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Abstract. Inventory cost games are introduced in Meca et al. (1999). These
games arise when considering the possibility of joint ordering in n-person
EOQ inventory situations. Moreover, the SOC-rule is introduced and ana-
lysed as a cost allocation rule for this type of situations. In the current paper it
is seen that n-person EPQ situations with shortages lead to exactly the same
class of cost games. Furthermore, an alternative characterization of the SOC-
rule is offered, primarily based on a transfer property which constitutes a
special form of additivity. Necessary input variables for the SOC-rule are the
(optimal) individual average number of orders per time unit in case there is no
cooperation. Assuming that these average numbers are observable but not
verifiable, we allow the players to select them strategically, while knowing that
the SOC-rule will be (consecutively) applied as the cost allocation principle.
Necessary and sufficient conditions are provided for the existence (and unique-
ness) of a so-called constructive equilibrium in which all players make joint
orders.

Key words: inventory models, inventory cost games, SOC-rule, constructive
equilibria

1 Introduction

A promising research field is that of operations rescarch games, which studies
aspects of joint cost allocation in operations research models, These models
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are designed to optimise the operation of a complex system, in which, com-
monly, several agents are involved. Clearly, the effects of cooperation and/or
competition of the agents who interact in an operations research problem
play a prominent role here. In the last years, some surveys on this topic have
been written, most of them stressing the connection between cooperative
games and operations research: see, for instance, Curiel (1997) and Borm et al.
2001).

( Very recently, also inventory models have been approached from this point
of view. In particular, cooperation in a news-vendor problem has been treated
in Hartman et al. (2000), Miiller et al. (2001), and Slikker et al. (2001). In
Meca et al. (1999) and Meca (2000) inventory cost games are introduced
and studied. In an inventory cost game, a group of players dealing with the
ordering and holding of a certain commodity (every individual agent’s prob-
lem being an EOQ problem), decide to cooperate and make their orders
jointly. This kind of cooperation is not unusual in the economic world: for
instance, the runners of pharmacy offices usually make groups which order
together. Meca et al. (1999) introduce and characterize the SOC-rule (Share
the Ordering Costs) as an allocation rule for this class of games.

In this paper we revisit inventory cost games and the SOC-rule. It is seen
that the wider class of n-person EPQ inventory situations with shortages lead
to exactly the same class of cost games. Moreover, an alternative character-
ization of the SOC-rule is provided. The most important ingredient in this
characterization is a so-called transfer property, which constitutes a kind of
additivity.

Implicitly, the cooperative approach and the SOC-rule in particular, pre-
assume that the optimal individual number of orders per time unit (if the
players all order individually, without further coordination) is not only observ-
able but also verifiable. Leaving out the verifiability condition, we take a stra-
tegic approach in which the SOC-rule still is the leading cost allocation prin-
ciple, but where the players can strategically select a, possibly untruthful,
individual number of orders as the decisive input variable for calculating the
SOC-rule cost shares. A necessary and sufficient condition is provided such
that a (unique) constructive equilibrium exists, in which all agents make joint
orderings. This condition somehow requires the agents to have a rather similar
individual ordering behavior.

2 Inventory cost games

An inventory cost game, as introduced in Meca et al. (1999), is a TU-game
arising from an inventory cost situation. In an inventory cost situation, a group
of agents N = {1,...,n} agree to make jointly the orders of a certain good
which all them need, so that they spend @ instead of na (a > 0 being the fixed
cost of an order) every time an order is placed. Each agent i, if ordering alone,
would make m; > 0 orders per time unit. A triplet (N,a,m), where m =
(m1,...,my,), characterizes an inventory cost situation and, for every coalition
S, ¢(S) = 2ay/ 3.5 M} is the average inventory cost per time unit for the agents
in S if they place their orders jointly. The inventory cost game associated

