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Abstract

In this paper we study cooperative games with limited cooperation possibilities, represented by an undi-
rected cycle-free communication graph. Players in the game can cooperate if and only if they are connected
in the graph. We introduce a new single-valued solution concept, the average tree solution. Our solution is
characterized by component efficiency and component fairness. The interpretation of component fairness is
that deleting a link between two players yields for both resulting components the same average change in
payoff, where the average is taken over the players in the component. The average tree solution is always
in the core of the restricted game and can be easily computed as the average of n specific marginal vectors,
where n is the number of players. We also show that the average tree solution can be generated by a specific
distribution of the Harsanyi dividends.
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1. Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can be
described by a cooperative game with transferable utility, or simply a TU-game, being a pair
consisting of a finite set of players and a characteristic function on the set of coalitions of players
that assigns a payoff to each coalition of players. This payoff is the total payoff the coalition
can obtain if they agree to cooperate. A payoff vector indicates a distribution of payoffs to the
players in a game. A solution for TU-games is a mapping that assigns to every game a set of
payoff vectors. A classical solution is the core, see Gillies (1953), which assigns to any game the
set of undominated efficient payoff vectors. The best known single-valued solution is the Shapley
value, see Shapley (1953), assigning to any game the average of all marginal vectors.

In this paper we study TU-games with limited cooperation possibilities, represented by an
undirected communication graph as introduced by Myerson (1977). The vertices in the graph
represent the players and the edges represent the communication links between the players. Play-
ers can only cooperate if they are connected. This yields a so-called graph game, given by a triple
consisting of a finite set of players, a characteristic function on the set of coalitions of players,
and a set of edges (communication links) between the players. Since in graph games only con-
nected coalitions can cooperate, the core reduces to the set of component efficient payoff vectors
that are not dominated by any connected coalition, and equals the core of the so-called restricted
game as defined by Myerson (1977).

A solution for graph games is a mapping that assigns to every graph game a set of payoff
vectors. The best-known single-valued solution for graph games is the Myerson value, a solution
that assigns to any graph game the Shapley value of the restricted game. The Myerson value can
be characterized by component efficiency and fairness. The latter property says that deleting a
link between two players yields for both players the same change in payoff. Clearly, the Myerson
value is the average of all marginal vectors of the reduced game and is guaranteed to be in the
core if the restricted game is convex. Alternative characterizations of the Myerson value have
been given in Myerson (1980) and Borm et al. (1992). In the latter paper also another solution
for graph games has been proposed, the so-called positional value, see also Meessen (1988).
This value is characterized by component efficiency and by balanced total threats, see Slikker
(2005). The balanced total threat property says that the total threat of any player towards another
player equals the total threat of that player towards the first player, where the total threat of a
player towards another player is the sum over all links of the first player of payoff differences the
second player experiences if such a link is broken.

We keep component efficiency as an axiom and replace Myerson’s fairness by an alternative
fairness property, to be called component fairness. This property says that deleting a link between
two players yields for both resulting components the same average change in payoff, where the
average is taken over the players in the component. Component fairness therefore emphasizes
that in a cooperative graph game the losses associated to severing a link should be attributed to
the two components, rather than to the two individual players whose link is deleted, and that the
losses should be proportional to the size of the component. We show that component efficiency
and component fairness characterize a new single-valued solution concept for cycle-free graph
games, to be called the average tree solution.

It is easy to calculate the average tree solution. From Kaneko and Wooders (1982) and Le
Breton et al. (1992) it follows that the core of the restricted game is not empty if the graph
contains no cycles (a cycle-free graph) and the characteristic function is superadditive, see also
Demange (1994). For an arbitrarily taken node in the graph, a cycle-free graph induces a tree with
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the given node as root. Demange assigns to any node taken as root a particular marginal vector
and shows that this vector is in the core of the restricted game. Interpreting the tree as a hierarchy
on the set of players, Demange (2004) argues that hierarchies yield stability, in the sense that
there exist undominated payoff vectors under the mild condition of superadditivity, providing a
rationale for the fact that a group organizes itself in a hierarchy to achieve coordination.

We will show that the average tree solution equals the average of the marginal vectors, for
each player one, considered by Demange. From this it follows that the average tree solution
belongs to the core of the (restricted) game if the game itself is superadditive. So, contrary to
the Myerson value and the position value, in case of superadditivity the average tree solution is
always an element of the core.

As a final way of calculating the average tree solution, we show that the average tree solution
can be obtained from a particular distribution of the Harsanyi dividends corresponding to con-
nected coalitions, see Harsanyi (1959). For the Myerson value dividends are allocated uniformly,
and for the position value proportional to the degree of players. For the average tree solution,
the dividends are allocated proportional to the number of players represented by a player. Each
player represents himself and the players outside the coalition that are connected to him in the
communication graph.

This paper has been organized as follows. In Section 2 we give some preliminary notions of
graph theory. In Section 3 we prove that component efficiency and component fairness uniquely
determine a solution on the class of cycle-free graph games. We also show that it equals the
average of n specific marginal vectors, where n is the number of players. In Section 4 we show
that in case the game is superadditive the average tree solution lies in the core, which implies that
the average tree solution is the unique solution that is characterized by component fairness and
stability. Section 5 discusses the average tree solution in terms of the distribution of Harsanyi
dividends. Section 6 concludes.

