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Abstract

We clarify the role of mixed strategies and public randomization (sunspots)
in sustaining near-efficient outcomes in repeated games with private moni-
toring. In a finitely repeated game where the stage game has multiple Nash
equilibria, mixed strategies can support partial cooperation, but cannot ap-
proximate full cooperation even if monitoring is “almost perfect”. Efficiency
requires extensive form correlation, where strategies can condition upon a
sunspot at the end of each period. For any finite number of repetitions, we
approximate the best equilibrium payoff under perfect monitoring, assuming
that the noise in monitoring is small and sunspots are available. Journal of
Economic Literature Classification Numbers: C73, D82.
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1 Introduction

Repeated games with imperfect public monitoring are well understood. An
example is Green and Porter’s [13]1 analysis of a homogeneous good oligopoly,
where the individual firm’s output is unobserved by its rivals, and the com-
mon market price is publicly observed. In a collusive equilibrium, all firms
comply with the mandated output reduction. Nevertheless, punishments are
triggered after shocks which are sufficiently unfavorable, and hence agents
incur payoff losses which may be attributable to the imperfectness of moni-
toring. These costs are small provided that the signals allow the statistical
identification of the deviator and players are patient, as is demonstrated by
the “folk-theorem” for this class of games (see Fudenberg, Levine and Maskin
[12]).

Rather less is known about repeated games where individuals monitor
other players via private signals. An example is buyer-seller interaction,
where the quality of the product depends stochastically upon the cost or
effort incurred by the seller, and where the seller only observes his effort while
the buyer only observes the quality he receives. Note the crucial difference
with the “standard” model of Klein-Leffler [19] in which the seller’s effort
is unobservable to the buyer, but where both the buyer and seller know the
quality the buyer receives. With private signals, players do not have common
knowledge of whether cooperation is to continue or a punishment phase is
to be started. Specifically, in the buyer-seller example, the buyer may be
reluctant to quit the relationship when he observes bad quality. Since the
seller does not observe the quality that the buyer receives, the buyer cannot
be sure that the seller will not continue to invest in the relationship. This
absence of common knowledge of the players’ continuation strategies creates
formidable problems, and has deterred the construction of a general theory
of such games.

This paper analyzes a simple model of repeated bilateral trade with moral
hazard and private monitoring, and highlights the importance of mixed strate-
gies and public randomization in sustaining near-efficient outcomes. We
consider a finitely repeated interaction where the stage game has multiple
equilibria. Two traders may supply each other a good of high quality or of
low quality. Each trader’s action (i.e. the quality supplied) is private infor-
mation. Moreover, the quality of the good which is received by the recipient
is also private. We assume that each trader must incur a sunk cost in order
to trade, which gives rise to multiple pure strategy equilibria in the one-shot

1Abreu, Pearce and Stacchetti [1] provide a general framework for the analysis for this
class of games.



trading game. There is one equilibrium where both traders incur the sunk
cost and supply low quality, which Pareto dominates the second equilibrium
in which neither incurs the sunk cost and no trade takes place. Suppose that
this game is repeated twice, and focus on the sustainability of the“efficient
outcome” where each trader supplies high quality in period one, and low
quality in period two if he receives high quality in period one, but chooses
not to trade if he receives low quality. With independent private signals, it is
easy to see that this pure strategy profile is not an equilibrium. The essential
problem is that in any pure strategy profile, each player chooses a pure ac-
tion in period one, and hence a player’s beliefs about his opponent’s second
period behavior do not vary with the signal he observes. Consequently, it is
not optimal for him to punish when he receives a bad signal. This argument
extends to the case of correlated signals, provided that the degree of correla-
tion is sufficiently small. Punishments can however be sustained via mixed
strategies. In such a mixed strategy equilibrium, a player is uncertain about
the pure strategy that his opponent is playing, and he can hence learn about
his opponent’s continuation strategy from his signal. This makes it optimal
for a player to punish in the event that he observes a bad signal, and hence
such a mixed strategy equilibria can support partial cooperation. However,
mixed strategies cannot approximate the efficient payoff even if the noise in
the signals tends to zero.

This inefficiency arises due to a subtle reason. A player will be willing
to punish a bad signal by not trading only if such a signal signifies that his
opponent is unlikely to trade tomorrow. If signals are sufficiently uncorre-
lated, the player will have such beliefs only if the player’s opponent plays,
with positive probability, a “bad” pure strategy which sends low quality in
period one and does not trade in period two. In other words, cooperation
requires defection, not merely in the punishment phase (as in the public sig-
nals case), but in the first period itself. Since monitoring is near-perfect, the
act of defection is almost surely detected and punished, and hence such a
defector’s payoff is bounded away from the efficient payoff. Since defection
occurs with positive probability in equilibrium, a player must be indifferent
between cooperating and defecting, and hence his overall payoff must equal
the payoff from defection. In other words, the set of equilibrium payoffs un-
der private monitoring is bounded away from efficiency even if monitoring is
almost perfect.

Efficiency can be restored if players observe the output of a public ran-
domization device (a sunspot) at the end of period 1. Such public random-
ization, after period one actions have been chosen, allows the players to
reduce the severity of punishments, by “forgetting” about past deviations in
a coordinated way. By judiciously mitigating the punishment, while still pre-
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serving the incentive to cooperate in period one, one can ensure approximate
efficiency. We extend this argument to show that in any finitely repeated
trading game with imperfect private monitoring, one can approximate the
best symmetric equilibrium payoff under perfect monitoring providing that
the noise vanishes.

The layout of the remainder of this paper is as follows. Section 2 in-
troduces the basic two period example, and shows that cooperation cannot
be sustained by a pure strategy equilibrium. It also that mixed strategies
can ensure partial but not full cooperation, while for public randomization
ensures approximate efficiency. Section 3 extends these results to the case
of any finitely repeated interaction. The final section reviews the related
literature and concludes.

