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Abstract

In this paper we examine the effect of pollution, as measured by

CO2 emissions, on economic growth among a set of OECD countries

during the period 1981-1998. We examine the relationship between

total factor productivity (TFP) growth and pollution using a semi-

parametric smooth coefficient model that allow us to directly estimate

the output elasticity of pollution. The results indicate that there ex-

ists a nonlinear relationship between pollution and TFP growth. The

output elasticity of pollution is small with an average sample value

of 0.008. In addition we find an average contribution of pollution to

productivity growth of about 1 percent for the period 1981-1998.

JEL: C14, O13, O40

Key Words: TFP Growth, Pollution, Semiparametric Estimation.

∗We would like to thank Theodoro Zachariade for helpful comments



1 Introduction

Natural environment and natural resources unambiguously constitute an

important factor of the growth process, the shortage of which may impose

a limit to growth. This limit to growth may arise either from the finite

amounts of some natural resources such as raw materials, or by nature’s

limited ability to absorb human waste. The emphasis of the theoretical

work on the effects of the environment on economic growth was given on

building growth models to study how economic policy and technological

change may overcome the limits to growth imposed by the extensive use of

the environment and generate a positive long-run growth rate (see Bovenberg

and Smulders, 1995, Pittel, 2002, and an extensive review of the literature

by Brock and Taylor, 2005).

Recently more attention has been given to the growth effects of the de-

terioration in the quality of the environment due to increased accumulation

of pollution. Pollution, which is usually modelled as a side product of the

production process (see Anderson, 1987), may affect growth through two

channels. If natural environment is considered to be an input into the pro-

duction function, then pollution represents the use of environmental capital,

implying a positive effect of pollution on growth. If environmental quality

enters the production function as an input, then pollution exerts negative

effects on growth by lowering the quality of natural environment. In both

cases the abatement efforts of the society reduce the available resources for

production and may harm growth.

In this paper we investigate the empirical relationship between pollu-

tion and economic growth using nonparametric econometric methods to un-

cover possible nonlinearities in the data. The empirical literature on the

growth-pollution debate has mainly focused on investigating the famous en-

vironmental Kuznets curve (EKC). This voluminous literature studies the

empirical relationship between real per capita income and pollution per unit
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of output (see List, Millimet and Stengos, 2003 and Azomahou, Lasney and

Van 2006 for two recent studies that apply nonparametric methods to study

this relationship). The main result of this literature is that pollution inten-

sity initially rises with per capita income (at the early stages of economic

development) but eventually falls as per capita income rises beyond some

threshold level at least for the case of developed economies (see Selten, 1994,

Grossman and Krueger, 1995, List and Gallet, 1999 and Stern and Common,

2001 among others). However, there is evidence that this relationship may

not be robust for a number of pollutants (see Harbaugh, Levinson and Wil-

son, 2002 and List, Millimet and Stengos, 2003). Less attention, however,

has been given to the empirical investigation of the of the role of pollution in

the production process and of the effects of pollution on economic growth.

In our paper we examine the effect of pollution, as measured by CO2

emissions, on economic growth among the advanced industrialized countries.

We construct a total factor productivity (TFP) index of the standard inputs,

capital and labour, using the methodology that was adopted in Mamuneas,

Savvides and Stengos, 2006. We then examine the relationship between

TFP growth and pollution using a semiparametric smooth coefficient model

that allow us to directly estimate the elasticity of pollution. The data cov-

ers the period from 1981-1998-, for a range of OECD countries and the

results indicate that there exist a nonlinear relationship between pollution

and economic growth as captured by TFP.

A recent study by Tzouvelekas, Vouvaki and Xepapadeas, 2006, also

tries to estimate the contribution of pollution to the growth of real per

capita output. Our work differs from theirs in that we employ a technique

that allows us to estimate a general production function without imposing

any restrictions on its functional form. Following a different line of research,

Chimeli and Braden, 2005, try to derive a link between total factor produc-

tivity (TFP) and the environmental Kuznets curve. They derive a U-shaped
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response of environmental quality to variations in TFP.

The paper is organized as follows. In the next section we present the

model specification and the data description. We proceed to discuss the

empirical findings and in the last section we offer concluding remarks. In

the appendix we present details about the econometric methodology of the

smooth coefficient semiparametric model that we use and a test of linearity

that we perform.