2. Preliminaries

A cooperative game with transferable utility, or simply a TU-game, is a pair (N,v), where
N is a finite set of players and v : 2N → R is a characteristic function on N such that v(∅) = 0.
For any subset S ∈ 2N , v(S) is the worth of coalition S. We assume that N is a set of n players,
indexed by i = 1, . . . , n, and we denote a game (N,v) shortly by its characteristic function v.

A payoff vector x ∈ R
n of a game v is an n-dimensional vector giving a payoff xi ∈ R to

any player i ∈ N . In the following we denote x(S) = ∑
i∈S xi , S ∈ 2N . A payoff vector x is

efficient if it exactly distributes the worth v(N) of the ‘grand coalition’ N , i.e. if x(N) = v(N).
A solution for TU-games is a mapping F that assigns to every TU-game v a set of payoff vectors
F(v) ⊆ R

n. A solution F is efficient if for any game v every element in F(v) is efficient. The
core is the most well-known efficient solution concept. For a TU-game v the core is defined by

C(v) = {
x ∈ R

n | x(N) = v(N), x(S) � v(S), S ∈ 2N
}
.

For some permutation π on N , the corresponding marginal vector mπ(v) ∈ R
n assigns to

every player i a payoff mπ
i (v) = v(πi ∪ {i}) − v(πi), where πi = {j ∈ N | π(j) < π(i)}, i.e. πi

is the set of players preceding i in the permutation π . The best known single-valued solution is
the Shapley value, which assigns to any game v the average ψ(v) of all marginal vectors. Since
every marginal vector is efficient, the Shapley value is an efficient solution.

A game v is convex if v(S ∪T )+v(S ∩T ) � v(S)+v(T ) for all S,T ∈ 2N and superadditive
if v(S ∪ T ) � v(S) + v(T ) for all S,T ∈ 2N such that S ∩ T = ∅. The core of a game is equal to
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the convex hull of all marginal vectors if and only if the game is convex. In that case the Shapley
value is an element of the core. In general, the Shapley value may be outside the core, even if
the core is non-empty. The core is non-empty if and only if the game is balanced, see Bondareva
(1963).

In this paper we study cooperative games with limited cooperation possibilities, represented
by an undirected communication graph as introduced by Myerson (1977). An undirected graph
is a pair (N,L) where N is a set of nodes1 and L is a collection of edges, i.e. L ⊆ {{i, j} |
i, j ∈ N, i 	= j} is a collection of subsets of N such that each element of L contains precisely
two distinct elements of N . Node j is adjacent to node i if {i, j} ∈ L. Because the elements of
L represent binary communication links between the players, in the sequel we call them links
instead of edges.

For K ∈ 2N , the graph (K,L(K)) with L(K) = L∩ (K ×K) is called the subgraph of (N,L)

on K . The number of nodes in K being adjacent to node i ∈ K in subgraph (K,L(K)) is called
i’s degree in (K,L(K)) and is given by dL

K(i) = |{j ∈ K | {i, j} ∈ L(K)}|.
A sequence of k different nodes (i1, . . . , ik) is a path in a graph (N,L) if {ih, ih+1} ∈ L for

h = 1, . . . , k − 1. Two nodes i, j ∈ N are connected in the graph (N,L) if i = j or there exists a
path (i1, . . . , ik) with i1 = i and ik = j . A graph (N,L) is connected if any two nodes i, j ∈ N

are connected in (N,L). In a given graph (N,L), a set of nodes K is said to be a connected
subset of N when the subgraph (K,L(K)) is connected. A subset K of N is a component of
(N,L) if the subgraph (K,L(K)) is maximally connected, i.e. (K,L(K)) is connected and for
any j ∈ N \ K , the subgraph (K ∪ {j},L(K ∪ {j})) is not connected. Note that the collection
of components of (N,L) forms a partition of N . The collection of all connected subsets of K

in the subgraph (K,L(K)) of (N,L) is denoted by CL(K). The collection of all components of
(K,L(K)) is denoted by CL

m(K). Notice that CL
m(K) ⊆ CL(K).

A sequence of nodes (i1, . . . , ik+1) is a cycle in (N,L) if

(i) k � 2,
(ii) all nodes i1, . . . , ik are different elements of N ,

(iii) ik+1 = i1, and
(iv) {ih, ih+1} ∈ L for h = 1, . . . , k. A graph (N,L) is cycle-free when it does not contain any

cycle.

The combination of a TU-game and a communication graph results in a so-called graph game,
given by a triple (N,v,L) with N the set of players, v the characteristic function and L the set
of edges (communication links) in the graph (N,L) on the set of nodes N . As for TU-games,
we often omit N in our notation. In a graph game only the connected coalitions are able to
cooperate. For a graph game (v,L), a payoff vector x ∈ R

n is component efficient if it holds that∑
i∈K xi = v(K) for each K ∈ CL

m(N). The core C(v,L) of a graph game (v,L) reduces to the
set of component efficient payoff vectors that are not dominated by any connected coalition,

C(v,L) = {
x ∈ R

n | x(S) = v(S), S ∈ CL
m(N), and x(S) � v(S), S ∈ CL(N)

}
.

1 Since in this paper the nodes in a graph represent the players in a game we use the same notation for both the set of
nodes and the set of players.
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The core C(v,L) of the graph game (v,L) equals the core C(vL) of the so-called restricted
game vL, defined by Myerson (1977) as

vL(S) =
∑

T ∈CL
m(S)

v(T ), S ∈ 2N.

