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Executive Summary

This paper gives a systematic introduction to sensitivity analysis in economic sim-
ulations. Sensitivity analysis studies how the variation in the numerical output of
a model can be quantitatively apportioned to different sources of variation in basic
input parameters. It thus provides a check of robustness of the numerical results
of a model. We present a formalisation of the deterministic and the stochastic
approach to sensitivity analysis. The former assumes that the basic economic pa-
rameter stems from a known interval (in higher dimensions: a compact set) and
quantifies the spread of the corresponding equilibrium output variables. The latter
treats the parameter as a stochastic variable with known distribution and calculates
mean and variance of output variables accordingly. Deterministic sensitivity anal-
ysis can be numerically implemented by peacemeal formulae. Stochastic sensitiv-
ity analysis is implemented by a Monte-Carlo or a Gauss-Quadrature algorithm.
We develop an improved version of Gauss-Quadrature based on orthogonal poly-
nomials. In an application of both algorithms to a CGE model we demonstrate
its advantages: It significantly reduces the computational burden of sensitivity
analysis and tends to be more stable numerically.



Das Wichtigste in Kürze

Dieses Discussion Paper ist eine systematische Anleitung zur Sensitivitätsanal-
yse bei ökonomischen Simulationen. Eine Sensitivitätsanalyse untersucht, wie
die Variation in den numerischen Ergebnissen eines Modells der Variation ver-
schiedener Grundparameter zugeordnet werden kann. Auf diese Weise ermöglicht
sie eine Überprüfung der Robustheit numerischer Modellergebnisse. Wir stellen
eine Formalisierung des deterministischen und des stochastischen Ansatzes zur
Sensitivitätsanalyse vor. Bei ersterem geht man davon aus, dass der ökonomis-
che Grundparameter aus einem bekannten Intervall (in höheren Dimensionen:
aus einer kompakten Menge) stammt und man quantifiziert die Ausdehnung der
zugehörigen Modellvariablen im Gleichgewicht. Bei letzterem behandelt man den
Grundparameter als stochastische Variable mit bekannter Verteilung und berech-
net entsprechend Erwartungswert und Varianz der Modellvariablen. Determin-
istische Sensitivitätsanalyse kann numerische durch Stückformeln (engl. "piece-
meal formulae") implementiert werden. Stochastische Sensitivitätsanalyse wird
durch das Monte-Carlo Verfahren oder Gauss-Quadratur implementiert. Wir en-
twickeln eine verbesserte Version des Gauss-Quadratur-Verfahrens, die auf or-
thogonalen Polynomen beruht. In einer Anwendung der beiden Verfahren auf
ein allgemeines Gleichgewichtsmodell zeigen wir seine Vorteile: Es reduziert den
numerischen Aufwand der Sensitivitätsanalyse erheblich und ist im allgemeinen
numerisch stabiler.
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Abstract

Sensitivity analysis studies how the variation in the numerical output of
a model can be quantitatively apportioned to different sources of variation
in basic input parameters. Thus, it serves to examine the robustness of nu-
merical results with respect to input parameters, which is a prerequisite for
deriving economic conclusions from them. In practice, modellers apply dif-
ferent methods, often chosen ad hoc, to do sensitivity analysis. This paper
pursues a systematic approach. It formalizes deterministic and stochastic
methods used for sensitivity analysis. Moreover, it presents the numerical
algorithms to apply the methods, in particular, an improved version of a
Gauss-Quadrature algorithm, applicable to one as well as multidimensional
sensitivity analysis. The advantages and disadvantages of different methods
and algorithms are discussed as well as their applicability.
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1 Introduction

In economics as well as other model based sciences, a modeller has to do a sensi-
tivity analysis to show the validity of results of his numerical model simulations.
A sensitivity analysis is the study of how the variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to dif-
ferent sources of variation in input parameters. It thus allows for an assessment
of the robustness of numerical results, as it translates the range (confidence in-
tervals) of fundamental (input) parameters into the model into ranges (confidence
intervals) of economic (output) variables. The econometrician Edward Leamer
makes it quite clear: "A fragile inference is not worth taking seriously. All sci-
entific disciplines routinely subject their inferences to studies of fragility. Why
should economics be different? ... What we need are organized sensitivity analy-
ses." (Leamer, 1985)

In the context of CGE models, we ask whether the choice of basic parame-
ters of the model, e.g. elasticities or time preference parameters, lead to stable
equilibrium values of economic variables, e.g. GDP or labor participation. Usu-
ally, we refer to the equilibrium of the benchmark scenario. Quite importantly, a
sensitivity analysis depends on the existence of equilibria for a sufficient range of
parameters: If the model is not solvable for parameter values close to the ones we
have chosen as benchmark values, model results are instable and thus worthless.

