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1

Introduction

This thesis studies the theory of dynamic economics and �nance. The three important

unifying principles underlying the presented analyses are the economic e¤ects of time,

uncertainty and information. These features are present in most economic situations,

and this implies that decisions and interactions are in�uenced by intertemporal e¤ects,

uncertainty about the future, and information and learning.

More speci�cally, the thesis takes a direct approach to incorporate the following

principles. First, agents make decisions continuously in time. For example, a �rm that

considers entering a new market has some �exibility with respect to the timing of the

decision to enter. An incumbent �rm in this market makes its pricing and capacity

choices continuously in time, possibly taking into account the chances of entry. Second,

the economic environments, for instance markets, are uncertain and evolve over time.

In the same example, both entrant and incumbent �rms face demand and productivity

shocks that a¤ect their entry and pricing strategies. Third, information is revealed in

time and agents learn about the characteristics of the economic environment or other

agents. While the entrant �rm may initially have inferior information about some

characteristics of the incumbent or the market, and so it may be incompletely informed

about the pro�tability of entry, it may infer this information by observing through

time the (pricing) strategy used by the incumbent. This speci�c example of entry and

dynamic entry deterrence in a stochastic market is taken from Chapter 2 and indicates

how time, uncertainty and information are closely related and how they interact even in

simple setups. These three economic forces are central to many economic and �nancial

situations and they are underlying the analyses presented throughout the thesis.

To analyze these e¤ects, we base our theoretical analyses on continuous-time stochas-

tic processes and their control. The dynamic stochastic setup allows us to build models
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that are able to capture the complex roles of time, uncertainty and information. Fur-

thermore, the continuous-time framework� and the use of stochastic calculus� makes

the mathematics of the models tractable. Most importantly, our modeling choice de-

livers tools for advance study of relevant economics situations.

The thesis is a collection of four research papers. Each paper addresses an open

economic problem from a theoretical perspective.

Chapter 2 contributes to dynamic game theory and, with an application of the

general model, to industrial organization theory. We study a dynamic signaling game

played in a stochastic environment. The standard signaling game is a two-player game

of incomplete information, in which one player (uninformed) does not observe directly

the type of the other player (informed). The type is a payo¤-relevant characteristic and

can be inferred from the actions (signals) chosen by the informed player. This setup

has been one of the most popular games in applications in industrial organization,

corporate �nance and labor economics. While these disciplines have often bene�ted

from more advanced analyses in multi-period models under uncertainty, the models

of signaling situations have, in general, remained in one-period simple setups. Yet,

the interactions between agents are most often repeated and take place in evolving

environments. The aim of Chapter 2 is to analyze these additional e¤ects and provide

a framework to study multi-period stochastic signaling games.

Speci�cally, the model presented in Chapter 2 introduces a class of two-player signal-

ing games in continuous time in which the stake contested by the uninformed player is

a di¤usion process observed by both players. We suppose that the payment of the stake

depends on the privately-observed type of the informed player and that the informed

player of one type can, at cost, imitate other types. We show that the signaling game is

played as long as the stake stays within two-sided bounds on the state variable (stake).

In equilibrium the informed player reveals her type at a randomized lower trigger. The

uninformed player learns about the true type by observing the minimum process of the

stake and contests the stake at an upper boundary that is decreasing in the running

minimum.

We then apply the game to model dynamic limit pricing under stochastic demand

and derive a set of inferences unavailable in one-period deterministic models. The

limit pricing model based on incomplete information was introduced by Milgrom and

Roberts (1982) and it studies an incumbent �rm that uses prices as an instrument to

signal unpro�table entry and deter a potential entrant. We adapt our general signaling

model to a limit pricing problem by interpreting the di¤usion process as stochastic

demand, the informed player as the incumbent and the uninformed player as the

entrant. One advantage of our dynamic setup is that it generates equilibrium price

dynamics and, speci�cally, that price dynamics may reveal limit pricing of incumbents.
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In equilibrium the limit-pricing incumbent reveals its type by increasing prices as the

market becomes unfavorable to entry. This means that increasing prices in a decreasing

market may indicate entry deterring limit pricing. The model also implies that, despite

that the demand is modeled as a Markovian variable, the decision to enter exhibits

path dependence and the entrant assessment of entry pro�tability depends not only

on the current state of the market, but also on the historical minimum.

Chapter 3 is a contribution to corporate �nance theory. It analyzes the e¤ects of �-

nancial distress on corporate �nancing choice and other �nancial decisions. In contrast

to the existing literature, we study both short-term liquidity and long-term solvency

concerns. From the modeling point of view, our contribution can be seen as incorpo-

rating two strands of literature in an analytically tractable framework. One strand

of literature originates from the contingent claims models of risky debt of Black and

Scholes (1973) and Merton (1974), and is developed in a popular trade-o¤ framework

of corporate �nance by Leland (1994). These models have been successful in studying

capital structure choice, solvency default and credit risk, but have failed to incorporate

corporate liquidity risk, realistic dividend policy and cash holdings. The other strand

of literature, represented by Jeanblanc-Picqué and Shiryaev (1995), studies dynamic

dividend payout optimization with liquidity shocks. These models typically lack �-

nancing choice and solvency concerns. And, remarkably, they have failed to produce

a model of smooth dividends, which is one of the most pervasive characteristics of

corporate dividends (Lintner (1956), Brav, Graham, Harvey and Michaely (2005)).

To put the model of Chapter 3 in the context of time, uncertainty and information,

consider a �rm that seeks �nancing from a combination of debt and equity. Once

�nanced, the �rm generates an uncertain stream of cash �ows. At each time the �rm

divides net pro�ts or losses into dividend payments to equity and retained earnings to

increase cash holdings. Negative cash shock can lead to default: either solvency default,

if the �rm is not pro�table enough, or liquidity default, if the �rm has no liquidity to

cover its debt obligations. Both liquidity shocks and pro�tability level are uncertain,

and the �rm learns the true long-term pro�tability by observing the realizations of

cash �ows.

Extending the contingent claims trade-o¤ model with liquidity concerns o¤ers a

wide range of implications for corporate �nance. We show that there are important

interactions between liquidity and solvency. Since a less solvent �rm requires less cash

to cushion liquidity shocks before becoming insolvent, lower solvency results in higher

corporate liquidity. On the other hand, because raising cash to cover liquidity require-

ments is costly, liquidity a¤ects �nancing decisions, and, via optimal capital structure

choice, corporate solvency. The model provides a rationale for signi�cant corporate cash

reserves and produces a dynamic cash policy that is in line with empirical regularities.
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Because of the interplay of liquidity and solvency concerns, positive cash �ow shocks

are retained and negative shocks decrease the optimal cash reserves. Consequently, the

optimal dividend distributions are smoothed relative to cash �ows. The introduction

of liquidity concerns addresses some of the critiques towards the predictive power of

structural models. First, in an empirical study Eom, Helwege and Huang (2004) report

that the common problem of structural models is that the predicted spreads are too

dispersed. Our model predicts a lower dispersion of credit spreads across �rms than the

model without liquidity. Second, the standard structural models tend to predict too

high leverage ratios. By including cash reserves, our analysis predicts a signi�cantly

lower share of debt in �rm value.

Chapters 4 and 5 study corporate investment decisions. The recent literature on

investment has stressed three characteristics that hold for most investment decisions.

First, a �rm cannot costlessly adjust its capital stock, i.e., investment is irreversible or

partially irreversible and involves some sunk cost. Second, future cash �ows are uncer-

tain. Third, �rms in general have some �exibility with respect to investment timing.

Investment projects with these characteristics can be seen as options (opportunities

without obligations) to invest and investment decisions are timing decisions about

when to exercise these options. To express the analogy to �nancial options, the now-

prevailing approach to (real) investment analysis is called the real options approach.

Dixit and Pindyck (1994) provide an introduction and review of early contributions.

The option-based approach in modeling investment has a signi�cant e¤ect on op-

timal investment decisions. The standard approach based on the net present value

(NPV) rule prescribes that an investment should be undertaken whenever discounted

expected future revenue �ows exceed current outlays, implying that the NPV is posi-

tive. However, this rule does not take into account the loss of �exibility at the time of

the investment. The loss arises, because by investing the �rm gives up the opportunity

to wait for new information and to decide at a later stage whether to invest or refrain

from investment. This opportunity is called the value of waiting and it must be in-

cluded as one of the costs of investment. The above characterization of the investment

problem clearly encompasses the three recurring aspects of this thesis, namely, time,

uncertainty and information. In Chapters 4 and 5 we contribute to the real options

literature by studying two novel investment (or divestment) problems.

Chapter 4 revisits the important result of the real options approach to investment,

which states that increased uncertainty raises the value of waiting and thus decelerates

investment. Typically, in this literature projects are assumed to be perpetual. However,

in today�s economy �rms face a fast-changing technology environment, implying that

investment projects are usually considered to have a �nite life. Our analysis in this

chapter studies investment projects with �nite project life, and we �nd that, in contrast
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with the existing theory, investments may be accelerated by increased uncertainty. It

is shown that this particularly happens at low levels of uncertainty and when project

life is short. Chapter 4 is based on Gryglewicz, Huisman and Kort (2008).

Chapter 5 studies optimal divestment policy of a �rm that may partially and grad-

ually divest its capital or sell the whole �rm at once. Partial divestment o¤ers greater

�exibility while a whole-�rm transaction provides a price premium. We show that, if

the price premium includes both a �xed and a proportional component, a large �rm

optimally starts to divest partial capital before choosing to sell the whole-�rm. It turns

out that full-�rm divestment is preferable over partial divestment with higher pro�t

volatility, in more declining markets and if capital is less industry-speci�c.

The thesis also has its methodological contributions. The techniques of stochastic

control are used in innovative ways to solve novel economic problems. Chapter 2 applies

the theory of optimal control of extremum processes to study learning about unknown

types of other players. We start with formulating the problem with two Markov state

variables, that is the payo¤ of the game and Bayesian belief about the other player�s

type. We show that the original problem with complicated Bayesian updating can

be translated in a substantially simpler problem, in which the belief state variable is

replaced by the minimum process of the payo¤ variable. We can then use the very

tractable framework of optimal stopping of maximum processes (see Peskir (1998) and

Peskir and Shiryaev (2006)) to solve the problem of the uninformed player.

In Chapter 3 we introduce unknown drift and �ltering to model two sources of un-

certainty, namely short-term liquidity shocks and uncertain long-term solvency. Short-

term uncertainty is represented directly by unpredictable Brownian increments of cash

�ows. To capture long-term uncertainty, we assume that the value of mean instanta-

neous cash �ow is initially uncertain, but has a known distribution, and the realiza-

tions of the stochastic process are used to learn about the true nature of the cash

�ow process. This characterization has the desirable feature that persistent liquidity

shocks translate into solvency shocks (for example, persistent negative liquidity shocks

indicate low pro�tability). The �ltering formulation of cash �ow dynamics allows us to

develop a model of corporate �nance that is parsimonious and analytically tractable,

yet broad in scope and rich in predictions.

In Chapter 5 we apply a combination of barrier control and optimal stopping to

analyze the costs and bene�ts of marginal versus discrete adjustments of capital. Mar-

ginal adjustments of capital, modeled as a barrier control problem, leave the �rm with

greater �exibility. This �exibility is valuable in stochastic environments and remains

so even if capital adjustments are irreversible. On the other hand, irreversible discrete

capital investment (or divestment), modeled as an optimal stopping problem, is less
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�exible, but is frequently attributed with a price premium. The combination of barrier

and optimal stopping control is new in the context of real options analysis.



2

A Stochastic Version of the Signaling Game

2.1 Introduction

Many important economic situations that involve incomplete information and signal-

ing are set in dynamic stochastic environments. A monopolist that uses prices to signal

unpro�table entry, as in the limit pricing model of Milgrom and Roberts (1982), in

reality has to do so repeatedly and under changing market conditions. A �rm that uses

dividends to signal its pro�tability, as in e.g. Miller and Rock (1985), typically makes

payout decisions repeatedly while facing stochastic pro�t �ows. Yet, the available mod-

els based on signaling games allow only for one-time signals or repeated signals under

stationary conditions. The purpose of this chapter is to extend the signaling game to

a fully dynamic stochastic model.

We study a new class of two-player signaling games in continuous time in which the

stake contested by the uninformed player is a di¤usion process Xt observed by both

players. The informed player�s type is either strong or weak and initially her type is

only privately observed. The uninformed player obtains the stake if he contests it from

the weak type, but receives nothing if the other player is strong. The informed player

of the weak type gets a negative payo¤ if contested, while the strong type is una¤ected

by the contestant. It is possible, but costly, for the informed player to send signals and

keep the other player uninformed about her own true strength.