2 The Basic Model

Consider the following situation of bilateral trade with moral hazard. Two
traders are exchanging goods of variable quality — to make things concrete,
think of these as different types of fruit. Each trader must independently
make a preliminary investment, incurring a sunk cost F if they are to have
the option to trade. If both traders pay this cost, they may proceed to trade.
A trader can cooperate (action C) by sending fruit of high quality to the
recipient, or defect (action D), by sending fruit of low quality. High quality
fruit has value VH , which is greater than the value of low quality fruit, VL.
However, the cost of high quality to the supplier, CH , exceeds the cost of
low quality, CL. Payoffs as a function of the quality dispatched by the trader
(which we shall call the action, and is indicated by upper case letters) and
the quality of fruit received (which we call the signal, and indicate using
lower case letters) are shown in Fig.1. Ai = {C,D,E} is the set of actions of
player i and Ωi = {c, d, e} is the set of possible signals received by i. E is the
no-trade option, and we have normalized payoffs by adding the sunk cost to
each entry. (It is assumed that if partner i decides not to trade, the other
trader j is informed that E has been chosen — we denote this by saying that
j receives the signal e for sure, if and only if player i chooses E). In this
event, if j has chosen to trade, he loses the sunk cost but not any additional
production cost.)

c d e
C VH − CH VL − CH 0
D VH − CL VL − CL 0
E F F F
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Fig. 1

Assume that if one trader sends the other good fruit, there is a small
probability, ε, that the fruit deteriorates en route, so that the latter receives
low quality, i.e. the recipient gets the signal c with probability (1 − ε) and
the signal d with probability ε. If the sender sends bad quality, the receiver
gets bad quality (signal d) for sure, and if the a trader chooses action E, the
other trader gets signal e for sure. We may then write the stage game payoffs
as in Fig.2, which shows the payoff to the row player. ṼH = (1− ε)VH + εVL
is the “expected quality” received when high quality is dispatched.

C D E

C ṼH − CH VL − CH 0

D ṼH − CL VL − CL 0
E F F F

Fig. 2: The Game G

Assume that it is efficient to both traders to exchange high quality fruit,
so that ṼH − CH > VL − CL. Quality dispatched and quality received are
both unverifiable, and hence high quality trade cannot be legally enforced.
Clearly, the action C is strictly dominated. However, both (D,D) and (E,E)
are Nash equilibria of the game G, and there is also a mixed Nash equilib-
rium where each trader plays D with probability µ∗ = F

VL−CL
and E with

probability 1− µ∗. Assume that low quality trade is sufficiently better than
no-trade so that VL −CL − F > ∆C = CH −CL, and focus attention on the
case where G is played twice.2

Suppose that each player cannot observe the quality dispatched by the
other player, i.e. actions are unobserved. The central focus of this paper
is on the case where each player’s signal is private, i.e. he only knows what
quality he received. However, to provide a benchmark, we first briefly discuss
the case analyzed in the literature, when the quality received by any trader
is commonly observed, i.e. the signals are public. Since G has multiple Nash
equilibria, we may, as in Benoit and Krishna [3], construct an equilibrium
where C is played in period one. Each player adopts the following strategy:
choose C in period one; in period two, play D if the signals are (cc), and play
E otherwise. To see that this strategy profile is an equilibrium, note that in
period two, each player knows the action that his opponent will play for sure,
and hence his own action is optimal at every information set. Given second

2If trade is seasonal, as is likely in the fruit example, the finitely repeated game may
be a better representation of interaction than an infinitely repeated game. In addition,
the two-period example allows us to characterize the efficiency properties of all equilibria.
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period behavior, a deviation to D in period one is unprofitable. Equilibrium
payoffs are given by

ṼH − CH + (1− ε)2(VL − CL) + (1− (1− ε2))F

This payoff is lower than the efficient payoff of (ṼH − CH + VL − CL),
which is an equilibrium payoff if the players actions were to be observed.3

Imperfect monitoring via public signals creates an inefficiency relative to the
efficient payoff, but this inefficiency is of order ε, and vanishes as ε tends to
zero.

Consider now an alternative information structure which is the focus of
this paper, where each trader observes the quality of fruit he receives but does
not observe the quality received by the other trader — signals are private.
Hence neither the quality sent nor the quality received by trader i are mutual
knowledge between the traders, although they could be arbitrarily close to
being so if the noise (ε) is small. It is convenient to be slightly more general
with respect to the signalling technology and to allow for correlation between
the players’ signals conditional on the action taken. For a ∈ A = A1 × A2,
let ω = (ω1, ω2) ∈ Ω1 × Ω2 be the profile of signals realized, where player i
observes only ωi. Furthermore, assume that conditional on a = (C,C), the
signal distribution is given by

Trader 2’s signal

Trader 1’s signal
c d

c (1− ε)2 + ρε(1− ε) (1− ρ)ε(1− ε)
d (1− ρ)ε(1− ε) ε2 + ρε(1− ε)

Fig. 3 Distribution of signals conditional on (C,C)

If a = (C,D), ω = (c, d) with probability 1 − ε, and ω = (d, d) with
probability ε. If a = (C,D), ω = (c, d) with probability 1 − ε, and ω =
(d, d) with probability ε. If a = (D,D), ω = (d, d) with probability one. If
a = (E,E), ω = (e, e) with probability one, and if player i chooses E and if
player j chooses either C or D, then ωj = e and player i is informed that
ωi ∈ {c, d}.

This signalling structure is parametrized by ε and ρ, where ε is the level
of “noise”, and ρ is the degree of conditional correlation between signals
(conditional on the action profile (C,C)) .4 Since all probabilities must be

3We call this the efficient payoff since this is the maximum payoff that each player can
achieve in any equilibrium.

4For simplicity we shall call ρ the degree of correlation, by which we mean conditional
correlation, i.e. conditional upon the action profile (C,C). In our model, correlation could
arise due to correlated weather shocks which affect the quality received by both players.

7



positive, we must have that ρ ≤ 1 and ρ ≥ max{− ε
1−ε ,−

1−ε
ε
}. Assume that ρ

satisfies these inequalities strictly, thus ensuring that all signal combinations
have positive probability when (C,C) is played. ρ = 0 corresponds to case
where the signals are independent, while if ρ = 1, the signals are perfectly
positively correlated — this is equivalent to the public signals case.