with the inventory cost situation (N, a,m) is (N, c). We denote by I the class
of inventory cost games with player set N.
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How is above expression derived for an n-person EQOQ problem? The
Economic Order Quantity (EOQ) problem is a well-known and simple opera-
tional research model. It considers an agent i who makes orders of a certain
good that he sells. The demand that he must fulfil is deterministic and equal
to d; units per time unit (d; > 0). The cost of keeping in stock one unit of this
good per time unit is 4; (A; > 0). If the fixed ordering cost is @ and the lead
time (the time between the placement of an order and the delivery of that
order) is deterministic and constant (in which case it can be supposed to be
zero without loss of generality), it can be easily checked that the average
inventory cost per time unit is a function of Q; (the order size) given by

(0 = ag% + h,-—%-"

and that the optimal order size Q,- is v/2ad;/h;, so the optimal average inven-
tory cost per time unit is

o(Q;) = \/2adih; = 2arh;

where 7 = d;/Q; is the optimal number of orders per time unit. Now, if the
agents in S < N decide to cooperate in order to save inventory costs, Meca
et al (1999) proved that:

* In order to minimize the sum of the average inventory costs per time unit,
the agents must coordinate their orders, so Qf/d; = Q;/dj for all i, je N,
O and Q denoting the optimal order sizes for i and j if agents in S co-
operate.

2ad? ,
* Qi =, /e forallieS§.
Zjes djhj

* The minimal sum of the average inventory costs per time unit is

. h;OF
a_c{H_ E /9; =2a E ﬁ'zjz.
Qi jes 2 Jjes

Hence, the classes of inventory cost games and situations as defined above,
arise in a very natural way as a tool to analyse cooperation in inventory EOQ
models. The next step is to use game theory to allocate ¢(N) among the
agents. This issue will be treated in Section 3.

A remarkable feature that should be pointed out here is that, in order that
the agents in N cooperate, they do not need to reveal their demands or holding
costs to the other agents. It is enough that they know /M = (1, ..., #,) to be
able to cooperate. Of course, to make their orders jointly, they must indicate
their Qf, and knowing Ay and Qf, d; and /; can be computed by the other
players. However, if it is important for the agents not to reveal their demands
or holding costs, they can use an intermediary to make their orders.

In the remainder of this section we see that, surprisingly enough, the same
class of inventory cost games arises from an inventory model which is more
general than the EOQ model. This feature makes more interesting the study
of this class of games.
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Consider a set of agents N making orders of a certain good that they need;
the fixed cost of an order is a. Again, every agent i needs d; units of the good
per time unit, and has a holding cost /; for keeping in stock one good during
one time unit. The changes with respect to the EOQ model treated in Meca
et al (1999) are that now, for every i € N:

* Agent i considers the possibility of not fulfilling all the demand in time, but
allowing a shortage of the good. The cost of a shortage of one unit of the
good for one time unit is s5; > 0.

* When an order is placed, after a deterministic and constant lead time (which
can be assumed to be zero, without loss of generality), agent i receives the
order gradually; more precisely, »; units of the good are received per time
unit. It is assumed that r; > d; (otherwise the model makes little sense). We
call r; the replacement rate of agent i.

The inventory model we are dealing with for every agent is the Economic
Production Quantity (EPQ) with shortages. It is a well-known model in inven-
tory management (which generalizes the EOQ model; an EOQ model can be
seen as an EPQ model for which the replacement rate and the shortage cost
are infinity). In Tersine (1994), for instance, the analysis of this model (that we
will summarize below) can be found. Note that every player i must choose Q;
(order size) and M; (maximum shortage) minimizing his average inventory
cost per time unit given by:

o(Qn M) = a L 1y
Then, it results that
0, = J /7(21“%—) hi : si

It is easy to check that, if we denote iy = d;/ Qi (the optimal number of orders
that { must make per time unit), then

C(Qia Mi) = \/zadihih_L (1 - é) = 2am;.