How does the informed player signal in such a setting? How does the uninformed

player make the strategic decision to contest the stake? Our primary insight is that,

as the stake evolves in a stochastic environment, at some point in time the incentive

constraints may stop being binding. In particular, provided that the game starts at

a pooling situation, the uninformed player wants to contest as the stake gets high
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enough given his belief about the other player�s type. On the other hand, if the stake

gets low enough, there is little threat from the contestant, so the informed player of

the weak type does not want to send costly signals anymore and, consequently, prefers

to reveal her type.

The decisions of the two players are strategically interrelated. The best responses

are optimal stopping decisions, with the uninformed (respectively informed) player

seeking a critical high state U (respectively low state L) to stop the signaling game.

The equilibrium strategy U of the uninformed player balances the bene�ts of winning

the stake with some current belief that the type is weak and the cost of loosing the

opportunity to learn the revealed type if the stake reaches L. The strategy L of the

weak informed player strikes the balance between the bene�ts of facing the uninformed

contestant as late as U but bearing the signaling cost and the bene�ts of revealing its

type, and not paying the signaling cost but facing early entry of the contestant that

is sure to win the stake.

We show that the stopping game in general has no Markov perfect equilibrium

in pure strategies. Instead, in equilibrium the informed player reveals her type at a

randomized lower trigger. The reason for this is that a deviation from a pure strategy

L provides a discrete gain while it bears an in�nitesimal cost. Speci�cally, suppose that

L is an equilibrium pure strategy of the weak player. If no action is taken at L, the

uninformed player updates its belief and is certain to face the strong informed player.

Then a slight deviation from L discretely improves the standing of the informed player

against the uninformed one, while the cost of additional signaling is, due to continuous

time, in�nitesimal. A similar e¤ect that information-revealing actions are played in a

mixed strategy is also present in Huddart, Hughes and Levine (2001) in a context of

informed trading.

The mixed type-revelation strategy introduces a remarkable Bayesian learning process

based on the path of the stake X. The uninformed player, observing no actions in the

support of the strategy of the informed player, updates his belief about the true type.

Therefore the minimum process Mt = min0�s�tXs can be used as a state variable

governing the belief process. Based on these observations, the uninformed player�s

problem is non-trivial and involves path-dependent payo¤s and learning from the path

of the di¤usion process. To solve it we use some recent developments in the theory

of optimal control of extremum processes. Our characterization of the Markov perfect

Bayesian equilibrium is relatively basic and is a solution to two ordinary di¤erential

equations subject to boundary conditions. In particular we show that in equilibrium

the weak informed player reveals at a mixed-strategy lower trigger that is continuously

distributed over some interval in X. The uninformed player contests the stake at an

upper boundary that is decreasing in the running minimum on the same interval.
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Two extensions from the standard one-period (two-dates) signaling models generate

the interesting strategic interactions with learning in our model. These are multi-period

dynamics and uncertainty about the future stake. In a one-shot game with a stochastic

stake, there is no room for waiting to obtain information in the future. On the other

hand, in a multi-period game with a �xed stake (or varying in time but deterministic

and monotone), the strategic situation is non-trivial only at the initial node. Beyond

the initial date, no learning and no type revelation can happen. Consequently, similar

results to the ones presented in this chapter can be obtained in other setups that have

multi-period signaling in stochastic environment. We choose for the continuous time

framework which is standard and tractable in studies of timing and stopping games

(e.g. Fudenberg and Tirole (1986), Bulow and Klemperer (1999), Dutta and Rustichini

(1993)). To incorporate a stochastic environment in a tractable way we model the stake

as a geometric Brownian motion.

By introducing continuous-time dynamics and uncertainty, our model is able to pro-

vide new insights into some of the well-known signaling situations in economics. As an

illustration we apply the generic model to entry deterrence by limit pricing. We can

translate our setting in a limit pricing problem by interpreting the di¤usion process as

stochastic demand, the informed player as the incumbent �rm and the uninformed as a

potential entrant. One advantage of our setup is that we can explore equilibrium price

dynamics. The stochastic limit pricing game implies that price dynamics may reveal

limit pricing of incumbents. Speci�cally, in equilibrium the limit-pricing incumbent

reveals its type by increasing prices as the market conditions get unfavorable to entry.

To an external observer this means that increasing prices in a decreasing market may

be interpreted as an indicator of entry deterring limit pricing. This observation brings

forward a policy instrument to detect anti-competitive pricing practices. This is in

contrast to the standard one-shot signaling models of limit pricing that provide little

in terms of antitrust policy recommendations. We also show that the decision of the

entrant to enter exhibits path dependence. Speci�cally, despite the fact that the de-

mand is modeled as a Markovian variable, the entrant assessment of entry pro�tability

depends not only on the current market, but also on the historical minimum.

A few previous studies consider dynamic aspects of signaling. Saloner (1984) presents

a multi-period version of the limit-pricing model of Matthews and Mirman (1983) in

which signals received by the uniformed �rm are noisy. In contrast, we assume that

actions of the informed player are observed directly by the uniformed party. The key

di¤erence of our model is that we allow for a stochastic environment that changes over

time. This means that there are states when signaling is more pro�table and times

when it is not pro�table. In the paper of Saloner (1984), demand is uncertain, but

demand shocks, that last for a single period, serve solely as a device to add noise
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to the informed player�s actions. The market conditions for both payers are identical

before each round. Mester (1992) analyze a three-period signaling setting in which the

unobservable type changes over time. Toxvaerd (2007) adapts and extends a similar

setup to study limit pricing. Instead, we assume that the observable market conditions

�uctuate but the unobservable type of the informed player is �xed. In our setting

we analyze richer dynamics of the stochastic variable and e¤ects of good and bad

states on signaling strategies. Kaya (2007) studies separating equilibria in an in�nitely

repeated discrete-time signaling game, while we concentrate on how pooling and semi-

separating equilibria can be sustained in a stochastic environment. Additionally, none

of these models are formulated in continuous time.

The next section sets up the model. In Section 2.3 we study special cases regarding

complete information and a deterministic environment. Section 2.4 presents the equi-

librium analysis in the stochastic model. In Section 2.5 we apply the general signaling

model to analyze limit pricing under stochastic demand. Section 2.6 concludes, and an

Appendix collects the proofs omitted in the main text.

2.2 Model

2.2.1 Setup

The game is set in continuous time with in�nite horizon, indexed with t 2 [0;1).
There are two players. Player 1 is of type � 2 fw; sg (weak or strong) and knows her
type. If Player 1 does not make any e¤ort, � is observed by Player 2. By exercising

some costly e¤ort, Player 1 of the weak type can mimic the behavior or appearance of

the strong type and in this way pretend to be of type s. The cost of imitation per unit

of time is c > 0. Player 2 has a prior belief �0 2 (0; 1) that � = w. Observing Players
1�s actions, Player 2 updates his belief about � using Bayes rule whenever possible and

the belief at time t is denoted by �t. In particular, at the �rst time the w-type ceases

to send the signal, the belief is updated to 1:

Player 2 contests the stake of the game which exogenously evolves over time accord-

ing to a geometric Brownian motion

dXt = �Xtdt+ �XtdZt;

with X0 = x0. The constants � and � > 0 are drift and volatility parameters. Zt is

a standard Brownian motion. At any (stopping) time t � 0, Player 2 can contest the
stake by paying a fee of K > 0 (K could be interpreted as an entry cost or a checking

fee; throughout the chapter we refer to Player 2 contesting the stake also as entering

or stopping). At this time, Player 2 learns � and gets a payo¤ Xt if � = w and a
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zero payo¤ if � = s. When checked by Player 2, Player 1 gets a �xed negative payo¤

normalized to �1 if she is of type w and 0 if she is of type s.
Both players are risk neutral and discount �ows at a constant discount rate r. To

concentrate on the interesting cases we assume throughout the chapter that c < r,

which is a necessary condition for Player 1 of the w type to have an incentive to use

signals to postpone entry. Similarly, we assume � < r to guarantee convergence of the

problem of Player 2:

Some aspects of our modeling strategy deserve comment. The choice of the particular

payo¤functions stems from our objective to keep the analysis simple and to incorporate

the following desired features of the game. The environment X is stochastic and the

payo¤s depend on the state of the environment. In particular, the uninformed player

wants to contest if the state is �good�(high X). The uninformed player is worse o¤

against the strong type of the informed player. Absent the cost of signaling, the weak

type prefers to be recognized as a strong one. Finally, signaling is costly. We do not aim

here to show the most general functional forms that support our results. Certainly our

analysis can accommodate other payo¤ structures that preserve the above mentioned

features. Indeed, we consider an example of limit pricing in Section 2.5 where payo¤s

are in �ows and the signaling cost and the informed player�s payo¤ depend directly on

the state X.

For clarity of the exposition, the model has the signaling part of the game in a

reduced form. We do not explicitly model the signals used by the w type. The implicit

assumption is that the pooling strategy in equilibrium is the e¢ cient one, i.e. the one

least costly to Player 1 (the interpretation is particularly straightforward in the binary

case mentioned in the next paragraph).

A further simplifying assumption is that the s type is in�nitely strong and is indif-

ferent to entry. Thus we avoid discussing separating strategies. Our analysis conveys

to the case in which the s type has little incentives to separate (i.e. the s type looses

little when contested or when the cost of separation is high) and therefore does not

separate (we indeed assume that the s type is less than in�nitely strong in Section 2.4

to prove uniqueness of equilibrium strategies). Another important situation to which

our model applies directly is when the signaling space is limited. The sharpest, yet

frequently realistic, case is the binary signaling space which leaves little room for sep-

arating strategies. For concreteness one could interpret our baseline model as a game

with a binary signaling space. Finally, we note that in any case a separating equilib-

rium would be less remarkable in our setup as it would eliminate the interesting belief

dynamics.
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FIGURE 2.1. A sample path of (x;m):

2.2.2 State space, strategies and Markov equilibria

In principle, the state space of payo¤ relevant variables consists of a pair of Markov

state variables (x; �) 2 R+ � [0; 1]: It will simplify our analysis if we transform the

state space based on the following important observation. As we will show in Section

2.4.2, in the continuation region, before the game is stopped, the belief variable �t is a

function of the running minimum of Xt, that is of Mt = min0�s�tXs. The intuition is

that, as Player 1 may prefer to reveal her type as the stake becomes low, the historical

minimum may be used by Player 2 to update his belief about �. At most parts of the

analysis, it will be more convenient to work with the minimum than with the beliefs

so, where indicated, we analyze the game in the state space
�
(x;m) 2 R2+ : x � m

	
.

Player 1 of the weak type takes an action a1 2 fsignal; revealg ; where a1 = reveal
indicates a decision to stop signaling and to reveal the player�s type. As the strong

type is passive, in the sequel we shall implicitly mean the weak type, when we discuss

actions and strategies of Player 1. Once the type is revealed, the game becomes a game

of complete information with no strategic interactions. Given optimal behavior of the

players beyond this point, the expected discounted payo¤s are considered as the ter-

minal payo¤s of the signaling game. To specify these termination payo¤s suppose that

the w type reveals at time t and denote by �w � t the (stopping) time at which Player
2 would optimally collect the stake upon the payment of K. Then the expected dis-

counted payo¤at time t of Player 2 is e�r(�w�t) (X�w �K) and of Player 1 is �e�r(�w�t)

(the details of the analysis for the complete information case are carried out in Section

2.3.1). Player 2 takes an action a2 2 fdo not contest; contestg. Once a2 = contest is
chosen, the signaling game is over and the terminal payo¤s are collected.
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Threshold x = L(�) x = U(�)
Stopping time �L �U
Player 1 w type �e�r(�w��L) �1

s type � 0
Player 2 e�r(�w��L)(U(1)�K) ��UU(��U )�K

TABLE 2.1. Terminal payo¤s.

Markov strategies prescribe actions to the current state. In the signaling game,

Markov strategies de�ne two sets in the state space, a continuation set (a1 = signal

and a2 = do not contest) and a stopping set (a1 = reveal and a2 = contest). In

other words, each player faces an optimal stopping problem. The theory of optimal

stopping of Markov processes indicates that the strategies will take the form of an

optimal stopping boundary (see Peskir and Shiryaev (2006)). In the case of Player 2,

de�ne U : [0; 1]! R+; then U(�) is a boundary separating continuation and stopping
regions in the state space (x; �). Precisely, Player 2 chooses �do not contest�if x < U(�)

and chooses �contest�whenever x � U(�). The associated stopping time is de�ned as
�U = inf f� � 0 : X� � U(�)g. Analogously, if the strategy of Player 2 is considered in
the state space (x;m), the function ~U : R+ ! R+ is a free boundary such that Player
2 �does not contest�if x < ~U(m) and �contests�whenever x � ~U(m):

A solution to the problem of Player 1 takes the form of a lower boundary L(�).

