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1 Introduction
Selection problems occur in a wide range of applications in econometrics. The basic
problem is that sample selection usually leads to a sample being unrepresentative of
the population we are interested in. As a consequence, standard ordinary least squares
(OLS) estimation will give biased estimates. Heckman (1976, 1979) has proposed a
simple practical solution, which treats the selection problem as an omitted variable
problem. This easy–to–implement method, which is known as the two–step or the
limited information maximum likelihood (LIML) method, has been criticised recently,
however. The debate around the Heckman procedure is the topic of this short survey.
The survey makes no claim on completeness, and the author apologises for the
possible omission of some contributions.

The paper is structured as follows. Section 2 outlines Heckman’s LIML as well as the
FIML estimator. Section 3 summarises the main points of criticism, whereas Section
4 reviews Monte Carlo studies. Section 5 concludes.

2 Heckman’s Proposal
Suppose we want to estimate the empirical wage equation [1a] of the following
model:

y ui i i2 2 2 2
* '= +x ββ . [1a]

y ui i i1 1 1 1
* '= +x ββ [1b]

y yi i2 2= * if y i1 0*
>

y i2 0= if y i1 0*
£ . [1c]

One of the x 2 –variables may be years of education. As economists we will be
interested in the wage difference an extra year of education pays in the labour market.
Yet we will not observe a wage for people who do not work. This is expressed in [1c]
and [1b], where [1b] describes the propensity to work.

Economic theory suggests that exactly those people who are only able to achieve a
comparatively low wage given their level of education will decide not to work, as for
them, the probability that their offered wage is below their reservation wage is
highest. In other words, u1  and u2  can be expected to be positively correlated. It is
commonly assumed that u1  and u2  have a bivariate normal distribution:
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Given this assumption, the likelihood function of model [1] can be written (Amemiya,
1985, p.386): [3]
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As the maximisation of this likelihood (full–information maximum likelihood, FIML)
took a lot of computing time until very recently, Heckman (1979) proposed to
estimate likelihood [3] by way of a two–step method (limited–information maximum
likelihood, LIML).

It is obvious that for the subsample with a positive y2
*  the conditional expectation of

y2
*  is given by:

E y y E u ui i i i i i i2 2 1 2 2 2 1 1 10* * ' ',x x x> = + > −d i c hββ ββ . [4]

It can be shown that, given assumption [2], the conditional expectation of the error
term is:
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where φ(.)  and Φ(.)  denote the probability and cumulative density functions of the
standard normal distribution, respectively. Hence we can rewrite the conditional
expectation of y2

*  as
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Heckman’s (1979) two–step proposal is to estimate the so–called inverse Mills ratio
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 by way of a Probit model and then estimate

equation [7]:
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y i i i2 2 2
21

1
1 1 1 2= + +x x' '

$/ββ ββσ
σ

λ σ εd i [7]

in the second step. Hence, Heckman (1979) characterised the sample selection
problem as a special case of the omitted variable problem with λ  being the omitted
variable if OLS were used on the subsample for which y2 0* > . As long as u1  has a
normal distribution and ε 2  is independent of λ , Heckman’s two step estimator is
consistent.1 However, it is not efficient as e2  is heteroscedastic. To see this, note that
the variance of e2  is given by

V i
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Clearly, V i( )ε 2  is not constant, but varies over i , as it varies with x1i . In order to
obtain a simple and consistent estimator of the asymptotic variance–covariance
matrix, Lee (1982, p.364f.) suggests to use White’s (1980) method. Under the null
hypothesis of no selectivity bias, Heckman (1979, p.158) proposes to test for
selectivity bias by way of a t–test on the coefficient on λ . Melino (1982) shows that
the t–statistic is the Lagrange multiplier statistic and therefore has the corresponding
optimality properties.2

Although there are other LIML estimators of model [1] than the one proposed by
Heckman (e.g. Olsen, 1980; Lee, 1983), this paper will use LIML to denote
Heckman’s estimator unless stated otherwise. Heckman (1979) considered his
estimator to be useful for ‘provid(ing) good starting values for maximum likelihood
estimation’. Further, he stated that ‘(g)iven its simplicity and flexibility, the procedure
outlined in this paper is recommended for exploratory empirical work.’ (Heckman,
1979, p.160). However, Heckman’s estimator has become a standard way to obtain
final estimation results for models of type [1]. As we will see in the following section,
this habit has been strongly criticised for various reasons.