Si Fi

Now, assume that the agents in S = N decide to make their orders jointly
to save part of the order costs. Following the ideas in Meca et al. (1999),
it can be easily checked that, in order to minimize the sum of the average
inventory costs per time unit, the agents must coordinate their orders, so
Or/ds = Q;‘/dj for all i,je N, Qf and Q denoting the optimal order sizes
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for i and j if agents in S cooperate. Then, the total average cost per time unit
is given by:

{14
e(Qi, (M, )_]ES) %“‘Zhj(Qj(l rj) ) ZS/ 2

P () R )

diM?

d; d;
hy —’Q;(l——">~2M-+———-—i———
2; d; 1y ! 40:(1-4)

Bl

JES dQl

Using standard techniques of differential analysis, it can be checked that the

values (Q]);.s and (M;);. s which minimize ¢ are given by:

. 2ad?

0 = . —
2 jes a}hj/"yfr—&l (1 - T{>

1

for all i € S. From this, it follows that

o(QF, (M} )jes) = 2a, [ M.

jes

Hencg, if a group of agents N, all facing individual EPQ problems with short-
ages, agree to cooperate and to make their orders jointly, the minimal average
inventory cost of every possible coalition gives rise to an inventory cost game,
which can be characterized by the corresponding inventory cost situation
(N,a,m), where i = (1i1;),. y and 1; is the optimal number of orders per time
unit for agent i if he does not cooperate. Note that the optimal number of orders
that the coalition of agents N must make when ordering jointly is d;/ Q] (for
all i e N). Let us denote this quantity by siy. It is easy to check that sy =

\/ Z_]EN 7 2

To ﬁmsh this section, we want to make two additional comments. First,
like in the problem considered in Meca et al. (1999), agents do not need to
reveal their demand, replacement rate, holding cost or shortage cost if they
want to cooperate; it is only needed that 7 is known by all them. Second, #;
is interpreted as a production rate, in the sense that every time an order is
made, the supplier has to produce the ordered units, and serve them gradually.
Under this interpretation and taking into account that all the agents probably
negotiate with the same supplier (otherwise it would be, perhaps, senseless
that they order jointly), normally »; will be the same for all ..
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3 A proportional allocation rule for inventory cost games

Now we have revisited the class of inventory cost games and reconsidered
its interest, we reexamine an allocation rule for this class of games proposed
in Meca et al. (1999). This rule, which we now call the SOC-rule (Share the
Ordering Costs), turns out to be a proportional-like rule, although this is not
completely obvious from its definition. Let (N, a,#1) be an inventory cost sit-
uation, and c e IV its corresponding inventory cost game. The SOC-rule o
proposes that agent { pays:

2

* A part of the fixed ordering cost proportional to his input parameter #i; .

* His own holding and stock-out costs.

Hence:

R N (1 U ) 3 N 7

O w2018 20r(1-8)

After some easy algebra, one derives

In Meca et al. (1999), some other interesting properties of this rule are pre-
sented. For instance, it provides core allocations, i.e.

* Yien Tic) = ¢(N),
Yies Gile) < ¢(S), forall S N,

for every c € IY. Moreover, o can be reached through a PMAS (see Sprumont
(1990)) and can be characterized in IV using a monotonicity property, jointly
with efficiency and symmetry.

The properties of the SOC-rule mentioned above show that it is an impor-
tant and interesting rule for this class of games. In the remainder of this sec-
tion we present a new characterization of the SOC-rule. It is inspired by the
classical characterization of the Shapley value for TU-games, provided in
Shapley (1953), which is based on its additivity. Obviously, the SOC-rule is
not additive. However, we may wonder if it satisfies some kind of additivity
which allows an axtomatic characterization a /a Shapley. The answer is posi-
tive; next we present this special additivity, which is based on a quadratic sum,

Let ¢, ¢’ e IV two inventory cost games. The quadratic sum of ¢ and ¢’
(denoted by ¢ @ ¢') is the TU-game with player set N given by:

(@) (S) = 1/e(S)* +¢(S)
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for all § = N. Note that c@®c' eIV, If ¢,¢’ are the inventory cost games
associated with (N,a,m) and (N, a’,m'), respectively, it is easy to check that
c@c' is associated with, for instance, the situation (N,1,7), where i =
\J@®m? + a?m!?, for all i e N. It is also easy to check that, for all i e N, the
unanimity game u; (defined by ugy(S) = 1if {i} = S, w3 (S) = 0if {i} # S)
belongs to I, and that all unanimity games ur with |T| > 1 do not belong
to /. Let us prove now a proposition which will be useful later.