Player 1 signals as long as x > L(�) and reveals as soon as x � L(�). Formally, the
strategy prescribes a stopping time �L = inf f� � 0 : X� � L(�)g. The stopping time
at which Player 2 enters after the type is revealed denoted above as �w is equal to

inf f� � �L : X� � U(1)g.
As an illustration of the two-dimensional process (x;m), Figure 2.1 presents a sam-

ple path in the continuation region between some L (here constant) and ~U(m) (here

decreasing in m) with a realization of the stopping rule at X�U : Above the diagonal

x = m; the process evolves vertically re�ecting changes in x. When new minima are

reached, the process moves down along the diagonal. Since the process stays above L

and reaches �rst ~U(m); here Player 2 contests before Player 1 has revealed her type.

Note that Figure 2.1, which aims to present the (x;m) process, does not necessarily

represent any equilibrium or sensible strategies. In fact in a game in pure strategies,

starting at �0, the belief can be only updated to either 0 or 1 and the signaling game

is stopped at either L(�0) or U(�0) and thus ~U(m) is constant for m > L(�0):

Table 2.1 collects the information about the terminal payo¤s when the signaling

game is stopped at either L(�) or U(�). Given a pair of (pure) strategies (L;U) and

the starting values of x and �, the respective total expected payo¤s of Player 1 and 2
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are given by

R1(x; �;L;U) = Ex;�
�
�
Z �L^�U

0

e�rtc dt� e�r�U1�L��U � e�r�w1�L<�U
�
;

R2(x; �;L;U) = Ex;�
�
e�r�U (��UU(��U )�K) 1�L��U + e�r�w(U(1)�K)1�L<�U

�
:

It is essential for our analysis to allow the players to randomize across pure strategies.

As we show later, in the general case the game has no perfect equilibrium in pure

strategies. As our subsequent analysis focuses on the case in which Player 1 applies a

mixed strategy and Player 2 responds with a pure strategy, we need to consider only a

mixed strategy of Player 1. A mixed strategy of Player 1 is a probability measure P on

[0; x0] with the corresponding distribution function G de�ned by G(x) = P ([x; x0]).1

G is interpreted as a distribution function over trigger strategies. The expected payo¤

that corresponds to a pair of strategies (G;U) is Ri(x; �;G;U) =
R
Ri(x; �;L;U)dG

for i = 1; 2.

A Markov perfect Bayesian equilibrium (MPBE) is a pair of Markov strategies

(G�; U�) such that

R1(x; �;G
�; U�) � R1(x; �;G;U

�);

R2(x; �;G
�; U�) � R2(x; �;G

�; U);

for all states (x; �) and all strategies G and U .

2.3 Simple cases

2.3.1 Complete information

Suppose that for some t � 0 �t 2 f0; 1g, so that signaling does not play a role in the
game. If �t = 0, i.e. Player 1 is strong with probability one, then obviously Player 2

never tries to contest the stake, i.e. U(0) = 1. If �t = 1, then Player 2 solves the

optimal stopping problem

W (x) = sup
t���1

E
�
e�r(��t) (X� �K) jXt = x

�
:

As usual, the optimal strategy in the solution of the problem takes the form of an upper

trigger. Let U(1) denote the stopping threshold. By the standard dynamic program-

ming argument and Itô�s lemma,W (x) satis�es the following Hamilton-Jacobi-Bellman

1Our de�nition follows the logic of mixed strategy, i.e. a player chooses a randomized pure strategy, which in our
case is a stopping time. More detailed discussion of mixed and behavioral strategies and their equivalence in stopping
games can be found in Touzi and Vieille (2002).
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di¤erential equation

rW (x) = �xW 0(x) +
1

2
�2x2W 00(x) (2.1)

in the continuation region, i.e. for x 2 (0; U(1)). The left-hand side (2.1) re�ects the
required rate of return per unit of time for holding the option to get x. The right-hand

side is the expected change in the value of the option.

The di¤erential equation is associated with the following three boundary conditions:

W (U(1)) = U(1)�K; (2.2)

W 0(U(1)) = 1; (2.3)

W (0) = 0: (2.4)

The value matching (2.2) and smooth pasting (2.3) conditions impose a continuous

and smooth �t at the boundary, required for optimality. Condition (2.4) ensures that

the stake will be worthless if x reaches its absorbing barrier zero. Solving equations

(2.1)-(2.4) we obtain that Player 2 optimally contests the stake at the stopping time

�w = inf f� � t : X� � U(1)g ;

where

U(1) =
�1K

�1 � 1
; (2.5)

and

�1 =
1

2
� �

�2
+

s�
�

�2
� 1
2

�2
+
2r

�2
:

�1 is the positive root of the characteristic equation
1
2
�2� (� � 1) + �� � r = 0 and is

always larger than 1. The value W (x) is given by2

W (x) =

�
x

U(1)

��1
(U(1)�K) : (2.6)

Knowing the optimal behavior of Player 2, let 
 denote the expected discounted

value of the weak type of Player 1 if the type is revealed at time t. Then 
(x) =

E
�
�e�r(�w�t)jXt = x

�
. Using similar methods as above we obtain that


(x) = �
�

x

U(1)

��1
: (2.7)

2The intuition for this and some other similar expressions in this chapter can be gained by observing that
E[e�r(��t)jXt = x] = (x=X� )

�1 ; where � is a stopping time. Thus, given that the current state is x, (x=X� )�1

is the present value of one dollar received at stopping time �:
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(L) and W (L) are the respective terminal payo¤s if Player 1�s type is revealed at

threshold L (see column x = L in Table 1).

2.3.2 Deterministic Xt

Suppose now that � = 0, so that the process dXt = �Xtdt is deterministic. In this case,

the strategies in the unique equilibrium di¤er depending on the sign of �, but they

share a similar simple structure. For any given belief �, Player 2 contests the stake

as he would do in a non-strategic situation. Given this behavior of Player 2, Player 1

applies a straightforward incentive constraint to decide between signaling or revealing

(or randomizing between these two).

We �rst analyze the simpler case in which x decreases in time. If � < 0 then, for

any �xed �; Player 2 would not postpone the entry decision and would rather enter

immediately, if at all. If x falls below K; Player 2 never enters and so Player 1 does

not signal.

Proposition 2.1 If � = 0 and � < 0, the signaling game has a unique MPBE. In the
equilibrium Player 2 applies the following upper boundary strategy

U(�) =
K

�
:

The lower trigger strategy of Player 1 of the w type is

L =

(
x0 if �1(x0) � 0;
K if �1(x0) > 0;

where

�1(x) = �
c

r
+
� x
K

� r
� c

r
+ 1:

�1(x0) characterizes the incentive compatibility constraint of Player 1 for signaling

from t = 0 until the time when x reachesK: (Note that the weak and strict inequalities

in the strategy L are rather arbitrary, but the events with equality are of measure zero.)

It is simply the di¤erence between the total cost of signaling and revealing its type

immediately in the situation that this would trigger immediate entry of Player 2.

If � > 0 and x increases in time, several additional considerations arise. First, for

any � > 0 there is a su¢ ciently large x such that Player 2 decides to contest the

stake. Second, apart from the full separation and pooling outcomes arising also in

the case of negative �, if � > 0 there is an intermediate set of parameters at which

the unique outcome is semi-separation. Third, agents take into account the value of

waiting (similar to the stochastic, complete information case of Section 2.3.1).
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Proposition 2.2 If � = 0 and � > 0, the signaling game has a unique MPBE. In the
equilibrium Player 2 applies the following upper boundary strategy

U(�) =
K

�

r

r � �:

The lower trigger strategy of Player 1 of the w type is

L =

8>>>><>>>>:
x0 if �3(x0) � 0;(

x0 with prob: p

0 with prob: (1� p)
if �2(x0) < 0 < �3(x0);

0 if �2(x0) � 0;

where

�2(x) = �c
r
�
�

x

U(�0)

� r
� �
1� c

r

�
+

�
x

U(1)

� r
�

;

�3(x) = �c
r
+

�
x

U(1)

� r
�

;

and

p =
1�N�0
(1�N)�0

;

with

N =
r � �
r

x0
K

264 r � c

r
�

x0
U(1)

� r
� � c

375
�
r

:

�2(x) and �3(x) characterize the incentive constraints of Player 1. �2(x0) is the

di¤erence between the total cost of signaling with entry at x = U(�0) and revealing

immediately with entry at x = U(1): �3(x0) is the di¤erence between the cost of

continuous signaling without entry and revealing immediately.

The reason that the w type randomizes at t = 0 for some intermediate parameter

values is intuitively clear. Because x increases over time, Player 2 ultimately contests

the stake under a pooling outcome. Taking this into account Player 1 does not choose

(a pure strategy) signaling if �2(x0) < 0. Under the full separating outcome Player

2 never enters if he expects to face the s type. Then, however, the w type may be

tempted to deviate and imitate the s type if �3(x0) > 0. As �2(x0) < �3(x0), there are

parameter values at which neither pure pooling nor pure separating is an equilibrium

outcome. The probabilities p and (1 � p) follow from Bayes rule and the indi¤erence

of Player 1 for signaling and revealing at t = 0.
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Finally, we look at the simplest case when Xt is constant over time, i.e. � = � = 0.

The signaling game simpli�es to a repeated game under stationary conditions. It is not

di¢ cult to derive the following result as the middle ground of the two cases described

in Propositions 2.1 and 2.2.

Corollary 2.3 If � = � = 0, the unique MPBE is
(i) if x0 � K, Player 1 of the w type immediately reveals and Player 2 never enters;
(ii) if �0x0 � K < x0 and c � r, Player 1 never reveals and Player 2 never enters;
(iii) in the remaining case, Player 1 does not signal and Player 2 enters immediately

against the w type and never enters against the s type.

2.4 Equilibrium analysis

2.4.1 Preliminaries

We begin with pointing out two key implications of the stochastic state variable to

the signaling game. Let us denote by �(x) the di¤erence between the payo¤s of the

w type from continuous signaling (up to entry at U(�) when Player 1 incurs a loss of

�1) and revealing immediately (that triggers entry at U(1)), that is

�(x) = �c
r
�
�

x

U(�)

��1 �
1� c

r

�
+

�
x

U(1)

��1
:

For any x � U(�), �(x) captures the incentive compatibility constraint of the w type
for signaling.3 Analyzing the expression we observe that as long as U(�) � U(1) then
�0(x) > 0 for all x � 0; and �(y) = 0 for some y > 0 (the condition U(�) � U(1)

intuitively holds, and we shall see later it is always true in equilibrium). The implication

is that if Player�s 1 incentive constraint for signaling is satis�ed at t = 0; then it will be

binding whenever x exceeds x0. However if at some time x falls below x0, then Player

1 of the w type might prefer to stop signaling, reveal her type and wait for Player 2

to take his prize at U(1). The fact that in the case � = 0 and � � 0 the incentive

constraint remains to be satis�ed if it is satis�ed at x0, made the equilibrium strategies

in the deterministic case relatively simple. Now, however, in the general case, the weak

type of Player 1 decides when to stop signaling at lower trigger L taking into account

its strategic e¤ect on the entry decision of Player 2. Similarly, Player 2�s choice of U

is strategic with respect to Player 1�s revelation decision.

The second key feature of the stochastic case is that, except for some extreme starting

values, the signaling game has no MPBE in pure strategies.

3For simplicy of exposition we only consider the case that for a given (x; �); x � U(�): More generally, U(�) could
be replaced by �U(�) = max fx; U(�)g without bringing new insights but complicating notation:
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Lemma 2.4 (No pure strategy equilibrium) If the game is not stopped at t = 0,
then there is no MPBE in pure strategies.

The lemma is a special case of Lemma 2.8 below, hence we postpone the formal

proof to that point. The intuition for the result is as follows. Player 2 seeing no action

at the supposed equilibrium pure strategy L, updates his belief to 0 and never contests

(U(0) =1). But then Player 1 of the weak type deviating from the equilibrium (not

revealing at L) obtains a discrete increase in the value function, which upsets the

proposed equilibrium. In other words, if L is a best response to U(�) for a given (x; �);

� > 0; it is no longer a best response to U(0) at (x; 0).

A similar intuition that explains the nonexistence of a pure strategy equilibrium

leads to the anticipation that the distribution G for the mixed strategy of Player 1

should have no atoms. In the remainder of this subsection we prove in a number of

steps that there are no gaps in the distribution G and no pure strategies are chosen

with positive probability, except possibly at x0:

Let us denote the support of a distribution G by supp(G) (that is, the smallest

closed set such that the distribution G assigns zero probability to all events not in

this set). The question we ask �rst is what ~U(l) must be, so that Player 1 chooses l in

the support of G. We use the requirement that if l 2 supp(G); then Player 1 must be
indi¤erent to revealing when the minimum l is reached for the �rst time.

