
Meta-Patterns for Electronic Commerce

Transactions based on FLBC

Hans Weigand and Willem-Jan van den Heuvel

Infolab, Tilburg University

PO Box 90153

Tilburg, The Netherlands

email: H.Weigand@kub.nl, wjheuvel@kub.nl

September 30, 1998

Abstract

Due to the highly communicative character of electronic commerce

transactions, open-edi representation languages such as FLBC, take the

speech act (operator) as their basic building block. The advantage of this

approach is that the `deep structure' of electronic commerce transactions

is addressed rather than the form. In this paper, we try to reveal higher-

level units of speech acts which are materialized in so called meta-analysis

patterns. We de�ne various levels, from speech acts to scenario's. Once

patterns have been identi�ed, they can be stored in an FLBC component

library and be (re-)used e�ectively by business partners to speed up open-

1

edi transactions.

keywords:electronic commerce, patterns, open edi, Language/Action per-

spective

1 Introduction

The community that is using the world-wide web steadily grows, and has an es-

timated 20-40 million users (Bell and Gemmell, 1996). This trend o�ers (new)

businesses the Porterian possibility to penetrate new markets and expand their

activities by engaging in the electronic commerce. Electronic Commerce is de-

�ned by Zwass as "the sharing of business information, maintaining business

relationships, and conducting business transactions by means of telecommuni-

cations networks" [37]. The scope of Electronic Commerce is large, but in this

article we concentrate on the business-to-business transactions As such, it can

be interpreted as being a special form of open edi, a successor of EDI. Open

edi can be de�ned as `electronic data interchange among autonomous parties

using public standards and aiming towards interoperability over time, business

sectors, information technology systems and data types'.

Traditional EDI, or electronic data interchange, is not suitable for the new

type of electronic commerce transactions because, though there exist some stan-

dards with regard to the syntax of the messages (such as EDIFACT and the

ANSI X.12 standard), additional agreements between the participants have to be

made. Open edi on the other side, is directed towards short-term relationships

2

by which EC transactions are characterized [19]. Traditional EDI is charac-

terized by the combination of 'closed trading relationships' and high start-up

costs stemming from detailed trading partner negotiations. In Open edi, these

start-up costs are supposed to be much lower. One way of achieving that is by

industry-side and/or cross-sectoral standards. The problem with standards like

these is they are typically inexible and conservative. An alternative way could

be to support the negotiation process itself electronically.

Languages, such as the Formal Language for Business Communication

(FLBC) [17, 18] and the Language for Electronic Commerce [5], provide some

means to formally describe messages in a more expressive and exible way than

before (EDI). These languages not only support the representation of the syntax

of a message, but also the semantics. The linguistic notion of the speech act has

been chosen as the basic element of representation in both languages mentioned

in the above.

Following this lead, we propose to extend such languages with the notion

of meta-patterns, e.g. typical sequences of speech acts within the context of

electronic commerce transactions. These meta-patterns can be seen as a means

to order the basic elements of a conversation, e.g. the speech acts, and to make

the mutual relationships between speech acts explicit. The meta-patterns we

introduce in this paper are closely related to methods explored in the Lan-

guage/Action perspective, such as DEMO [7] and Action-Workow [21].

The remainder of this paper is organized as follows. In section 2, we describe

the formal language for business communication as an example of a represen-

3

tation language for open-edi. In section 3, we introduce the notion of design

patterns, and the concept of meta-analysis patterns we have derived from this

concept. In section 4, we build up a layered model of an (electronic commerce)

transaction. Each layer has its own (set of) pattern(s). Section 5 describes the

way the patterns can be applied in the form of an FLBC component library

which is currently built in the context of a European ESPRIT project. The

syntax of our speci�cation language is given in the Appendix.

2 Formal Language for Business Communica-

tion

The Formal Language for Business Communication has been introduced in order

to provide a representation that o�ers more expressiveness and exibility than

the conventional EDI standards, such as EDIFACT and ANSI X.12. The basic

idea dates back to a visionary article by Kimbrough and Lee in 1986 [16].

FLBC represents a message as a sequence of speech acts, typically assertions

and declarations, that form the basis of potential reasoning procedures. FLBC

claims to express the syntax as well as the semantics of a message.

FLBC uses the following elements to describe the speech act: the speaker

and the hearer, the illocutionary force, the content and the context. FLBC-II,

that is de�ned in [18], distinguishes between three illocutionary points, to be

an assertion, a request and a query. These three atomic speech acts are used

to represent a variety of message types, such as appointments (assertions), sta�

4

action messages (directives) and read/review/comment messages (directives).

The context wherein the communication takes place, is represented by means

of either the message-ID to which is responded, the time when the message

was sent, the machine-ID from which the message was sent and/or the persons

to which the message is cc-ed. The machine-ID can be interpreted as being a

means to establish the identity of the sender. In this way, the agent is anchored

to a 'real-world' person (see section 4). In this paper, we will not focus on

the (representation of the) content of the message, e.g. the proposition. A

linguistically motivated knowledge representation such as Functional Grammar

[31] can be instrumental for this purpose.

Kimbrough and Moore hypothesize that FLBC can be used to formally rep-

resent messages in order to perform some inferencing. In [18], they indicate

four main reasons why inferencing is important. Firstly, it can be used to check

the pre-condition(s) of the message: only when they are met, the message can

be send to the addressee. Secondly, FLBC provides a means to represent the

message in an unambiguous manner, adding semantics in the form of speech

acts (more in particular, the illocutionary point). Standards such as X12, they

quote, consist of transaction sets that express more than one illocutionary force,

thereby opening the possibility for multiple interpretations. Thirdly, recording

messages at the system level, that is looking at the semantic content/e�ect of

the outstanding and incoming messages, provides an e�ective way to perform

inferences, e.g., about all outstanding requests. Lastly, they note that logging

incoming and outgoing messages at the `application level', provides an adequate

5

basis for many useful derivations.