Basically, there are two methodological approaches to sensitivity analysis: a
deterministic and a stochastic approach. Deterministic sensitivity analysis as-
sumes that the tuple of basic parameters is an element of a given subset of all
possible parameter choices. It seeks to determine upper and lower bounds on the
corresponding subset of economic outcomes of the model. Stochastic sensitivity
analysis treats the vector of parameters as a stochastic variable with a given dis-
tribution, rendering economic equilibria of the model into stochastic variables. It
aims at calculating the first moments of these variables, with the variance indicat-
ing the robustness of the results. Both approaches are presented and discussed in
section 2.

The choice a modeller has to make in a sensitivity analysis is, however, not
only a methodological, but also a numerical one. Sensitiviy analysis can involve
more or less calculations of equilibria, so that usually there is a trade-off between
accuracy and calculation time. This holds already true for a comparison of the
deterministic and the stochastic approach, and is particularly relevant for the case
of a multidimensional sensitivity analysis. In section 3, we present and discuss
different algorithms. In particular, an improved version of an algorithm based on
Gauss-Quadrature is developed.

Section 4 presents a simple CGE model in Markusen’s (2002) spirit. We
conduct a stochastic sensitivity analysis with respect to demand elasticities with
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a Monte-Carlo algorithm and Gauss-Quadrature. From the results we see that
Monte Carlo is more burdensome computionally. Also, it appears less stable nu-
merically than Gauss Quadrature.

2 Theory of Sensitivity Analysis

2.1 Mathematical Preliminaries

Before conducting a sensitivity analysis, indeed even before implementing a nu-
merical model, the modeller has to understand whether his model is in fact solv-
able. Proving existence (and sometimes uniqueness) of economic equilibria is a
challenge of its own. There exist, however, a set of mathematical theorems that
- if applicable - guarantee the existence of solutions. For example, the existence
of an equilibrium in a general equilibrium framework is proved by recurring on
Kakutani’s fix-point theorem (cf. Mas-Collel et al. 1995, chapter 17). In the se-
quel, we assume that models are (uniquely) solvable for at least some parameter
values and discuss under which circumstances a sensitivity analysis is possible.

An equilibrium of a computable general equilibrium (CGE) model takes the
mathematical form of a solution to a system of (non-linear) equations

F (x∗, a) = 0,

wherex∗ ∈ Rn is a vector of (equilibrium) state variables of the economy
(such as capital or wage) anda ∈ Rd a vector of parameters of the economy
(such as demand elasticity or time preference).G is a continously differentiable
function

Rn ×Rd → R,

that consists of first order conditions and (budget) constraints. This CGE
model will be our standard example. Note, however, that the methods for sen-
sitivity analysis presented can be generally be applied to economic models: The
decisive distinction is the one between economic state variablesx and basic pa-
rametersa.

Sensitivity analysis is concerned with the effect that (minor) changes of ba-
sic parameters∆a have on equilibrium state variables∆x∗. This notion will be
formalized subsequently. At this point we ask under what circumstances an equi-
librium x∗∗ exists for a parameter valuea′ in a neighborhood ofa, e.i. a′ ∈
Bε(a) = {ã s.t. |ã − a| < ε}. This is an important question: The existence of
econommic equilibria in a neighborhood ofa is the theoretical prerequisite for
sensitivity analysis. The implicit function theorem gives a definite answer.
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Theorem 1 (Implicit function theorem) If det|∇x∗F (x∗, a)| 6= 0, then there ex-
ists an open neighbourhoodU(a) ⊂ Rd of a and a continously differentiable
functionh : U(a) → Rn that maps any vector of parameters on the correspond-
ing equilibrium vector.

Proof. see Rudin (1976), ch. 9., p. 223.
Thus we learn that there is someε > 0 so that the existence of equilibria in aε-

neighborhood ofa is guaranteed wheneverF is a regular function ata. Generally
speaking, we would expectF to be regular as long as first order conditions and
constraints are independent. While it may be difficult to prove the assertion in
some cases, it can be checked without problem numerically.

We have formulated the implicit function theorem for the case of CGE models.
Simular formulations can be given for partial equilibrium models that are charac-
terized by first and second order conditions and, possibly, additional constraints.
In the case of economic optimization problems, the role of the implicit function
theorem is taken by the theorem of the maximum (cf. MasCollel et al. (1995),
Mathematical Appendix M.K).

So far we have neglected the notion of uniqueness of equilibria. While in prin-
ciple sensitivity analysis can be conducted in the presence of multiple equilibria
as well, uniqueness facilitates the analysis considerably. It is usually ensured by
adequate convexity assumptions (cf. MasCollel et al. (1995), ch. 17). In the more
general case of multiple equilbria, caution is warranted. In this case,

h : U(a) → P(Rn)

is a correspondence, mapping the vector of parameters into a set of solutions

h(a) = {x∗1, x∗2, ..., x∗m}.