2 Methodology and Data Sources

2.1 Specification

To examine our primary goal, based on the data available we define a general

production function at time t as

Yt = F (Xt, Et, t) (1)

where Y is the total output, X is a vector of traditional inputs like physical

capital, K, and labor inputs L, E is the level of pollution stock and t is a

technology index measured by time trend.

The level of pollution Et, at time t is assumed to depend on the current

pollution flow and on all past accumulated pollution,

Et = Pt + (1− φ)Et−1,

where P is the current pollution flow, φ is the rate of deterioration of the

pollution stock (0 ≤ φ ≤ 1) and Et−1 is the past accumulated pollution. Pol-

lution enters the production function either as an input or as a byproduct

of economic activity. As an input pollution represents the extractive use of

natural environment (capital). In other words, the level of pollution serves

as a proxy to the input of harvested environmental resources (see Bovenberg

and Smulders, 1995, and Brock and Taylor, 2005). As a byproduct pollu-

tion represents a negative externality in the production process through the
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deterioration of the quality of the environment. Polluted air, for example,

may reduce labor productivity as it adversely affects the health of individual

workers and polluted rivers may harm productivity in the agriultural sector.

To determine the effect of pollution in the production process we follow

an approach based on Mamuneas, Savvides and Stengos (2006) who analyzed

the effect of human capital of TFP growth. Total differentiation of (1) with

respect to time and division by Y yields:

Ŷ = Â+ εk bK + εLbL+ εEÊ (2)

where (^) denotes a growth rate, Â = (∂F/∂t)
Y is the exogenous rate of tech-

nological change and εi =
∂ lnF
∂ lnQi

, (Qi = K,L,E) denotes output elasticity.

Subtracting from both sides of equation (2) the contribution of traditional

inputs to the output growth we get

Ŷ − εk bK − εLbL = Â+ εEÊ (3)

Note that the left hand side of equation (3) is directly observed from the

data, if we assume a perfectly competitive environment. The output elastic-

ities of labor and physical capital are equal to the observed income shares

of labor, sL, and physical capital, sK . Therefore we can define a TFP index

based on the observable data which discretely approximates the left hand

side of equation (3). This index allows for the contribution of each input to

differ across country and time and to be dictated by the data. We define

the Tornqvist index of TFP growth for country i in year t as follows:

TF̂Pit = Ŷit − wLitL̂it − wKitK̂it (4)

where wQit = 0.5(sQit + sQit−1), (Qi = L,K) are the weighted average in-

come shares of labor and physical capital and Q̂it = lnQit − lnQit−1, (Q =

Y,L,K). This measure of TFP contains the components of output growth

that can not be explained by the growth of the inputs (K,L) in equation

(3).
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On the right hand side of (3) the unobserved contribution of pollution

to output growth is assumed to be an unknown function of the stock of

pollution, i.e., θ(Eit) bEit. Note that the function θ captures the effect of

polution to productivity growth and it can be positive or negative depending

on whether the productivity or the externality effect dominates. Hence,

putting all together, in a discrete form equation (3) can be written as :

T F̂Pit = Âit + θ(Eit) bEit (5)

Equation (5) can be estimated using semiparametric methods. It allows

pollution accumulation to influence TFP growth in a nonlinear fashion. In

equation above, Âit can be considered as a function of country and year spe-

cific dummy variables. Country specific dummies, Di, capture idiosyncratic

exogenous technological change and time specific dummies, Dt, capture pro-

cyclical behavior of TFP growth. The equation of interest now becomes:

T F̂Pit = α0 +
N−1X
i=1

αiDi +
T−1X
t=1

αtDt + θ(Eit) bEit + uit

If we let WT
it = (Di,Dt, ) and Vit = {Eit,Ωit} where Ωit can be any other

variable included in the smooth coefficient function, the model can be writ-

ten more compactly as:

T F̂Pit =WT
it β + θ(Vit) bEit + uit (6)

For proper estimation we assume that E(uit|Wit, Vit, bEit) = 0.

We proceed to estimate the model of equation (6) using a smooth varying

coefficient semiparametric estimator. A smooth coefficient semiparametric

model is considered to be a useful and flexible specification for studying

a general regression relationship with varying coefficients. It is a special

form of varying coefficient models and it is based on polynomial regression,

see Fan, 1992, Fan and Zhang, 1999, Li et al, 2002, and Mamuneas, Sav-

vides and Stengos, 2006, among others. A semiparametric varying coefficient

5



model imposes no assumption on the functional form of the coefficients, and

the coefficients are allowed to vary as smooth functions of other variables.