Let F (x;m) denote the expected discounted value of Player 1 of the w type such that

Player 1 is indi¤erent between stopping and continuing at x = m for all m 2 supp(G).
In the continuation region, for x 2 (m; ~U(m)) withm �xed, the following Bellman-type
equation holds:

rF (x;m) = �xFx(x;m) +
1

2
�2x2Fxx(x;m)� c: (2.8)

Note that m, the second dimension of the state space, does not appear directly in the

di¤erential equation. The reason is that m does not change during an in�nitesimal

time interval if x > m. The general solution to the di¤erential equation is

F (x;m) = B1(m)x
�1 +B2(m)x

�2 � c
r
; (2.9)

where �1 and �2 are the roots of characteristic quadratic
1
2
�2� (� � 1) + �� � r = 0,

positive and negative, respectively. The continuous and smooth �t principles at the

boundaries give the following conditions:

F ( ~U(m);m) = �1; (2.10)
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F (m;m) = 
(m); (2.11)

Fx(m;m) = 

0(m); (2.12)

for all m 2 supp(G). Condition (2.10) states that the continuation value equals the
terminal payo¤ �1 at ~U(m): 
(m) is the payo¤ of the w type if the type is revealed
at m and its value is given in (2.7). Conditions (2.11)-(2.12) re�ect that Player 1

is indi¤erent between revealing and not revealing. Additionally the normal re�ection

condition4 holds at x = m:

Fm(m;m) = 0: (2.13)

Let us de�ne L1 = inf(supp(G)) to be the in�mum of the set supp(G). The forgoing

arguments can be used to characterize L1. This is the threshold at which Player 1

optimally reveals with probability one under the most favorable circumstances, i.e.

when Player 2 believes that � = s and never enters. The di¤erential equation (2.8)

is then coupled with the value matching and smooth pasting conditions F (L1; L1) =


(L1) and Fx(L1; L1) = 
0(L1): Later we shall also discuss the supremum L0 of the

set supp(G), that is L0 = sup(supp(G)): Furthermore, let ~UG : (L1; U(1)) ! R+
be the solution to (2.14) below. The next lemma provides the condition for m to

be in supp (G) ; characterizes L1 and some properties of ~UG: To shorten notation let

�1(m) = ( ~U(m)=m)
�1 and �2(m) = ( ~U(m)=m)�2.

Lemma 2.5 (Support of G) (i) If m 2 supp (G) ; then ~U(m) satis�esh
(�1 � �2) 
(m)�

c

r
�2

i
�1(m) +

c

r
�1�2(m)�

�c
r
� 1
�
(�1 � �2) = 0: (2.14)

(ii) It holds that

L1 =

�
�2

�2 � �1
c

r

� 1
�1 K�1
�1 � 1

:

(iii) For any m 2 (L1; U(1)) let ~UG(m) denote the unique positive solution of (2.14).
~UG : (L1; U(1))! R+ is continuous and strictly decreasing.

Proof. (i) Combining conditions (2.11) and (2.12) with the general solution (2.9) we
obtain

B1(m) =
1

�1 � �2

h
(�1 � �2) 
(m)�

c

r
�2

i
m��1 ;

B2(m) =
c

r

�1
�1 � �2

m��2 ;

4The normal re�ection conditions are used in the optimal stopping problems involving a extemum (maximum or
minimum) process. For a formal veri�cation that (2.8) together with a boundary condition corresponding to (2.13) hold
in problems involving the minimum, see Peskir (1998) (see also Peskir and Shiryaev (2006, Ch. 13)).
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for all m 2 supp(G). We note that after substituting B1(m) and B2(m) into (2.13),
(2.13) holds as an identity. Then substituting B1(m) and B2(m) in (2.10) yields (2.14),

where the dependence of the functions on m is omitted for brevity.

(ii) In addition to F (L1; L1) = 
(L1) and Fx(L1; L1) = 
0(L1), the value must be

bounded as x goes to in�nity. Applying all three conditions to the general solution of

(2.8) yields part (ii).

(iii) Clearly, it must hold that ~U(m) � m: Then the derivative of the left hand side
of (2.14) with respect to ~U ish
�1 (�1 � �2) �1(m)
(m)�

c

r
�1�2 (�1(m)� �2(m))

i
~U(m)�1 <

c

r
�1�2�2(m) ~U(m)

�1

< 0;

where the inequality follows from the fact that 
(m) < � �2
�2��1

c
r
form > L1 (using part

(ii) of the lemma). Moreover, observing that the left hand side of (2.14) is continuous

in positive ~U and it diverges to +1 at ~U = 0 and diverges to �1 as ~U goes to in�nity,

we conclude that there is a unique positive root ~UG. As the left hand side of (2.14) is

strictly positive for ~U(m) = m (with m 2 (L1; U(1))), it follows that ~UG(m) > m; as
expected. Finally, a straightforward application of the implicit function theorem and

some algebra delivers that ~UG(�) is strictly decreasing.
Equation (2.14) characterizes the entry boundary function ~UG(m) of Player 2 that

would make m a part of the mixed strategy of Player 1. In other words, Lemma 2.5

means that
F (m;m) < 
(m) if ~U(m) < ~UG(m);

F (m;m) > 
(m) if ~U(m) > ~UG(m):
(2.15)

If ~U(m) < ~UG(m) then Player 1 strictly prefers revealing at m than continuing. If
~U(m) > ~UG(m) then Player 1 prefers continuing at m. The relevant domain of ~UG is

(L1; U(1)): At L1; ~UG diverges to in�nity (by construction of L1). No minima above

U(1) can be in the support of G and ~UG approaches U(1) atm = U(1). The intuition is

as follows. If Player 1 reveals at U(1) she faces an immediate contestant. As we assume

that c < r; Player 1 always prefers postponing immediate entry, so she is indi¤erent

to revelation only if continuation also leads to immediate entry, i.e. if ~UG(m) = U(1).

It is important to realize that L1 can be characterized based solely on the problem of

Player 1 as the choice of L1 is a nonstrategic decision. The equilibrium distribution G

and in particular the level of L0 must incorporate the strategic e¤ects on the behavior

of Player 2.

Let us denote the closure of the set where ~U is not constant by S( ~U).

Lemma 2.6 (Common support) supp (G) = S( ~U).
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Proof. Suppose that x 2 supp (G) and x =2 S( ~U): It means that there is an open
neighborhood of x, b(x); such that for all x0 2 b(x); ~U(x0) = ~U(x): But then at any

x0 � � < x; with some � > 0 and x0 2 b(x); Player 1, by Lemma 2.5, strictly prefers
revealing than continuing. So Player 1 reveals with probability 1 at x0 � � and then
~U(x0) =1 6= ~U(x): Consequently it can not be that x 2 supp (G) and x =2 S( ~U):
Next suppose that x =2 supp (G) and x 2 S( ~U): It means that there is an open

neighborhood of x, b(x); such that for all x0 2 b(x); G(x0) = G(x): This means also

that x0 2 b(x) the belief � cannot be di¤erent as there is no information revealed.
As for all x0 2 b(x) the belief is the same and the probability of reaching minima in
the support of G are the same, it can not be optimal to play ~U(x0) 6= ~U(x): Thus

b(x) * S( ~U) contradicting that x 2 S( ~U):
Lemma 2.6 means that ~U is not constant only on the set that is in the support of

G. This observation is used to prove the next lemma.

Lemma 2.7 (No gaps) There are no gaps in supp (G) :

Proof. Suppose that there is a gap (a; b) over which G is constant and a and b

belong to the support of G (recall that supp(G) is a closed set). Then, by Lemma 2.5,
~U(a) = ~UG(a) and ~U(b) = ~UG(b): By Lemma 2.6, ~U is constant over (a; b): If Player

1 does not put any positive probability on strategies in (a; b), ~U(l) must be larger

than or equal to ~UG(l) by (2.15). Then, as ~U is constant in (a; b) and ~UG is strictly

decreasing (Lemma 2.5(iii)), it follows that ~U(l) = ~U(a) > ~UG(l) for all l 2 (a; b): Thus,
by (2.15), the continuation payo¤ F (l; l) is strictly larger than terminal payo¤ 
(l)

for all l 2 (a; b). We also note that 
(�) is a continuous function. Then the following
inequality holds

F (a; a) = 
(a) = lim
a0"a


(a0) < lim
a0"a

F (a0; a0):

But then by an in�nitesimal deviation Player 1 gets a bene�t that is bounded away

from zero, so a cannot be in G: Consequently there cannot be gaps in supp (G) :

Finally we show that G has no atoms. To prove it let us denote the probability that

Player 1 stops exactly at stopping time corresponding to trigger strategy x by J(x):

Lemma 2.8 (No atoms) For x 2 [L1; x0); J(x) = 0:

Proof. Suppose J(l) = p > 0 for some l 2 (0; x0): As l 2 supp (G), F (l; l) = 
(l) and
~U(l) = ~UG(l) by Lemma 2.5: Suppose that at the time l is reached for the �rst time,

the belief is � 2 (0; 1): If Player 1 does not stop, Player 2 uses Bayes rule to update
his belief to �0 = (1�p)�

1��p < �: Let us denote liml0"l ~U(l
0) by ~U�(l) and liml0"l ~UG(l

0) by
~U�G (l). We have two cases to consider.

Case 1. Suppose that U(�0) > U(�); that is ~U�(l) > ~U(l): By Lemma 2.5(iii), UG
is continuous, so ~U�(l) > ~U�G (l). But then by the same argument as in Lemma 2.7,
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Player 1 faces a jump in the value and by an in�nitesimal deviation gets a bene�t that

is bounded away from zero. Formally, the following inequality holds:

F (l; l) = 
(l) = lim
l0"l

(l0) < lim

l0"l
F (l0; l0):

Hence l is not played in the mixed strategy G and J(l) = 0:

Case 2. Suppose that U(�0) � U(�); that is ~U�(l) � ~U(l):We shall show that Player

2�s best response is never U(�0) � U(�) if p > 0: To do this let us consider Player 2�s
best response problem given G and J(l) = p > 0: Let V (x; l) be the value of Player

2 in this best response problem. In the continuation region, that is for x 2 (l; ~U(l));
V (x; l) must satisfy the Bellman-type equation

rV (x; l) = �xVx(x; l) +
1

2
�2x2Vxx(x; l):

At the boundaries the following conditions hold

V ( ~U(l); l) = � ~U(l)�K;
Vx( ~U(l); l) = �;

V (l; l) = �pW (l) + (1� �p)V �(l; l); (2.16)

where V �(l; l) = liml0"l V (l
0; l0) denotes the continuation value just after the minimum

at l is reached. Let �1 = (l= ~U(l))
�1� (l= ~U(l))�2 and �2 = �2(l= ~U(l))

�1��1(l= ~U(l))�2.
Then using the general solution to the di¤erential equation and the two �rst boundary

conditions we obtain that

V (l; l) =
1

�1 � �2

h
� ~U(l)(�1 ��2) +K�2

i
: (2.17)

V �(x; l) must satisfy the same di¤erential equation, but the boundary conditions at
~U�(l) become

V �( ~U�(l); l) = �0 ~U�(l)�K;
V �x (

~U�(l); l) = �0:

Solving for V �(x; l) we �nd

V �(l; l) =
1

�1 � �2

h
�0 ~U�(l)(��

1 ���
2 ) +K�

�
2

i
;
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where ��
1 = (l= ~U

�(l))�1 � (l= ~U�(l))�2 and ��
2 = �2(l= ~U

�(l))�1 � �1(l= ~U�(l))�2. As
V �(l; l) increases in ~U (as long as �0 ~U�(l) � �2

�2�1
U(1);but this must be the case in the

best response of Player 2, as the point with equality is where V �(l; l)), we can write

the following inequality

V �(l; l) � 1

�1 � �2

h
�0 ~U(l)(��

1 ���
2 ) +K�

�
2

i
:

Substituting this inequality together with (2.17) and �0 = (1�p)�
1��p in (2.16) yields

p
1

�1 � �2

h
~U(l)(�1 ��2) +K�2

i
� pW (l): (2.18)

The term on the left hand side equals pW (l) if ~U(l) = U(1) and increases in ~U(l)

if ~U(l) > U(1): As l 2 supp (G) then, by Lemma 2.5, ~U(l) > U(1); hence the weak

inequality (2.18) holds only if p = 0.

Note that the argument in Case 1 does not hold for the initial state (x0; x0) at t = 0.

At (x0; x0) it can be that F (x0; x0) < 
(x0). In this case Player 1 prefers revealing

above continuing and reveals with probability 1 if x0 � L1 or randomizes between

continuing and revealing if x0 > L1.