Proposition 1. For every c € IV, there exist uniquely determined non-negative
real numbers oy, . .., o, such that ¢ = @), y wittgsy-

Proof. In order to prove the existence, take ¢; = ¢(i) = 0 for all i € N. Then,
for every S < N,

(Cj% W{f}) (s) = \/;(c(i)um(S))z = \/Z; o(i)? = 2a /ZS m? = c(S).

To prove the unicity, suppose that there exist 8, ..., 8, with ¢ = @), _ B
Then, for every S = N,

«(S) = \/Zﬁ? = \/Z (). (1)

ieS ieS

Taking S = {i}, for every i € N, the uniqueness follows from (1). [

Let us introduce now the properties we need to characterize the SOC-rule. Let
7 : IV — IR” be an allocation rule for inventory cost games.

Transfer Property (TP). We say that x satisfies the transfer property if, for all
e,c’ eIV andforallie N, (c® ) (N)mi(c® ¢') = ¢(N)mi(c) + ¢ (N)m;(c').

Efficiency (EFF). We say that n satisfies efficiency if, for all ce ¥,
ZieN 72.’,'(6‘) = C(N)

Null Player Property (NPP). We say that « satisfies the null player property
if, for all c e IV and all i € N with ¢(i) = 0, it holds that 7;(c) = 0.

The transfer property is the special additivity for inventory cost games that
we announced earlier. The efficiency and null player property are standard
properties of allocation rules for TU-games. Next we show that these three
properties characterize the SOC-rule. It is readily verified that any pair of
these properties is not sufficient to characterize this rule, so next theorem
provides a tight characterization.

Theorem 1. The SOC-rule o is the unigue allocation rule for inventory cost
games which satisfies (TP), (EFF) and (NPP).

Proof. Obviously o satisfies (EFF) and (NPP). Let us check that it also satifies
(TP). Let ¢,c’ e IV given by
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o(S) =20, [3m} and c(s)=24" [> mP
ies ie§

forall § =« N. Then, forall i e N,

YA
(€@ )N)oife ® ') = (@ )(N) %%5%

= c(i)* + ()} = e(N)ai(c) + ¢ (N)ai(c).

Suppose now that x is an allocation rule on IV satisfying (TP), (EFF) and
(NPP), and take ¢ € I, In view of Proposition 1, ¢ = @), c(i)uy;. Take
j € N. Hence, since = satisfies (TP),

e(N)mi(c) = Z e(D)mp(e(Dugy)-

ieN
Now, taking into account that z satisfies (EFF) and (NPP),

m(c(ug) = {(C)(j) ﬁi i :j

and, then, ¢(N)m;(c) = ¢(j)?, so mi(c) = gj(c). O

4 A non-cooperative approach to inventory games

In the previous two sections we analysed the cost allocation problem arising
from inventory cost situations from a cooperative point of view. We assumed
that the #; (which play a crucial role in our model and in the SOC-rule)
are observable and verifiable for all agents. In this section we adopt a non-
cooperative point of view. We still assume that the s are observable for all
agents (from e.g. longstanding practice), but now we consider that they are not
verifiable. Therefore we propose a strategic round taking stock of the indi-
vidual number of orders per time unit, before the cooperative implementation
of the SOC-rule takes place.