Specifically, varying coefficient models are linear in the regressors but their

coefficients are allowed to change smoothly with the value of other variables.

In the appendix we present the mechanics of the method in more detail.

2.2 Data Sources

In order to investigate the empirical relationship between pollution and ag-

gregate output, we collected data from the World Bank and the OECD

databases covering a wide range of countries over the period 1981-1998. The

countries chosen were based on their availability on pollution data as well

as physical and human capital data. The countries included in this analy-

sis are: Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Greece, Ireland, Italy, Korea, Netherlands, Norway, Portugal, Spain, Swe-

den, UK and USA.

The OECD databases provide data on GDP, employment and capital

formation All data are in millions of Euros and the base year is 2000. Output,

Y, is defined as the GDP in constant prices Labor input, L, is defined as

the total man-hours (total number of workers times hours worked) and the

share of labor, sL directly obtained from OECD. The capital stock, K, was

constructed by accumulating gross investment in constant prices, using the

perpetual inventory method, with a depreciation rate of 4%. The share of

capital input sK is implicitly obtained as 1− sL

As a proxy for pollution flow we used CO2 emissions, obtained from the

2002 World Development Indicators. According to the World Bank defi-

nition, CO2 (carbon dioxide) emissions (kt) are those stemming from the

burning of fossil fuels and the manufacture of cement. They include contri-

butions to the carbon dioxide produced during consumption of solid, liquid,

and gas fuels and gas flaring. CO2 is a stable gas which is not trans-
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formed chemically in the atmosphere. However, some CO2 is removed from

the atmosphere by a natural process that includes the effect of vegetation,

soils and oceans. Moreover, human activities such as reforestation, defor-

estation or land management may increase or decrease the amount of CO2

removed from the atmosphere. This degree of atmospheric removal because

of combined natural and human activities corresponds to a depreciation rate

that is used to construct the total "stock" of accumulated pollution. The

global natural CO2 removal rate for the set of countries that we examine has

been estimated to be around 60 percent for the period 1980 to 1989 and 52

percent for the 1989 to 1998 period, see IPCC, 2000. If one adds the human-

induced changes in land use and forestry we derived country-specific values

on the basis of CO2 emission data provided in the website of the United

Nations Framework Convention on Climate Change (UNFCCC)1. As part

of their obligation, countries report to the UNFCCC their annual emissions

of greenhouse gases, with data currently spanning the period 1990-2004.

For all countries in our sample, emissions are provided with and without

taking into account CO2 removal resulting from direct human-induced land

use, land use change and forestry (LULUCF). The ratio of emissions with

LULUCF over emissions without LULUCF gives the rate of CO2 removal

because of human activities. The overall removal rate (depreciation rate)

from both human activities and natural processes for the countries in our

sample over the period that we examine is around seventy percent which is

what we use in our estimation. to construct the total "stock" of accumulated

pollution.

To express emissions in concentration terms, which is a more appropriate

measure of pollution (see Brock and Taylor, 2005), we divide total emissions

with the surface of each country so that our pollution variable, P, measures

CO2 emissions in kilotons per square kilometer. This is a measure of pol-

1See http://unfccc.int/ghg_emissions_data/predifined_qeuries/items/3814.php
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lution intensity and it is closely related to pollution concentration which is

emissions measured as milligrams per cubic metter. The implication of this

new pollution intensity concentration variable for our empirical specification

is that the damage caused by CO2 emission to the environment depends on

the size of the natural environment2.

3 Empirical Findings

We estimate the model of equation (6) using a smooth coefficient semipara-

metric estimator. In particular we are interested in the unknown coefficient

function θ(E). The results are presented in Figure 1. The effect of pollution

on growth is positive. This implies that the productivity effect dominates

the negative externality effect. In addition this effect is nonlinear. It is

nearly constant up to a certain level of pollution intensity and then it ap-

pears to accelerate at higher levels. The presence of such a threshold effect

is consistent with the presence of newer pollution abatement technologies

"cleaner technologies" that kick in at higher levels of pollution and are re-

sponsible for increasing productivity gains. These productivity gains might

also come from reduction of negative polution externalities due to abetment.

It is interesting to note that the threshold that we obtain in Figure 1 can be

also given an EKC interpretation as it would correspond to the peak of the

inverted U relationship. This is consistent for instance, with the evidence

found in Stern and Common, 2001, for another pollutant, sulfur, for the

group of developed economies similar to the ones we examine.

