedging strategies, while if the transaction
costs are very large, then no portfolio adjustment occurs at all. Finally, by
Assumption 2 we have H1 (S, σ, c) > 0.

3 Positive feedback effects from hedging
As we pointed out before, reference traders have perfect information about the
fundamental value of the risky asset. Thus, a reduction in the fundamental value
leads to a decrease in the price of the risky asset. Given this decrease, program
traders will sell the risky assets in order to adjust their portfolio. This latter
leads to a further price reduction of the risky asset, which now will be lower
than its normal level, i.e. St < S∗t . Thus, the action of program traders leads to
potential gains for liquidity providers, such as market makers and market timers
(see Grossman, 1988). These latter could buy the assets since their actual price
is now lower than their normal price. In this way, liquidity providers have
a stabilising function. Such ability to exploit gains from excess volatility of
price dynamics depends on some parameters, for example, the cost of capital,
transaction costs (c) and also the information about how many agents are using
a dynamic hedging strategy. If liquidity providers commit insufficient capital,
then their stabilising function will be reduced.
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Let us indicate by ρ (c,=) ∈ [0, 1] a parameter measuring market liquidity,
which is related to the action of the liquidity providers (market timers and
market makers) in response to the program traders’ demand, which may affect
the price dynamics. ρ (c,=) is a function of c, the transaction costs, and = ∈ <+,
which captures the effects of other variables on market liquidity, such as lack
of information on hedging activity and cost of capital. We take = and c as
exogenous variables. We make the following assumptions about the behaviour
of ρ (c,=):

Assumption 4.

a) ∂ρ
∂c > 0,

∂ρ
∂= > 0

b) limc→∞ ρ (c,=) = 1
c) lim(c,=)→(0,0) ρ (c,=) = 0
d) limc→0 ρ (c,=) > 0 and limc→0 ρ (c,=) > 0 as long as = > 0.

Assumption 4.a) implies that an increase in the transaction costs and in
the exogenous parameter = reduces the liquidity of the market; 4.b) implies
that as the transaction costs diverge towards infinity, the market is completely
illiquid; 4.c) implies that the market is perfectly liquid if the supply of capital
is perfectly elastic, information is perfect and if there are no transaction costs;
4.d) implies that if transaction costs are vanishing small, then the market will
still be illiquid, where the size of illiquidity depends on the size of the exogenous
variable =.
Let us add the demand of program traders to the demand of reference

traders. It can be done since reference traders are supposed to be unaware
of the presence of program traders, otherwise they would condition D (t, Ft, St)
on the program traders’ strategy itself. Using the market clearing condition, we
have that the equilibrium price has to satisfy the following condition

D (t, Ft, St) + ρ (c,=)Ψ (St, σ, c) = 1 (12)

According to Assumption 4, for (c,=)→ (0, 0) the action of the program traders
has a negligible effect on the price dynamics of the risky asset. Thus, each
deviation of prices from their normal level will be eliminated through the action
of market timers. On the other side, if the supply of capital is not perfectly
elastic or market timers do not have perfect information, then market timers
cannot completely eliminate the effect of the action of the program traders (see
Grossman, 1988). Therefore, ρ (c,=) = 0 denotes a perfectly liquid market,
that is, liquidity providers are able to neutralize program traders’ demand and
thus there is no deviation of the asset price from its fundamental value; as long
as ρ (c,=) > 0 the market for the underlying asset is only finitely liquid, and
for ρ (c,=) = 1 it becomes completely illiquid. Notice that an increase in the
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transaction costs increases the weight of the portfolio insurance in the aggregate
demand.
Now we can prove the main result.

Proposition 1 The diffusion process governing the dynamics of the asset price
is of the form (2) with parameters:

σS (St, t;σ, c) = − DF

DS + ρ (c,=) H̃ (c) Γ̃ (St, σ)
σF (Ft, t) (13)

µS (St, t;σ, c) = −Θ[Dt +DFµF (Ft, t)+

−DSFDF Θ (σF (Ft, t))
2
+

+1
2((DSS + ρ (c,=)H2 (St, σ, c))(DF ΘσF (Ft, t))

2 +DFF (σF (Ft, t))
2)]

where Θ =
h
DS + ρ (c,=) H̃ (c) Γ̃(St, σ)

i−1
.