A small comment is due on the second point: it is very common in prac-

tice that a certain message has several illocutionary points. For example, an

order is a directive in the �rst place, but typically includes the commitment to

pay the price. The idea that messages have a single and explicit illocutionary

point was also incorporated in the Cooperator system of Winograd and Flo-

res [35], and was one of the main sources of criticism on this system from a

CSCW point of view [6]. FLBC aiming at interorganizational conversations is

not completely comparable with the Coordinator. Nevertheless, it seems wise

to take the lessons learned there into account. For that reason, we would like

to weaken the one message- one illocution constraint. The goal of unambiguous

semantics is something we want to maintain where appropriate, but this can

also be achieved by explicitly stating the e�ects of the messages in terms of

obligations, authorizations etc., as has been described in for instance [29], or

simply by de�ning an FLBC message as a set of speech acts. Kimbrough and

Moore do use the terms "message" and "speech act" as near synonyms. How-

ever, a distinction must be made between the form or means (what Searle calls

the utterance act) and the essence or goal (what Searle calls the illocutionary

act). In this way, it is possible that one message expresses several illocutionary

acts. As we will see later, there may be good reasons for combining speech acts

for speakers engaged in a symmetric conversation.

6

3 Meta-Analysis Patterns

In '92, Johnson [15] proposed to (informally) describe how to use frameworks,

and their design by means of design patterns. Design patterns are borrowed

from the �eld of architecture [1]. According to Alexander `a pattern describes

a problem over and over again in our environment, and then describes the core

of the solution to that problem, in such a way that you can use this solution

millions times over, without ever doing the same thing twice'.

Gamma [10] was one of the �rst to apply the notion of patterns to the

discipline of software design. He de�nes design patterns as `descriptions of

communicating objects and classes that are customized to solve a general design

problem in a particular context' (ibid). At a higher level, Buschmann [4] discerns

architectural patterns, that express the subsystems and components and their

mutual relationships.

Patterns are usually described in a Context-Problem-Solution manner [4].

After the context of the problem has been explained, the problem itself is stated

together with the solution to the problem. In order to use these patterns, the

analyst has to translate them into the right context.

In this paper, we propose to apply the notion of patterns to the analysis

of (electronic commerce) domains resulting in four subsequent levels of meta

analysis patterns. Our patterns are partly based on linguistic theories, like the

speech act theory (Austin, Habermas and Searle), and the semantic theory of

narrative structures, and partly on information system design.

We explicitly use the term meta-pattern, because the patterns we introduce

7

in this paper do not describe general representations of a problem domain,

but denote general communication patterns which are domain-independent, and

which can be found back in all analysis patterns that describe the environment

of discourse. An analysis pattern can be de�ned as a `group of concepts that

represent a common construction in business modelling' [9].

The meta-patterns we introduce in this paper are intended both for analysis

and for reusability. Meta-patterns are a useful analysis tool since they focus on

the `deep structures' of electronic business transactions rather than the form.

Meta-patterns, once stored in an FLBC component library, can also be reused

e�ectively from one occasion to another.

4 Patterns in Electronic Commerce

In this section, we apply the notion of patterns to electronic commerce transac-

tions. We distinguish between four levels of (communicational) analysis meta-

patterns (see Fig. 1) from low-level speech acts to high-level scenario's. Transac-

tions are units composed of speech acts, for example, a request/commit. Trans-

actions can be grouped in workow loops. A contract represents a reciprocal

relationship and typically consists of two workow loops. Finally, a set of re-

lated contracts is called a scenario, an instance of a use case.

4.1 Speech Acts

Representation languages such as the Formal Language for Business Commu-

nication (FLBC - see section 2) and methods based on the Language/Action

8

Scenario

Speech Act

Transaction

Workflow Loop

Contract

Figure 1: Levels of Meta-Anlysis Patterns

Perspective assume that the speech act is the most elementary unit within the

communication between subjects.

Speech act theory was founded by Austin, who developed the `language as

an action theory'. A speech act focuses on what people are `doing in saying

something' [2]. A speech act can be de�ned as an utterance that in itself is

constituted of a performative act, such as requesting and promising.

According to Searle [25], speech acts are constituted of three parts: the

propositional contents, the illocutionary point and the illocutionary force. He

distinguishes between �ve di�erent illocutionary points: assertives, directives,

commissives, expressives and declaratives. This taxonomy de�nes what the

speaker can do on the basis of an utterance, with a propositional content.

FLBC-II uses only the assertions and directives, leaving out commissives,

9

msg(pers(cust1), pers(suppl3), request, delivery-product, msg627)

Figure 2: Example of a FLBC Message

MsgType request� product(sender($p1); receiver($p2);
product($x); date($d)) ==

(request; delivery � product($x; $d))

Figure 3: Example of a MessageType declaration

expressives and declarations. However, they can be added when needed, since

the language is not closed. Commissives are used to commit speakers to a future

course of action. The expressive point expresses the subjective attitude of the

speaker towards the state of a�airs. Declarations are used to change the state

of the world according to the proposition uttered.

An example derived from [18] is shown in �gure 2, where `delivery-product'

is the propositional content, to be re�ned. It represents a message with id

`msg627' from `cust1' to `suppl3' with illocutionary force `request'. For the use

of meta-patterns, we want to generalize from an individual message to a message

type, where the object instances are replaced by object types. For example see

�g 3 (we omit the details of the product parameters $x and $d).