3. Component fairness

In this section we introduce the axiom of component fairness condition and prove that there is
a unique solution on the class of cycle-free graph games that satisfies the axioms of component
efficiency and component fairness.

A single-valued solution for cycle-free graph games is a function f that assigns to every
cycle-free graph game (v,L) a unique payoff vector f (v,L) ∈ R

n.
The Myerson value μ is the solution that assigns to any graph game the Shapley value of the

restricted game, so μ(v,L) = ψ(vL). Clearly, the Myerson value is the average of all marginal
vectors of vL and is guaranteed to be in the core if the restricted game is convex.

The Myerson value can be characterized by component efficiency and fairness. First we recall
the axiom of component efficiency as introduced in Myerson (1977).

Axiom 3.1 (Component efficiency). A solution f on the class of cycle-free graph games is com-
ponent efficient if for any graph game (v,L) it holds that

∑
i∈K fi(v,L) = v(K) for each

K ∈ CL
m(N).

Component efficiency requires that a solution assigns to any component K the payoff v(K).

Axiom 3.2 (Fairness). A solution f on the class of cycle-free graph games satisfies fairness if,
for any (v,L), for any link {i, j} ∈ L, it holds that

fi(v,L) − fi

(
v,L \ {i, j}) = fj (v,L) − fj

(
v,L \ {i, j}).

The latter property says that deleting a link between two players yields for both players the
same change in payoff.

For a component K of a graph (N,L) and a link {i, j} ∈ L(K), let Kh be the component in
(N,L \ {i, j}) containing h, where h = i, j . Clearly, Kh is the subset of K of players connected
to h in the graph that results after deleting the link {i, j}. The Myerson fairness condition requires
that fi(v,L)−fi(v,L\{i, j}) = fj (v,L)−fj (v,L\{i, j}) for any {i, j} ∈ L and thus states that
two players i and j linked directly together face the same loss in payoff when the link between
them is deleted. In other words, in the graph (N,L \ {i, j}) the players in Ki cannot interact with
the players in Kj , but when the players in the two components decide to collaborate by forming
the link {i, j}, the Myerson fairness condition says that both players i and j gain equally from
forming this link.

Since all members of a coalition are involved in the cooperation, one may argue that the fair-
ness criterion should not be applied to the two individual players that are linked, but to the two
components that are linked. This motivates the axiom of component fairness, which requires that
if a link {i, j} is deleted from L, the average loss in payoff in both components Ki and Kj is the
same. Component fairness therefore emphasizes that in a cooperative graph game the gains asso-
ciated to linking one component to the other should be attributed to the two components, rather
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than to the two individual players that form the link, and that the gains should be proportional to
the size of the component.

Axiom 3.3 (Component fairness). A solution f on the class of cycle-free graph games satisfies
component fairness if, for any (v,L), for any link {i, j} ∈ L, it holds that

1

|Ki |
∑
h∈Ki

(
fh(v,L) − fh

(
v,L \ {i, j})) = 1

|Kj |
∑

h∈Kj

(
fh(v,L) − fh

(
v,L \ {i, j})).

We now state the main theorem, which says that there is a unique solution that satisfies both
axioms.

Theorem 3.4. On the class of cycle-free graph games, there is a unique solution that satisfies
component efficiency and component fairness.

Proof. Suppose that f satisfies component efficiency and component fairness. For any graph
game (v,L), let l = |L| be the number of links and c = |CL

m(N)| the number of components in
(N,L). Observe that l + c = n, because the graph is cycle-free. Component efficiency implies
that ∑

h∈K

fh(v,L) = v(K), for all K ∈ CL
m(N). (3.1)

Also because of component efficiency we have
∑

h∈Ki fh(v,L \ {i, j}) = v(Ki) and∑
h∈Kj fh(v,L \ {i, j}) = v(Kj ) for any link {i, j} in L(K). Therefore, component fairness

reduces to

1

|Ki |
( ∑

h∈Ki

fh(v,L) − v(Ki)

)
= 1

|Kj |
( ∑

h∈Kj

fh(v,L) − v(Kj )

)
, (3.2)

for all {i, j} ∈ L(K) and K ∈ CL
m(N).2 Since there are c equations of type (3.1) and l equations

of type (3.2) and all the c + l = n equations are linearly independent, these equations uniquely
determine f (v,L). �

Having proved that component efficiency and component fairness uniquely determine a solu-
tion on the class of cycle-free graph games, we are now going to give a closed form expression
for this solution. To do so, we first discuss some general properties of directed graphs. A directed
graph is a pair (N,D), where N is a set of nodes and D is a collection of directed edges, i.e.
D ⊆ {(i, j) | i, j ∈ N, i 	= j}. If (i, j) ∈ D, then the node j is a successor of i and i is a pre-
decessor of j . We say that j 	= i is a subordinate of i if there is a sequence of directed edges
(ih, ih+1) ∈ D, h = 1, . . . , k, such that i1 = i and ik+1 = j . We denote the set of subordinates of i

in (N,D) by SD(i) and denote Sc
D(i) = SD(i) ∪ {i}. For K ∈ 2N, the directed graph (K,D(K))

with D(K) = {(i, j) ∈ D | i, j ∈ K} is called the directed subgraph of (N,L) on K. A directed
graph (N,D) is a tree if there is one node in N , called the root or top-node, having no predeces-
sors in D and there is a unique sequence of directed edges in (N,D) from this node to any other