Proof. Taking total differential of (12) and using (7) we have that

0 = Dt +DSdS +DF dF +
1
2DSS (dS)

2 +DSFdSdF+

+1
2DFF (dF )

2
+ ρ (c,=)H1 (St, σ, c) dS +

1
2ρ (c,=)H2 (St, σ, c) (dS)

2

Using the stochastic processes (4) and (3) we can rewrite this condition as follows

0 = [Dt +DSµS (St, t) +DFµF (Ft, t) +
1
2DSS (σS (St, t))

2+

+DSFσS (St, t)σF (Ft, t) +
1
2DFF (σF (Ft, t))

2
)+

+ρ (c,=)H1 (St, σ, c)µS (St, t) +
1
2ρ (c,=)H2 (St, σ, c) (σS (St, t))

2
]dt+

+ [DFσF (Ft, t) +DSσS (St, t)) + ρ (c,=)H1 (St, σ, c)σS (St, t)] dWt

(14)

Since (14) has to be true, we need the deterministic as well as the stochastic
term in (14) to be equal to zero. Thus, we obtain the values in expression (13)
for σS (St, t) and µS (St, t). Obviously, we need σS (St, t) > 0, and this is true
for appropriate values of d in Assumption 1. Thus the price of the underlying
follows a non-linear diffusion process (2).

From expression (13) in Proposition 1 we observe that the larger the average
gamma, the larger the volatility of the asset price of the underlying asset. Since
gamma indicates how often a position must be rehedged on average in order
to maintain a delta-neutral position, the higher is its average value, the more
frequently an adjustment occurs. At the same time, H̃ (c) indicates the average
size of the adjustment, given a change in the hedge unbalance level. This latter
depends on the properties of the adjustment hazard function and on the size of
the deterministic component of the confidence level c. This latter component
depends directly on the size of the transaction costs. Thus, the larger the
transaction costs, the lower H̃ (c). On the other side, the larger the transaction
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costs, the less liquid the market, and therefore the weight of the demand of the
portfolio insurance in the aggregate demand of the risky asset increases. Thus,
the effect of a change in the transaction costs on the volatility of the underlying
asset is a priori ambiguous. Given Assumptions 2 and 4 we have that if the
transaction costs are infinitely high, then limc→∞ ρ (c,=) H̃ (c) = 0 and so on
average no portfolio adjustment occurs and there will be no feedback effect, i.e.
St = S∗t . On the other side, if transaction costs are vanishing small, then, since
limc→0 H̃ (c) = 1, we are back to dynamic hedging strategies where the liquidity
of the market ρ (0,=) depends just on the size of =, and thus we are back to a
situation like the one studied by Frey and Stremme (1997).
It will become clear in view of Proposition 2 that an appropriate choice of

parameter values prevents σS (St, t;σ, c) from becoming
negative.
We can summarize our results as follows. The volatility of the underlying

asset is larger, the larger is the frequency of adjustment and/or the larger the
size of adjustment (H̃ (c)). The volatility depends also on ρ (c,=). The more
illiquid is the market, the higher is the influence of the hedging activity of the
program traders on the price dynamics of the underlying asset, that is, the
higher is the feedback effect.
Notice that as long as ρ (c,=) > 0 and c <∞ the price dynamics of the risky

asset St are different from the dynamics of the normal price S∗t . In particular,
comparing (13) with (5) we observe that there exists an excess volatility due to
the hedging activity of program traders. The size of the excess volatility depends
on the liquidity of the market (ρ (c,=)) and on the aggregate characteristics of
program traders (H̃ (c) Γ̃ (St, σ)). But since expression (13) for the volatility
σS (St, t;σ, c) still depends on the "input volatility" σ, consistency requires that
the input volatility σ be equal to the actual observed volatility. In other words,
we have to solve a fixed point problem.
In solving the fixed point problem, we will make use of the following Lemma.

Lemma (i) Γ̃ is a bounded function of σ; (ii) for σ > σ0, with 0 < σ0 <∞,
∂
∂σ Γ̃ is a bounded function of σ.

Proof. (i) The following equalities hold, because of the definition of ∆ and
Assumption 3:

Γ̃ =

Z Z
∂∆

∂S
v2 (K, τ) dKdτ = −

Z Z
K

S

∂∆

∂K
v2 (K, τ) dKdτ

Z Z
∆

∂

∂K

µ
K

S
v2

¶
dKdτ

since v2 has a compact support. Since 0 6 ∆ 6 1, we get:¯̄̄
Γ̃
¯̄̄
6
Z Z ¯̄̄̄

∂

∂K

µ
K

S
v2

¶¯̄̄̄
dKdτ

that is, Γ̃ is a bounded function of σ.
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(ii) Recall that ∂∆
∂S =

N 0(d1)
σS
√
τ
, where d1 =

ln( SK )+(r+
1
2σ

2)τ
σ
√
τ

.

Then, ∂
∂σ

³
N 0(d1)
σS
√
τ

´
6 N 00 (d1) 1

σS
√
τ
− N 0(d1)

σ2S
√
τ
6 1

σ0S
√
τ
+ 1

σ20S
√
τ
, that is, ∂

∂σ Γ̃

is a bounded function of σ for σ > σ0.
We are now able to state and proof the following Proposition.