                                        

1 However, as Rendtel (1992) points out, the orthogonality of x 2  to u2  does not imply that x 2  be

orthogonal to e2 .
2 Olsen (1982) proposes a residuals-based test to test for selectivity.
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3 The Critique of Heckman’s Estimator
Although LIML has the desirable large–sample property of consistency, various
papers have investigated and criticised its small–sample properties. The most
important points of criticism can be summarised as follows:

1) It has been claimed that the predictive power of subsample OLS or the Two–Part
Model (TPM) is at least as good as the one of the LIML or FIML estimators. The
debate of sample–selection versus two–part (or multi–part) models was sparked off
by Duan et al. (1983, 1984, 1985). The Two–Part Model (see also Goldberger, 1964,
pp.251ff.; and Cragg, 1971, p.832) is given by

y y ui i i i2 1 2 2 20* * '> = +x ββ [9a]

y ui i i1 1 1 1
* '= +x ββ , and [9b]

y yi i2 2= * if y i1 0*
> , and

y i2 0= if y i1 0*
£ . [9c]

The point is that [9a] models y2
* conditional on y1

* being positive. The expected value
of y2

* is then

E y i i i2 1 1 1 2 2
* ' 'ch c hc h= ×Φ x xββ ββσ [10]

Marginal effects on the expected value of y2
* of a change in an x 2 –variable would

thus have to be calculated by differentiating [10] with respect to the variable of
interest.

We argue that there are three main ways to interpret the TPM. The first is to claim
that it is not the unconditional, but rather the conditional expectation of y2

* that is of
interest to us. This approach is taken by Duan et al. (1983, 1984, 1985). The other
approach is to stress the behavioural structure of the model (Maddala, 1985a, 1985b),
to which the selection process is central. In this case, LIML and TPM estimate the
same behavioural relation. The TPM, however, then makes an implicit distributional
assumption for the unconditional distribution, which will be a mixing distribution also
depending on the distribution driving the selection mechanism. This approach,
however, seems unsatisfactory from a theoretical point of view (see Hay and Olsen,
1984; and Maddala, 1985a, p.14). A third and very crude interpretation, which is not
explicitly stated in the literature on the TPM, is to interpret the coefficients of [9a]
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also as the ones of the unconditional equation [1a]. This is tantamount to estimating
[1a] by subsample OLS. As we will see below, the justification for the latter two
interpretations will be given on statistical rather than theoretical grounds.

2) In practical problems, x1 and x 2  often have a large set of variables in common. In
some cases, they are even identical. One says that there are no exclusion restrictions
if no variables that are in x1 are excluded from x 2 . In these cases, equation [7] is
only identified through the nonlinearity of the inverse Mills ratio l . However,
collinearity problems are likely to prevail as λ .af is an approximately linear function

over a wide range of its argument. This is illustrated in Figure 1.

Figure 1: The Quasi–Linearity of the Inverse Mills Ratio
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Note that the probability to work for a person with characteristics x1 is given by

Φ x1 1 1
'ββ σc h. Only if this probability is higher than about 97.5 percent will x1 1 1

'ββ σ
be higher than 2. If most cases in a particular sample are not such extreme examples,
most observations will lie within the quasi–linear range of the inverse Mills ratio, as
demonstrated in Figure 1. It follows that regression [7] is likely to yield rather
unrobust results due to collinearity problems. Therefore, Little and Rubin (1987,
p.230) state that ‘for the (Heckman) method to work in practice, variables are needed
in (x1) that are good predictors of ( y1

* ) and do not appear in (x 2 ), that is, are not
associated with ( y2 ) when other covariates are controlled.’ Unfortunately, it is often
very difficult to find such variables in practice. In our wage example, theory would
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suggest that household variables like children and the income of the spouse are likely
to influence the reservation wage, but unlikely to influence the gross offered wage
and hence should only be included in x1. However, these household data are not
always available, and even if they are, it is not guaranteed that these variables are
good predictors of the propensity to work y1

* . But even if they are, the household

variables may well be also associated with the offered wage y2
* , especially if the

after–tax wage is being observed, as children and the income of other family members
have an impact on the tax rate in many tax regimes.