Ignoring multiplicity can seriously blur a sensitivity analysis whenever a nu-
merical solver ’jumps’ from a solutionx∗j to some other solutionx∗i along changes
of underlying parametersa. In that case, sensitivity of an equilibrium with respect
to the basic parameters can be seriously exaggerated: Instead of following the ini-
tial equilibriumx∗j along a continous path for changes ofa (cf. Judd (1998), p.
179), a numerical discontinuity occurs and the new equilibriumx̃∗i is more distant
to x∗j than the correct equilibrium̃x∗j . The best provision against such fallacies is
the calculation of all equilibria along the path of change; however, this can entail
a considerable computational effort. At this point, we will not discuss the issue
any further.
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2.2 Deterministic Sensitivity Analysis

Sensitivity analysis is sometimes called robustness analysis. This term highlights
its motivation: Assuming that we do not know the basic set of parameters exactly,
how robust are the economic state variables in an equilibrium with respect to
changes in the parameters? Thedeterministic approach to sensitivity analysis
states is that there exists one true vector of economic parametersa∗ ∈ Rd, but that
-instead ofa∗- we only know its neighbourhoodA. Usually, we choose one vector
of parameterŝa ∈ A and call it thebenchmark scenario. The point of sensitivity
analysis then is to investigate whether equilibria vary considerably acrossh(A) in
comparison to the benchmark equilibriumh(â).

Mathematically speaking, deterministic sensitivity analysis amounts to a geo-
metric problem: Determine the relation of the volume of the image ofA underh
and the size ofh(â), weighted with a scaling factorwk in each dimension1

vol(im(w ∗ h))

‖w ∗ h(â)‖
=

∫
A

√
det(∂ij(w ∗ h(a)))da1...dad

(w ∗ h(â), w ∗ h(â))
,

where the vectorw specifies the relative weight we want to attach to the dif-
ferent economic variables in equilibrium2. The findings of the model are robust
whenever the relation is sufficiently small, where the assessment of sufficiency is
left to the reader. The formal definition we have just given is a generalization of
the more familiar notion of sensitivity analysis in one dimension: E.g. we might
ask how big is maximal interval of values of GDP engendered by a model for a
given interval of demand elasticities. We will discuss the issue in more detail in
the next section where we present thepiecemeal approachto sensitivity analysis.

2.3 Stochastic Sensitivity Analysis

Thestochastic approachto sensitivity analysis takes a different view of the basic
problem: It treats the vector of basic parameters as a stochastic variablea with
valuesa ∈ A ⊂ Rd. The distributionG of a is given. While somewhat coun-
terintiutive in the first place, the approach is in line with econometric estimations.
These do not only produce mean values for parameters such as demand elastic-
ities, but confidence intervals and higher moments for them. Under stochastic
sensitivity analysis,h becomes a mapping onto a stochastical variablex∗ = h(a)
of equilibria.

1By ′∗′ we denote component-wise multiplication of vectors.
2We do not have to attach a weight to an economic variable explicitly - instead we assess

sensitivity by comparing the effect of changes ina on each dimension of the equilibrium state
variablex. Implicitly, however, we will attach some weight to each dimension by accepting a
certain outcome of the sensitivity analysis.
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We then calculate the mean and the variation of the equilibrium vectorx∗:

m = E[h(a)] =

∫
A

h(a)dG, (1)

v = V ar[h(a)] = E[(h(a)−m)2] =

∫
A
(h(a)−m)2dG. (2)

Attaching different weights to different economic variables, the stochastic sen-
sitivity analysis assesses the size of

n∑
k=1

wk
vk

mk

,

where indexk is running over the dimension ofx. In words: Given a distri-
bution of basic parameters, we investigate the most likely equilibrium (the mean).
We assess its robustness by assessing the relative size of the variance of equi-
libria with respect to the mean, possibly attaching different weights to different
economic variables.

3 Practical Sensitivity Analysis

Having formalized the notion of sensitivity analysis in the preceeding section we
now present the practical implementation of the (somewhat abstract) concepts.
For the sake of clarity in the sequel we assume that all dimensions are weighted
equally, thus dropping the vectorw from all formulae.

3.1 The Piecemeal Approach

In apiecemeal approachto sensitivity analysis, we calculate

∆ = max
ai,aj∈{a1,...,aM}

|h(ai)− h(aj)|

for a set of representative parametersai ∈ A. The relation of∆ to the
weighted benchmark equilibriumh(â) is used to assess the sensitivity of the model
at equilibriumh(â). The piecemeal approach is kindred to a deterministic sensi-
tivity analysis. But instead of calculating the volume ofA underh, it focusses on
the maximal intervals of economic variables engendered by the set of parameters
a ∈ A.