Note that the message type de�nition uses the same format as the message

instance except for the message id. We have used a $-sign to indicate the

parameters. In this way, it is possible to develop a list of message types for

a certain domain. This list could include requests for delivery, requests for

quotes, acceptance etc. When a message type is called with certain parameters,

an instance is created with a generated message id.

10

4.2 Transaction

Typically, speech acts go in pairs, for example, a request followed by a commit.

In the linguistic literature, it has been argued, contra Searle, that the speech

act is not the basic unit of communication, but the message pair is (see e.g.

[30] for a linguistic, and [13] for a language-philosophic discussion). So often

(but not always) speech acts have no meaning on their own, but only as part

of a bigger unit, which we call a transaction. For example, the request itself

does not create an obligation as long as the Addressee has not agreed with the

validity of the request.

We de�ne a transaction as the smallest possible sequence of actions (speech

acts) that has an e�ect in the social world of the participants, in other words

an obligation, an authorization or an accomplishment [33]. In this sense, the

transaction can be interpreted in a more abstract meta-analysis pattern, because

it focuses at the (semantic), mainly deontic, e�ect of one or more speech acts.

Deontic logic is the modal logic theory that deals with notions of obligations

and permissions and that has been applied in law as well as in computer science

[22]. Deontic consequences of (a sequence) of speech act play an important

role during the representation of the electronic commerce transaction, because

together they de�ne the mutual rights and duties of the two parties, i.e. the

implications of a message.

A transaction can be represented by means of a set of communicating sub-

jects, communicative actions, constraints on the sequence of these actions and

the goal and exit states. [29]. Note that our use of the word "transaction"

11

TransType request� product(speaker($p1); addressse($p2);
product($x);
date($d)) ==

([request� product($p1; $p2; $x; $d;msg1);
accept� request($p2; $p1; $x; $d;msg2)]; [before(msg1;msg2)])

Figure 4: Example of a TransType declaration

bears (intentionally) some resemblance to the classical database transaction, in

particular, with regards to the atomicity property, and to more relaxed versions

of these kind of transactions [8], but a major di�erence is the single-agent per-

spective in these theories versus the fundamental multi-agent perspective in our

communicative approach.

To describe transactions in FLBC, we have to add a new construct `trans'

that takes a set of participants, a set of messages, a set of temporal constraints,

and a transaction id. At type level, a transaction pattern can be de�ned as

shown in �gure 4.

As can be seen in this example, the combination of the request of the cus-

tomer to deliver a product, and the promise of the supplier to actually deliver

it, constitutes a deontic e�ect, e.g. an obligation to the supplier to deliver the

product, and an obligation of the customer to pay the agreed price.

The semantics of the transaction consists of the set of possible message

sequences (trace semantics). A transaction is valid if the temporal constraints

are consistent, that is, if there is at least one possible trace. The deontic e�ects

semantics are described at a higher level.

A particular kind of transaction is the factagenic and the actagenic conver-

12

sation, each constituted of at least two speech acts.

4.2.1 Actagenic and Factagenic Conversation

DEMO, a Language/Action-based method to model business processes [7], dis-

tinguishes between an actagenic and a factagenic conversation. During the

actagenic conversation an actor (for instance a customer) requests something

from another actor (such as a supplier), which the latter can reject or accept.

This leads to a commitment, or obligation for the supplier to keep his or her

promise. The factagenic conversation starts after the executor (e.g. the actor

that has commitment himself to perform a certain action during the actagenic

conversation), has created the desired state of a�airs, and is constituted of a

declaration of the executor that (s)he is �nished, and with an acceptance by or

rejection of the initiator. In this way, the fact gets established, as both parties

have committed themselves to it.

The delivery example 'request-product' above is an illustration of an acta-

genic conversation. Apart from request and accept (related to some action of

the executor, in the example, the delivery), the transaction can be extended

with messages such as 'reject' and 'counter'.

We take the actagenic and factagenic conversation as very basic meta pat-

terns of communication at the transaction level. Each of them is constituted

of at least two speech acts, unless the context makes one of them implicit. Be-

ing oriented at obligations and facts in the social world, respectively, they are

central to all kinds of organizational communication. This does not mean that

13

there are no more conversation types to be distinguished. We will see some of

them later on.

4.3 Workow

The next level that we distinguish is called "workow" in accordance with the

use of this term in the Action Workow approach of [21]. The workow can

follow the model of the basic conversation of action, as de�ned by Winograd and

Flores. It is assumed in the Business Process Modelling approaches based on

the Language/Action Perspective (DEMO, Action Workow) that the business

processes are composed of workow loops. The basic principles underlying this

approach are:

� Actions are performed by subjects and for subjects. An action speci�ca-

tion is not complete without the bene�ciary role;

� Actions do have an e�ect in the object world, but to count as fact in

the social world, the action must be reported and accepted by the initia-

tor (usually the bene�ciary). So the action speci�cation is not complete

without an evaluative communication afterwards;

� Both the request for action and the acceptance of a fact require a give-

and-take, the active involvement of both parties.

Admittedly, these principles are not uncontroversial. Although we largely agree

with them, our approach in this paper is liberal in the sense that we only claim

that the workow loops of the Language/Action Perspective constitute basic

14

Customer Performer
Conditions of
Satisfaction

Proposal Agreement

Satisfaction Performance

Figure 5: Workow Loop

meta-patterns, but more may be identi�ed later.