2 Observe that, contrary to the proof of the uniqueness of the Myerson value, we do not need induction on the number
of links. For the Myerson value one first has to determine the values fh(v,L \ {i, j}) for h = i, j .
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node in N . Let (N,D) be the undirected graph induced by (N,D), i.e. D = {{i, j} | (i, j) ∈ D}.
A directed graph (N,D) is a forest if for every component K of (N,D) the directed subgraph
(K,D(K)) is a tree. A directed graph (N,D) represents a hierarchy on N when (N,D) is a
forest. Clearly, in a forest (N,D) we have that Sc

D(j) ⊆ SD(i) when j is a subordinate of i.
Finally, let (N,L) be a cycle-free undirected graph and let K belong to CL

m(N). Then every
node i ∈ K induces a unique tree T (i) on K in the following way. For any j ∈ K \ {i}, take the
unique path in (K,L(K)) from i to j , then change the undirected edges on this path to directed
edges in such a way that the first node in any ordered pair is the node that comes first on the path
from i to j . We define LT (i)(j) = {h ∈ K | (j, h) ∈ T (i)} as the set of successors of j in T (i),

so LT (i)(j) ⊆ ST (i)(j).

Notice that the undirected cycle-free subgraph (K,L(K)) induces k = |K| different trees, one
tree for each of the k different nodes of K . For K ∈ CL

m(N), we denote by T K
L the collection of

all |K| trees on K induced by the undirected graph (N,L).
Let (v,L) be a cycle-free graph game. Consider a component K of (N,L) and i ∈ K . We

now associate to player j in T (i) payoffs t ij (v,L) given by

t ij (v,L) = v
(
Sc

T (i)(j)
) −

∑
h∈LT (i)(j)

v
(
Sc

T (i)(h)
)
. (3.3)

The payoff t ij (v,L) to player j ∈ K is equal to the worth of the coalition consisting of player j

and all his subordinates in T (i) minus the sum of the worths of the coalitions consisting of any
successor of player j and all subordinates of this successor in T (i).

We now define the Average Tree solution as the solution assigning to each cycle-free graph
game (v,L) the payoff vector in which player j in a component K ∈ CL

m(N) receives the average
over i ∈ K of the payoffs t ij (v,L).

Definition 3.5 (Average tree solution). On the class of cycle-free graph games, the average tree
(AT) solution assigns to any (v,L) the payoff vector AT(v,L) given by

ATj (v,L) = 1

|K|
∑
i∈K

tij (v,L),

where j is a player belonging to component K ∈ CL
m(N).

Notice that the average tree solution is a weighted average of n vectors, each of which can be
easily computed. The following example illustrates.

Example 3.6. Let the graph game (N,v,L) be given by N = {1,2,3}, v({1,2}) = 1, v({2,3}) =
v(N) = 2, v(S) = 0, otherwise, and L = {{1,2}, {2,3}}. The graph (N,L) is connected, so has a
single component. The graph (N,L) induces 3 trees, one for each of the 3 different nodes of N ,
T (1) = {(1,2), (2,3)}, T (2) = {(2,1), (2,3)}, and T (3) = {(3,2), (2,1)}. It follows immedi-
ately by Eq. (3.3) that t1(v,L) = (0,2,0)
, t2(v,L) = (0,2,0)
, and t3(v,L) = (0,1,1)
,

so

AT(v,L) = 1

3

(0
2
0

)
+ 1

3

(0
2
0

)
+ 1

3

(0
1
1

)
=

( 0
5/3
1/3

)
.
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By the tree structure of T (i) we have that for every player j ∈ K the sets Sc
T (i)(h), h ∈

LT (i)(j), form a partitioning of ST (i)(j) and thus

t ij (v,L) = v
(
Sc

T (i)(j)
) − vL

(
ST (i)(j)

)
, (3.4)

where the last term is the restricted worth of the coalition consisting of all subordinates of j in
the tree T (i). The payoff to player j in tree T (i) is therefore equal to what player j contributes
when he joins his subordinates in T (i). Clearly, the set Sc

T (i)
(j) itself is connected, so when

joining his subordinates, player j connects all the subsets of subordinates of his successors to
one connected set and receives his marginal contribution to it. Observe that a player j ∈ K

receives his own worth v({j}) when j has no subordinates in the tree T (i). More generally, the
total payoff to a player j and all his subordinates in T (i) is equal to the worth of the coalition
Sc

T (i)(j), i.e.∑
h∈Sc

T (i)
(j)

t ih(v,L) = v
(
Sc

T (i)(j)
)
, j ∈ K. (3.5)

The next theorem shows that the AT-solution satisfies component efficiency and component fair-
ness.

Theorem 3.7. The average tree solution satisfies component efficiency and component fairness.

Proof. Let (v,L) be a graph game, and let K be a component of (N,v). Since player i is the
top-player in the tree T (i) on K, and thus Sc

T (i)(i) = K , it follows from Eq. (3.5) that for any
i ∈ K ∑

h∈K

tih(v,L) =
∑

h∈Sc
T (i)

(i)

t ih(v,L) = v
(
Sc

T (i)(i)
) = v(K).