2.1 Pure Strategy Equilibria

Our focus is on the twice repeated game, which we denote G2(ε, ρ).Players
maximize the sum of expected payoffs in the two stages. A pure strategy for
a player i in G2(ε, ρ) is a pair si = (fi, gi) where fi ∈ Ai is the action taken
in the first period, and gi : Ai × Ωi → Ai specifies the action taken in the
second period as a function of the player’s first period action and the signal
he receives. Our focus is on the sequential equilibria of G2(ε, ρ). 5

Consider first the case where signals are independent, so that ρ = 0.
In this case we cannot support the playing of C in period one in any pure
strategy equilibrium, even if ε is arbitrarily small. Suppose that C is chosen
by both traders in period one. This can only be optimal for each trader if he
believes that the other trader will reward signal c and punish signal d. Hence
each player’s strategy must be of the type: play C in period 1; in period two,
play D on receiving signal c, and play E on receiving signal d. 6However,
such a strategy is not a best response to itself; it is not optimal for a trader
who receives signal d to carry out this punishment. Suppose that I am a
player who believes that my opponent is playing such a strategy. If I observe
the signal d, I should attribute this to the error in the signalling technology
— the application of Bayes’ rule to my opponent’s strategy implies that this
is the only event which has positive probability. Since I have chosen C in
period one, I know that my opponent will receive signal c with very high
probability, 1− ε. Hence it is optimal for me to continue with D, and ignore
the signal I have received. Since varying second period behavior with the
first period signal is not optimal, this makes it impossible to support the

5Our focus is on efficient equilibria, i.e. on strategy profiles where C is played in period
one, and in this case signals c and d will both be observed with positive probability. In
consequence, we could as well use the Nash equilibrium criterion, since this will requires
optimal behavior at all information sets which are reached.

6A player could also punish by playing the mixed equilibrium, but the argument which
follows also applies in this case.
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playing of C with probability one in the first period.7 8

Consider now the case of correlated signals. If this correlation is positive,
if a player receives a bad signal, this makes it more likely that his opponent
has also received a bad signal. Consequently an agreement to punish on
receiving a bad signal could be made self enforcing. However, the degree of
positive correlation must be large enough. Define the strategy α as follows

Strategy α: 1st period: C. 2nd period:D if (Cc), E otherwise.
Consider the sustainability of the strategy profile (α, α).9 To check that

this is a Nash equilibrium we need to see that second period behavior is
optimal. If my opponent is playing the strategy α, then he will play D in
period 2 if he has observed the signal c, and will play E if he has observed
d. Hence conditional on my first period action C, and on my receiving the
signal c, the probability that my opponent plays D in period 2, µi(Cc;α)
equals (1 − ε) + ρε. Similarly, conditional on my first period action C, and
on my receiving the signal d, the probability that my opponent plays D in
period 2, µi(Cd;α) equals (1 − ρ)(1 − ε). Since α requires me to play D on
observing c and E on observing d, I must believe that my opponent plays D
in the former event with probability greater than µ∗, and with probability
less than µ∗ in the latter event (recall that µ∗ is the probability with which
D is played in the mixed equilibrium of G). I.e. we must have

µi(Cc;α) = (1− ε) + ρε ≥ µ∗. (1)

µi(Cd;α) = (1− ρ)(1− ε) ≤ µ∗ (2)

In addition, it must be optimal to play C in period one, rather than
deviating by playing D in period one and E in period two. Let ∆C =

7This argument appears to be quite general — given independent signals where every
signal has positive probability under any action profile, and generic payoffs in the stage
game, the pure strategy equilibria of the twice repeated game must be degenerate, i.e.
repetitions of stage-game Nash equilibria. By using induction, this result may also be
extended to any number of finite repetitions.

8One possible solution to this coordination problem is to allow players to communicate
at the end of period one. This route is explored by Compte [9] and Kandori and Mat-
sushima [18], who use this to prove versions of the folk theorem of for infinitely repeated
games with private monitoring. The focus of the present paper is a purely non-cooperative
analysis, without communication. Nevertheless, it may be worth pointing out that in the
present finitely repeated game, communication is ineffectual unless signals are sufficiently
highly correlated — see Bhaskar ([7]) for details.

9Any pure strategy equilibrium where C is played in period one must be similar to
(α, α), since signal c must be rewarded and d must be punished. What happens after
signal e is irrelevant.
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CH−CL— this is the first period gain to deviating by producing low quality.
This must be less than the second period loss from deviation, i.e.

∆C ≤ [((1− ε)2 + ρε(1− ε))(VL − CL) + εF ]− F (3)

Inequalities (1-3) are graphed in Fig. 4. The shaded area in this figure shows
values of ε and ρ such that these inequalities are satisfied, and (α, α) is an
equilibrium. The key features of this figure are summarized in the following
proposition.
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Proposition 1 i)If ρ ≥ 1−µ∗, cooperation can be supported by a pure strat-
egy equilibrium if ε is sufficiently small.

ii)If ρ < 1− µ∗, cooperation cannot be supported by a pure strategy equi-
librium if ε is sufficiently small.

iii)If ρ is close to but less than 1 − µ∗, cooperation can be supported if ε
is neither too large nor too small.

Note that correlation must be sufficiently high for cooperation to be sup-
ported. Most intriguing is part (iii) of the proposition, on the relation be-
tween the level of noise and cooperation at intermediate levels of correlation.
(2) will not hold if ε is small and close to zero, but Fig. 4 shows that this
inequality can be satisfied for larger values of ε. However, ε must not be too
large since otherwise (3) will not be satisfied. Hence the set of pure strategy
equilibrium outcomes is not monotone in ε.10

We shall henceforth focus attention upon the case where ρ < 1−µ∗, when
cooperation cannot be sustained via pure strategies. We refer the interested
reader to Mailath and Morris [20], who discuss correlated signals in greater
detail and prove a folk theorem for infinitely repeated games with private
signals if these signals are sufficiently highly correlated.

2.2 Mixed Strategies

We now construct a mixed strategy equilibrium which allows us to support
partial cooperation in the twice repeated game for any level of correlation
between signals. A mixed strategy for a player i is a probability vector σi,
where σi(si) denotes the probability assigned to the pure strategy si. Note
that we shall conduct our analysis in terms of mixed strategies rather than
behavior strategies.