3) Another line of criticism stresses the sensitivity of the estimated coefficients with
respect to the distributional assumptions placed on the error terms in [1a] and
especially in [1b] (Little and Rubin, 1987, pp.225ff.). Instead of making strong
distributional assumptions, some authors suggest semi–parametric or non–parametric
procedures (see, for example, Chamberlain, 1986; Duncan, 1986; Powell, 1986;
Robinson, 1988; Newey, Powell, and Walker, 1990; Cosslett, 1991; Ichimura and
Lee, 1991; Ahn and Powell, 1993; Lee, 1996; Stern, 1996). These studies will not be
surveyed here.

In the following, we give summaries of important Monte Carlo studies on the
performance of the LIML estimator in their historical order.

4 Monte Carlo Studies

4.1 Nelson (1984)
Nelson investigates the bias and efficiency of the LIML, FIML, and subsample OLS
estimators dependent on both the coefficient of determination (R2) of the regression of
the inverse Mills ratio l  on x 2  (consisting of two variables) and the correlation ρ
between u1  and u2 . With R2 taking on the values 0, 0.35, 0.641, 0.95, and 0.999 and
the correlation between u1  and u2  varying between –0.5, 0, 0.25, 0.5, 0.75, and 0.95,
Nelson analyses 30 different specifications. The sample size chosen is 2,000
observations in the selected sample. The estimators of β21  and ρ  are compared in
terms of their variances when applying different estimation methods. Nelson finds
that the relative efficiency of the FIML over the LIML estimators of both β21  and ρ
rises both with a higher correlation between x 2  and l  and with a higher correlation
between u1  and u2 . Hence, the author concludes that ‘(t)he conditions under which
the OLS bias is largest are precisely the conditions under which the dominance of the
(FIML) over the (LIML) estimator is greatest.’ (p.195) Nelson’s suggestions for
applied research are to calculate the correlation of x 2  with the estimated inverse
Mills ratio. When this correlation is very low, he suggests using subsample OLS
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because of its small bias. If the correlation is very high, Nelson recommends the
FIML estimator. LIML may be used in intermediate cases, but Nelson’s results show
that even there FIML is no worse than LIML.

4.2 Paarsch (1984)
Paarsch investigates model [1] with no exclusion restrictions and with identical errors
in [1a] and [1b] which amounts to the type 1 Tobit model in Amemiya’s (1985)
classification. He estimates LIML, FIML(Tobit), subsample OLS, and Powell’s
(1992) Least Absolute Deviation estimator (LAD). The true models are distinguished
by the error distributions (normal, Laplace, and Cauchy) as well as the degree of
censoring (25 and 50 percent). Further, the sample size is varied between 50, 100,
and 200. Thus, 18 different models are looked at with 100 repetitions each. The
parameter estimates are judged on the basis of their means, standard deviations,
medians, as well as upper and lower quartiles. In all experiments, subsample OLS
turns out to be the worst estimator. Also, the Tobit estimator performs poorly when
the errors have a Cauchy distribution. In that case, the LAD estimator is robust. When
the assumption of normal errors is fulfilled, the LIML estimator is much less efficient
than the FIML(Tobit) estimator. The Tobit estimator also performs well when the true
error distribution is Laplace.

4.3 Hay, Leu, and Rohrer (1987)
Hay, Leu, and Rohrer compare the LIML estimator with another LIML estimator
which has a Logit model in the selection equation [1b], and the Two–Part Model.
There are no exclusion restrictions. The authors use data from the Swiss Socio–
Medical Indicator System for the Population of Switzerland (SOMIPOPS) to perform
a Monte Carlo simulation experiment. The true model is obtained from initial
estimates, whereby high and low parameter value groups are determined for the
simulation. Then Monte Carlo data sets are obtained by generating three different
error structures: bivariate normal, bivariate logistic, and bivariate Cauchy. The
correlations between u1  and u2  are chosen to be 0, 0.33, 0.66, 0.90, and 1.00. The
sample size is varied between 300, 1,500, and 3,000, of which around 20 percent are
censored. The estimators are evaluated on the basis of predictive performance as well
as the mean squared error of parameter estimates. Hay, Leu, and Rohrer’s findings
are that for the case of no exclusion restrictions analysed here, the TPM is the most
robust of the three estimators investigated. This is especially true when the error
distributions in the selection equation are normal or logistic. In the Cauchy case, none
of the models can establish a superiority over the others. The authors therefore
conclude that for specifications similar to theirs, the small–sample inefficiency of the
LIML estimator effects the obtained estimates more gravely than the theoretical
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deficiencies and the inconsistency of the TPM. The TPM is therefore seen as a robust
practical solution to the problem of estimating a selection model like [1].