Hence,∑
h∈K

ATh(v,L) =
∑
h∈K

1

|K|
∑
i∈K

tih(v,L) = 1

|K|
∑
i∈K

∑
h∈K

tih(v,L) = 1

|K|
∑
i∈K

v(K) = v(K),

which shows component efficiency.
To show component fairness, suppose link {i, j} is deleted from component K . Component

efficiency implies that for the components Ki and Kj in the graph (N,L \ {i, j}) it holds that∑
h∈Ki ATh(v,L \ {i, j}) = v(Ki) and

∑
h∈Kj ATh(v,L \ {i, j}) = v(Kj ).

Next, we compute AT(v,L). Consider again the component K and the link {i, j}. For h ∈ Ki

we have by definition of th(v,L) that∑
h′∈Kj

thh′(v,L) = v(Kj ). (3.6)

On the other hand, for h ∈ Kj it holds that∑
h′∈Kj

thh′(v,L) = v(K) − v(Ki), (3.7)

since by (3.6)
∑

h′∈Ki t
h
h′(v,L) = v(Ki) and

∑
h′∈K th

h′ = v(K). There are |Ki | equations of type
(3.6) and |Kj | equations of type (3.7). Therefore, it follows that∑

j

ATh(v,L) = 1

|K|
(|Ki |v(Kj ) + |Kj |(v(K) − v(Ki)

))
.

h∈K
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With |Ki | + |Kj | = |K| it follows that∑
h∈Kj

(
ATh(v,L) − ATh

(
v,L \ {i, j}))

= 1

|K|
(|Ki |v(Kj ) + |Kj |(v(K) − v(Ki)

)) − v(Kj )

= |Kj |
|K|

(
v(K) − v(Ki) − v(Kj )

)
.

Analogously, it follows that

∑
h∈Ki

(
ATh(v,L) − ATh

(
v,L \ {i, j})) = |Ki |

|K|
(
v(K) − v(Ki) − v(Kj )

)
,

which shows that AT satisfies component fairness. �
The next corollary follows immediately from Theorems 3.4 and 3.7.

Corollary 3.8. On the class of cycle-free graph games, the average tree solution is the unique
solution that satisfies component efficiency and component fairness.

4. Stability

In this section we show that within the class of superadditive cycle-free graph games the
average tree solution can also be characterized as the unique solution that satisfies component
fairness and that belongs to the core. Consider a connected cycle-free graph (N,L), so that N is
the unique component. Then the AT-solution becomes

ATj (v,L) = 1

n

∑
i∈N

tij (v,L), j ∈ N.

Suppose that v is superadditive. It has been shown by Demange (2004) that the vector t i (v,L)

in which a player j gets a payoff equal to the worth of the coalition consisting of himself with
all his subordinates minus the restricted worth of the coalition of his subordinates is in the core
of the restricted game vL. In fact, it holds that vL is permutationally convex for any permuta-
tion π satisfying πj < πh when j is a subordinate of h on a tree T (i) on N , see for instance van
Velzen (2005). According to Granot and Huberman (1982) this implies that the corresponding
marginal vector mπ is in the core of vL. It is straightforward to verify that t i (v,L) = mπ(vL) for
any permutation π that satisfies the condition above for the tree T (i). Since the core is convex
and AT(v,L) is the average of all vectors t i (v,L), i ∈ N , this implies that the AT-solution is in
the core of vL and thus cannot be dominated by any coalition. The discussion above generalizes
straightforwardly to the case where the graph (N,L) consists of several components. Since sta-
bility, the property that the solution is in the core, implies the weaker condition of component
efficiency, we have the following theorem.

Theorem 4.1. On the class of cycle-free superadditive graph games the AT-solution is the unique
solution satisfying stability and component fairness.
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The theorem not only says that the AT-solution is the unique stable solution satisfying compo-
nent fairness, it also says that there exists a solution being stable and component fair. This makes
the AT-solution an attractive alternative to other solutions such as the Myerson value and the
position value which may not be stable, even not on the class of superadditive cycle-free graph
games.

The Myerson value μ(v,L), characterized by component efficiency and fairness, satisfies, for
any link {i, j} ∈ L,

μi(v,L) − μi

(
v,L \ {i, j}) = μj (v,L) − μj

(
v,L \ {i, j}).

It is equal to the Shapley value ψ(vL) of the restricted game vL, implying that it may be outside
the core of vL when vL is not convex. Fairness may contradict the requirement of stability,
whereas component fairness does not. Also the position value, denoted by γ (v,L), introduced
for the class of all graph games and characterized on the class of cycle-free graph games in Borm
et al. (1992), does not need to be stable. Slikker (2005) characterizes the position value on the
class of graph games as the unique solution satisfying component efficiency and balanced total
threats. The total threat of a player i towards another player j is defined as the sum over all links
of player i of the payoff differences player j experiences if such a link is broken, i.e. for each
pair of players i, j ∈ N it holds that∑

h|{i,h}∈L

(
γj (v,L) − γj

(
v,L \ {i, h})) =

∑
h|{j,h}∈L

(
γi(v,L) − γi

(
v,L \ {j,h})).

Balanced total threats means that the total threat of any player i towards another player j is equal
to the total threat of player j towards player i.

The next example shows that also the balanced threat property may contradict the requirement
of stability, i.e. also the position value may be outside the core.