The workow loop starts with a proposal, a request from the customer (or

initiator) or an o�er from the performer (or executor). In the second phase,

the customer and the performer come to an agreement. After the executor has

executed the promised action, he states/declares that (s)he is �nished to the

initiator. In the last phase, the satisfaction phase, the initiator can declare to

the performer that the transaction was (un)successful.

The workow loop is comparable to the transaction concept of DEMO. In

DEMO a transaction is composed of three phases: the order phase, the execu-

tion phase and the result phase [23]. During the order phase, the actors involved

come to an agreement regarding a future action, that is performed in the ex-

ecution phase. The result phase terminates the transaction with an (reasoned

15

about) agreement about the result of the execution phase. The order phase

and result phase are consequently described by the actagenic and factagenic

conversation.

The sequence in which DEMO transactions (we would say workow loops)

take place, is represented in the transaction process model. This model, which

is not included in the Conversation of Action theory, consists of three levels:

the success layer, the discussion-and-failure layer and the discourse layer. These

layers describe subsequently, the resulting facts from a successful transaction,

the validity-based discussion based on the theory of Habermas, and lastly, the

background conditions of the conversation. By means of the communication

framework, we are able to give a formal representation of the conversational

transaction, thereby opening the door for claim-based reasoning.

A simpli�ed example of a workow loop is shown in �gure 6.

The semantics of the workow loop has been described in [33] by means

of a Petri-Net that speci�es the deontic e�ects of all transactions. The deontic

e�ects are formalized in Dynamic Deontic Logic. In [29], a speci�cation language

for (so-called)contracts (CoLa) is spelled out. The translation of CoLa to an

FLBC-like language can be done in the same way as we extended FLBC to

transactions.

As can be seen in �gure 6, the workow is de�ned in terms of the mutual

obligations between the initiator and the executor (in this case, only one) that

are the consequence of the agreement between the two parties, and the way

transactions yield or accomplish (or invalidate) an obligation. Since transac-

16

WType delivery � product(initiator($x); executor($y);
product($p);
date($d)) ==
[obl(in(request� product($x; $y; $p; $d)); goal(deliver � product($y; $x; $p));
exit(cancel(request� product)))]

Figure 6: Example of a WorkowType declaration

tions are related to deontic states, there is an implicit ordering. For example,

the cancel(request-product) cannot be performed before request-product. The

example shows only one deontic state type, "obl" (obligation). In [29], a few

more types are distinguished, including "failure", "accomplishment" and "au-

thorization".

The workow loop described here corresponds to what Winograd [34] has

called the Conversation for Action. In addition, Winograd distinguishes conver-

sations for clari�cation, possibilities and orientation. Each of them is supposed

to have its own regularities of structure, but this structure remains implicit in

all his publications. We will come back on the other conversation types in the

next section. At this point, it su�ces to remark that for each of these di�erent

conversation types we can identify a range of possible meta-patterns. Of partic-

ular importance for Electronic Commerce is the Conversation for possibilities

that characterizes the negotiation phase of the business process.

The elaboration of these di�erent conversation types is beyond the scope of

this article, but we expect that this will lead to many interesting meta-patterns

to be discovered.

17

4.4 Contract

The transaction models that we have just discussed give a rather biased per-

spective on the transaction. The analyst must either choose the viewpoint of the

initiator or that of the executor of the transaction (in our case, the customer or

the supplier). We follow Goldkuhl who claims that a business transaction must

be interpreted as being an `interchange process between a supplier and a cus-

tomer' and that it `involves the creation and sustainment of business relations'

[11]). This view is elaborated in Goldkuhl's Business Action Theory (BAT), see

�g. 7.

According to Taylor [27], all conversations have as their background a pat-

tern of exchange. Not only at the level of communication (as we already noted

above), but also at the object level. Reciprocity is a fundamental principle of

human society, as Hubert Mauss already observed one century ago in his famous

treatise on the gift. In commercial transactions, one object is usually a product

and the exchange object consists of money. This is an example of what Taylor

calls a symmetrical type of exchange (p.211). In this type of exchange the actors

involved in the conversation have a common interest in a particular object. All

organization is composed of a complicated set of exchanges, involving a balance

between what March and Simon called inducements and contributions (ibid).

In [33] we use the term `contract' for the speci�cation of such a symmetric

agreement.

A contract involves at least two parties, but in practice may involve several

(trusted) third parties. In commerce, the most obvious ones are the bank (for

18

Prerequisites:
- know-how
- capacity
supply

Prerequisites:
- operations with
- lacks
- needs

Completion
- satisfaction, or
- dissatisfaction

Completion:
- satisfaction, or
- dissatisfaction

Offer

Delivery
promise

Delivery

Desire &
Demand

Order

Payment

Exposure & contact search

Contact establ. & Proposal

Contract

(Mutual Commitments)

Fulfilment

Claim Claim

Figure 7: Business Action Theory, adapted from (Goldkuhl, 1996)

the money transfer) and the transporter (for the product transfer). An example

of a third party in electronic commerce transaction is the `EDI network provider'

[24]. These parties can be thought of as being some kind of proxy or broker,

through which all communication ows.

The reciprocal approach does not lead to two individual representations of

the same business transaction, but rather to two patterns that interleave. Figure

9 shows an example of a reciprocal transaction pattern. The customer requests

a certain product. The supplier on the other hand, requests money for it in

return. Both transaction patterns are coupled by means of an agreement on the

terms of exchange. This agreement, that describes the mutual obligations and

authorizations is called the contract in BAT. The contract is established in the

contract phase that precedes the ful�llment.