If the set containsa = argmina∈Ah(a) and a = argmaxa∈Ah(a), then
the following inequality holds (to facilitate the presentation and without loss of
generality, we setn = 1):
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vol(im(h))

|h(â)|
≤ vol(A)

h(a)− h(a)

|h(â)|
= vol(A)

∆

|h(â)|
.

A piecemeal approach can give a good idea of the sensitivity of the model if
the set of parametersai ∈ A is sufficiently representative.

As an example, let bothn = 1 andd = 1. Then

h : [a, a] → [x, x]

for some scalar parametersa, a, x andx. If h is monotonously increasing,
then

vol(im(h))

h(â)
≤ (a− a)

h(a)− h(a)

h(â)
.

In the one-dimensional case, the piecemeal approach and the more formal
definition of deterministic sensitivity analysis given in the first section virtually
coincide. Generally speaking, while our formal definition captures the intention of
sensitivity analysis more accurately, the piecemeal approach is more practicable.

3.2 The Monte-Carlo Approach

TheMonte-Carlo approach is the first of two practical implementations of stochas-
tic sensitivity analysis. Both mean and variance of equilibriumx∗, as defined by
equation 1 and 2, are approximated in the following way: Draw a (large) set of
realisations{a1, ..., aM} from the distributionG(A) and calculate

m = E[h(a)] ≈ 1

M

M∑
i=1

h(ai) = m̃, (3)

v = V ar[h(a)] ≈ 1

M

M∑
i=1

(h(ai)− m̃)2 = ṽ. (4)

The sums of the right-hand side converge stochastically to the true values of
m andv. Beyond mean and variance of the stochastic variablex∗, we can eas-
ily approximate its distributionh ◦ G. A great disadvantage of the Monte-Carlo
approach is that in order to assure convergence, the number of drawsM has to
be high and thus the approximation is numerically costly. This is a problem in
particular when the space of parametersa is high dimensional - the curse of di-
mensionality drives up the number of necessary draws exponentially (cf. Judd).
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3.3 The Gauss-Quadrature Approach

The second way of practically implementing stochastic sensitivity analysis is by
Gauss quadrature - in fact a numerical method to approximate integrals (cf.
Stoer). Remember that we intent to approximate mean and variance, that are
defined by integrals of the distribution of basic parametersa. We want to do so
using a rather small numberL of function evaluationsh(.).

Essentially, the Gauss quadrature gives us nodesxi and weightsωi to approx-
imate the (one dimensional) integral∫ b

a

f(x)ω(x)dx ≈
L∑

i=1

ωif(xi). (5)

In our specific case, we look for nodesai and weightsgi to approximate mean,
equation 1, and variance, equation 2, of equilibria. Here and in the following,
we assume that probability distributionG can be represented by a (continuous)
probability densitiy functiong(.). While somewhat limiting the applicability of
the procedure, we can safely say that all economicly sensible distributions should
fulfill this assumption.

m =

∫
A

h(a)dG =

∫
A

h(a)g(a)da ≈
L∑

i=1

gih(ai) = m̃, (6)

v =

∫
A
(h(a)−m)2dG =

∫
A
(h(a)−m)2g(a)da ≈

L∑
i=1

gi(h(ai)− m̃)2 = ṽ, (7)

where again, the dimension of economic variables is set ton = 1 (we present
the generalisation to several variables below).

In the following, we develop a version of Gauss quadrature new to computa-
tional economics, in that it builds onorthogonal polynomials. While somewhat
complicating the straightforward Gauss quadrature algorithm commonly used in
economics (cf. Arndt 1996 and DeVuyst and Preckel 1997) conceptually, our ap-
proach simplifies the computation of a sensitivity analysis in cases of standard
probability distributions, increasing the approximation quality at the same time.
This is possible because the optimal nodesxi turn out to be zeros of orthogonal
polynomials. They have to be linearly transformed to fit the respective interval but
can otherwise be taken from an existing table. In contrast, in Arndt’s (1996) algo-
rithm, the nodes are the solution of a system of non-linear equations (similarly in
DeVuyst and Preckel 1997).

We define orthogonality in this context by the scalar product
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(f1, f2)g =

∫
A

f1(a)f2(a)dG =

∫
A

f1(a)f2(a)g(a)da (8)

defines a scalar product(., .)g. We refer to orthogonality with respect to this
scalar product. The following lemma holds:

Lemma 2 (Gram-Schmidt, Weierstrass)For any scalar product(., .) on the space
of continuous functionsC([a, a]), there is a complete system of orthogonal poly-
nomials{p0, p1, ...|(pi, pj) = 0, i 6= j}.