In order to understand the role of mixed strategies, it is useful to interpret
the reason why pure strategies are unable to support any cooperation. For
intuition, focus on the case where signals are independent so that ρ = 0.
Observe that in this case, from (1) and (2) that µi(Cc, α) = µi(Cd, α) = 1−ε.
In other words, if a player “knows” his opponent’s strategy (as is implicit in
a pure strategy equilibrium), his beliefs regarding his opponent’s action in
period two depend only upon his prior knowledge, and are insensitive to the
signal he receives. To make a player willing to respond to the signal, we must
ensure that it conveys some information about his opponent’s second period

10Proposition 3 below shows that payoffs in any equilibrium are bounded away from the
efficient payoff if ρ < 1 − µ∗. Hence the paradoxical finding, that equilibrium payoffs are
not monotone in ε, applies even if we consider mixed strategies — see the remarks at the
end of section 3.
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actions in equilibrium. More specifically, a player will be willing to respond
differently to different signals only if these signals indicate that his opponent
is likely to play differently.11This is possible if we allow for mixed strategies,
since the player’s prior beliefs will not be degenerate, and the signal allows
him to learn which pure strategy his opponent is playing.

Consider the following pure strategies for the repeated game.
Strategy α: 1st period: C. 2nd period:D if (Cc), E otherwise.
Strategy β: 1st period: D. 2nd period:E.
The payoff matrix for these two supergame strategies is:

α β

α ṼH − CH + VL − CL− Γ(ε) VL − CH + F

β ṼH − CL + F VL − CL + F

where Γ(ε) = [1− (1− ε)2− ρε(1− ε)](VL−CL) + εF is a term of order ε.
Confining attention to the pure strategy set {α, β} for each player, we

see that α is a strict best response to α if ε is sufficiently small and β is a
strict best response to β. Hence the above payoff matrix also has a symmetric
mixed strategy equilibrium where each player plays α with probability π and
β with probability 1− π, where π = ∆C

VL−CL−F−Γ(ε)
. Call this mixed strategy

σ̂.We now show that the symmetric strategy profile (σ̂, σ̂) is an equilibrium
of the repeated game.

Proposition 2 The symmetric strategy profile where each player plays σ̂ is
an equilibrium of G2(ε, ρ) for any ρ < 1 if ε is sufficiently small.

Proof. Assume that the opponent plays σ̂. It is easily seen that any strategy
that starts by playing E is strictly inferior. Write µi(.; σ̂) for the beliefs
induced by σ̂, i.e. the probability that the opponent will play D at t = 2.
Then

µi(Cc; σ̂)→ 1 as ε→ 0 (4)

µi(Cd; σ̂)→ 0 as ε→ 0 (5)

µi(Dωi; σ̂) = 0 (6)

11Alternatively, a player can be made willing respond to the signal even with constant
beliefs if µ∗ = 1 − ε, so that he is indifferent between his two actions and takes different
actions at different information sets. We discuss this possibility, due to Kandori [16] after
proposition 2.
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At information set (Cc), I know that my opponent has played α and that
he received signal c with probability almost 1, and hence (4) follows. At
information set (Cd), the signal d could have arisen either because (i) my
opponent is playing α and the noise intervened, or (ii) my opponent is playing
the strategy β. The probability that my opponent continues with D equals
the conditional probability that my opponent is at the information set (Cc)
given that I am at (Cd), and equals

µi(Cd; σ̂) =
πε(1− ε)(1− ρ)

(1− π) + πε
(7)

The condition that µi(Cd; σ̂) ≤ µ∗ is equivalent to the condition that

π ≤ π∗ =
µ∗

(1− ε)[µ∗ + ε(1− ρ)]
(8)

Since π∗ → 1 as ε → 0 while π → ∆C
VL−CL−F

< 1 as ε → 0, we will have
µi(Cd; σ̂) ≤ µ∗ as long as ε is sufficiently small — indeed, (5) also follows
from this. Finally, (6) follows since the opponent is sure to receive signal d
after D and since both α and β play E after d. (4-6) together with the fact
that both (D,D) and (E,E) are strict equilibria of G imply that for ε small
enough, D is the unique best response at (Cc), and E is the unique best
response at other information sets at t = 2. It follows that both α and β
prescribe best responses to σ̂ at t = 2. Since, by construction, α and β are
also best responses at t = 1, (σ̂, σ̂) is an equilibrium of the game.

The above construction is very different from Kandori’s early work[16].
Kandori analyzes a twice repeated game where the stage game that has a
unique mixed strategy equilibrium, and the private signals are independent.
Kandori constructs an equilibrium where the efficient action profile is played
with probability one in period one. Since the signals are independent, a
player will have the same beliefs about his opponent’s actions in period two
after any private signal, and these beliefs are constructed to correspond to the
mixed equilibrium of the stage game. However, since a player is indifferent
between all pure actions in the support of the mixed strategy equilibrium, he
will be willing to play different continuation strategies in response to these
signals, thus providing incentives for cooperative behavior in period one.

In Kandori’s equilibrium, a player has identical beliefs about his oppo-
nent’s continuation strategy at different histories, but chooses his continua-
tion strategy in period two differently depending upon which history materi-
alizes. We argue that this equilibrium is not robust, for the following reason.
Suppose that each player’s stage game payoffs are subject to a small amount
of incomplete information, as in Harsanyi [15]. In this case, at stage 2, a
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player will behave in the same way after different histories for almost any
realization of his payoff information, since he will strictly prefers one action
above the other. In other words, this equilibrium cannot be purified in the
manner of Harsanyi, if we perturb stage game payoffs, or equivalently, assume
that payoffs in the perturbed repeated game are additively separable.12 This
criticism does not apply to the equilibrium we have constructed: a player is
required to randomize only at stage 1 and has strict incentives to follow the
recommendations of his strategy at stage 2. Since the equilibrium strategy
is measurable with respect to a player’s beliefs, it is not difficult to construct
equilibria of incomplete information games that approximate it.

Although the mixed strategy equilibrium supports partial cooperation,
the probability with which the players play C in period one is bounded away
from one even if ε is arbitrarily small. To see this, observe that π, the
probability with which the strategy α is played, tends to ∆C

VL−CL−F
< 1 as

ε → 0. Hence the equilibrium payoff in the game without any noise cannot
be approximated by this mixed equilibrium, in contrast with the situation
where signals are publicly observed. We now show that this result holds more
generally — the cooperative equilibrium under perfect monitoring cannot be
approximated under imperfect monitoring even if the noise in the signals goes
to zero. In other words, the sequential equilibrium outcome correspondence
is not lower-hemicontinuous.13

Proposition 3 If ρ is fixed and strictly less than 1−µ∗, the efficient outcome
where both traders produce high quality in period one, and low quality in
period two cannot be approximated by any equilibrium of G2(ε, ρ), as ε→ 0.