4.4 Manning, Duan, and Rogers (1987)
Manning, Duan, and Rogers compare the LIML, FIML, TPM and Data–Analytic
TPM3 in a Monte Carlo study with 1,000 observations, where the true models are
selection models with a correlation between u1  and u2  of 0.5 and 0.9, and 25, 50, and
75 percent censoring. x1 and x 2  each contain one variable, but two cases are
distinguished. In the first case, x1 and x 2  are identical (no exclusion restrictions), in
the second, they are orthogonal to each other. There are 100 repetitions for each
model specification. The estimators are judged solely on their predictive power, not
on their merits concerning bias and efficiency. Manning, Duan, and Rogers show that
in the case of no exclusion restrictions, LIML estimation yields the worst predictions
of all four models investigated. The Data–Analytic TPM and FIML estimation turn
out to be the best in this case. The authors find that both LIML and FIML perform
especially badly when the degree of censoring is very high. This is daunting, of
course, as in this case, correction for selection bias would be most needed. When
there are effective exclusion restrictions, however (i.e. in the design where x1 and x 2

are orthogonal), the LIML estimator performs best of all (FIML is not investigated).
Yet the difference in predictive power between LIML and the Data–Analytic TPM
turns out to be very small. Manning, Duan, and Rogers therefore conclude that in
general, the Data–Analytic TPM is a robust estimator, ‘as long as analysts are
concerned about the response surface, rather than particular coefficients’ (p.82). Of
course, in many economic applications, the consistent and robust estimation of the
coefficients is of more interest than the predictive power of a model. As the authors
mention, the good predictive performance of the Data–Analytic TPM stems from the
fact that a large share of the variation of the inverse Mills ratio λ  can be explained by
higher–order terms of x 2 .

4.5 Stolzenberg and Relles (1990)
Stolzenberg and Relles focus their Monte Carlo study on the impacts of the
correlation between x1 and x 2  (both consist of only one variable) as well as the
correlation between u1  and u2  on estimating model [1] by LIML and subsample OLS.
In addition, the variance of both u1  and u2  is varied. They censor 90 percent of the

                                        

3 A TPM is called Data-Analytic if, for example, transformations of the regressors (e.g. higher-
order terms) are also included in order to improve the fit of the regression (Manning, Duan, and
Rogers, 1987, p.64f.).
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observations noting that severe censoring is common in sociological situations.
Furthermore, they want to create a case which is sufficiently distinct from a non–
censored regression in order to facilitate comparability of the subsample–OLS and the
LIML estimator. The data set size chosen is 500. The authors obtain 144 different
true models by varying the squared correlations between x1 and x 2  between 0, 0.25,
0.5, and 0.75, varying the squared correlations between u1  and u2  between 0, 0.25,
0.5, and 0.75, varying the variance of u1  between 1/9, 1, and 9, and also varying the
variance of u2  between 0.25, 1, and 4. Each of the 144 models is replicated 100
times. The estimators are judged on the basis of the mean absolute error of the
estimated coefficient on x 2 . In sum, LIML is superior to subsample OLS in one half
of the estimates and the average absolute error of both estimators is roughly the same.
The simulations show no clear relationship between the variances of u1  and u2  and
the performance of the two estimators in question. Yet it is found that a high
correlation between u1  and u2  and simultaneously a high correlation between x1 and
x 2  render LIML to be superior to subsample OLS in terms of parameter bias.
However, even in those cases, the absolute error of the estimates is larger than in
subsample OLS in over a third of the simulations, which confirms the view that the
LIML estimator is not robust. Stolzenberg and Relles conclude that the LIML
estimator is generally not recommendable.