Proof.
For any given scalar product, orthogonal polynomials can be constructed from

monomials1, x, x2,... by the Gram-Schmidt procedure

p0 ≡ 1 pi(x) = xi −
i−1∑
j=1

(pj, x
i)

(pj, pj)
pj.

We thus obtain an infite sequence of orthogonal polynomials. As for complete-
ness, we know that the polynomials(p0(x), p1(x), ..., pn(x)) span the same linear
subspace of the space of continuous functions as the monomials(1, x, x2, ..., xn).
Consequently, we can apply Weierstrass’ approximation theorem which states that
the space of polynomials is dense in the space of continous functions (cf. Rudin
1976, ch. 7, p. 159) and the completeness of the family of orthogonal polynomials
ensues.

There are well known examples of orthogonal polynomials, the best known
being Legendre, Tchebychev, Laguerre and Hermite polynomials.

Examples of families of orthogonal polynomials

Name g(x) [a, b] Definition

Legendre 1 [−1, 1] Pk(x) = (−1)k

2kk!
dk

dxk [(1− x2)k]

Tschebyscheff (1− x2)−
1
2 [−1, 1] Tk(x) = cos(k cos−1(x))

Laguerre exp(−x) [0,∞) Lk(x) = exp(x)
k!

dk

dxk (xk exp(−x))

Hermite exp(−x2) (−∞,∞) Hk(x) = (−1)k exp(x2) dk

dxk (exp(−x2))
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The proof of lemma is constructive, so that for any density functiong(a) or-
thogonal polynomials can be constructed from monomials1, x, x2, .... For a gen-
eral distribution probability distributionG(a), their calculation can entail consid-
erable

To proceed, we need one property of orthogonal polynomials.

Lemma 3 The zeros{a1, a2, ..., al} of pl(a) are real and distinct.

Proof. Stoer and Bulirsch (1990), ch 3.6, p. 173.
It is because that they are real and distinct that the zeros of a orthogonal poly-

nomial are a possible choice of nodes for the evaluation of the approximation
formula 5. The following theorem shows that they are indeed a good choice.

Theorem 4 Let {a1, a2, ..., al} be the zeros ofpl(a) andg1, ..., gl be the solution
of the system of linear equations

n∑
i=1

gipk(ai) =

{
(p0, p0) : k = 0
0 : k = 1, 2, ..., l − 1

Thengi > 0 for i = 1, 2, ..., l and∫ a

a

p(a)g(a)da =
l∑

i=1

gip(ai)

for all p ∈ Π2l−1 =� p0, ..., p2l−1 �.

Proof. Stoer and Bulirsch (1990), ch 3.6, p. 176.
In words: For a given density functiong(a) (i.e. probability distributionG),

we calculate the zerosa1, ..., al of the corresponding orthogonal polynomial of
degreel. Calculating the weightsg1, ..., gl from a suitable system of linear equa-
tions, we obtain a integration formula of type 5 that integrates polynomials up to
degree 2l-1 exactly.

Thus, for our purpose of numerical integration, we have to calculate the zeros
of orthogonal polynomials and weights corresponding to the probability distribu-
tion G with weight functiong(a). However, we have to do so only once for a
givenG. While in general the numerical determination of the zeros of orthog-
onal polynomials for a given distribution may be tricky, in the case of standard
probability distributions we have no problem. A look at the table of orthogonal
polynomials confirms that for uniform distributions, we can use Legendre poly-
nomials, and Hermite polynomials for normal distributions. This facilitates our
task considerably: We can either (easily) calculate the zeros numerically from the
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defining formulae for Legendre or Hermite polynomials, or take these from pub-
lished tables. The next section shows an application of the method presented here
to a simple example.

In higher dimensionsn > 1, integrals can be approximated by product rules,
combining one-dimensional nodes and weights

∫ a1

a1

...

∫ ad

ad

f(a1, ..., ad)g1(a1)...gd(ad)dad...da1

≈
n∑

i1=1

...

n∑
id=1

g1
i1
...gd

id
f(a1

i1
, ..., ad

id
).

We can thus approximate joint distributions of economic parameters instead
of analysis the robustness of results with respect to single parameters separately.
Note that by specifying probability density functionsgi(ai) we implicitly assume
that the probability distributions are independent. In this case, higher-dimensional
Gauss-Quadrature is straightforward - we only have to combine the sums for each
dimension. As we will see in the example in the next section, it is in this case
that Gauss-Quadrature integration has a great advantage over Monte-Carlo simu-
lations, as the evaluation of nodes increases exponentially with each dimension,
making MC simulations simply too expensive.