19

In this paper, we will use the term `contract' in a wider sense of the inter-

leaving of two workow loops. As we have noted in the previous section, several

types of workow loops can be distinguished: besides conversation for action, we

have conversations for possibilities, for orientation, and for clari�cation. These

correspond roughly to the di�erent phases in BAT. The contract underlying the

ful�llment stage is a combination of two conversations for action. The contract

(a better term in this case might be `negotiation protocol') underlying the con-

tracting stage is a combination of two conversations for possibilities. In the

�rst stage (exposure), we typically �nd intertwined conversations for orienta-

tion. Conversations for clari�cation are a bit special. In the particular sense of

dealing with breakdowns concerning the conditions of satisfaction, such conver-

sations will occur typically in the last (completion) stage; however, they may

also interrupt other conversations and whereas the symmetry is expected for

the other conversation types, it is not so in this case.

So we can distinguish di�erent types of contracts (corresponding to di�erent

BAT stages), and for each type we can develop di�erent meta-patterns. An

example of a meta-pattern in the realm of `contracting contract' is the Con-

tract Net protocol [36]. In this paper, we will limit ourselves to the `ful�llment

contract'. Figure 8 gives a formal representation of such a contract at the type

level.

Note that the order in which the di�erent workow loops take place (de�ned

by the message sequence), as de�ned by the temporal constraints, is dependent

on the trade procedure that is agreed upon (cf. [3] and [19]). For instance con-

20

ContractType Deliver Product (customer($x);
supplier($y); product($p); date($d)) ==
[request� product($x; $y; $p; $d); request�money($y; $x; $p)];
[before(request product:request product; request money:accept request);
before(request product:accept request; request money:accept request])

Figure 8: Example of a ContractType declaration

Customer Supplier
Request
Delivery Customer

Request
Payment

Figure 9: Contract

cerning the way of payment, the supplier can demand receipt of payment before

sending the goods or, alternatively, only after delivery of the goods. In other

words, the two workow loops that constitute the contract can be intertwined

in di�erent ways, leading to a di�erent balance of risks. The standard alterna-

tives mostly used in international trade lead to di�erent contract meta-patterns.

These contract meta-patterns may or may not include the trusted third parties.

See [26], among others, for a discussion of the formal properties of delegation

and the resulting di�erent levels of obligation.

As we said earlier, a particular message may represent more than one illo-

cutionary act. We think this is particularly relevant in reciprocal interactions.

For example, in negotiations one party may want to make an o�er but only if

the other party complies with a request, and vice versa. This deadlock situation

can be broken by bundling the request and the o�er in one message; the other

21

party then has the possibility to accept the whole (or not, of course), thereby

progressing both workows in the same pace. There may be other solutions to

avoid or repair deadlocks, but this problem, stemming from the reciprocal char-

acter of business conversations, is an argument in favor of the di�erentiation

between message and speech act.

4.5 Scenario and Context

Language/Action-based methods focus on conversation patterns, such as the

basic conversation for action pattern [35]. However, we take over the hypothesis

of Taylor that the representation of the conversation, i.e the inter-action, must

be translated into a text to be understood. As Taylor puts it [28], the context of

a conversation is de�ned by `identities of the speaker and hearer, physical and

other incidental circumstances of time and place, the object of the conversational

exchange, and the probable intentions of the speaker'.

In other words, in order to be interpreted the conversation has to be placed

in a certain context. As has been argued in [14], an important element of

the context of an electronic commerce transaction is the identi�cation of the

communicating actors, as well as their actions. By means of the identi�cation

speech act, the speaker tries to set up a communicative relationship with the

hearer. Identi�cation in Electronic Commerce typically requires a Domain Ad-

ministrator that provides identities to new members and can be asked to check

the identity of an agent.

To conceptualize the structure of the text, Taylor draws on previous work

22

in the �eld of semiotics, in particular, Greimas [12]. The minimal story element

or narrative function is composed of a beginning, a development and an end. It

is typical for stories that the �nal state is the inverse of the initial state. For

commercial transactions, this applies easily: in the beginning, the supplier has

goods and the customer has money, in the end, the customer has the goods

and the supplier the money. Since texts (stories) do show a structure, we can

again distinguish meta-patterns. Admittedly, these patterns are very high-level.

When compared to the `conventional patterns' that are used in the area of

software development, we could compare these patterns with the architectural

patterns as discussed in section 3.

We have found the concepts of context, text and story to be useful, but

where Taylor tends to identify these concepts, we think a distinction between

context and story is necessary. There is always a context, and this context can

be more or less explicit. When an actor starts a conversation, a communication

domain is created which serves as context for the messages exchanged. In EDI, a

distinction is made sometimes between content-messages and context-messages.

Orders, o�ers and the like are content-message. A proposal or acceptance to

comply to Dutch Trade Law is a message that updates the context: in this case,

it "grounds" the obligations and authorizations created by the content-messages.

During the development of the conversation, the subjects may make use of stored

communication patterns by instantiating them in the current domain. The story

(or scenario, as we prefer to call it) is the highest level of communication pattern

that can be used, but it is not excluded that the subjects do not adhere to one

23

single large pattern, but make use of di�erent smaller patterns in sequence.

In open edi [17], business partners may engage in short-term on-the-spot

relationships. In that case, they may want to use a meta-pattern for a complete

text, starting with identi�cation and followed by a �xed pattern of exchanges.

This is very fast way of working through a business transaction. Alternatively,

they may want to enter a relationship �rst and then negotiate the terms of

the (ful�llment) contract ad hoc. The latter approach is of course much more

exible.