Example 4.2. As in Example 3.6, let the graph game (N,v,L) be given by N = {1,2,3},
v({1,2}) = 1, v({2,3}) = v(N) = 2, v(S) = 0, otherwise, and L = {{1,2}, {2,3}}. Observe
that vL = v, so that the Myerson value equals the Shapley value: μ(v,L) = ψ(vL) = ψ(v) =
(1/6,7/6,2/3)
. To obtain the position value, straightforward calculations show that γ (v,L \
{1,2}) = (0,1,1)
 and γ (v,L \ {2,3}) = ( 1

2 , 1
2 ,0)
. Then, it follows that γ (v,L) = ( 1

4 ,1, 3
4 )


by solving the system of three equations given by the component efficiency property and the
two conditions implied by balanced threats between 1 and 2 and between 2 and 3. Since x1 = 0
for any payoff vector x in the core of vL, this shows that both the Myerson value and the posi-
tion value are not stable. Finally, Example 3.6 computed AT(v,L) to be equal to (0,5/3,1/3),

a vector that belongs to the core.

5. Harsanyi dividends

In this section, we compare the three values in terms of distributions of the so-called Harsanyi
dividends. Let Ω be the collection of non-empty subsets of N . Then, for T ∈ Ω , the unanimity
game uT on N is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. Leaving out v(∅),
it is well known that the collection of unanimity games forms a basis in R

2n−1 for the class of
TU-games on N , i.e. for any game v represented as a (2n − 1)-vector with the worths of the
non-empty coalitions as its components, it holds that

v =
∑

ΔS(v)uS, (5.8)

S∈Ω
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where the coefficients ΔS(v) are the Harsanyi dividends, see Harsanyi (1959), given by

ΔS(v) =
∑
T ⊆S

(−1)|S|−|T |v(T ), S ∈ Ω. (5.9)

It is well known that the Shapley value can be obtained by distributing the Harsanyi dividend of
coalition S equally among the players in S,

ψi(v) =
∑

S∈Ω|i∈S

1

|S|Δ
S(v), i ∈ N.

The Shapley payoff to player i is equal to the sum over all coalitions S containing player i of the
dividend of coalition S divided by |S|.

Consider a cycle-free graph game (v,L). For a connected set S, a node i ∈ S is extreme if
S \ {i} is connected in the subgraph (N \ {i},L(N \ {i})). The set of extreme nodes of S is
denoted by Ex(S). Owen (1986), see also Borm et al. (1992), showed that the dividends of the
restricted game can be expressed as sum of the dividends of the underlying game v,

ΔS(vL) =
{∑

T ∈Σ(S) Δ
T (v), if S is connected,

0, otherwise,

where Σ(S) = {T ⊆ S | Ex(S) ⊆ T }. Since the dividends of not connected coalitions are zero,
for the restricted game of a cycle-free graph game (v,L) Eq. (5.8) reduces to

vL =
∑

S∈CL(N)

ΔS(vL)uS (5.10)

and the payoffs according to the Myerson value follow by distributing the dividends of the con-
nected coalitions equally among its players

μi(v,L) =
∑

S∈CL(N)|i∈S

1

|S|Δ
S(vL), i ∈ N.

As follows from Borm et al. (1992), see also van den Brink et al. (2004), the position value is
obtained by distributing the dividend of any connected coalition S proportional among its players
according to the degrees of the players in the subgraph (S,L(S)), i.e. the payoff of player i

according to the position value is given by

γi(v,L) =
∑

S∈CL(N)|i∈S

dL
S (i)∑

j∈S dL
S (j)

ΔS(vL), i ∈ N.

Comparing the two values shows that in the position value the more central players, that means
players with more neighbors, get higher shares in the dividends.3

Also the average tree solution can be obtained by distributing the dividends appropriately. To
derive these distributions, for each connected S in (N,L) and j ∈ S, let pL

S (j) be the number of
players outside S represented by j in S. We say that player j ∈ S represents player k outside S,

3 Since dividends may be negative, this does not necessarily mean that in the position value the more central players
get higher payoffs than in the Myerson value. In the example above, the coalition {1,2} has dividend 1, coalition {2,3}
has dividend 2 and the grand coalition N has dividend −1. Since in the latter coalition player 2 has degree two and the
other players degree one, the position value gives a lower payoff to player 2 than the Myerson value.
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if k is connected to j and on the unique path connecting j and k all players between j and k are
outside S. So,

pL
S (j) =

∑
h∈N\S|{j,h}∈L

|Kh|,

where, as in the previous section, Kh is the component of the graph (N,L \ {j,h}) containing
player h. Clearly, player j connects the players in S with the players in Kh in the sense that link
{j,h} is on the path between any player i in S and any player k in the set Kh ⊆ N \ S. Notice
that for some players j, pL

S (j) = 0. We now have the following result.

Theorem 5.1. The payoff of player i according to the AT-solution is given by

ATi (v,L) =
∑

S∈CL(N)|i∈S

1 + pL
S (i)

|S| + ∑
j∈S pL

S (j)
ΔS(vL), i ∈ N.

Proof. First, observe that AT is linear, i.e. for two games v and w and coefficients α, β ∈ R,
it holds that AT(αv + βw,L) = αAT(v,L) + βAT(w,L). This follows from the fact that the
AT-solution is the average of specific marginal vectors of the restricted game vL, where the
choice of the marginal vectors is independent of the payoffs. Further, observe that uL

S = uS if S

is connected in (N,L). Hence, with Eq. (5.10) it follows that

ATi (v,L) =
∑

S∈CL(N)

ATi (uS,L)ΔS(vL), i ∈ N.