2.4.2 Learning and best response of the uninformed player

In this section we analyze the optimal strategy U of Player 2 given that Player 1

adopts an arbitrary continuous strategy G. As Player 1 randomizes over the lower

trigger strategies, Player 2; while observing that the game is not stopped at a new

minimum in the support of G; updates its belief about �. Thus, provided that the

signaling game is not stopped by time t, the belief �t will depend on the running

minimum Mt of Xt. The learning process is described by a function �(m) derived by

Bayes rule

�(m) =
(1�G(m))�0
1�G(m)�0

;

such that �t = �(Mt). In a similar fashion, the minimum process is used to update the

distribution of the mixed strategy of the w type. Given a minimum m let g(x;m) =

G0(x)= (1�G(m)) be an updated density of G at x � m conditional on � = w. For

brevity we denote g(m;m); the hazard function of G at m, by g(m).

Player 2 chooses a stopping boundary ~U in the state space
�
(x;m) 2 R2+ : x � m

	
to maximize his expected discounted value taking into account, �rstly, the possibility

of learning the w type if the type is revealed at a random lower trigger and, secondly,

the gradual learning about � if new values in the support of G are reached. Denote
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this value by V (x;m). The dependence on the running minimum places the problem

of Player 2 in line with some work on (non-standard) lookback options (e.g. Guo and

Shepp (2001)) and more general recent literature on optimal stopping of the maximum

process (Peskir (1998)). Using the dynamic programming arguments and Itô�s lemma,

we derive that in the continuation region, for x 2 (m; ~U(m)) with �xed m, V (x;m)
must satisfy the ordinary di¤erential equation

rV (x;m) = �xVx(x;m) +
1

2
�2x2Vxx(x;m): (2.19)

Note that, similar to di¤erential equation (2.8) in the problem of the informed player,

derivatives inm do not appear in equation (2.19). In the space
�
(x;m) 2 R2+ : x � m

	
,

m changes only after hitting the diagonal x = m, and this property shall be employed

below in the boundary condition (2.22).

The general solution to (2.19) is of the form

V (x;m) = A1(m)x
�1 + A2(m)x

�2 :

The coe¢ cients A1(m) and A2(m) as well as the optimal boundary ~U(m) are deter-

mined by considering extremes in the continuation region in (x;m). At the boundary

x = ~U(m) between the continuation and stopping region we require the familiar con-

ditions of continuous and smooth �t, that is

V ( ~U(m);m) = �(m) ~U(m)�K; (2.20)

Vx( ~U(m);m) = �(m): (2.21)

When x = m, that is on the diagonal in R2+, the probability of facing the w type
is �(m) and, upon a marginal change in m, the probability that the w type reveals

is �g(m). In Section 2.3.2 we derived that, if the w type reveals, Player 2 gets W (m)
given by (2.6). It follows that at x = m it holds that5

Vm(m;m) = �(m)g(m) (V (m;m)�W (m)) : (2.22)

To shorten notation let �1 = �1(m; ~U(m)) = (m= ~U(m))�1 � (m= ~U(m))�2 and
�2 = �2(m; ~U(m)) = �2(m= ~U(m))

�1 � �1(m= ~U(m))�2. Then after solving (2.19)-
(2.22) we obtain that the best response strategy of Player 2 is given by the following

5The boundary condition (2.22) closely corresponds with the normal re�ection conditions in the standard optimal
stopping problems of maximum (or minimum) process (see (2.13) and footnote 4); it reduces to Vm(m;m) = 0 if no
event happens at m (that is, if either �(m)g(m) = 0 or V (m;m) =W (m)).
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di¤erential equation (after suppressing the dependence of the functions on m)

~U 0[(1� �1)(1� �2)� ~U � �1�2K]�1

= ��0 ~U2(�1 ��2)� g�~U [(�1 � �2)W � �~U(�1 ��2)�K�2]: (2.23)

The term on the left-hand side stems from the dependence of the terminal payo¤ at

the upper boundary on the minimum process and is standard in problems of optimal

stopping of extremum processes (cf. equation (6) in Guo and Shepp (2001)). The

�rst term on the right-hand side comes from the e¤ect of learning from the minimum

process. The second term on the right-hand side captures the in�uence of the type

revelation at a random lower trigger.

To identify a relevant boundary condition, we observe that when m reaches L1,

which is the lower bound on the support of G, the belief that � = w is zero. At this

point Player 2 never enters and thus the boundary condition at m = L1 is

~U(L1) = U(0) =1:

2.4.3 Equilibrium

The analysis of both players�strategies of the previous sections provides ingredients for

the equilibrium result stated in the proposition below. For technical reasons we shall

formulate and prove the proposition for a �perturbed�version of the game in which

Player 2 gets "Xt if he contests the stake at time t from the strong type. In other words,

the strong player is not a �natural monopolist�. The fraction " > 0 is assumed to be

small (in the baseline model " = 0). Our choice of the case " = 0 so far stems from the

attempt to simplify the exposition. On the other hand, this section shows that a small

perturbation " > 0 readily delivers the uniqueness of the equilibrium strategies.6

Assume therefore that " > 0. The analysis of the previous sections can be accordingly

adjusted without much di¢ culty. In particular, the lower bound on the support of G

depends on " and we denote it L"1 with L
0
1 = L1. Then after denoting the strategies

of Player 2 in the perturbed model by ~U " and U ", we obtain ~U "(L"1) = U "(0) =
1
"
K�1=(�1�1) (the derivation is similar to the one in Section 2.3.1). The boundedness
of U "(0) if " > 0 is the e¤ect of the "-perturbation ensuring the uniqueness in the

statement of the proposition. For simplicity, we suppress superscript " from now on.

6Similar types of assumptions to ensure equilibrium uniqueness have been used in other contexts. For example, in
a war of attrition with incomplete information, Fudenberg and Tirole (1986) characterize the equilibrium strategies, as
we do in our model, in terms of di¤erential equations. The solution to the di¤erential equation and thus the equilibrium
are unique if the �rms are not natural monopolists.
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The proposition does not include the trivial situation if x0 < L1, in which case the w

type reveals with probability one at t = 0.

Proposition 2.9 Let �̂ = � + (1� �)"; " > 0; and

f1(m;G; ~U) =

f2(1� �0G)2[(1� �1)(1� �2)�̂ ~U � �1�2K]�1

(1� ")�0(1� �0) ~U2(�1 ��2)� �0(1� �0G) ~U [(�1 � �2)W � �̂ ~U(�1 ��2)�K�2]
;

f2(m;G; ~U) =
�2c ~U (�1 � �2)

(�1 � �2) (c�2 + r � c)m
;

and denote by (G�; ~U�) the (unique) solution to the system of di¤erential equations

G0(m) = f1(m;G; ~U); G(L1) = 1; (2.24)

~U 0(m) = f2(m;G; ~U); ~U(L1) = U(0) =
�1

�1 � 1
K

"
: (2.25)

Then a pair of strategies (G; ~U) is the unique MPBE of the signaling game if

G(m) =

8><>:
1 if m < L1;

G�(m) if L1 � m � L0;
0 if L0 < m � x0; L0 6= x0:

If L0 = x0; then at t = 0 Player 1 of the w type reveals its type with probability G�(L0),

signals with probability 1�G�(L0) and at t > 0 plays according to G. Player 2 contests
at

~U(m) =

8><>:
~U�(L1) if m < L1;
~U�(m) if L1 � m � L0;
~U�(L0) if L0 < m � x0:

The lower bound on the support of G is given by the solution L1 of

h
(�1 � �2) 
(L1)� �2

c

r

i�U(0)
L1

��1
+�1

c

r

�
U(0)

L1

��2
�(�1 � �2)

�c
r
� 1
�
= 0 (2.26)

and the upper bound is

L0 = minf�L0; x0g; �L0 = inf fm � L1 : G�(m) = 0g :

Finally, U(1) = K�1=(�1 � 1):
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Proof. In the proof we refer to the results in Sections 2.3 and 2.4.1-2.4.2 stated there
for the limit case " = 0; while pointing to the necessary adjustments as " > 0: If

x0 > L1, then by Lemma 2.4 there exist no equilibrium in pure strategies. By Lemma

2.8, the mixed strategy G of Player 1 has to be a continuous function with a support

on some [L1; L0]. L1 is given in Lemma 2.5(ii) in the limit case " = 0. If " > 0, a similar

derivation, but with an additional boundary condition

F (U(0); L1) = �1;

yields the implicit equation for L1 as stated in the proposition. From Lemma 2.5, m 2
(L1; x0) is in the support of G only if ~U(m) satis�es (2.14), which after di¤erentiation

gives ~U 0(m) = f2(m;G; ~U), with initial value condition ~U(L1) = 1
"
K�1=(�1 � 1).

From Section 2.4.2 it follows that Player 2 chooses the given ~U(m) if G(m) satis�es

equation (2.23). If " > 0, the boundary conditions (2.20) and (2.21) are substituted

with

V ( ~U(m);m) = �̂(m) ~U(m)�K;
Vx( ~U(m);m) = �̂(m):

Combination of these and (2.22) with the solution to (2.19) and some reorganization

yield G0(m) = f1(m;G; ~U): The initial value condition G(L1) = 1 follows from the

construction of L1.

The upper bound on the support of G is then L0 = minf�L0; x0g; with �L0 = inf
fm � L1 : G�(m) = 0g. If L0 < x0, then clearly G(m) = 0 and ~U(m) = ~U(L0) for

m > L0. If �L0 < x0, then neither continuing nor stopping is a pure strategy equilibrium

at t = 0 (with the arguments parallel to those in Lemma 2.4). In the mixed strategy

at t = 0, Player 1 randomizes to be indi¤erent between revealing and signaling and

chooses probabilities G�(L0) and 1�G�(L0), respectively.
The complete information threshold U(1) is derived in Section 2.3.1.

Finally, we con�rm the uniqueness of the equilibrium. It is not di¢ cult to verify that

the initial value problem (2.24)-(2.25) satis�es the Lipschitz condition as long as " > 0.

Thus there is a unique solution (G�; ~U�) if the informed player applies a continuous

strategy G (except at t = 0). As we have shown in Section 2.4.1 this is the only kind

of strategy played in equilibrium.

A graphical representation of the equilibrium strategies is shown in Figure 2. The

result can be interpreted as follows. For the outcome to satisfy the subgame perfectness

criterion, Player 1 reveals at a random lower trigger with a continuous distribution G

on some [L1; L0]. Player 2, while observing new minima reached in the support of G
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FIGURE 2.2. Equilibrium strategies.

without the type revealed, updates his belief that he is facing the weak type (belief

� decreases). Consequently, with decreasing m Player 2 requires a higher x to risk

contesting the stake so ~U(m) rises. Given that the game has not been stopped by the

time x reaches L1 (with G(L1) = 1), the true type must be s and Player 2 contests

at U(0). The equilibrium slope of G in (2.24) is such that Player 2�s best response to

this G is ~U (given by (2.25)) such that it is indeed optimal for Player 1 to choose a

continuous G with support on [L1; L0].

We would like to comment on the equilibrium in the limit as " goes to zero. The

problem is that the initial point m = L1 becomes a singular point for the di¤erential

system (the system does satisfy the Lipschitz continuity condition) and thus it has no

unique solution. Such indeterminacy is not unusual in optimal stopping problems with

extremum process. In a related setup with similar indeterminacy, Peskir (1998) intro-

duced the maximality principle that determines the optimal trajectory of the optimal

stopping boundary. Developing a corresponding principle in our strategic problem is

beyond the scope of this chapter. Nevertheless, building on the analogy to the max-

imality principle, we may anticipate that in our setup the equilibrium distribution

G�(m) would be determined by choosing the maximal one among those solutions to

(2.24) that are non-decreasing.
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Our analysis of the two-type case can be adapted to the case of a continuum of

types of the informed player. Such a setup would ease one technical issue, namely the

informed player would not necessarily need to apply mixed strategies. On the other

hand, with a continuum of types it might be more demanding to sustain the initial

pooling. While in a binary signaling space, initial pooling strategy may be incentive

compatible even with a continuum of types, typically we would not expect it in the

case of a continuous signaling space (say in R). The latter is the case in the application
of the model to limit pricing in the next section, hence our focus on the two-type case,

but in general the modeling will depend on the application in mind.

2.5 Example: Limit pricing

In this section we apply the dynamic stochastic signaling setup to a standard signaling

situation known from industrial organization, namely limit pricing under incomplete

information. Following Milgrom and Roberts (1982) we assume that the incumbent�s

cost is not directly observable by the potential entrant. When threatened by entry,

the weak incumbent may, by setting low prices, pretend to be a strong one and thus

discourage entry. Unlike the existing literature we study the dynamics of signaling and

entry in a stochastic market.