We use the term `scenario', instead of its linguistic counterpart `story' since

this term is more familiar in Electronic Commerce practice. A scenario is com-

parable to a use case, that is used within the �eld of software engineering to

denote a sequence of transactions performed by an actor in dialogue with an

information system. The scenario need not be limited to the communication

between two parties. An example of a scenario based on the Post-Payment case

of [19] is given in Figure 4.5. This example has been worked out in [32].

This scenario contains not only a Shipper and Consignee (Seller and Buyer),

but also a Sea-Carrier and two banks. Each of the (agency) relations between

these parties is a contract. But there may also be dependencies over contracts,

for example, when the constraint is formulated that the Consignee does not

do the payment before he has evidence that the Sea-Carrier has accepted the

shipping order. So, in the same way as a contract consists of several workow

loops and constraints between them, so does the scenario consist of several

contracts and temporal constraints between them (or between the transactions

24

consignee shipper

Sea-carrier

bank

Consg. Shipper

- Produce ()
- transfer ()

Transfer_
 funds

Consg. Bank

- pay transfer
 costs

- transfer_
 funds

Shipper Bank

- transfer
 freight
 payment

- pay transfer
 costs

Shipper Sea-Carrier

- pay freight -transfer_
 goods

1

2.

3. 4.

Figure 10: The Post-Payment Scenario

in them).

The BAT framework can be viewed as a prototypical scenario meta-pattern,

but taking more detail into account, di�erent business processes can be distin-

guished. In [20], a case study is presented performed at a Swedish manufacturer

in which di�erent `variant' business processes were identi�ed: `standard stock

customer', `special production customer', `whole trading customer', `long-term

agreement customer' and several more. The processes di�er in the production

process used and the involvement of subcontractors and intermediaries.

Our de�nition of a scenario is still preliminary, since we have to work out

more case studies before its structure can be �xed and before we can identify

important meta-patterns. As a starting-point, we de�ne a scenario to consist

of three parts. The central part is the set of contracts (or lower-level units)

25

and temporal constraints between them. The Post-Payment scenario can be

represented in this way. Secondly, the scenario speci�es the conditions on the

context. These conditions must be checked when the scenario is instantiated in a

given context. In the case of the Post-Payment scenario, these conditions specify,

for instance, that the Shipper has an obligation to deliver and the Consignee

has an obligation to receive the goods. The third part of the scenario describes

the goals of the participants. The scenario can usually unfold in di�erent ways,

but there is typically one successful way and desired outcome. The progress of

the process can be measured against the ful�llment of the scenario goals.

5 Applying meta-patterns: the FLBC compo-

nent library

In this paper, we have distinguished di�erent abstraction levels and have claimed

that at each level, meta-patterns can be developed that can be reused from one

application to another. In this section, we will briey indicate how this reuse

can be implemented.

In [18] a prototype FLBC system is described written in Prolog and with a

graphical interface by means of which subjects can choose from a set of possible

message types and actions. In this way, the illocution of the message is already

given, and the user only has to type in the information required for that speci�c

message type.

In the implementation that we envisage, the message types are stored in an

26

FLBC component library, and they can be used in the same way as in the FLBC

system described above. Such a component library may be provided as an EC

service by a Trusted Third Party. However, this component library contains not

only message types, but also higher level patterns, such as transaction patterns,

workow loop patterns and contract patterns, up to scenario patterns. When

a subject selects a transaction pattern, the subsequent choice of message types

will be restricted to the ones de�ned in that transaction. For the receiver, the

choice of reply messages is restricted in the same way.

The same applies to higher-level components, but the use of these is increas-

ingly a matter of negotiation itself rather than a choice of one subject. For

example, during the contracting stage of the business process, the parties may

discuss and reach agreement on the kind of scenario that they want to adopt in

the ful�llment stage. Before the contracting stage, the parties may discuss the

kind of negotiation protocol (contract, in our sense) that they want to follow.

For this reason, it is necessary that the FLBC component library is transparent

in the sense that the patterns are identi�ed objects that can be referenced in

the communication.

Once the parties involved have chosen for a certain scenario or contract, the

Trusted Third Party may monitor the progress and provide information about

the current state. In this way, the parties have mutual knowledge about what

has been reached so far and what is on the road ahead.

27

6 Conclusions and future research

In this paper, we have argued that FLBC components can be used pro�tably for

the rapid development of open-edi protocols. This rapid development is needed

in order to support rapid project-based partnerships.

We have argued that there is a need for larger structural components than

just messages, and have identi�ed several layers of meta-patterns, starting from

speech acts to transactions, contracts, workow loops and scenarios. Depending

on the application at hand, users may want to use complete `architectural'

patterns at scenario level, or build up a scenario themselves using lower-level

components. The syntax de�nition of our pattern language is provided in the

Appendix. Note, however, that this de�nition is at best a starting-point.

In the last section we have briey sketched a software architecture in which

the patterns are made available in the form of an FLBC component library.

The layered architecture integrates several existing theories of business process

modelling and workow.

The formal semantics of speech acts as well as the higher-level components

is not described in this paper. We refer to our previous work for more details

about Deontic Dynamic Logic and the semantics of speech acts, e.g. [33] [29].

We acknowledge that the present paper leaves more questions than it an-

swers. However, as far as we know it is the �rst systematic attempt (in the area

of Electronic Commerce) to identify structural components beyond single mes-

sages. Although we want to adhere to solid formal semantics of our language

proposals, we run into the problem that logic is traditionally focused on single

28

sentences as well. Therefore we have chosen for the approach that we ground

our concepts in logic, but abstain from providing something like compositional

semantics. This is certainly a topic for long-term future research, as soon as the

language itself has grown more stable.

In the near future, we will start implementation of the FLBC component

library in the context of a European project on electronic commerce (MEMO).