2 In the empirics of economic growth it is customary to express variables in a per

capita basis. However, in the environmental engineering literature it is the concentration

of pollution that is of interest. In our case, the elasticity of pollution intensity that we

estimate is the same as that of pollution concentration and as such it is the appropriate

concept to use. Another possible standardization, division by total GDP is likely to

introduce endogeneity issues.
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We proceed to test the specification of our model. First we test that the

model that generated the data in the graphs of Figure 1 is linear. In the

appendix we present the mechanics of the linearity test that we employ. We

strongly reject the null hypothesis of linearity with a zero p-value for the

test statistic that we obtained.

Next, we proceed to investigate the robustness of our findings. We first

check for possible endogeneity of the pollution variable. Following Griliches

and Mairesse, 1995, we instrument it by past values of output and input

prices. We tried different sets of past values but the results were fairly

robust and the shapes of the graph in Figure 1 was left intact, irrespective

of the different instruments we used.3

Finally we test the robustness of our model by examine the presence

of a possible misspecification bias due to the omission of other important

effects. The recent literature examining the effect of human capital on eco-

nomic growth, see Kalaitzidakis et al, 2001, and Mamuneas, Savvides and

Stengos, 2006, suggests that there exists a nonlinear relationship between

human capital and economic growth. We proceed to examine whether such

a nonlinear relationship between human capital and growth still persists in

the presence of pollution effects. To put it differently, we would like to see

whether the nonlinearity that we found in the pollution and productivity

growth relationship was the result of an omitted human capital effect. We

augment the analysis by including human capital, H, in the nonlinear part of

the model with a second smooth coefficient function.4 When estimating the

smooth coefficient semiparametric model we obtain estimates of θ1(E,H)

and θ2(E,H), the output elasticities of pollution and human capital respec-

3As in Mundlak, 1996, inclusion of a time trend within an instrumental variable frame-

work allows for consistent and efficient estimation of the production function parameters.
4The model in this case is given by TF̂Pit =WT

it β+ θ1(E,H)Eit + θ2(E,H)Hit + uit,

where H is the human capital stock.
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tively as functions of both pollution and the level of human capital.5 We find

that the nonlinear effect of pollution evaluated at the mean level of human

capital is very robust. Overall, we find that pollution has a positive but

nonlinear effect on productivity, an effect which depends on its level in each

country under investigation. Similarly, we find that the output elasticities

of human capital evaluated at the mean value of pollution are similar to the

one found previously in the literature, see Mamuneas, Savvides and Stengos

(2006)6.

To examine the effect per country we have calculated the average output

elasticity of pollution per country and the results are presented in the first

column of Table 1. The results indicate that the average elasticity of pol-

lution for all countries is 0.0136. This implies that 1% increase of pollution

increases on average output by only 0.014%. In addition it is clear from the

table that the average elasticity of pollution per country varies according to

the country’s pollution levels. It is interesting to note that countries like

Belgium, Korea and Netherlands have output elasticities above the values

of the other countries of the sample. The second column of Table 1 pro-

vides the average percent contribution of pollution growth on Total Factor

Productivity (TFP) growth. The results vary by country, depending on the

output elasticity of pollution and the pollution growth rate. These results

indicate that the effect of pollution on TFP growth and hence output growth

is significant but rather small for most countries of the sample (the average

5The human capital stock data are obtained and updated from Vikram and Dharesh-

war, 1993. For a full description of their methodology see Vikram, Swanson and Dubey,

1995. Their data covers the period 1950 to 1990 and they define human capital stock, H,

as total mean years education. We use extrapolation to update the human capital stock

up to 1998. For the update of the data we also take into consideration the human capital

stock constructed by Barro and Lee, 2001. However, we can not directly use the Barro and

Lee data for our analysis since their human capital data are calculated in 5 year intervals.
6The results of the analysis with the inclusion of human capital as an additional input

are not reported and are available from the authors.
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is less than 2%) with certain exceptions for given countries. For the period

of consideration (1981-1998) pollution contributes positively to TFP growth

about 17% in Korea, 9% in Netherlands, and 7% in Denmark for example,

while it contributes negatively for countries like Finland -6%, and Spain

-5%.