4 A Simple Example

In this section we present a simple numerical example to demonstrate the use of
our approach to sensitivity analysis. We have chosen a CGE framework, the ex-
ample is implemented in GAMS (Brooke, Kendrick and Meeraus, 1988).
We consider a two-by-two closed economy in the spirit of Markusen (2002). It
represents an economy with two commodity goods,X andY, two factors (capi-
tal K and laborL), and one single representative agent. The goods are produced
through constant returns to scale production activities which combine primary fac-
tor inputs. As usual, we use a balanced equilibrium data set given by the square
accounting matrix below. The accounts labeledX andY in this matrix refer to
markets for final commodities; accountW correspond to final consumption. The
RA account corresponds to the representative agent. It defines both the endowment
and expenditures for the model’s single representative agent.

10



Accounting matrix with benchmark flows:

Markets X Y W RA Row sum
PX 100 -100 0
PY 100 -100 0
PW 200 -200 0
PL -40 -60 100 0
PK -60 -40 100 0

Column sum 0 0 0 0

The accounts of the matrix do not by themselves completely characterize a general
equilibrium framework because they provide a variety of benchmark value shares.
Hence, a model formulation additionally relies on assumptions about elasticities
of substitution in the various sectors. In our simple model there are three elastici-
ties of substitution:esubx denotes the elasticity of substitution between inputs to
X production,esuby the elasticity of substitution between inputs toY production
andesubw the one between inputs to final consumption. In this section we present
a sensitivity analysis with respect to these three elasticities which are examples of
economic fundamentals and typical parameters for a sensitivity analysis.
Numerically, we formulate the model as a mixed complementarity problem (MCP)
using the share form for the specification of functions forms (cost and expenditure
functions). The algebraic formulation is implemented in GAMS. For our exam-
ple, we chooseesubx = esuby = esubw = 0.5 as starting point and introduce
an exogenous labor tax on goodX by settingTAXLX = 1.
In the following we compare the two different implementation methods of stochas-
tic sensitivity analysis that were presented in Section 3.2 and in Section 3.3: the
Monte-Carlo (MC) analysis and the Gauss-Quadrature (GQ). We calculate both
the case of a uniform and a normal distribution in one dimension, as well as the
multidimensional case of a uniform distribution.

4.1 One-Dimensional Sensitivity Analysis

First, we assume that the elasticity of substitutionesubx is uniformly distributed
on the interval0.25 and0.75 and that the other two elasticities in question are con-
stant and equal to0.5. Due to the assumption of uniform distribution we choose
Legendre polynomials for the Gauss-Quadrature.
For the sensitivity analysis according to theMonte-Carlo approach we randomly
draw values foresubx from the interval [0.25,0.75]:esubx = UNIFORM[0.25, 0.75].
We calculate the mean and variance of normalized equilibrium variablesX, Y and
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W according to the following formulas:

mean(output) = SUM(i, results(i, output))/card(i);

variance(output) = SUM(i, (sqr(results(i, output)− mean(output))))/card(i);

card(i) is equal to the number of drawings ofesubx from the interval [0.25,0.75].
results(i, output) denotes the (normalized) equilibrium values for the setoutput =
{X, Y, Z} given the i-th drawing of the elasticity.sqr denotes the square root.

For the sensitivity analysis usingGauss-Quadrature with Legendre polynomi-
als we use a MATLAB routine to calculate the zeros of Legendre polynomials,
legendrenodes, and the associated weights,legendreweights. Hereby, we
use the recursive formula for polynomials given by the Gram-Schmidt procedure.
We calculate the zeros for these polynomials and solve the equation system given
in Theorem 4 with respect to the corresponding weights. Zeros and weights are
saved in agdx file. Alternatively, schedules with zeros and weights for Legendre
polynomials can also be taken from existing tables which are published in the in-
ternet or in math books (see for instance Belousov 1962). Once thisgdx file is
created, it can be used to run sensitivity analysis for every CGE model where the
parameters are assumed to be uniformly distributed.
In our GAMS routine, the variableslegendrenodes andlegendreweights are
loaded from the gdx file3 and transformed into the variablesgrid andweights.
We choosemaxdegree which is the degree of the maximal Legendre polynomial
that we want to consider. It also refers to the rows with zeros and weights that are
loaded from thegdx file. A higher value ofmaxdegree raises the quality of the
Legendre approach but is computationally more expensive. Additionally we have
to transformlegendrenodes linearly from the interval[−1, 1] into a new vector
grid on interval[a, b] = [0.25, 0.75]:

grid(i) = (b− a) ∗ (zerosval(′maxdegree′, i) + 1)/2 + a.