This is one way of verifying the proposal. In parallel, we will work on the

analysis of existing trade procedures (in the line of [19]) in order to represent

these in the form of patterns that can be included in the FLBC component

library. Case studies are an important means for validating the proposal.

References

[1] Ch. Alexander, S. Islawa, M. Silverstein, I. with Jacobson, I. Fiksdahl-King,

and S. Angel. A Pattern Language. Oxford University Press, 1977.

[2] J.L. Austin. How to do things with words. Clarendon Press, 1962.

[3] R.W.H. Bons, R.M. Lee, and C.D. Wrigley. Modeling inter-organizational

theories trade procedures using documentary petr nets. In Proceedings of

the Hawaii International Conference on System Sciences, pages 189{199,

January 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture. John Wiley and Sons, 1996.

29

[5] M.A. Covington. Toward a new type of language for electronic commerce.

In Proceedings of the 29th Annual Hawaii International Conference on Sys-

tem Sciences. IEEE, 1996.

[6] G. De Michelis and M. Grasso. Situating conversations within the lan-

guage/action perspective: The milan perspective. In Proc. CSCW '94,

1994.

[7] J.L.G. Dietz. Business modelling for business redesign. In Proc. HICSS

'94, pages 723{732. IEEE Press, 1994.

[8] A. Elmagarmid, editor. Database Transaction Models for Advanced Appli-

cations. Morgan Kaufman, 1992.

[9] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley,

1997.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ab-

straction and Reuse of Object-Oriented Design. Addison-Wesley, 1995.

[11] G. Goldkuhl. Generic business frameworks and action modelling. In

F. Dignum, J. Dietz, E. Verharen, and H. Weigand, editors, Workshop

on Communication Modelling - The Language/Action Perspective, 1996.

[12] A.J. Greimas. Du sens. Paris: Editions du Seuil, 1970.

[13] J. Habermas. The Theory of Communicative Action, Reason and the Ra-

tionalization of Society, volume 1. Polity Press, 1981.

30

[14] W-J. van den Heuvel and H. Weigand. Ensuring the validity of electronic

commerce communication. In Jan Dietz Frank Dignum, editor, Commu-

nication Modelling - The Language/Action Perspective, Computer Science

Reports. Technical Univ of Eindhoven, 1997.

[15] R.E. Johnson. Documenting frameworks using patterns. In OOPSLA '92,

pages 63{76, 1992.

[16] S.O. Kimbrough and R.M. Lee. On illocutionary logic as a telecommuni-

cations language. In Proceedings of the International Conference on Infor-

mation Systems, San Diego, December 1986.

[17] S.O. Kimbrough and R.M. Lee. On formal aspects of electronic commerce:

examples of research issues and challenges. In Proceedings HICSS'96. IEEE

Computer Society Press, 1996.

[18] S.O. Kimbrough and S.A. Moore. On automated message processing in

electronic commerce and work support systems: Speech act. ACM Trans-

actions on Information Systems (TOIS), 1997.

[19] R.M. Lee and R.W.H. Bons. Soft-coded trade procedures for open-edi.

International Journal of Electronic Commerce, 1(1):27{49, 1996.

[20] M. Lind and G. Goldkuhl. Reconstruction of di�erent business processes

- a theory and method driven analysis. In J. Dietz Dignum, F., editor,

Communication Modelling - The Language/Action Perspective, Computer

Science Reports. Technical Univ of Eindhoven, 1997.

31

[21] R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The action-

workow approach to workow management technology. In J. Turner and

R. Kraut, editors, Proc. Of 4th Conf. On Computer Supported Cooperative

Work (CSCW '92). ACM Press, 1992.

[22] J.-J. Ch. Meyer. Deontic logic: A concise overview. In R. Wieringa J.-

J.Ch. Meyer, editor, Deontic Logic in Computer Science, Normative System

Speci�cation. John Wiley and Sons, Ltd, 1993.

[23] V.E. van Reijwoud and H.B.F. Mulder. Speech act based modelling for

workowmanagement systems: A case study. In F. J. Dietz Dignum, editor,

Communication Modeling - The Language/Action Perspective, Computer

Science Reports. Eindhoven University of Technology, 1997.

[24] M. Roscheisen and T. Winograd. A communication agreement framework

for access/action control. Technical report, Stanford University, 1996.

[25] J. Searle. An essay in the philosophy of language. Cambridge University

Press, 1969.

[26] Y.H. Tan and B. Firozababdi. Modelling the dynamics of contract negiti-

ation and execution. In Jan Dietz Frank Dignum, editor, Communication

Modelling - The Language/Action Perspective, Computing Science Reports.

Technical Univ of Eindhoven, 1997.

[27] J.R. Taylor. Rethinking the Theory of Organizational Communication.

Ablex Publishing Corporation, 1993.

32

[28] J.R. Taylor, F. Cooren, N. Giroux, and D. Robichaud. The communica-

tional basis of organization: Between the conversation and the text. Com-

munication Theory, 6:1 { 39, 1996.

[29] E. Verharen. A Language/Action Perspective on the Design of Cooperative

Information Agents. PhD thesis, Tilburg University, 1997.

[30] E. Weigand. Sprache as Dialog: Sprechakttaxonomie und kommunikative

Grammatik. Niemeyer Verlag, (in german) edition, 1989.

[31] H. Weigand. Linguistically Motivated Principles of Knowledge-based Sys-

tems. Foris, Dordrecht, 1990.

[32] H. Weigand, W.-J. van den Heuvel, and F. Dignum. Modeling electronic

commerce transactions: A layered approach. In Proceedings of the Lan-

gauge/Action Perspective Workshop, Steningevik, Stockholm, 1998.