4 Conclusion

In this paper we have studied the effect of pollution, as measured by CO2

emissions in kilotons per square kilometer, on economic growth among the

advanced industrialized countries. We construct a TFP growth index by

subtracting from the output growth the weighted growth of physical capital

and labor inputs, using the observed income shares of physical capital and

labor as weights. The TFP index based on the observable data allows for

he contribution of each input to differ across country and time and to be

dictated by the data We then examine the relationship between TFP growth

and pollution using a semiparametric smooth coefficient model that allow

us to directly estimate the elasticity of pollution.

Our results indicate that there exists a robust nonlinear relationship

between pollution and economic growth as captured by TFP growth. We

find that the pollution effect varies depending on a country’s pollution level

and level of human capital. On average pollution elasticities vary among the

contributes with an average pollution elasticity (all countries) of 0.0136. In

addition pollution contributes on average about 1% to productivity growth

in the countries of our sample for the period 1981-1998.
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5 Appendix

5.1 Econometric Estimation: A Smooth Coefficient Semi-

parametric Approach

A semiparametric varying coefficient model imposes no assumption on the

functional form of the coefficients, and the coefficients are allowed to vary

as smooth functions of other variables. Specifically, varying coefficient mod-

els are linear in the regressors but their coefficients are allowed to change

smoothly with the value of other variables. One way of estimating the coeffi-

cient functions is by using a local least squares method with a kernel weight

function. A semiparametric smooth coefficient model is given by:

yi = α(zi) + x0iβ(zi) + ui (A1)

where yi denotes the dependent variable (the TFP index as discussed ear-

lier), xi denotes a p×1 vector of variables of interest (in the case of equation
(6), bEit and Ĥit), zi denotes a q×1 vector of other exogenous variables (the
Vit = {Eit,Ωit} from equation (5) above) and β(zi) is a vector of unspecified
smooth functions of zi (θ(.) in equation (6)). To simplify the exposition,

we ignore the partially linear nature of equation (6), by suppressing for now

the vector of the w0s. Based on Li et. al. (2002), the above semipara-
metric model has the advantage that it allows more flexibility in functional

form than a parametric linear model or a semiparametric partially linear

specification. Furthermore, the sample size required to obtain a reliable

semiparametric estimation is not as large as that required for estimating a

fully nonparametric model. It should be noted that when the dimension of

zi is greater than one, this model also suffers from the "curse of dimension-

ality", although to a lesser extent than a purely nonparametric model where

both zi and xi enter nonparametrically. Fan and Zhang (1999), suggest that

the appeal of the varying coefficient model is that by allowing coefficients to

depend on other variables, the modelling bias can significantly be reduced
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and the curse of dimensionality can be avoided. Equation (6) above can be

rewritten as

yi = α(zi) + xTi β(zi) + εi = (1, x
T
i )

⎛⎝ α(zi)

β(zi)

⎞⎠+ εi (A2)

yi = XT
i δ(zi) + εi

where δ(zi) = (α(zi), β(zi)T )T is a smooth but unknown function of z. One

can estimate δ(z) using a local least squares approach, where

bδ(z) = [(nhq)−1 nX
j=1

XjX
T
j K(

zj − z

h
)]−1{(nhq)−1

nX
j=1

XjyjK(
zj − z

h
)}

= [Dn(z)]
−1An(z)

andDn(z) = (nhq)−1
Pn

j=1XjX
T
j K, An(z) = (nhq)−1

Pn
j=1XjyjK, K =

K(
zj−z
h ) is a kernel function and h = hn is the smoothing parameter for

sample size n. The intuition behind the above local least-squares estimator

is straightforward. Let us assume that z is a scalar and K(.) is a uniform

kernel. In this case the expression for bδ(z) becomes
bδ(z) = [ X

|zj−z|≤h
XjX

T
j ]
−1 X

|zj−z|≤h
Xjyj

In this case bδ(z) is simply a least squares estimator obtained by regressing
yj on Xj using the observations of (Xj , yj) that their corresponding zj is

close to z (|zj − z| ≤ h). Since δ(z) is a smooth function of z, |δ(zj)− δ(z)|
is small when |zj − z| is small. The condition that nhq is large ensures that
we have sufficient observations within the interval |zj − z| ≤ h when δ(zj)

is close to δ(z). Therefore, under the conditions that h→ 0 and nhq →∞,
one can show that the local least squares regression of yj on Xj provides a

consistent estimate of δ(z). In general it can be shown that

√
nhq(bδ(z)− δ(z))→ N(0,Ω)
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where Ω can be consistently estimated. The estimate of Ω can be used to

construct confidence bands for bδ(z). We use a standard multivariate kernel
density estimator with Gaussian kernel and cross validation to choose the

bandwidth.