Proof. Assume that (σ1(ε), σ2(ε)) is a mixed Nash equilibrium of G2(ε, ρ)
that is approximately efficient, i.e. each player’s payoff is approximately
ṼH − CH + VL − CL.

Define first the set Θ of good pure strategies in the repeated game, where
a good strategy plays C in period 1, and responds to the signal c by playing
D in period 2. Θ = {(fi, gi) : fi = C and gi(c) = D}. If the outcome of any
mixed strategy is to be approximately efficient, then both players must be

12See Bhaskar [5],[6] for an analysis of such payoff perturbations in the context of re-
peated games and other dynamic games with additively separable payoffs and private
monitoring.

13This failure of lower-hemicontinuity is with respect to the information structure, and
hence quite different from the example of Radner, Maskin and Myerson [23], who consider
the behavior of equilibrium payoffs in a repeated game with public signals as the discount
rate tends to one, given a fixed information structure. Kandori [17] discusses the effects
of improved information in the case of imperfect public monitoring.
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playing good strategies with probability close to one. In this event, neither
player will play E in period one, since this yields a strictly lower payoff.

Since player i is playing C or D in period one, player j’s first period
payoff gain from playing D rather than C in period 1 equals ∆C. To ensure
that player j has an incentive to play C in period one, we must ensure that
player j suffers a second period loss of at least ∆C if he plays D in period
one. Hence player i must be playing a good strategy which rewards the signal
c (by playing D in period two) and punishes the signal d (by playing E in
period two). Call any such strategy α — i must assign positive probability
to a pure strategy α. Since this argument applies for i = 1, 2, α is in the
support of both players’ strategies.

Let α′ be a pure (good) strategy which plays C in period one, and re-
sponds to signal d by playing D in period two, i.e. this strategy does not
punish after d.

Define the set Ξ of bad strategies as follows – any strategy from Ξ plays D
in period one, and responds to the signal c by playing E. We now show that
if player i assigns positive probability to α, then player j must assign positive
probability to a bad strategy. We do this by showing that if no bad strategy
is in the support of player j′s mixed strategy, then α is strictly inferior to α′.

Assume that no bad strategy is in the support of player j′s mixed strat-
egy. Note that against σj(ε), α and α′ yield the same expected payoff in the
first period, and also in the second period when i receives signal c. Hence,
condition on j playing σj(ε), i playing α or α′ and i receiving signal d. There
are now two possibilities: player j is playing a pure strategy in the support
of σj(ε) with fj = D or with fj = C.

In the first case (fj = D), since j is not playing a bad strategy and since
he gets c with probability (1− ε), he is most likely to play D. Consequently,
in this case α′ yields strictly more than α.

In the case when fj = C, both players chose C in the first period and fig.
3 shows that j received signal c with probability (1 − ρ)(1 − ε). Since j is
playing a good strategy with probability close to one, he continues with D
with probability close to one after receiving signal c. We therefore conclude
that, conditional on i receiving signal d and fj = C, i believes that j will
play D with probability approximately 1 − ρ or more. Hence if 1 − ρ > µ∗,
then α′ is strictly better than α in this case as well.

We conclude that if j does not play a bad strategy and if ρ < 1 − µ∗,
then α′ yields strictly more than α when ε is sufficiently small. Since α is
the support of σi(ε) for each player i, each player j must be playing a bad
strategy with positive probability when ρ < 1− µ∗.

Now, if j plays a good strategy and i plays a bad one, then i′s pay-
off is ṼH − CL +F, and hence against σj(ε) a bad strategy yields approxi-
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mately ṼH −CL +F in equilibrium. Since the payoff to all pure strategies in
σi(ε) must be equal in any mixed Nash equilibrium, this implies that neither
player’s payoff can be greater than ṼH −CL +F. Since the efficient outcome
has a strictly greater payoff , it cannot be approximated by any mixed Nash
equilibrium of G2(ε, ρ), no matter how small ε is.

Note that this proposition also implies that if ρ is less than but close
to 1 − µ∗, the mixed strategy equilibrium payoffs are not monotone in ε.
Cooperation can be sustained via pure strategies for intermediate values of
ε, but not for ε close to zero, since in this case mixed strategies are required.

The basic argument underlying the proof is as follows. If an equilibrium
is to be approximately efficient, both players must play good pure strategies
with high probability, where a good strategy is defined as one which plays
C in the first period, and responds to the signal c with D — this is the
only way in which the outcome can approximate (C,C) in period one, and
(D,D) in period two. Since a strategy which plays D in the first period will
have a higher first period payoff against such a good strategy, equilibrium
requires that the signal d must be punished. Hence both players must play,
with positive probability, the strategy α which plays C in period one, and in
period two, punishes signal d by playing E , and rewards signal c by play-
ing D. However, if α is to be optimal for a player, say player i, his beliefs
about player j’s continuation strategy must vary sufficiently with the signal
he observes. Specifically, the signal d must indicate that player j is likely
to play E, even though the signal c indicates that j is likely to play D. If
the extent of correlation is small, such variation in i’s beliefs is only possible
if j plays with positive probability a strategy which plays D in period one,
and responds to signal c with E — we call any such strategy a bad strategy.
If ε is small, j need play a bad strategy only with a small probability in
order make i’s beliefs sufficiently responsive. However, if j plays a bad strat-
egy, the payoff of j must be low — for example if i plays a good strategy,
then j earns at most a payoff of ṼH − CL + F, which is strictly less than
the efficient payoff. Now, if a bad strategy is in the support of the player’s
equilibrium mixed strategy, the player’s overall payoff must be exactly equal
to the payoff produced by the bad strategy. Consequently, equilibrium pay-
offs are bounded away from efficiency. In contrast, if monitoring is public
(or private signals are sufficiently correlated), only good strategies need by
played, and inefficiencies are only triggered after unfavorable signals. Hence
efficiency is ensured if the noise is sufficiently small.