4.6 Zuehlke and Zeman (1991)
Zuehlke and Zeman investigate the sensitivity of subsample OLS, LIML, and Lee’s
(1982, p.359f.) robust estimator with respect to the joint distribution of the error
terms u1  and u2 . The distributions implemented in their Monte Carlo study are

bivariate normal, bivariate t5, and bivariate c 5
2 . There are no exclusion restrictions,

and there is only one regressor. The degree of censoring is varied between 25, 50,
and 75 percent. Further, the correlation between u1  and u2  takes on the values 0, 0.5,
and 1. The full sample size is chosen to be 100, and there are 1,000 repetitions on
each model. The models are compared on their merits concerning the mean bias and
the mean squared error. Zuehlke and Zeman find that whereas the LIML estimator
reduces the bias compared to subsample OLS, its parameter estimates have very large
standard errors due to the high degree of collinearity between x1 and the inverse
Mills ratio λ . The authors find that the collinearity problem is exacerbated with a
high degree of censoring. The Lee (1982) estimator does not perform very well.
These results are robust with respect to variations in the joint distribution of u1  and
u2 . Thus Zuehlke and Zeman suggest employing the more robust subsample OLS
estimator if the subsample is very small.
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4.7 Rendtel (1992)
Rendtel compares the LIML estimator with the total–sample OLS and the FIML
estimator, respectively. He mainly focuses on the issue of exclusion restrictions by
observing the sensitivity of the estimates of the equation of interest [1a] with respect
to the adding and dropping of variables in the selection equation [1b]. Rendtel’s
initial Monte Carlo design has three variables in both x1 and x 2  with no exclusion
restrictions, one of them being a dummy variable. Rendtel points out that ‘(d)ummy
variables rather frequently occur in empirical work but rather seldom in simulation
studies.’ (p.9). He mentions that the coefficient of the dummy variable in [1a] may be
very susceptible to selectivity bias if this variable is important in the selection process
[1b], as there may be severe collinearity problems with the constant term. In
Rendtel’s setup, the total sample size is 400 with a third of the y2–values being
censored. Each of the specifications is replicated 100 times. In the first case, the
variables in x1 and x 2  are identical. Secondly, an additional variable is placed into
the x 2 –vector of the selection equation [1b]. Thirdly, a variable is omitted from [1b].
Finally, one variable is omitted from [1a] and one is added to [1b]. The models are
evaluated on the bias and the variance of the estimated coefficients. In the first case
with no exclusion restrictions, it shows that although LIML and FIML yield less
biased estimates than total sample OLS, the mean squared error of the LIML (FIML)
estimates is about 4 (1.3) times the OLS mean squared error. So LIML is shown to be
very unrobust. This is especially true for the coefficient on the dummy variable. In the
second design, Rendtel investigates the common procedure of including an additional
variable into the selection equation to obtain exclusion restrictions as suggested, for
example, by Little and Rubin (1987, p.230). The author distinguishes between four
statistical cases which may occur employing this method. The added variable may be
uncorrelated with both y1

* and y2
* , or correlated with either or both of y1

* and y2
* .

Rendtel uses this setup because ‘(i)n empirical work one is rather seldom in a position
to know a priori the relationship of the added variable to ( y2

* ) and ( y1
* ).’ (p.20). As

expected, when the added variable is uncorrelated with both y1
* and y2

* , the relative
efficiency of the OLS, FIML, and LIML estimators is similar to the case with no
exclusion restrictions. If, on the other hand, the added variable is only correlated with
y1

* , the exclusion restriction makes both the LIML and the FIML estimators very
effective by reducing the FIML and LIML mean squared error remarkably to about
one half of the OLS mean squared error. If the variable added to the selection
equation is correlated with both y1

* and y2
* , the FIML, but especially the LIML

parameter estimates in equation [1a] are strongly downward biased. The worst case,
however, is the one where the added variable is solely correlated with y2