This is due to the fact that standard Legendre polynomials are defined on the inter-
val [−1, 1]. zerosval(′maxdegree′, i) denotes the i-th zero point for a Legendre
polynomial of degreemaxdegree which is loaded fromlegendrenodes. We cal-
ibrate the equilibrium values forX, Y andW by a loop of the model and vary the
elasticityesubx acrossgrid. We calculate the means and variances of these eco-
nomic variables by summing upresults, weighted byweights which can be
drawn from the gdx file directly:

mean(output) = SUM(i, weights(i) ∗ results(i, output)),
variance(output) = SUM(i, weights(i) ∗ (sqr(results(i, output))− mean(output)))).

3We make the files available on our webside.
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This implements the formulas (2) and (3) from Section 3. Table 1 reports the
results for the Monte-Carlo approach (MC) and the Gauss-Quadrature with Leg-
endre polynomials (GQ). For Monte-Carlo we choose 100, 1,000 and 6,000 draw-
ings of the random variableesubx from the interval[0.25, 0.75]. For each drawing
the equilibrium values of our model have to be calculated. Hence, computing time
is proportional to the number of drawings. For the Gauss-Quadrature we choose
the degree of the maximal Legendre polynomial to be equal to 10, 20 and 40.
These values correspond to the numbers of zeros of the polynomial function (i.e.
to the length of grid) at which the equilibrium problem has to be solved. Thus,
they are also equal to the number of model runs. Table 1 shows the means and
variances of the variablesX, Y andW depending on the chosen sensitivity approach
and the number of runs. We can see directly, that the results for the two differ-
ent approaches converge with increasing number of model evaluations. Gauss-
Quadrature converges more quickly to both mean and variance than Monte Carlo.
At the same time, it is numerically much more efficient. It reduces calculation
time by a factor of at least 50 in comparison to Monte Carlo.

Table 1: Uniformly distributed variable esubx

Means of X,Y and W
Name MC MC MC GQ GQ GQ
(Runs) (100) (1000) (6000) (10) (20) (40)

X -8.990 -9.022 -9.030 -9.036 -9.026 -9.030

Y 7.582 7.575 7.572 7.576 7.568 7.570

W -1.396 -1.418 -1.421 -1.426 -1.427 -1.421

Variances of X,Y, and W
Name MC MC MC GQ GQ GQ
(Runs) (100) (1000) (6000) (10) (20) (40)

X 0.027 0.031 0.031 0.031 0.031 0.031

Y 0.004 0.005 0.004 0.004 0.004 0.005

W 0.014 0.016 0.016 0.018 0.015 0.016
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4.2 Multidimensional Sensitivity Analysis

The sensitivity analysis can be conducted in an equivalent way for the elasticities
esubx andesubw separately or for all elasticities simultaneously. In this section
we assume that they are independently, uniform distributed. For the case of Monte
Carlo, the three elasticities of substitution ar drawn randomly but independently
from given intervals[ax, bx], [ay, by] and[aw, bw]. For theGauss-Quadraturethe
Legendre nodes are transformed three times from thegdx file. In both cases, the
equilibrium values are calculated by three loops over the three grids. Mean and
variance can be derived by weighting the results with the associated weights:

mean(output) =

SUM(i, SUM(ii, (SUM(iii, weightsx(i) ∗ weightsy(ii)∗
weightsw(iii) ∗ results(i, ii, iii, output)))))

variance(output) =

SUM(i, SUM(ii, SUM(iii, weightsx(i) ∗ weightsy(ii)∗
weightsw(iii) ∗ sqr(results(i, ii, iii, output)− mean(output))))) .

results(i, ii, iii, output) denotes the equilibrium values for the setoutput =
{X, Y, Z} given the (i)-th zero of the chosen Legendre polynomial foresubx, the
(ii)-th zero for the Legendre polynomial ofesuby and the (iii)-th zero of the one
for esubw. weightsx, weightsy andweightw refer to the Legendre weights be-
longing to the elasticitiesesubx, esuby, andesubw. Please note that different
values formaxdegreex, maxdegreey andmaxdegreew can be chosen correspond-
ing to different degrees of polynomials.
In our example run, we set[ax, bx] = [ay, by] = [aw, bw] = [0.25, 0.75] and
maxdegree := maxdegreex = maxdegreey = maxdegreew. To test the Monte-
Carlo (MC) approach we choose10 × 10 × 10, 20 × 20 × 20, 30 × 30 × 30 and
40× 40× 40 independent drawings from[0.25, 0.75]× [0.25, 0.75]× [0.25, 0.75]
which correspond to1, 000, 8, 000, 27, 000 and64, 000 model runs. To apply the
Gauss-Quadrature (GQ) approach we study the casesmaxdegree = 10, = 20,=
30 and= 40 with 1, 000, 8, 000, 27, 000 and64, 000 model evaluations. The re-
sults are reported in Table 2.