Let S be a connected coalition in (N,L) and let T ∈ CL
m(N) be the component of (N,L) con-

taining S. Since uS(K) = 0 for each component K 	= T , it follows from component efficiency
and component fairness that ATj (uS,L) = 0 for all j /∈ T . Further uS(T ) = 1, so component
efficiency requires that

∑
j∈T ATj (uS,L) = 1.

Consider any link {i, j} involving at least one player outside S. The graph L \ {i, j} has two
components being a subset of T , say Ki and Kj , where i ∈ Ki and j ∈ Kj . Moreover, without
loss of generality, S ⊆ Kj . Since uS(Ki) = 0 and uS(Kj ) = 1, component efficiency requires
that

∑
h∈Ki ATh(uS,L \ {i, j}) = 0 and

∑
h∈Kj ATh(uS,L \ {i, j}) = 1. Component fairness

implies that
∑

h∈Ki ATh(uS,L) = 0 and
∑

h∈Kj ATh(uS,L) = 1. Since this holds for any link
{i, j} involving at least one player outside S, it follows that ATi (uS,L) = 0 for all i ∈ T \ S and
thus for all i not in S. Consequently,

∑
j∈S ATj (uS,L) = 1.

Now, for any two linked players i and j in S, let u
L\{i,j}
S be the restricted game of

uS on (N,L \ {i, j}). Since S is not connected anymore, u
L\{i,j}
S (T ) = 0 for any T ∈ 2N ,

i.e. the restricted game is the null-game, yielding worth zero to any coalition. Consequently,
ATj (uS,L \ {i, j}) = 0 for all j . Hence the component fairness property requires that for each
pair i, j ∈ S with {i, j} ∈ L,

1

|Ki |
∑

i

ATh(uS,L) = 1

|Kj |
∑

j

ATh(uS,L).
h∈K h∈K
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Since S is connected, there are |S|−1 links in S and thus |S|−1 of such equations. Together with∑
i∈S ATi (uS,L) = 1 we have a system of |S| linearly independent equations with |S| unknowns,

yielding a unique solution. It is easy to verify that the solution is given by

ATi (uS,L) = 1 + pL
S (i)

|S| + ∑
j∈S pL

S (j)
, i ∈ S.

Doing this for any connected S, the theorem follows from Eq. (5.10) and the linearity of the
AT-solution. �

Theorem 5.1 shows that the AT-solution can be obtained by distributing the dividend of any
connected coalition S among the players in S in such a way that the share of player i ∈ S in the
dividend of coalition S is given by (1 + pL

S (i))/(|S| + ∑
j∈S pL

S (j)). The weight 1 + pL
S (i) is

equal to the number of players on behalf of which player i acts in S, including himself, i.e. one
plus the number of players outside S in the component containing S and being connected to i

through a path of players outside S. Recall that the Myerson value is obtained by distributing
the dividend of any connected coalition equally among the players in S and the position value
is obtained by distributing the dividends according to the degree of each player in the subgraph
(S,L(S)). In both cases the shares of the players in the dividends only depend on the structure
of the subgraph (S,L(S)). In fact, the Myerson value only depends on the number of players in
S. In contrast, for the AT-solution the shares also depend on the structure of the graph (N,L)

outside S. Indeed, the shares depend on the structure of the whole subgraph on the component K

containing S. As a result, the AT-solution for the unanimity game uS may change when the graph
changes on K but not on S, whereas the other two solutions can only change when the graph
changes on S itself. More precisely, when {i, j} is a link of L not on S but on the component K

containing S, we have that

μ(uS,L) = μ
(
uS,L \ {i, j}) and γ (uS,L) = γ

(
uS,L \ {i, j}),

but

AT(uS,L) 	= AT
(
uS,L \ {i, j}).

As has been shown in Borm et al. (1992), both the Myerson value and the position value satisfy
the so-called superfluous link property. A link {i, j} ∈ L is superfluous in a graph game (v,L) if
vE(N) = vE∪{i,j}(N) for all E ⊆ L \ {i, j}, so when for each subset of links E not containing
{i, j}, the restricted value of the grand coalition on the graph (N,E) is equal to the restricted
value of it on the graph (N,E ∪ {i, j}). A solution f satisfies the superfluous link property if
f (v,L) = f (v,L\{i, j}) whenever {i, j} is a superfluous link in (v,L). Clearly, any link outside
a connected coalition S is a superfluous link in the graph game (uS,L). Since deleting such a
link may change the AT-solution, AT does not satisfy the superfluous link property.

Theorem 5.1 is very useful when calculating the average tree solution. The following example
illustrates this and also highlights once more the core property of the average tree solution.

Example 5.2. Consider the graph game (v,L), with v(N) = 10, v({2, . . . , n}) = 10, v(S) = 8
if {1,2} ⊂ S 	= N, and v(S) = 0, otherwise, where n � 3. The communication graph is given by
the line graph L = {{i, i + 1} | i ∈ N \ {n}}.

The crux of the example is that players 1 and 2 can obtain a payoff of 8 by themselves, and a
payoff of 10 if all players collaborate. On the other hand, player 2 together with all other players
but player 1, can also obtain 10. Therefore, in any core solution, player 1 obtains 0 and player 2
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receives at least 8. Together with efficiency (the sum of the payoffs is 10) and non-negativity of
the payoffs, these conditions characterize the core.

The Harsanyi dividends are as follows

Δ{1,2} = 8, Δ{2,...,n} = 10, ΔN = −8.