* . Rendtel
shows that the distribution of the FIML dummy parameter estimate in [1a] becomes
bimodal and very dissimilar to a normal distribution. The mean squared error of the
FIML estimate becomes 5 times, and the mean squared error of the LIML estimate
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even 10 times the OLS mean squared error. In the third design, a variable is omitted
from the selection equation, a case which might arise if this variable is unobserved for
the censored cases or if the researcher thinks to be able to stabilise his or her
estimates in [1a] this way (p.21). However, it turns out that if a relevant variable is
missing in the selection equation, both the LIML and the FIML estimators lose their
power of correcting for selectivity bias when estimating the coefficient of this variable
in the equation of interest [1a]. Hence, one should be very careful in these situations.
Rendtel concludes that in general subsample OLS yields more robust results than both
FIML or LIML. Only if effective exclusion restrictions can be found and
implemented, FIML or LIML are clearly superior to subsample OLS. For this reason,
researchers are advised to look at the correlation of the variables excluded in [1a]
with the dependent variables in [1a] and [1b]. If these variables are mainly correlated
with y1

* , FIML estimation is proposed as it is generally more stable and efficient than
LIML estimation.

4.8 Nawata (1993) and Nawata (1994)
Nawata compares the LIML estimator with the subsample OLS (1993) and the FIML
estimator (1994), respectively. The FIML estimator uses a modified maximisation
procedure (1994, p.35) to facilitate convergence to the global maximum. In both
papers, the issues under investigation are the sensitivities of the estimates with
respect to the correlations between u1  and u2  and between x1 and x 2  (both x1 and
x 2  consist of only one variable). For u1  and u2 , the correlation coefficients
considered are 0, 0.2, 0.4, 0.6, 0.8, and 1 (1993) and 0, 0.4, and 0.8 (1994). For x1

and x 2 , the correlations generated are 0, 0.4, 0.8, 0.9, 0.95, and 1 in both papers. 50
percent of the observations are censored. The sample size is 200 and each model is
estimated 500 times in (1993) and 200 times in (1994), respectively. The results are
compared on the basis of the mean, standard deviation, median, as well as the upper
and lower quartiles of the parameter estimates. Comparing subsample OLS and FIML
with LIML, both the 1993 and 1994 papers show that LIML is less efficient the
higher the degree of correlation between x1 and x 2 . This result is consistent with the
a priori reasoning on collinearity outlined in Section 3 above. Similarly, a correlation
between u1  and u2  above 0.9, which is the case where correction for sample selection
is most needed, renders the LIML estimator very unstable. In this case, Nawata
suggests applying the FIML estimator. But subsample OLS would also give more
robust results than LIML.

4.9 Leung and Yu (1996)
Leung and Yu evaluate the predictive power, the parameter bias and error, and the
elasticity bias and error of the LIML, FIML, TPM, and the Data–Analytic TPM
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estimators in specification [1]. In their Monte Carlo designs, x1 and x 2  consist of one
variable each. 25, 50, and 75 percent of the observations are censored from a sample
size of 1,000 observations with 100 repetitions on each specification. There are five
different designs of the true model. One is a TPM, the other four are sample selection
models. The sample selection model without exclusion restrictions is specified both
with a small [0,3] and a large [0,10] range of the exogenous variable. In the case with
exclusion restrictions Leung and Yu consider both a correlation of 0.5 and a
correlation of zero between x1 and x 2 . The authors demonstrate that the crucial
determinant of the performance of the LIML (and FIML) estimator is the presence or
absence of collinearity problems. Three main causes of collinearity problems are
identified, viz. the lack of exclusion restrictions, a too small range of the argument of
the inverse Mills ratio, and a too high degree of censoring. The first cause follows
from the quasi–linearity of the inverse Mills ratio as depicted in Figure 1 above.
Similarly does the second cause. The third cause is less obvious but can easily be
made plausible. An increase in the share of censored observations is achieved by
increasing the share of observations with x1 1 0'ββ < . So if the distribution of x1 1

' ββ  is

shifted to the left and everybody with x1 1 0'ββ <  is censored, the remaining

observations will exhibit a smaller range of x1 1
' ββ  thus causing collinearity problems