The analysis here serves two purposes. First, it demonstrates how the general game

of the preceding sections can be adapted to other functional forms of the players�

payo¤s. Speci�cally, the cost of signaling and payo¤s of the informed player need to be

functions of the driving di¤usion process (here, the demand shock). Second, the model

bridges the gap between the older non-game-theoretic literature on limit pricing, that

was often dynamic and considered stochastic markets (Kamien and Schwartz (1971),

Gaskins (1971) and Flaherty (1980)), and the game-theoretic equilibrium limit pricing

that to a large degree invalidated the older explanations, but left us essentially with

one-shot deterministic models.

2.5.1 Setup

We begin by describing the model setup. The incumbent �rm, denoted by index 1, al-

ready operates in the market. Its pro�ts depend on four factors. Firstly, the pro�tability

of the whole market evolves with a stochastic state variable Y following a geometric

Brownian motion. Secondly, denoting the incumbent�s cost type by � 2 fw; sg, the
incumbent�s technology may be of low marginal cost Cs1 or high cost C

w
1 per unit of

time, Cs1 < C
w
1 . Thirdly, the incumbent may choose other than its monopoly price or

quantity to imitate the behavior of another cost type. And lastly, pro�ts depend on
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the presence of the entrant �rm (�rm 2). The entrant�s marginal cost C2 is known

with certainty. We assume that upon entry the two �rms compete in quantities in

Cournot fashion. Below we show that these requirements on the pro�t �ow function

can be e¤ectively captured by choosing an appropriate multiplicative constant for a

stochastic state variable.

We assume the demand function is isoelastic and is subject to stochastic shocks.

Speci�cally, the inverse demand function of total output Q at time t is given by

Pt(Q) = YtQ
� 1

 :

Y = fYt : t � 0g is a stochastic state variable following a geometric Brownian motion
with drift �Y , volatility �Y and a standard Brownian motion Z. 
 is the demand

elasticity and we assume that 
 > 1.

It is straightforward to derive that the pro�t �ow of the unconstrained (that is, not

facing a potential entrant) monopolist of type � at each state Yt is

Y 
t



�

C�1

 � 1

�1�

: (2.27)

De�ne now a new variable Xt = f (Yt) = (Yt)

. By Itô�s lemma we have

dXt = f
0dYt +

1

2
f 00dY 2t = �Xtdt+ �XtdZt;

where � = 
�Y +
1
2

 (
 � 1)�2Y and � = 
�Y are constants, and f 0 and f 00 denote the

�rst and second order derivatives. Therefore, X is also a geometric Brownian motion

adapted to the same �ltration.

Note that 1



�

C�1

�1

�1�

in (2.27) is constant over time, thus with properly chosen

parameters the pro�t �ow in (2.27) may be expressed as a constant times a geometric

Brownian motion. A similar equivalence can be shown for pro�t �ows under duopolistic

competition and in case the monopolist chooses quantities corresponding to optimal

quantities of another cost type (i.e. imitates optimal behavior of another type). In

particular, the pro�t �ow of the incumbent of type � is a product of the market state

variable X and a constant equal to either of

M � =
1




�

C�1

 � 1

�1�

; (2.28)

M �( ~C) =

 ~C � (
 � 1)C�1


 � 1

 

 ~C


 � 1

!�

; (2.29)
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D�
1 =

8><>:
[
C2�(
�1)C�1 ]

2

(2
�1)(C�1+C2)

�

(C�1+C2)
2
�1

��

if C�1 <




�1C2;

0 otherwise,
(2.30)

depending on whether the incumbent is a monopolist choosing its unconstrained monopoly

strategy (M �), or if the incumbent is a monopolist imitating the monopoly strat-

egy of a �rm with marginal cost ~C (M �( ~C)), or if the incumbent �rm operates in a

duopoly (D�
1). The relationship between the pro�t constants is not surprising, namely

M � > D�
1 � 0, M s > Mw, M � > M �( ~C) and Ds

1 > Dw
1 for all � and all ~C 6= C�.

From (2.29) it follows that the �-type incumbent imitating the pricing strategy of a

monopolist with cost ~C; has negative pro�ts if ~C < 
�1


C�1 . Equation (2.30) says that

the �-type incumbent is out of the market after entry if the entrant�s cost is less than

�1


C�1 .

The incumbent�s type is known to the incumbent �rm itself but at the initial point

of time the potential entrant does not know it. Instead, the prior probability that

� = w is �0 and is known to the entrant. Upon entry �rm 2 pays the entry cost of K

and learns the cost type of the incumbent. After the entrant has entered the market,

its pro�ts are a¤ected by the cost level of the incumbent. Given that �rm 1 is of the

� type, �rms 2�s pro�t �ow after entry can be expressed as the product of X and a

constant, where the constant is

D�
2 =

8><>:
[
C�1�(
�1)C2]

2

(2
�1)(C�1+C2)

�

(C�1+C2)
2
�1

��

if C2 <




�1C

�
1 ;

0 otherwise.
(2.31)

The lower the incumbent�s cost the less pro�table is entry, that is Dw
2 > Ds

2. If the

entrant knows the incumbent�s type to be � and C2 � 


�1C

�
1 , then the entrant cannot

make positive pro�ts and thus never enters.

We make the following assumptions on the cost structure. (1) There is pro�table

entry in the market against the w type: Dw
2 > 0: (2) The incumbent of type w prefers

imitating the s-type above facing immediate entry:Mw(Cs1) � Dw
1 : (3) The incumbent

of type s has its marginal cost slightly higher than that of natural monopolist: Cs1 =

(1+�")
�1


C2, where �" is assumed to be a small positive number. Assumption (1) ensures

that the game is interesting. Assumption (2) is a necessary condition for the incumbent

of type w to engage in signaling (it corresponds the assumption that c < r in the generic

game). By assumption (3) we concentrate our attention on the case corresponding to

the analysis in Sections 2.2-2.4. The strong incumbent is strong enough to have no

incentives to signal its type, yet the entrant gets a small share of the market after entry

to ensure uniqueness of the equilibrium strategies (analogously to the "-perturbation
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in Section 2.4.3). Assumption (3) can be rewritten in terms of entrant�s pro�ts as

Ds
2 = "D

w
2 for some (small) " corresponding to �".

2.5.2 Strategies and equilibrium

The game has essentially the same structure as the general stochastic signaling game

studied in this chapter. The games di¤er in the �ows and payo¤s available for the

two players. The description of the strategies and equilibrium concept carries over

from Section 2.2.2. The entrant, given its belief � about the incumbent�s type, chooses

a strategy to enter at a su¢ ciently large market, that is whenever x � U(�). The

weak incumbent�s strategy is to stop charging limit prices if the market variable x falls

below L(�). The second dimension of the incumbent�s strategy is the choice of prices, in

particular we need to specify the limit prices, i.e. the prices set in the pooling outcome.

As in the simple one-shot games, in principle, a continuum of prices may be sustained

in a pooling equilibrium. While we do not develop formal re�nement criteria for the

continuous-time game, we focus on the most plausible outcome, that is on e¢ cient

pooling at the prices of the strong incumbent. Let us denote the pro�t �ow coe¢ cient

of the w-type charging the monopoly price of the s-type byMp, whereMp =Mw(Cs1):

The payo¤s of the �rms are in �ows of pro�t and a �xed cost of entry. In case of

entry the weak incumbent faces a pro�t decline by factorMw�Dw
1 : The e¤ective cost

of signaling is now the di¤erence between the pro�t �ow with limit pricing and the

unconstrained monopoly pro�t, that isMw�Mp: If the entrant enters the market with

belief �; it pays the entry cost K and its expected pro�t �ow coe¢ cient is �̂Dw
2 where

�̂ = � + (1� �)". Putting these elements together we write the total expected payo¤
functions for both �rms given a pair of strategies (L;U) and starting values (x; �) as

follows:

R1(x; �;L;U) = Ex;�
�Z �L^�U

0

e�rtMpXtdt+

Z 1

�U

e�rtDw
1Xtdt1�L��U

+

�Z �w

�L

e�rtMwXtdt+

Z 1

�w

e�rtDw
1Xtdt

�
1�L<�U

�
;

R2(x; �;L;U) = Ex;�
��
�̂�U

Z 1

�U

e�rtDw
2Xtdt�K

�
1�L��U

+

�Z 1

�w

e�rtDw
2Xtdt�K

�
1�L<�U

�
:

The stopping times are de�ned analogously to Section 2.2.2. The discussion of Section

2.4.1 applies and in equilibrium the incumbent plays a mixed strategy, which is a

continuous distribution function G over trigger strategies.
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To develop the notation used in the equilibrium proposition below, let us now con-

sider the terminal payo¤s after the incumbent�s type is revealed. The entrant�s value,

given that � = 1; is

W (x) =

�
x

U(1)

��1
(d2U(1)�K) ;

where d2 = Dw
2 =(r � �). The optimal entry trigger is

U(1) =
�1

1� �1
K

d2
:

Given the entrant�s strategy U(1); the value of the incumbent of the w type is


(x) =
Mwx

r � � �
�

x

U(1)

��1 (Mw �Dw
1 )U(1)

r � � :

Detailed derivations, that are similar to those in the baseline signaling game, and

the proof of the equilibrium result in the following proposition are relegated to the

appendix.

Proposition 2.10 Let �̂ = � + (1� �)" and

f1(m;G; ~U) =

f2(1� �0G)2[(1� �1)(1� �2)�̂d2 ~U � �1�2K]�1

(1� ")�0(1� �0)d2 ~U2(�1 ��2)� �0(1� �0G) ~U [(�1 � �2)W � �̂d2 ~U(�1 ��2)�K�2]
;

f2(m;G; ~U) =
(�2 � 1)(Mw �Mp)m (�1 � �2)

(�1 � �2)
h
(Mw �Mp) ~U�2 + (Mp �Dw

1 )m
i ;

and denote by (G�; ~U�) the (unique) solution to the system of di¤erential equations

G0(m) = f1(m;G; ~U); G(L1) = 1; (2.32)

~U 0(m) = f2(m;G; ~U); ~U(L1) = U(0) =
�1

�1 � 1
K

"d2
: (2.33)

Then a pair of strategies (G; ~U) is the unique MPBE of the signaling game if

G(m) =

8><>:
1 if m < L1;

G�(m) if L1 � m � L0;
0 if L0 < m � x0; L0 6= x0:

If L0 = x0; then at t = 0 the incumbent of the w type reveals its type with probability

G�(L0), signals with probability 1�G�(L0), while at t > 0 it plays according to G. The
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entrant contests at

~U(m) =

8><>:
~U�(L1) if m < L1;
~U�(m) if L1 � m � L0;
~U�(L0) if L0 < m � x0:

The lower bound on the support of G is given by the solution L1 of

f(�1 � �2) (r � �)
(L1)� [(�1 � 1)Mw + (1� �2)Mp]mg
�
U(0)

L1

��1
+ (�1 � 1) (Mw �Mp)m

�
U(0)

L1

��2
+ (�1 � �2) (Mw �Mp) ~U(L1) = 0 (2.34)

and the upper bound is

L0 = minf�L0; x0g; �L0 = inf fm � L1 : G�(m) = 0g :

Finally, U(1) = 1
d2
K�1=(�1 � 1):

2.5.3 Implications

By introducing continuous time dynamics and uncertainty, we can derive some inter-

esting implications that are unavailable in the existing game theoretic models of limit

pricing. We formulate here several observations that are direct consequences of the

equilibrium result and are of interest in the speci�c context of limit pricing as either

empirical predictions or policy recommendations.

Observation 1 (Price dynamics) When the incumbent reveals its type at a random
lower trigger, prices increase in a decreasing market.

Under our assumption of isoelastic demand and constant marginal cost, (uncon-

strained) monopoly prices are constant. Yet the price dynamics under limit pricing may

take an unusual pattern with prices increasing in a decreasing market. (Under other

demand-cost speci�cations, this would translate into an unexpected price increase in

a decreasing market.) Firstly, this observation provides an empirical prediction that

could be confronted with the data. Secondly, we provide a potential policy implication

of this remarkable price dynamics. Based on one-shot models, limit (or predatory) pric-

ing can be detected by comparing prices to marginal costs. This is the usual approach

of antitrust authorities (see e.g. Sufrin and Jones (2004)). However, marginal costs

are in general di¢ cult to observe and thus in the regulatory practice undesirable limit

pricing is di¢ cult to discover and prove. The task to prove limit pricing practices is

even more daunting when taking the asymmetric-information arguments into account,
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with the assumption that costs are unobservable by competitors. The advantage of our

dynamic model is that it implies that the easily observable price dynamics may reveal

limit pricing practices of incumbents. In particular, increasing prices in a decreasing

market indicate that the incumbent has used prices to deter entrants.

Observation 2 (Path dependence) The entrant�s decision to enter depends on histor-
ical demand.