More precisely, the non-cooperative situation we are going to study is the
following. We consider a group of agents N = {1,...,n}, n >2. Eachie N
faces an EPQ model with shortages, which is characterized by q, d;, iy, 1; and
s;. The individual optimal number of orders per time unit for every i, m;, is
computed as in Section 2. We assume that /i1 = (1, ..., 1,) is observable for
all agents and that the agents in N decide to make their orders jointly and to
allocate the costs using the SOC-rule, accordingly to the following two-step
procedure:

1. Each agent i € V goes to an intermediary and selects m; € [0, co) without
knowing the choices of the other agents.

2. If only one agent has chosen a positive my; in the first step, then all agents
order alone. Otherwise, all e N who have chosen a positive m; in the
first step go to the intermediary, who tells them what m has finally been
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chosen and how many orders are going to be made per time unit (my =
Zj N mjz). Then i specifies Q; to the intermediary (these Q; are kept in

secret to the other agents). Finally, all the agents i who have chosen m; =0
in step one order alone.

In this section we perform a non-cooperative analysis of this situation. To
start with, let us obtain the normal form of this game G. The set of strategies
of every agent ie N is X; = {0,-+0), i.e., every agent can choose any non-
negative m;. Now we compute agent i’s cost function, taking into account that
the SOC-rule is used as an allocation mechanism,

c(i) = 2amy if m; =0 o0r m_; =0,
ci(m) = am? I‘i(Qi('”)(l—"IL) —Mi(’"))z 5 M;(m)* .
s o -~ otherwise,
N 20;(m) (l—r—;) 2Q,~(m)( ——%’)
where m_; = 0 means that all components of m different from the i~th are zero;

Q;(m) and M;(m) denote the optimal order and optimal maximum shortage
for player i if m has been chosen (i.e., if my orders will be made per time unit).
Obviously, Q;(m) = d;/my. It can be checked that

Mi(m) = Q(m)ﬁ%l

Hence, if m; # 0 and m_; # 0,

()Y 2
J d; 1 d; d hill-y I ( _ﬁ)
2 vy \' W) T Thits PO M VA
¢ N i N T8 I
C‘(Wl) _ am; + my s
' my 24 (1_d 2.4 (1 _d
m ¥ my ri

where the last equality follows from the fact that 2amy; = \/ 2ad;h; EEFZ (1 - ﬁ) .

ri
Summarizing, the game we are considering is G = (X1,..., X, ¢1,. -, C)
where, forallie N,

2amy; ifm=0o0rm.; =0,
ci{m) =

a(m?+m?)

otherwise.
my
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In the remainder of this section we study the Nash equilibria of this strategic
cost game. Clearly, m = (0,...,0) is a Nash equilibrium of G. However, we
are interested in what we call constructive equilibria. We say that me X is a
constructive equilibrium of G if it is a Nash equilibrium and, moreover,
m; >0forallieN.

Lemma 1. If m is a constructive equilibrium of G then m} = i — 237,y m?,
forallieN.

Proof. Take into account that, forall ie N,

dc; ( ) ami (2 ZjeN\i ’nj"l + mlz - I,;‘,I’Z)
—m) = .
am,- mf\’,

This means that, for m; >0, ¢; is decreasing when m? < mf =237, m?
- : 2o 52 2 '
and increasing when m;j >y — 23, mf. O

In the next theorem we give a necessary and sufficient condition for G having a
constructive equilibrium. This condition can be roughly interpreted as players
being not too different. Thus, a group of players facing this non-cooperative
situation will be able to adopt constructive behaviour when they have com-
parable optimal numbers of orders per time unit. Moreover, it is seen that if G
has a constructive equilibrium then it is unique. Besides, an expression of this
equilibrium is provided.