An interesting special case of equation (A2), is when the w0s from equa-

tion (6) are taken into account. In that case some of the coefficients in

equation (A2) are constants (independent of z). In that case, equation (A2)

can be rewritten as

yi =WTα+XT
i δ(zi) + εi (A3)

where Wi is the i− th observation on a (q × 1) vector of additional regres-

sors that enter the regression function linearly (in our case where W the

country specific and time dummies (Di,Dt, ). The estimation of this model

requires some special treatment as the partially linear structure may allow

for efficiency gains, since the linear part can be estimated at a much faster

rate, namely
√
n.

The partially linear model in equation (A3) has been studied by Zhang

et al (2002) and Ahmad et al (2005). Zhang et al (2002) suggest a two-step

procedure where the coefficients of the linear part are estimated in the first

step using polynomial fitting with an initial small bandwidth using cross

validation, see Hoover et al (1998). In other words the approach is based

on undersmoothing in the first stage. Then these estimates are averaged

to yield the final first step linear part estimates which are then used to

redefine the dependent variable and return to the environment of equation

(A1) where local smoothers can be applied as described above.

5.2 Linearity Test

We will present below a test statistic that was used by Li et al (2002). In our

implementation we will use a bootstrap version of this test. Let yi denote the
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dependent variable, and let xi be p× 1 and zi be q× 1 vectors of exogenous
variables. Consider the following linear model

yi = α0(zi) + xTi β0(zi) + εi = (1, x
T
i )

⎛⎝ α0(zi)

β0(zi)

⎞⎠+ εi (A4)

yi = XT
i δ0(zi) + εi

where δ0(zi) = (α0(zi), β0(zi)
T )T is a smooth known function of z.For ex-

ample in the context of equation (2), ignoring for the moment the presence

of the w0s, we have α0(zi) = α+ziθ and β0(zi) = β. Similarly equation (A1)

captures the case of the augmented version of (2) to allow for the simple

interactions of the x0s with z, where α0(zi) = α+ziθ and β0(zi) = β1+β2z.

We can test the adequacy of (A1), the H0, against the semiparametric

alternative (1) using the following test statistic.

bIn =
1

n2hq

X
i

X
j 6=i

XT
i (yi −XT

i
bδ0(zi))Xj(yj −XT

j
bδ0(zj))K(zj − zi

h
)

=
1

n2hq

X
i

X
j 6=i

XT
i XjbεibεjK(zj − zi

h
)

where bεi denotes the residual from parametric estimation (under H0). It

can be shown that under H0, Jn = nhq/2bIn/bσ0 −→ N(0, 1), where bσ20 is a
consistent estimator of the variance of nhq/2bIn, see Li et al (2002). It can
be shown that the test statistic is a consistent test for testing H0 (equation

(3)) against H1 (equation (1)). We use a bootstrap version of the above test

statistic, since bootstrapping improves the size performance of kernel based

tests for functional form, see Zheng (1996) and Li and Wang (1998).
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Table 1: Pollution Elasticities and
Contribution To TFP Growth
Mean Values 1981-1998 (Std. Error)

Country �(E) �(E)� bE
[TFP

� 100
Australia 0.0112 2.98

(0.00001)
Austria 0.0128 -0.90

(0.00009)
Belgium 0.0218 -0.24

(0.00317)
Canada 0.0112 -0.56

(0.00001)
Denmark 0.0141 7.41

(0.00005)
Finland 0.0114 -5.99

(0.00003)
France 0.0128 1.61

(0.00015)
Greece 0.0124 0.00

(0.00022)
Ireland 0.0121 1.00

(0.00015)
Italy 0.0141 -3.77

(0.00008)
Korea 0.0175 17.49

(0.00637)
Netherlands 0.0221 8.83

(0.00432)
Norway 0.0113 0.35

(0.00004)
Portugal 0.0121 -2.73

(0.00026)
Spain 0.0121 -4.52

(0.00011)
Sweden 0.0114 -1.02

(0.00003)
UK 0.0124 0.17

(0.00005)
USA 0.0123 1.72

(0.00011)
All Countries 0.0136 1.21

(0.00381)
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Figure 1: Polution Elasticities
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