[33] H. Weigand, E. Verharen, and F. Dignum. Dynamic business models

as a basis for interoperable transaction design. Information Systems,

22(2/3):139{154, 1997.

[34] T. Winograd. A language/action perspective on the design of cooperative

work. In I. Greif, editor, Computer Supported Cooperative Work: A Book

of Readings. Morgan Kaufmann, 1988.

[35] T. Winograd and F. Flores. Understanding Computers and Cognition.

Addison-Wesley Publishing Company, 1986.

33

[36] G. Zlotkin and J.S. Rosenschein. Cooperation and conict resolution via

negotiation among autonomous agents in noncooperative domains. IEEE

Transactions SMC, 21(6), 1991.

[37] V. Zwass. Electronic commerce: Structures and issues. Int. Journal on

Electronic Commerce, 1(1), 1996.

34

A Multi-Levelled FLBC-II EBNF Grammar

We have used the Backus-Naur Form to describe the syntax of the multi-levelled
FLBC-II.

/* Symbols used */

() grouping

[] one or zero time repitition

{} zero or more time repitition

| or

/* Electronic Commerce Transaction Specification */

/* EC Specification */

ec_specification: BEGIN scenariolist contractlist workflowlist transactionlist

speech_actlist END ;

scenariolist : scenario scenariolist

| scenario

scenario : SCENARIOTYPE scenarioname ';'

scenario body

scenario_body : '('

IDENTIFICATION ident ';'

CONTRACTSlist ';'

TRANSACTIONSlist ';'

TERMINATION

')'

ident : DOMAIN domainname '(' SUBJECTS {subjects} ','

IDENTIFICATION idents ')'

CONTRACTSlist : contracts CONTRACTSlist

| contracts

contracts : CONTRACTS contractspec

contractspec : '(' '['

{args}

')' ']'

args : argname'('arg')' {','argname'('arg')'}

argname : ident

arg : '$'ident

35

TRANSACTIONSlist: transactions TRANSACTIONSlist

| transactions

transactions : TRANSACTIONS transactionspec

transactionspec : '(' '['

{transaction_label}

')' ']'

transaction_label: transactionname '(' {arg} ')' {',' transactionname '(' {arg} ')' }

tranactionname : identifier

/* Contract */

contractlist : contract contractlist

| contract

contract : CONTRACTTYPE contractheader contractbody

contractheader : contractname contractarg

contractarg : CUSTOMER customername ',' SUPPLIER suppliername {args}

customername : identifier

suppliername : identifier

contractbody : '(' {person} workflowloopname contractconstraintsclause ')'

person : PERSON '(' name ')' personclause

personclause : ',' PERSON '(' name ')'

|

name : identifier

workflowloopname: identifier

speechactname : identifier

contractconstraintclause : contractconstraints

|

contractconstraints: workflowloopname'.'transactionname BEFORE|AFTER

workflowloopname'.'transactionname

|

workflowloopname BEFORE|AFTER workflowloopname

/* WorkflowLoop */

workflowlist : workflowloop workflowlist

| workflowloop

workflowloop : WORKFLOWLOOPTYPE workflowloopheader workflowloopbody

workflowloopheader: workflowloopname workflowlooparg

workflowloopname : identifier

workflowlooparg : INITIATOR initiatorname ',' EXECUTOR executorname argclause

argclause : {',' args}

|

36

workflowloopbody: '(' {person} clause ')'

clause : clausename ':'oblclause '('agent ',' action_spec ')' |ACC'('agent')'

IN ':' transaction transactionclause

deadlineclause

goalclause

exitclause

modifyclause

oblclause : OBL|AUT

deadlineclause : DEADLINE ':' obl_deadline

|

transactionclause: {',' transction}

|

clausenameclause:{'&'clause_name}

|

goalclause : GOAL ':'{action_spec '=>' clause_name clausenameclause}

|

exitclause : EXIT ':' {(cancel '(' action ')' | transaction) '=>'

clausename clausenameclause}

|

modifyclause : MODIFIED BY {(action_spec|message)}

|

clausename : identifier

obl_deadline : action_spec | time | action_spec '+' time | now '+' time '<<'

action_spec '<<' action_spec|time|action_spec'+'time|now'+'time

| actionspec '!' | action_spec ASAP

actionspec : transaction | action

transaction : transname argclause

transname : identifier

action : actionname argclause

actionname : identifier

/* Transaction */

transactionlist : transaction transactionlist

| transaction

37

transaction : TRANSTYPE transheader transbody

transheader : transname transargsclause

transargsclause : {transargs}

|

transargs : SPEAKER speakername ',' ADDRESSEE addresseename ',' argclause

speakername : identifier

addresseename : identifier

transbody : '(' {person} saclause transcclause ')'

transcclause : {trans_constraint}

|

saclause : {speechact}

speechact : speechactname'('{args} ',' mesident ')'

speechactname : identifier

trans_constraint: BEFORE'('mesid')'

mesid : mesident','mesident

mesident : identifier

/* Speech Act */

speech_actlist : speech_act speech_actlist

| speech_act

speech_act : MSGTYPE msgheader msgbody

msgheader : SENDER sendername ',' RECEIVER receivername argclause

sendername : identifier

receivername : identifier

msgbody : '(' {person} stclause ')'

stclause : {speechact ',' transact}

speechact : ACCEPT | ASSERT | SUGGEST | COMMIT | CLAIM | ASSERT | NOMINATE |

RETRACT | FORBID | PERMIT | CONFIRM | COMMAND | REQUEST |

PROMISE | REJECT

transact : transname

%%

38