Two facets of the above argument need emphasis. First, if ε is small, j
need play a bad strategy only with a small probability, of order ε — this
is sufficient to make i’s beliefs responsive to his signal. Hence j playing a
bad strategy need not (by itself) have a large negative effect on i’s payoffs.
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However, when j plays a bad strategy (or more generally, when he plays D
in period one), he has to be punished, and this has a large negative effect on
j’s payoff. Since a bad strategy is in the support of j’s equilibrium strategy,
j’s equilibrium payoff must be inefficient. This argument suggests that if the
punishment of a bad strategy can be mitigated judiciously so that the first
period gain is just offset by the future loss, one can ensure efficiency. We now
show that public randomization provides such a mechanism for mitigating
punishments.

2.3 Sunspots & Efficiency

The previous analysis suggests that the key to ensuring efficiency is to soften
the punishment meted out to first period defection. How do we soften the
punishment to defection? One possibility is that in period two, each player
does not always punish the signal d, but merely punishes with some proba-
bility, by randomizing between E and D in the event of receiving signal d.
However, such randomization at the individual level is infeasible, since each
player has strict incentives to play D at this information set. What is re-
quired is that player can agree to forget past transgressions in a coordinated
way. A sunspot, i.e. the realization of a commonly observed random vari-
able, can play this role. Intuitively, players can agree to forget about past
transgressions with some probability, so that defectors are deterred, but not
too harshly. Formally, the sunspot allows for extensive-form correlation,
which transforms the base game by convexifying the set of equilibrium pay-
offs, allowing the two players to achieve any payoff in the interval [F, VL−CL].
Consequently, a player who chooses D in period one can be punished so that
her payoff loss in period 2 is arbitrarily close to her payoff gain in period 1.
Since there is no overall payoff loss from playing a bad strategy, this enables
both players to play a bad strategy with small probability.

Assume that at the end of period one players can publicly observe the
outcome φ1 of a random variable Φ1, which is uniformly distributed on [0, 1].
The sunspot convexifies the set of equilibrium payoffs of G. Specifically, for
any m ∈ [0, 1], the correlated strategy z = (z1, z2) with

z1(φ1) = z2(φ1) =

{
E if φ1 ≤ m

D if φ1 > m
(9)

is a correlated equilibrium of G. By varying m, any payoff Z in [F, VL−CL]
can be obtained in this way. Note that such a correlated equilibrium z is
strict: if a player believes that his opponent plays zj with probability greater
than min{µ∗, 1 − µ∗}, then it is optimal to play zi himself. Let z be such a
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correlated equilibrium of G with payoff Z, and modify the strategies α and β
from the previous section such that E is replaced by z. The only thing that
changes in the payoff matrix is that F has to be replaced by Z. Provided
that

Z + ∆C < VL − CL − Γ(ε) (10)

(an inequality which is satisfied for Z sufficiently close to F ), (α, α) and
(β, β) are still strict equilibria of this 2 × 2 game, and as in the previous
section, there exists a mixed strategy equilibrium of this payoff matrix, where
α is played with probability π and β with probability 1−π. The claim of the
previous section, that this is an equilibrium of the repeated game, continues
to apply. Observe from the proof that the only essential change occurs when
considering the information set (Cd). For any given π, I attach a probability
greater than min{µ∗, 1 − µ∗} to my opponent continuing with zj provided
that ε is sufficiently small.14 Since z is strict, it is optimal for me to continue
with zi as well. Now, investigate the consequences of varying Z. By increasing
Z towards the upper bound from (10), the probability π can be increased to
π∗ (cf.(8)). However, π∗ → 1 as ε→ 0, and hence the players will play (α, α)
with probability close to one, and will obtain a payoff close to the efficient
one.

Observe that time at which the output of the public randomization device
is observed by both players is crucial. This must be after players have chosen
their actions in period 1, but before they choose actions in period 2. In other
words, extensive form correlation is essential. Extensive-form correlation was
introduced by Myerson [22], who also pointed out this allows greater strategic
possibilities than normal-form correlation.

3 Many Repetitions

We now consider an arbitrary finite number (T ) of repetitions of the stage
game with imperfect monitoring. Our object is to show that if ε is sufficiently
small, one can approximate the maximal symmetric equilibrium payoff under
perfect monitoring, V ∗(T ), which is defined by:

V ∗(T ) =
T − 1

T
(ṼH − CH) +

1

T
(VL − CL) (11)

First we show that in order to obtain a general efficiency result, one must
allow for players to condition their actions upon a public randomization de-
vice. The result relies on an adaptation of the argument of proposition 3,

14The relevant condition is inequality (7), which specifies how small ε must be given π.
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applied to the last two periods of the T period game. However, it is not im-
mediate since the private signals in previous periods allow some endogenous
correlation of strategies — the continuation strategies in the final two peri-
ods correspond therefore to a correlated equilibrium of the two period game.
Under the hypotheses of the proposition, this correlation is insufficient, so
that inefficient randomization is required in the penultimate period.

Proposition 4 If players cannot condition their actions upon a sunspot,
and µ∗ < 1−ρ

2−ρ , the efficient payoff V ∗(T ) cannot be approximated by any
equilibrium of the T period repeated game, as ε→ 0.

Proof. Approximate efficiency requires that the path where (C,C) is played
in the first T−1 periods and (D,D) is played at T is realized with probability
close to one. Let ĥ be the T − 2 period private history where (Cc) is realized
in every period. Approximate efficiency requires that at ĥ the player must
play, with probability close to one, continuation strategies from the set Θ of
good pure continuation strategies, which play C at T − 1, and responds to
the signal c with D in period T.

If player j is at ĥ, he assigns probability 1− ε(1−ρ) to player i also being
at ĥ, and likewise playing a good continuation strategy with probability close
to one. Hence player j’s benefit from playing D in period T − 1 is approx-
imately ∆C > 0. To ensure that player j has an incentive to play a good
continuation strategy, player i must be playing, with positive probability, a
good continuation strategy α which rewards the signal c (by playing D) and
punishes the signal d (by playing E), in the final period. Since this argu-
ment applies for i = 1, 2, α is in the support of both players’ continuations
strategies. Let α′ be a good continuation strategy which plays C in period
T − 1, and responds to signal d by playing D in period T. Define the set Ξ
of bad continuation strategies as follows – any strategy from Ξ plays D in
period T − 1, and responds to the signal c by playing E. We now show that
under the hypotheses of the proposition, if no bad strategy is in the support
of player j′s mixed continuation strategy, then α is strictly inferior to α′.