Our model shows that market dynamics (that is in our setup the transition from

monopoly to duopoly) exhibits path dependence in that the entrant�s decision to enter

depends on historical demand. This is despite the fact that the demand shocks are

Markovian and the current demand level is a su¢ cient statistic for the future distri-

bution. Yet, because a market downturn in the past made it the more likely that the

weaker type of incumbent would have stopped using limit pricing, the probability of

facing the strong incumbent increases under the limit pricing regime. In other words,

a demand slump polarizes entry timing, entry happens either early against the weak

incumbent or late against an uncertain type.

Observation 3 (Learning and entry) The learning e¤ect postpones entry.

Under complete information, the ratio of expected discounted pro�ts at entry to the

�xed cost is �1=(�1 � 1) in both cases if � = 0 and � = 1 (recall that �1 > 1; and the
reason that the ratio exceeds 1 is that it incorporates the value of waiting, the standard

result from the theory of investment under uncertainty, see, e.g., Dixit and Pindyck

(1994)). Yet, when there is still incomplete information about the incumbent type,

that is if � 2 (0; 1), the same ratio, that is �̂d2U(�)=K; is larger than �1=(�1�1). The
di¤erence stems from the learning e¤ect. Whenever � 2 (0; 1); the entrant takes into
account that over time it may learn more about the incumbent�s cost type realization

and make a more knowledgeable decision in the future. Consequently, the entrant

postpones the entry decision and requires higher expected pro�ts to enter.

2.6 Conclusions

We have presented a model of dynamic signaling in a stochastic environment and

showed that such a setup brings novel strategic interactions between the informed and

uninformed players. In our setting the payo¤s (stake in the game) depend on the type

of the informed player and follow a di¤usion process. For a given belief about the

type of the informed player, the uninformed player has incentives to stop the signaling

game and contest the potential payo¤ at a su¢ ciently high stake. On the other hand,
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the informed player has incentives to stop signaling at a su¢ ciently low stake. We

characterize a Markov equilibrium in which the two players choose threshold strategies

on the stake to stop the signaling game. Interestingly, the minimum process of the stake

in the game captures the Bayesian learning of the uninformed player. Based on this

observation, we could use the techniques of optimal stopping of extremum processes.

The dynamic stochastic environment causes the gradual evolution from pooling via

semi-separating to separating outcome.

The prospects of the model can be judged in the best way when our framework

is applied to some concrete signaling situations. The dependence on the minimum

process drives the path-dependence of the outcome of the game. In the limit pricing

application, this feature brings a path-dependent market structure. Speci�cally, timing

of entry into the market will depend on the past realizations of the demand. The model

may be particularly valuable for applications in corporate �nance. In corporate �nance

theory, both asymmetric information and continuous-time dynamics driven by di¤usion

processes play prominent roles. The stochastic signaling game merges these two, so far

independent, modeling environments.

2.A Appendix: Proofs

Proof of Proposition 2.1. For any � 6= 0, using that the solution to the di¤erential
equation for Xt if � = 0 is Xt = x0e

�t, we derive the discount factor

e�rt =

�
x0
Xt

� r
�

: (2.35)

Suppose now that � < 0. Because x decreases deterministically, Player 2 enters

whenever he breaks even in expectations. To see it, �rst note that any threat of Player

2 to enter earlier to induce type revelation of the w type is an empty threat. The w

type would rather not reveal and make Player 2 believe that she is the s type. Second,

for any given � there is no value in waiting as x decreases in time. So Player 2 enters

whenever Xt � U(�t) = K=�t. If Player 1 reveals at some trigger above K, it spurs

an immediate entry. Clearly, Player 1 obtains the highest payo¤ from signaling if she

signals from t = 0 until the time when x reaches K and thus prevents any entry. The

incentive compatibility constraint for such a signaling pattern is satis�ed at t = 0

whenever

�c
r

�
1�

�x0
K

� r
�

�
> �1: (2.36)

The left-hand side represents the cost of signaling when x is between x0 and K (using

(2.35)), and the right-hand side represents the payo¤ if the type is revealed. It is easy to
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verify that if the constraint (2.36) holds at x0, it remains binding for any x 2 (K; x0).
So if �1(x0) > 0, Player 1 would only reveal whenever Xt � L = K. If �1(x0) > 0,

the incentive compatibility constraint does not hold, and Player 1 does not signal at

all, so L = x0. Finally, when either �1(x0) > 0 or �1(x0) < 0, there does not exist

an equilibrium where the w type randomizes between revealing and signaling as she

strictly prefers one of the alternatives.

Proof of Proposition 2.2. Player 2 cannot use a threat to enter early to induce
type revelation of the w type. The w type would rather not reveal and make Player

2 believe that she is the s type. So for any � Player 2 chooses the level of the entry

trigger in x to maximize its expected payo¤ (x0=x)
r=� (�x�K) (using (2.35)). This

yields that Player 2 enters as soon as Xt � Ud(�) = (K=�) r=(r � �).
Player 1 of the w type gains nothing from signaling if she reveals at x 2 (x0; U(1)]

and faces an immediate entry if she reveals at x 2 (U(1); U(�0)). It follows that, if
Player 1 decides for signaling, the most pro�table signaling strategy is to signal until

Player 2 enters at U(�0). The incentive compatibility constraint for such a signaling

pattern is satis�ed at t = 0 whenever

�c
r
�
�

x0
U(�0)

� r
� �
1� c

r

�
> �

�
x

U(1)

� r
�

: (2.37)

The left-hand side represents the cost of signaling when x is between x0 and U(�0)

(using (2.35)), and the right-hand side represents the payo¤ if the type is revealed.

We now show that if the incentive compatibility constraint (2.37) holds at x0 it

will hold at any x 2 (x0; U(�0)): At any x 2 [x0; U(1)] the condition for signaling
equivalent to (2.37) can be written as

�c
r
+

�
x

U(�0)

� r
� �
�1 + c

r

�
+

�
x

U(1)

� r
�

�
�
x

x0

� r
�

"
�c
r
+

�
x0

U(�0)

� r
� �
�1 + c

r

�
+

�
x0
U(1)

� r
�

#
� 0;

where in the last inequality we use (2.37). Similar inequalities can be written for

x 2 (U(1); U(�0)]: This proves that if (2.37) holds then Player 1 would never reveal
until entry. So if �2(x0) > 0, Player 1 would never reveal, or, in terms of a trigger

strategy, reveal whenever Xt � L = 0 (precisely, at any other inaccessible value in

(0; x0)). If �2(x0) < 0, pure strategy pooling is not an equilibrium. The (pure strategy)

separating outcome is an equilibrium, if the weak type does not want to imitate the
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strong type, that is if

�c
r
� �

�
x

U(1)

� r
�

: (2.38)

The left-hand side represents the cost of signaling when Player 2 believes the type

is s and never enters. It follows that if �3(x0) � 0, the unique equilibrium is a pure

strategy of player to reveal at x0. If neither (2.37) nor (2.38) holds, then the w type

cannot put probability one on either pure strategy. The probabilities p and (1 � p)
follow from Bayes rule and the indi¤erence of Player 1 for signaling and revealing at

t = 0.

Proof of Proposition 2.10. The proof closely follows the logic of the arguments
used in the general game. Here we concentrate on the points where some adjustments

are needed. We begin with the derivation of the complete information payo¤s, i.e. the

terminal payo¤s in the signaling game. If �t = 1, then the entrant solves the optimal

stopping problem

W (x) = sup
t���1

E
�Z 1

�

e�r(u�t)Dw
2Xudu� e�r(��t)KjXt = x

�
:

In the continuation region, i.e. for x 2 (0; U(1)), W (x) satis�es the following Bellman-
type di¤erential equation

rW (x) = �xW 0(x) +
1

2
�2x2W 00(x) +Dw

2 x

with the following three boundary conditions W (U(1)) = d2U(1)�K; W 0(U(1)) = d2

and W (0) = 0: Using these in the general solution to the di¤erential equation yields

W (x) and U(1) preceding the proposition. U(0) can be found in a straightforward way.

The value of the incumbent of w type 
(x) satis�es a similar di¤erential equation in

x 2 (0; U(1)); that is

r
(x) = �x
0(x) +
1

2
�2x2
00(x) +Mwx;

subject to 
(U(1)) = Dw
1 U(1)=(r � �) and W (0) = 0: The formula for 
(x) given

above the proposition follows.

Next, following Lemma 2.5, we characterize the condition on U(m) such that m 2
supp (G). Let F (x;m) be the value function of the incumbent of the w type satisfying

the condition that the �rm is indi¤erent between stopping signaling and continuing at

x = m for all m 2 supp(G). In the continuation region, for x 2 (m; ~U(m)) with m
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�xed, F (x;m) must satisfy

rF (x;m) = �xFx(x;m) +
1

2
�2x2Fxx(x;m)�Mpx;

subject to the continuous and smooth �t conditions F ( ~U(m);m) = Dw
1
~U(m)=(r � �);

F (m;m) = 
(m); Fx(m;m) = 

0(m), and the normal re�ection condition Fm(m;m) =

0 for all m 2 supp(G). Solving the system of boundary conditions with the general

solution we obtain

f(�1 � �2) (r � �)
(m)� [(�1 � 1)Mw + (1� �2)Mp]mg
 
~U(m)

m

!�1

+ (�1 � 1) (Mw �Mp)m

 
~U(m)

m

!�2
+ (�1 � �2) (Mw �Mp) ~U(m) = 0:

After di¤erentiating this implicit equation in ~U(m) with respect tom we obtain (2.33).

If in the same problem we use a boundary condition for m = L1 at the upper trigger

as F (U(0); L1) = Dw
1 U(0)=(r � �); we obtain equation (2.34) de�ning L1.

At the next step we derive the best response of the entrant to a continuous strategy

G of the incumbent. Similar to Section 2.4.2 denote the value of the entrant in this best

response problem by V (x;m). V (x;m) must satisfy the following di¤erential equation

rV (x;m) = �xVx(x;m) +
1

2
�2x2Vxx(x;m):

The boundary conditions of continuous and smooth �t are V ( ~U(m);m) = �̂(m)d2 ~U(m)�
K and Vx( ~U(m);m) = �̂(m)d2. The boundary condition at the diagonal (m;m) is

Vm(m;m) = �(m)g(m) (V (m;m)�W (m)). After solving the set of boundary condi-
tions with the solution to the di¤erential equation and reorganizing we obtain (2.32)

in the proposition, where, as before, �1 = (m= ~U(m))�1 � (m= ~U(m))�2 and �2 =

�2(m= ~U(m))
�1 � �1(m= ~U(m))�2.

The reminder of the proof is identical to the proof of Proposition 2.9.
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Corporate Liquidity and Solvency

3.1 Introduction

Financial distress is widely recognized as a key driving force behind corporate �nance

decisions. At the same time, however, the roles and interaction of liquidity and sol-

vency distresses� two sources of �nancial distress� are not well understood. The main

contribution of this chapter is the integration of liquidity and solvency concerns in

a tractable intertemporal model of corporate �nance with implications for valuation,

capital structure, dividend policy, cash holdings, and credit spreads.

We build on the contingent claims models of risky asset valuation introduced by

Black and Scholes (1973) and Merton (1974). Since Leland (1994), an important part

of the literature has focused primarily on the corporate-�nance implications of con-

tingent claims modeling with the central role given to the optimal choice of capital

structure. The standard structural trade-o¤model looks at the optimal choice of lever-

age that balances the tax bene�ts of debt and bankruptcy costs, and in which equity

triggers default when the �rm becomes insolvent. Subsequent extensions of this model

has been successful in analyzing debt maturity, debt renegotiation, recapitalization,

incomplete accounting information, macroeconomic regimes, debt structure and invest-

ment (Leland and Toft (1996), Fan and Sundaresan (2000), Goldstein, Ju and Leland

(2001), Du¢ e and Lando (2001), Hackbarth, Miao and Morellec (2006), Broadie, Cher-

nov and Sundaresan (2007), Hackbarth, Hennessy and Leland (2007), Sundaresan and

Wang (2007)). This framework has been determinative for our understanding of credit

risk and the role of debt in corporate �nance.

Despite these developments, the structural trade-o¤ framework has not been suc-

cessful in treating at least three issues. First, the structural models typically predict
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no role for corporate cash holdings, and thus they feature essentially zero cash. This

omission is remarkable, especially in light of the recent surge of interest in corporate

cash policies (Opler, Pinkowitz, Stulz and Williamson (1999), Almeida, Campello and

Weisbach (2004), Faulkender and Wang (2006), Acharya, Davydenko and Strebulaev

(2007)), which in turn has been driven by a signi�cant increase in cash holdings among

U.S. �rms (Bates, Kahle and Stulz (2008)). Bates et al. (2008) report that an average

U.S. �rm holds 23.2% of its assets in cash� a signi�cant share that remains unac-

counted for by the trade-o¤ theory. It is important to note that the empirical studies

analyzing corporate cash and its increase frequently use the leverage ratio as one of

the key regressors. However, it is intuitively clear that both variables are endogenous,

with the debt level a¤ecting the optimal cash level (via coupon payments, for example)

and cash holdings in�uencing default risk and, thus, debt value. To gain a clear un-

derstanding of the relationship between cash and leverage, we need a structural model

that endogenizes both capital structure and cash policy.