(cf. Figure 1 above). The authors show that collinearity not only effects the accuracy
of the estimates of ββ2  and the predictive power, but also the power of the t–test on
the coefficient of the inverse Mills ratio for the presence of selectivity bias. However,
in the absence of collinearity problems, the t–test turns out to be a good discriminator
between the TPM and the selection model. In particular, if the variation of the
argument of the inverse Mills ratio is small and there are no exclusion restrictions,
LIML estimation yields less robust results than the TPM. However, when the range of
the argument of the inverse Mills ratio is increased, Leung and Yu find that even with
no exclusion restrictions the LIML estimator is preferable to the TPM estimator.
When x1 and x 2  are correlated, but not highly correlated, the findings are that the
LIML and FIML estimators are superior to both the TPM and the Data–Analytic
TPM. These results hold even more strongly if x1 and x 2  are uncorrelated. In this
latter case, Leung and Yu found that FIML slightly outperforms LIML. However, the
superiority of FIML over LIML could not be established as a general result. Roughly
speaking, although FIML turns out to be more efficient, LIML is often less biased.
Leung and Yu also consider the case where the TPM is the true model. Although
LIML and FIML perform worse than the TPM, so does the Data–Analytic TPM, the
reason being collinearity problems due to the inclusion of irrelevant variables. To sum
up, the results indicate that the crucial criterion for model selection in applied
research should be the issue of collinearity. Leung and Yu suggest to test for
collinearity by calculating the condition number for the regressors in [7] (a LIMDEP
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7.0 programme is given in the appendix to this paper). If the condition number
exceeds 20, the TPM is more robust, otherwise, FIML (or LIML) is recommended.4

5 Conclusions
The general conclusions which may be drawn from the surveyed Monte Carlo studies
as well as the theoretical considerations cast doubt on the omnipotence implicitly
ascribed by many applied researchers to Heckman’s (1976, 1979) two–step
estimator. Indeed, Heckman himself is confirmed when he writes that the purpose of
his estimator is only to ‘provide() good starting values for maximum likelihood
estimation’ and ‘exploratory empirical work.’ (Heckman, 1979, p.160).

The cases where the need to correct for selectivity bias are largest are those with a
high correlation between the error terms of the selection and the main equation, and
those with a high degree of censoring. Unfortunately, though, as the Monte Carlo
analyses show, in exactly those cases Heckman’s estimator is particularly inefficient
and subsample OLS may therefore be more robust. In addition, empirical researchers
are often confronted with a high correlation between the exogenous variables in the
selection and the main equation. Because the inverse Mills ratio is approximately
linear over wide ranges of its argument, such high correlation is also likely to make
Heckman’s LIML, but also the FIML estimator very unrobust due to the collinearity
between the inverse Mills ratio and the other regressors.

The practical advice one may draw from these results is that the estimation method
should be decided upon case by case. A first step should be to investigate whether
there are collinearity problems in the data. This can be done by calculating R2 of the
regression of the inverse Mills ratio on the regressors of the main equation or by
calculating the corresponding condition number (a short LIMDEP 7.0 programme is
given in the appendix). If collinearity problems are present, subsample OLS (or the
Two–Part Model) may be the most robust and simple–to–calculate estimator. If there
are no collinearity problems, Heckman’s LIML estimator may be employed, but given
the constant progress in computing power, the FIML estimator is recommended, as it
is usually more efficient than the LIML estimator.

                                        

4 This differs from Belsley, Kuh, and Welsch’s (1980, p.105) suggestion of taking 30 as the critical
value. Leung and Yu (1996, p.224) believe that chosing 20 as the critical value gives fairly
accurate results, as the standard error of the condition number is quite small relative to its mean.
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Appendix

A Limdep Programme Which Calculates a Condition Number

LOAD         ; FILE = c:\data\example.sav $
OPEN         ; OUTPUT = c:\out\cond#.out  $

? List of variables for which the condition number
? is to be calculated
NAMELIST     ; X = var1, var2, var3 $

? Compute the normalised moment matrix
MATRIX       ; XX = X'X
             ; D = DIAG(XX); D = ISQR(D)
             ; XX = D * XX * D $

? Find the highest and lowest eigenvalues
MATRIX       ; E = ROOT(XX) $
CALCULATE    ; r = ROW(E) $
MATRIX       ; EH = PART(E,1,1) $
MATRIX       ; EL = PART(E,r,r) $

? Calculate and display the condition number
CALCULATE    ; Cond = EH/EL $
MATRIX       ; LIST ; Cond $

Note: I thank B. Greene for help with the normalisation (conversation by electronic mail).