Condition now on the T − 1 period history where ĥ is followed by Cd for
player i. Since j is not playing a bad continuation strategy at the history ĥ,
the probability that he plays D in the final period is at least

[1− ε(1− ρ)](1− ρ)(1− ε)ε
[1− ε(1− ρ)]ε+ (1− ρ)ε

(12)

which converges to 1−ρ
2−ρ as ε→ 0. Since 1−ρ

2−ρ > µ∗, it is optimal to play D
at this information set for ε sufficiently small and hence α′ is strictly better
than α. Hence each player must be playing a bad continuation strategy at ĥ
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with positive probability. If j plays a good continuation strategy and i plays
a bad one, then i′s continuation payoff is

(
ṼH − CL + F

)
/T, and hence his

overall payoff cannot approximate V ∗(T ).
We now assume that players can observe a sunspot at the end of each

period, and construct an efficient equilibrium. Our construction of the strat-
egy for the T period game, σT , is a recursive one, and utilizes the efficient
strategy profiles στ for all τ < T. Suppose that a player is playing some
strategy στ , in period t− 1, where T ≥ τ ≥ t− 1. His continuation strategy
in period t depends upon the realization of the sunspot φt−1 at the end of
period t−1. If φt−1 is less than some critical value, the player continues with
the strategy στ . On the other hand, if φt−1 is greater than this critical value,
the players “forget” all past private information and begin afresh with the
efficient repeated game strategy for the r period repeated game, σr, where
r = T −(t−1). In other words, the length of private history that players con-
dition their behavior on depends upon the sequence of sunspot realizations
(φ1, φ2, ..., φt−1). If q is the index of the last time period such φq was greater
than the critical value, then the players will be playing the strategy σT−q in
period t, and conditioning their behavior on private information relating to
the last (t− 1)− q periods.

To define any τ = T − q period strategy, partition the set of (t − 1) − q
period private histories into two subsets. Call such a history a good history
if the player has always played C, if his signal in every period is either c or
d, and if the signal at date t − 1 was c. The strategy will play D after the
signal d so that the only good history which arises on the path of play is
(Cc, ..., Cc), i.e. one where in each of the last (t− 1)− q periods, the action
C has been taken and signal c has been observed.15Call any other history a
bad history — at a bad history, either a player has played D or E or observed
signal e in some period, or has observed d at date t− 1.

The strategy σT is defined as follows:

1. At period 1, play C with probability π′, D with probability 1− π′.

2. Let t ∈ {2, 3, ...T − 2}, and suppose that at date t − 1 the player was
playing the strategy στ , where T ≤ τ ≤ T − (t− 1) :

(a) If φt−1 > m′, play σT−(t−1), the equilibrium strategy in the T −
(t − 1) period repeated game. This plays C with probability π′,
D with probability 1− π′ in the current period.

15A good history of the type (Cc, ..., Cd, Cc) can also arise when a player deviates
from his strategy. Since a player’s beliefs about his opponent’s continuation strategy are
the same at any history which is good, we define σT so that the player plays the same
continuation strategy at both these good histories.
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(b) If φt−1 ≤ m′, play C if the (t − 1) − (T − τ) period history is a
good history and play D at any bad history.

3. At period T − 1 suppose that at T − 2 player was playing the strategy
στ , where T ≤ τ ≤ 3 :

(a) If φT−2 > mT−2 : play σ2, the equilibrium strategy in the 2 period
repeated game.

(b) If φT−2 ≤ mT−2 : if the (τ − 2) period private history is a good
history, play C with probability πT−1 and D with probability 1−
πT−1; play D at any bad history.

4. At period T, suppose that at date T − 1 the player was playing the
strategy στ , where T ≤ τ ≤ 2 :

(a) If φT−1 > mT−1 : play D.

(b) ) If φT−1 ≤ mT−1 : play D if the (τ − 1) period history is a good
history and play E otherwise.

σ2 is defined as follows: in period 1 play C with probability π∗, 16 D with
probability 1 − π∗. In period two, play D if φ1 > m1 or if the one period
history is a good history and play E otherwise, where m1 equals the value of
mT−1 defined in equation (17) when πT−1 = π∗.

We also define:

π′ = 1− ε(1− ρ) (13)

m′ =
∆C

(ṼH − VL)π′(1− ε)
(14)

πT−1 = min

{
π∗

1− ε(1− ρ)
, 1

}
(15)

mT−2πT−1 = m′ (16)

mT−1 =
∆C

πT−1(1− ε){[1− ε(1− ρ)](VL − CL)− F}
(17)

Each strategy στ has been constructed so that at any date t ≤ T − 1,
the player is indifferent between playing C and D at any good history and

16Recall that π∗ has been defined earlier in (8), and is the maximum probability with
which α can be played in the two period game such that a player is willing to play E in
the last period after receiving signal d.
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also at the null history. Let us first verify this for t ≤ T − 2. If the relevant
history is a null history (which arises either if t = 1 or if φt−1 is less than
its critical value), a player i’s opponent j plays C with probability π′. If i’s
history is a good history, j plays C for sure if j’s private history is also a good
history. The probability that j is at a good history given that i is a good
history is 1 − ε(1 − ρ), which equals π′ from (13). Hence in either case, the
player believes that his opponent will be playing C today with probability
π′. The one period gain in today’s payoff from playing D as opposed to C is
∆C, while the loss in future payoffs equals m′π′(1− ε)(ṼH −VL) if t > T − 2,
and equals mT−2πT−1π

′(1 − ε)(ṼH − VL) if t = T − 2.17 The definitions of
m′, mT−2 and πT−1 above ensure that the today’s gain equals the future loss,
thus ensuring that playing C is optimal at this information set.

On the other hand, at any private history which is bad, a player believes
that his opponent is playing C today with a probability which is strictly less
than π′. For instance if a player has always played C, has received signal d
at t− 1, and received signal c in all previous periods, this probability equals

µ(Cc, ...Cc, Cd) =
π′(1− ρ)ε(1− ε)
π′ε+ (1− π′)

< π′ (18)

The gain this period from playing D is still ∆C, but the future loss is
now reduced since π′ must be replaced in the expressions in the previous
paragraph by µ(Cc, ...Cc, Cd). Hence it is strictly optimal to play D at this
private history. It is also easy to verify that at any other bad history, a
player’s belief that his opponent is playing C is less than µ(Cc, ...Cc, Cd).
For example, if a player has ever played D (or E), he knows that his opponent
will play D with probability one, and hence it is strictly optimal to play D.