We notice the rapid convergence for the Gauss-Quadrature. Using this ap-
proach, the approximated mean does not change anymore after 8,000 runs. In
contrast, there is no trend observable from the results of the Monte Carlo ap-
proach, even after 64,000 runs. Besides, the values for the means and variances
differ considerably from the values derived by Gauss-Quadrature. It can be sug-
gested that the number of model evaluations for Monte-Carlo is still far too low to
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achieve acceptable results, despite the high computational burden.

Table 2: Uniformly distributed variable esubx, esuby and esubw

Means of X,Y and W
Name MC MC MC MC GQ GQ GQ GQ
(Runs) (1,000) (8,000) (27,000) (64,000) (1,000) (8,000) (27,000) (64,000)

X -9.852 -11.189 -10.901 -11.165 -9.002 -9.001 -9.001 -9.001

Y 8.435 9.574 9.323 9.680 7.571 7.573 7.573 7.573

W -1.475 -1.702 -1.652 -1.628 -1.404 -1.406 -1.406 -1.406

Variances of X,Y, and W
Name MC MC MC MC GQ GQ GQ GQ
(Runs) (1,000) (8,000) (27,000) (64,000) (1,000) (8,000) (27.000) (64.000)

X 5.719 4.570 4.570 3.462 5.435 5.438 5.441 5.440

Y 5.605 3.758 4.358 3.324 5.331 5.318 5.318 5.317

W 0.068 0.095 0.083 0.071 0.062 0.062 0.062 0.062

4.3 Sensitivity Analysis with Normal Distribution

Similarly, sensitivity analysis can be conducted for normally distributed param-
eters. In our model we consider the case of a log-normal distributed elasticity
esubx. Note that we cannot assume a normal distribution for an the elasticity be-
cause it is not defined for negative numbers. Instead, we assume thatln(esubx) is
normal distributed with mean 0.5 and variance 0.4. For theMonte-Carlo simula-
tion, random draws are generated by

esubx = exp(NORMAL[0.5, 0.4]).

TheGauss-Quadraturemethod used here is based on Hermite polynomials cor-
responding to the normal distribution. We calculate the zeros and weights of the
Hermite polynomials again in a separate MATLAB program and store them in a
gdx-files ashermitenodes andhermiteweights. It is also possible to take these
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values from published tables like e.g. from Greenwood and Miller (1948). Then,
we proceed in the same way as in the case of uniform distribution.
The results are reported in Table 3. Again, the values imply convergence of the
Gauss-Quadrature results. But also an additional disadvantage of the Monte Carlo
approach becomes visible. Our Monte-Carlo simulation was only feasible for
small numbers of runs up to 628. After that, the random generator of GAMS
started to produce repeatedly values ofexubx for which our programm failed to
find equilibrium solutions. Dropping these values from our sample produces an
unknown bias to the MC estimations. Unfortunately, this procedure is very com-
mon in practice. In contrast, the Gauss-Quadrature is numerically much more
stable.

Table 3: Log-normal distributed variable esubx withσ2 = 0.4, and µ = 0.5

Means of X,Y and W
Name MC MC MC GQ GQ GQ
(Runs) (100) (500) (628) (10) (20) (40)

X -9.804 -9.844 -9.842 -9.835 -9.842 -9.853

Y 7.559 7.572 7.572 7.571 7.578 7.592

W -1.878 -1.901 -1.900 -1.883 -1.891 -1.910

Variances of X,Y and W
Name MC MC MC GQ GQ GQ
(Runs) (100) (500) (628) (10) (20) (40)

X 0.069 0.075 0.070 0.178 0.168 0.168

Y 0.004 0.004 0.003 0.006 0.007 0.005

W 0.019 0.022 0.020 0.051 0.042 0.052
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5 Conclusion

Due to its general importance in economic modelling, sensitivity analysis merits a
systematic understanding by economic modellers. This paper hopes to contributes
to such an understanding and to serve as a guide in applying the appropriate algo-
rithm. Dimensionality of sensitivity analysis (the number of parameters that are
varied simultaneously) makes an important difference. Moreover,we argue that
generally stochastic sensitivity analysis gives more and better insights than deter-
ministic sensitivity analysis. However, it is also more burdensome computation-
ally. Comparing stochastic methods, the paper shows that Monte-Carlo methods
are easily applicable, but computationally expensive. Gauss-Quadrature meth-
ods reduce the computational burden and thus are suitable for higher dimensional
problems. In an application of both methods Gauss-Quadrature turns out to be
more stable than Monte-Carlo, which can be explained by the fact that it avoids
the extreme parts of the distribution.
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