To obtain the Myerson value, the Harsanyi dividends are divided equally among the partici-
pating players. So, Δ{1,2} leads to payoffs 4 for both players 1 and 2, Δ{2,...,n} gives rise to
10/(n−1) for players 2, . . . , n, and ΔN to −8/n for all players. We find that μ1(v,L) = 4−8/n,

μ2(v,L) = 4+10/(n−1)−8/n, and μi(v,L) = 8/n−10/(n−1), i = 3, . . . , n. When n → ∞,
μ1(v,L) → 4, μ2(v,L) → 4, and

∑n
i=3 μi(v,L) → 2. So, in the limit, the Myerson value al-

locates 4 to both players 1 and 2, whereas player 1 gets 0 in any core allocation, and player 2 at
least 8. For any n � 3, the Myerson value is not in the core.

For the position value the Harsanyi dividends are divided proportional to the degree of the
participating players. So, Δ{1,2} leads to payoffs 4 for both players 1 and 2, Δ{2,...,n} gives rise
to 5/(n − 2) for both players 2 and n and 10/(n − 1) for players 3, . . . , n − 1, and ΔN leads
to −4/(n − 1) for both players 1 and n and −8/(n − 1) for players 2, . . . , n − 1. We find that
γ1(v,L) = 4−4/(n−1), γ2(v,L) = 4+5/(n−2)−8/(n−1), γi(v,L) = 10/(n−2)−8/(n−
1), i = 3, . . . , n − 1, and γn(v,L) = 5/(n − 2) − 4/(n − 1). Again, when n → ∞, γ1(v,L) →
4, γ2(v,L) → 4, and

∑n
i=3 γi(v,L) → 2. The position value leads to qualitatively the same

allocation as the Myerson value, and does not belong to the core either for n � 3.
Finally, we turn to the average tree solution. By Theorem 5.1, the Harsanyi dividends Δ{1,2}

lead to payoffs 8/n for player 1 and 8 − 8/n for player 2, Δ{2,...,n} gives rise to 20/n for player 2
and 10/n for players 3, . . . , n, and ΔN to −8/n for all players. We find that AT1(v,L) = 0,
AT2(v,L) = 8 + 4/n, and ATi (v,L) = 2/n, i = 3, . . . , n. When n → ∞, AT1(v,L) → 0,

AT2(v,L) → 8, and
∑n

i=3 ATi (v,L) → 2. For n large, the average tree solution allocates 0
to player 1 and 8 to player 2. The average tree solution belongs to the core for all values of n, as
was demonstrated in general in Theorem 4.1.

The example is also useful to highlight the difference between fairness and component fair-
ness. Consider the game (v,L \ {1,2}). For the Myerson value, we find that μ1(v,L \ {1,2}) = 0
and μi(v,L \ {1,2}) = 10/(n − 1), i = 2, . . . , n. As predicted by fairness, the increase in payoff
for players 1 and 2 is the same when link {1,2} is added, and happens to be equal to 4 − 8/n.
Using Theorem 5.1 once more, we compute that AT(v,L \ {1,2}) = μ(v,L \ {1,2}). As pre-
dicted by component fairness, the increase in payoff for player 1 is equal to the average increase
in payoff for players 2, . . . , n, and can be verified to be equal to 0.

6. Concluding remarks

In this paper we propose a new solution for cycle-free graph games. In such games players
are only able to cooperate if they are connected to each other. In case of superadditivity, the core
of the game is non-empty and contains for each player a specific marginal vector. This marginal
vector is induced by a tree in which that player is the root and the directed edges correspond to
the undirected edges of the graph. The solution is then the average of these marginal vectors.
Since all these marginal vectors are an element of the core, the new solution is also an element of
the core, even if the game is not convex. This is in contrast to the Myerson value and the position
value. These values may be outside the core.

The new solution has been axiomatized by component efficiency and component fairness.
The latter property says that if a link is deleted, the average loss per player is the same in the
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two subcomponents resulting after deletion of the link. This means that the surplus in worth
obtained from a link is distributed over these two subcomponents proportional to their number of
players. In this respect the new solution differs from the Myerson value and the position value.
The Myerson value is characterized by component efficiency and by fairness, the property that if
a link is deleted, then the two players that were connected by this link have equal loss. This loss
is therefore not related to the size of the components resulting after the deletion of the link. The
position value is characterized by component efficiency and balanced total threats, the property
that the total threat of a player towards another player is equal to the total threat of the latter
player towards the former player. The average tree solution may fail to satisfy balanced total
threats.

In terms of distributions of Harsanyi dividends the new solution is obtained by distributing the
dividends of a connected coalition among its members in such a way that the share of a player
in it is given by the relative number of players on which behalf the player acts in the coalition,
including himself. This means that the shares depend on the structure of the subgraph on the
component of which the coalition is a subset and not just on the structure of the subgraph on
the coalition itself as is the case for the Myerson value and the position value. This property
guarantees that the value is an element of the core.

It is not hard to compute the average tree solution. If n is the number of players and the graph
has one component, the value can be calculated as follows. First, for each player i, a permutation
πi is determined satisfying that player j has a higher rank than player k if player j lies on the
unique path connecting player i and player k. Any permutation that satisfies this condition leads
to the same marginal vector. Next, the average tree solution is the average of the n marginal
vectors obtained in this way. The calculation is analogous for the case the graph has more than
one component.
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