Theorem 2. G has a constructive equilibrium if and only if, for all i e N,

. 2 .
m? < T Z mjz_ (2)

Moreover, if G has a constructive equilibrium m, it is unique and, for alli e N, it
is defined by:

2 2n—3
—2 ~2 )
= o — leEN\imj PR (3)

Proof. Let us first prove that, if G has a constructive equilibrium, then it is
unique and given by (3). By Lemma 1, if 77 is a constructive equilibrium, then
it is a solution of the system

m} i
A e = . (4)
m? i
where
1 2 2 2 2
1 2
4 2 2 2
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1t is easy to check that

_ 2
A4 lzzn—_TJn"[m

where J,, is the n x n matrix of ones and I, is the n x » identity matrix. Hence,
if 77 is a constructive equilibrium of G, 7 is uniquely given by (3). Let us now
prove the necessary and sufficient condition. Clearly, if 7 is a constructive
equilibrium of G, then for all ie N,

2n—3 2
0<’"’_2n—1Z R
JeN\i

which implies that

2n - 3}e N\I
Hence, to finish the proof it is enough to demonstrate that, if (2) holds, then
7, defined as in (3), is a constructive equilibrium. Clearly, (2) implies that
m > 0. Moreover, since (#7,. .. ,/2) is a solution to (4), we only have to prove
that, forall ie N,

ci{m) < ci(#ieg, 0) = 2ary;,

Note that
2 3-2n *2
a(Zn—l ZJEN\I m T 2 +ih )
2 22 3=2n ~2
ZjeN (2,,_1 ZkeN\j Mg T 5211

Then, ¢;(7) < 2ariy; if and only if

o(m) =

T’
—~
(%]
~

) \/211—1 ZNA

-2
52 > Z:J'Ef\’\i m; (6)
= oam-2

But taking into account that /#i? satisfies (2) for all i e N

2n—-1) . 2(rn—2) .
W2 = 2 ik
Z’ " 2n—-3 i SR 2n—3 "

JeN\i jEN\I
and then
2n —
2n — 3 S 271 -

which implies that condition (6) holds. [
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To complete this section, we present some remarks concerning the Nash equi-
libria of game G.

Remark 1. Denote Ny = {i e N |y =0} and assume that Ny = &. Then G
has, at most, two Nash equilibria: (0,...,0) and a constructive equilibrium
(the latter may not exist). For, suppose that m* is a Nash equilibrium and that
my =0 and m} > 0 for some k,I € N. Then

-2
2amy,

2,2 *2
M+ 2 jenve

cp(m™) = 2ary, > = cp(m* ., i),

which contradicts the fact that m* is a Nash equilibrium. Next assume that
Ny # & and |N\No| = {i}. In this case, it is clear that the set of Nash equilib-
ria of the game is {m € [0,00)" |m_; = 0}. Finally assume that Ny # (& and
|N\No| = 2. Then there are not constructive equilibria because, otherwise, if m
is a constructive equilibrium, then every player i € Ny would have an incentive to
deviate from my; to zero. In this case it is clear that (m_p,,0) is a Nash equilib-
rium of the game if and only if m_y, = 0 or m_y, is a constructive equilibrium
of the game restricted to the set of players N\Ny.

Remark 2. Note that, if i is a constructive equilibrium of G, then m is a strict
equilibrium, i.e., c;(int) < c;(fi-y,m}), for all m] € [0,4+0)\{7,;} and all ie N.

To finish this section we compare the payoffs for the players in the different
scenarios considered in this paper.

Proposition 1. Let /7 be a constructive equilibrium of game G and let (N, c) be
the corresponding inventory cost game. If n > 3 then

oi(c) < ci(im) < (i)
JorallieN.

Proof. The inequality ¢;(im) < c(i) follows from Remark 2 and the fact that
ci(ifi-;, 0) = c(i), for all i € N. The inequality o;(c) < ¢;(/n) is equivalent to

(V2n =) < il (7)
JjeN
using (5). Note that (7) is equivalent to
(Van—T-1D)m} < Y i}, (8)
jeN\i

which can be readily checked using (2) and the fact that 2v2n —~ 1 < 2n—1if
nx=3 O

It is easy to check that, in case n = 2, maybe o;(c) > ¢;(7/) for some i, although
it holds that oy (¢) + g2(c) < c1(m) + c2(m).
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