At date T − 1, we have two possibilities if φT−2 ≤ mT−2. Note that
ε(1−ρ) is the probability that a player’s opponent will be at information set
(Cc, ..., Cd) given that a player himself is at a good history. If this sufficiently
large and greater than 1−π∗, there is no need for either player to randomize
at a good history, and hence the strategy requires that C be played with
probability one. However, if 1− ε(1− ρ) < π∗, players must also randomize
at a good history, in order to ensure that at such a good history player i now
believes that the other player plays D with probability π∗. This ensures that
i has the incentive to play E in the final period in the event that he observes
signal d. The definition of mT−1 (17) ensures that a player is indifferent

17By construction, a player is indifferent between C and D at any good history. Hence
a simple way of verifying these expressions is to compute the future loss from playing D
today vis-a-vis a strategy which plays C today, and D tomorrow in the event that the
sunspot is less than the critical value.
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between C and D at any good history at date T −1, but strictly prefers D at
any bad history, regardless of whether πT−1 equals one or is strictly smaller..

Under the equilibrium σT , it is easy to verify that at each date except the
last one, the probability that the players play the action profile (C,C) tends
to one as ε→ 0, while the probability of playing (D,D) at date T also tends
to one. Hence we have proved:

Proposition 5 If the stage game G is repeated T times and players observe
a common sunspot at the end of each period, they will be able to approximate
the efficient perfect monitoring equilibrium payoff V ∗(T ) if the noise ε is
small.

Since V ∗(T ) → ṼH − CH as T → ∞, this proposition also implies that
ṼH − CH , the symmetric efficient payoff of the stage game, can be approxi-
mated as an equilibrium payoff under imperfect private monitoring as ε→ 0
and T →∞.

A related question is whether we can obtain the efficient average payoff
ṼH − CH as ε → 0 and T → ∞ without recourse to a public randomization
device. We conjecture that this is possible, provided that there is some dis-
counting. As in Ellison [?] and Sekiguchi [25], one can mitigate punishments
by delaying them, and by using such a mechanism it seems likely that one
can achieve this (weaker) notion of efficiency.

Note that in general the strategy σT requires mixing in the first period,
and also in period T − 1. This is the case even if sunspot realizations are
always below their critical value, so that the game is never re-started. Ran-
domization is required in the first period, since otherwise the other player
may not have any incentive to condition behavior upon the private signals
in subsequent periods. Randomization may also be required in period T − 1,
since otherwise a player may not be willing to play distinct actions in the
final period.

For computational and expositional simplicity, we have constructed an
equilibrium where a player is indifferent between C and D at information sets
where he is required to play C with probability one, but is strictly prefers
to play D at information sets where he is required to play D. This strategy
satisfies the refinement criterion set out in Bhaskar ([5]) since it is measurable
with respect to a player’s beliefs — a player follows the same continuation
strategy when his beliefs about his opponent’s continuation strategy are the
same. Furthermore, at the cost of some additional complexity, one can also
construct equilibria where a player has strict incentives to play C at any
information set where he chooses D with probability one.
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4 Concluding Comments

We now offer a brief summary of some of the related literature — some
additional literature has already been discussed in previous sections. The
difficulty in supporting efficient outcomes in repeated games with private
signals was first pointed out by Matsushima [21], who considered pure strat-
egy equilibria in infinitely repeated games with independent private signals.
With pure strategies, the signals are uninformative, and each player’s beliefs
about his opponents’ future actions do not change with the realization of the
signal. Matsushima assumed that players adopt strategies where they do not
vary their actions in response to signals unless they have a strict incentive
to do so, and proved an anti-folk theorem — all pure strategy Nash equilib-
ria satisfying this property require players to play a Nash equilibrium of the
stage game in each period.

An example of equilibrium with some cooperation, in the context of a
twice-repeated game, was provided by Kandori [16], and subsequently, in
earlier versions of this paper. As we have discussed in section 3, the two
constructions embody quite different ideas. The first example of purely non-
cooperative equilibrium18 in the context of an infinitely repeated game with
private signals is due to Sekiguchi [25]. Sekiguchi’s work and the current
paper are complementary, and both employ the idea of using mixed strategies
to allow players to learn from their private signals. The idea that punishments
should not be too severe also appears in Sekiguchi’s work, and plays a key
role in ensuring efficiency. In contrast, Compte [10] shows that if one restricts
attention to grim trigger strategies in the repeated prisoners’ dilemma, then
payoffs must tend to the minmax level as discounting vanishes.

Our results are related to and may have implications for the work on
games with imperfectly observable commitment, introduced by Bagwell [2].
Bagwell observed that the slightest amount of imperfect observation de-
stroyed a Stackelberg leader’s advantage from pre-commitment, since the
Stackelberg equilibrium was no longer a pure strategy equilibrium. van
Damme and Hurkens [11] showed that with one leader and one follower,
the Stackelberg equilibrium could always be approximated by an equilibrium
in mixed strategies, thereby ensuring that the sequential equilibrium corre-
spondence was lower-hemicontinuous. Guth, Kirchsteiger and Ritzberger [14]
show, via an example, that lower-hemicontinuity is not ensured with more
than one follower.

We conclude with an analogy which may be instructive. Dynamic games

18I.e. of an equilibrium without communication, as in Compte [9] and Kandori-
Matsushima [18].
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where players have private information about past events are yet to be fully
understood. At first sight, these games bear a strong resemblance to Ru-
binstein’s [24] electronic mail game, and related infection arguments. Rubin-
stein’s example shows that if the messages are noisy, exogenous and privately
observed, players will not be able to condition their behavior on these mes-
sages.19 The repeated games we discuss differ in one respect — signals are no
longer exogenous, since players may influence them via their actions. Play-
ers may adopt two devices — individual randomization, so that each player
is uncertain about his opponent’s pure strategy, and public randomization,
which provides a favorable environment for individual randomization.These
devices suffice to ensure very different results from Rubinstein’s. While we
are as yet far from a general theory of these games, we hope that the ideas
suggested here may have a role in the development of a such a theory.
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