Proposition 2 Under Assumptions 1-4, there exists a solution of the fixed point
problem

σS (St, t;σ, c) = − DF

DS + ρ (c,=) H̃ (c) Γ̃ (St, σ)
σF (Ft, t) (15)

provided that ρ (c,=) is sufficiently small.
Proof. Let us put M (σ) = σS (S, t;σ, c) = − DFσF (Ft,t)

DS+ρ(c,=)H̃(c)Γ̃(St,σ) . We

have to show that
¯̄̄
∂M(σ)
∂σ

¯̄̄
6 M < 1, with 0 6 M 6 1, in order to apply the

contraction mapping theorem.
We have that: ¯̄̄̄

∂M (σ)

∂σ

¯̄̄̄
=

¯̄̄̄
¯̄̄DFσF ρ

³
∂H̃
∂σ Γ̃+ H̃ ∂Γ̃

∂σ

´
³
DS + ρH̃Γ̃

´2
¯̄̄̄
¯̄̄

Let us first consider the denominator. If |ρ| < ε we get, for some ẽ :

(16)
¯̄̄
DS + ρH̃Γ̃

¯̄̄
> |DS |− |ρ|

¯̄̄
H̃Γ̃

¯̄̄
> d− εẽ > d

2

provided that ε 6 d
2ẽ . (16) holds because of Assumption 1, the Lemma, and

in view of the fact that H̃ is a bounded function of σ, since 0 6 ∆ 6 1, and
h (η, c), f (η), v1 (dη) are bounded functions of σ.
Let us consider the numerator. We get, with suitable constants eee, J :¯̄̄

−DFσF ρ
³
∂H̃
∂σ Γ̃+ H̃ ∂Γ̃

∂σ

´¯̄̄
=

= |DFσF | |ρ|
¯̄̄
∂H̃
∂σ Γ̃+ H̃ ∂Γ̃

∂σ

¯̄̄
6 DFσF |ρ|eee 6 Jε

It holds because of the Lemma and in view of the fact that H̃ and ∂H̃
∂σ are

bounded functions of σ. Therefore,
¯̄̄
∂M(σ)
∂σ

¯̄̄
6 4Jε

d2 = M 6 1, which holds for

ε 6 min
n

d
2ẽ ,

d2

4J

o
.

Finally, we have to check that σS (St, t;σ, c) =M (σ) > σ0, where 0 < σ0 <
∞, as required by the Lemma. Since −DFσF

DS+ρH̃Γ̃
= DFσF
−DS−ρH̃Γ̃ >

DFσF
−DS

> 0, we

can put σ0 = DFσF
−DS

, which completes the proof..

Proposition 2, which ensures existence and consistency of the equilibrium,
puts a restriction on the market weight ρ (c,=) of program traders and thus
makes the notion of "finitely liquid" market more precise.
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Moreover, Proposition 2 specifies the extent to which it is appropriate to use
Black-Scholes strategies for hedging purposes. In practice, most traders base
their strategies on the classical Black-Scholes formula, which assumes constant
volatility σ, while we recognized that the correct value is σS (S, t;σ, c), incorpo-
rating the feedback effects due to the interaction between the degree of market
liquidity, the size and the frequency of adjustment and transaction costs. In the
presence of feedback effects, Black-Scholes strategies based on the assumption
of a constant volatility produce a tracking error that is almost surely non zero.
El Karoui, Jeanblanc-Picqué and Shreve (1998) show how to derive a formula
for the tracking error, which measures the difference between the actual and
the theoretical value of a self-financing hedge portfolio for a European call cal-
culated from the Black-Scholes formula with constant volatility. Proposition 2
gives us an insight about the behaviour of the tracking error: clearly, for ρ (c,=)
sufficiently small, as required in Proposition 2, the tracking error vanishes.

4 Conclusion
We extend the analysis of feedback effects of dynamic hedging strategies on the
underlying asset in the case of finitely liquid markets to the case of fixed costs of
transactions. Our results are in keeping with the literature on increased market
volatility from dynamic hedging strategies. However, in this paper we specify
in which way markets are finitely liquid when transaction costs are introduced
and the role of transaction costs in determining the size and the frequency of
adjustment. Our results can be of interest for applications, since we provide a
quantitative estimate of the increased volatility with transaction costs, which
establishes a precise interaction between the degree of market liquidity, the size
and frequency of adjustment, and transaction costs. We show that the action of
program traders leads to an excess volatility of the asset price, the size of which
depends on the average size of adjustment and on the average gamma. The
former depends on the properties of the adjustment hazard function and on the
size of the transaction costs, while the latter indicates how often, on average, a
position must be rehedged in order to maintain a delta neutral position. Finally,
we show how the fixed point problem for the volatility of the asset price can be
solved, to conclude that from a practical viewpoint it may be reasonable to use
Black-Scholes strategies based on σS (St, t;σ, c) for hedging purposes provided
that the difference between σS (St, t;σ, c) and σ is sufficiently small.
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