Second, the structural models treat dividends merely as balancing items. This leads

to the unrealistic prediction that all residual cash �ows are paid out to equity im-

mediately. This trivial inactive dividend policy cannot provide any basis for empirical

implications. It is certainly at odds with one of the most pervasive patterns of dividend

payouts, namely, dividend smoothing (Lintner (1956), Brav et al. (2005)). Moreover,

similarly to empirical studies on cash holdings, the empirical literature on dividends

frequently uses leverage as a key independent variable, while we have no satisfactory

theory that explains debt choice and endogenizes realistic (smooth) dividends.

Third, the standard trade-o¤models are also de�cient in the way they treat default.

Following Leland (1994), the standard approach is to study endogenous default that

is triggered by equity holders when the �rm becomes insolvent, i.e., when its equity

value becomes negative. This approach excludes the other common reason for default,

which is that, in the presence of �nancing constraints, the �rm cannot cover its debt

obligations due to liquidity distress. Davydenko (2007) reports that close to 10% of

defaulting �rms are economically solvent but face liquidity distress (with a caveat

that the number might be underestimated due to default costs biasing asset values

downwards) and concludes that "[neither solvency nor liquidity concerns] alone can

fully explain observed default decisions."

In order to tackle these de�ciencies we design a model in which both insolvency

and illiquidity may cause default on debt payments. To construct a corporate envi-

ronment suitable for our purpose, the model must have two characteristics. First, we

must allow for �nancing constraints. Because a �nancially unconstrained �rm will be

able to raise external equity �nancing whenever it remains solvable (Leland (1994)),

the assumption of �nancing constraints is a prerequisite to the relevance of liquidity
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distress. Moreover, we suppose that the �rm�s cash �ow process has two sources of

uncertainty. First, instantaneous cash �ows are subject to liquidity shocks and, sec-

ond, expected instantaneous cash �ow is uncertain. The idea is that the �rm generates

stochastic instantaneous cash �ows that have a �xed mean depending on pro�tability

of the �rm, but the actual pro�tability is not directly observable. Investors form and

update their expectations about the mean cash �ow (or, in other words, about the

�rm�s pro�tability) by using their prior belief about the distribution of cash �ows and

by learning from observing cash �ow realizations. This learning process re�ects the fact

that persistent negative (positive) liquidity shocks translate into decreased (increased)

expected pro�tability. The �rst source of uncertainty captures short-term liquidity dis-

tress. The second source of uncertainty is behind long-term �nancial distress, which

eventually may lead to insolvency. We note that with cash �ows characterized by un-

certain pro�tability but without liquidity shocks, as modeled in the Leland�s (1994)

standard framework, instantaneous cash �ows are predictable and liquidity manage-

ment becomes trivial. In contrast, cash �ows with liquidity shocks, but with a �xed

expected �ow, leave no room for solvency distress and solvency default.

As it turns out in our model, introducing �nancing constraints and liquidity concerns

creates very plausible endogenous cash holding and dividend policies. Without cash

reserves, the �rm very soon becomes illiquid and is forced into default while still

being solvent. This default is ine¢ cient, as it would never have happened without

�nancing constraints. We characterize a (variable) cash level, denoted by M , that

allows the �rm to withstand liquidity shocks up to the point where the equity holders

endogenously trigger solvency default. We show thatM evolves over time and increases

with expected pro�tability. Intuitively, a more pro�table �rm is more solvent and thus

requires a larger cash reservoir to withstand more signi�cant liquidity shocks before it

is eventually declared insolvent. Consistent with empirical evidence, endogenous cash

holdings serve as a bu¤er to absorb losses and as a means to avoid ine¢ cient default

(Opler et al. (1999), Lins, Servaes and Tufano (2007)).

We show that it is optimal for the �rm that maximizes equity value to retain all

earnings if cash is belowM and, subsequently, to pay out dividends that allow the �rm

to maintain cash at (evolving) M . The optimal dividend policy implied by our model

is particularly notable. As in corporate practise, endogenous dividend �ows are smooth

in comparison with cash �ows or earnings (preview Figure 3.3 for an illustration). The

intuition behind the smoothing mechanism is the following. We note �rst that with a

constant target level of cash reserves, dividend �ows are tied to earning shocks. With

cash at the target level, positive earnings are fully distributed and negative earnings

lead to dividend omission. In our model, this is di¤erent. Suppose that the �rm realizes

surprising positive earnings. The �rm that generates high cash �ows is valued more
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(the expectation of future instantaneous cash �ows increases) and thus it requires more

cash to cushion liquidity shocks before it becomes insolvent. Consequently, surprising

positive earnings lead to an increase in optimal cash holdings, requiring more earnings

to be retained instead of distributed to equity. In the case of surprising low earnings,

the expectation of future cash �ows decreases and so does the �rm�s valuation. Thus

the �rm becomes less solvent and the cash reserves needed to fend o¤ liquidity distress

before insolvency decrease. As a result, some cash is released and distributed to equity,

complementing lower earnings. Both positive and negative earning shocks are smoothed

out.

Another notable feature of our model is that the extension with liquidity concerns

reduces the dispersion of the predicted credit spreads. This e¤ect addresses the key

problem with the predictive power of structural models as documented by Eom et al.

(2004), whose empirical study indicates that in the case of relatively high spreads, the

available structural models predict credit spreads that are too high, and credit spreads

that are too low when the predicted spreads are relatively low. In other words, the

predicted spreads are too dispersed. The reason that our model predicts less dispersed

credit spreads is explained as follows. The �nancially constrained �rm needs to raise

the initial cash from external �nancing. We show that the exposure to liquidity distress

and the �rm�s initial cash reserves are lowest for intermediate coupon levels. This is

because there are two e¤ects of coupon rates on optimal cash holdings. On the one

hand, with increasing coupon rates, the �rm�s solvency risk is greater and the relative

role of liquidity concerns decreases. This e¤ect implies lower optimal cash reserves with

higher coupon rates. But on the other hand, if coupon payments become relatively

high, they impose a burden on cash �ows and, thus, increase liquidity risk and optimal

cash reserves. Consequently, the �rm�s cash needs are lowest for intermediate coupon

payments. If external �nancing is subject to the proportional issuance cost, then the

�rm that minimizes this cost will tend to gravitate to the intermediate coupon levels

that minimize the amount of needed cash. Therefore, with liquidity concerns and costly

issuance, we observe less dispersion in the predicted optimal coupons, which translates

into lower dispersion of credit spreads across �rms.

Our analysis also indicates that short-term cash �ow volatility and long-term uncer-

tainty about a �rm�s economic prospects may have very di¤erent e¤ects on �nancial

variables. We show, for example, that cash holdings increase in short-term volatility

and decrease in the magnitude of long-term uncertainty. Credit spreads decrease in

short-term volatility, with the opposite e¤ect is found with increasing long-term un-

certainty. The two sources of uncertainty exhibit di¤erent e¤ects because, essentially,

short-term volatility is related to liquidity concerns, and long-term uncertainty to sol-

vency concerns.
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We �nd that the optimal leverage ratios in our model decrease relative to the bench-

mark model without liquidity concerns. This is a desirable feature because the standard

model has been criticized for predicting excessive leverage. The main force behind this

e¤ect is the inclusion of endogenous cash holdings. Higher cash levels tend to decrease

default risk and thus increase debt value. But it is the equity that is the direct claimant

of cash, and thus marginal cash is directly accounted for in equity value. Consequently,

cash holdings increase the denominator of the leverage ratio (�rm value) more than

its numerator (debt value).

In addition to the literature on contingent claims valuation of risky debt, this chap-

ter relates to the literature on dynamic liquidity management and dividend payout

optimization. Jeanblanc-Picqué and Shiryaev (1995) study a tractable model of a �-

nancially constrained �rm threatened by costly liquidation, where the optimal payout

policy is to retain all earnings if cash reserves are below a certain �xed threshold and

to pay out everything otherwise. The model has been extended to incorporate, among

others, investment and costly �nancing (Décamps and Villeneuve (2007), Løkka and

Zervos (2008), Décamps, Mariotti, Rochet and Villeneuve (2007)). Remarkably, the

literature on modeling dividends has so far not succeeded in producing a model of re-

alistic dividends as observed in corporate practice, particularly, in demonstrating why

�rms smooth dividend payouts. Our model contributes to this literature by showing

that adding uncertainty in the expected value of cash �ow and concerns over solvency

leads the optimizing �rm to smooth dividends over cash �ows.

Our work is also related to the recent work of DeMarzo and Sannikov (2007). In their

model an agent controls the �rm�s expected cash �ows of the �rm through costly e¤orts,

and the initially unknown expected pro�tability is learned over time. They show that

the principle/investor can implement the optimal contract through a payout policy

that is smoothed relative to cash �ows. Both models, Demarzo and Sannikov�s and

ours, share the prediction of smooth dividends and the assumption of cash �ows that

are characterized by uncertain expectations and that are also subject to unpredictable

shocks. The models di¤er, however, as Demarzo and Sannikov�s results are built on the

principle-agent con�ict and focus mainly on payout policy, whereas our results follow

from the trade-o¤ arguments. Moreover, our model covers a broader area of corporate

�nance beyond payout policy (debt coupon, taxes, bankruptcy cost, �otation cost)

and, while building on the standard contingent claims analysis, may be more suitable

for the valuation of corporate securities and the analysis of credit risk. When taken

together, the two models imply that the two sources of uncertainty in cash �ows may

produce smooth dividends in di¤erent modeling setups.

Several recent papers also feature both cash holdings and debt �nancing. Hennessy

and Whited (2005) presents a trade-o¤ model in which �rms use a mix of equity,
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one-period debt and cash balance to cover their �nancing needs. Their model includes

re�nancing and endogenous investment, the features absent in our model. On the

other hand, in Hennessy and Whited (2005) �rms never hold both debt or positive

cash balance at the same time, so in e¤ect cash is simply treated as negative debt. In

their model default is precluded which results in riskless debt and zero credit spreads.

Our model produces formulas for valuation of risky debt and implications for credit

spreads. Moreover, our analysis is focused on the roles of short-term liquidity and

long-term solvency distresses, while the framework of Hennessy and Whited (2005)

does not model and distinguish these forces. A newer paper by Gamba and Triantis

(2008) extends Hennessy and Whited (2005) and allows �rms to hold both debt and

cash holdings at the same time, but the other di¤erences remain. Acharya, Almeida and

Campello (2007) recognize that, as in our paper, the presence of �nancing frictions is a

precondition for a meaningful role of cash holdings in corporate policy. In comparison

to our paper, their motivation for cash is di¤erent and is based on the distinct roles

of cash and negative debt in hedging future investment opportunities against future

cash �ows. The scope of the analysis is more limited than in our paper, where we also

study implications for payout policy and credit risk. Acharya, Huang, Subrahmanyam

and Sundaram (2006) introduce cash holdings into a discrete-time model of risky debt

and solve it numerically. In contrast to our model, their focus is on the role of strategic

debt renegotiation. In general, our analysis with closed-form results is more tractable

than previous models that relied on numerical solutions (except for the simple model

of Acharya, Almeida and Campello (2007)).

In the following section, we set up the model, then in Section 3.3, we analyze a

benchmark case of a �rm without �nancing constraints, concerned only about solvency.

Section 3.4 presents the main model with both liquidity and solvency concerns. In

Section 3.5 we discuss the impact of liquidity concerns on corporate �nance and derive

a set of empirical predictions. Section 3.6 presents our conclusions, and the Appendix

provides the proofs omitted in the main text.

3.2 Setup

3.2.1 Outline and timing

We assume that management behaves in the interest of equity holders, all investors

are risk neutral, and discount cash �ows at a constant risk-free rate r. The model is

set in continuous time with an in�nite horizon; time is indexed as t 2 [0;1):
The original equity holders are �nancially constrained and seek external �nancing

to cover investment cost I and initial cash reservesM0. Investment cannot be delayed.
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Once successfully �nanced, the �rm generates a continuous �ow of earnings, with

cumulative earnings at time t denoted as Xt. The earnings process is the main state

variable and is described in detail in the next subsection. Earnings are subject to

corporate taxes at rate � with full loss o¤set provision. The debt coupon payments are

deducted from earnings for tax purposes, creating the tax bene�t of debt. Corporate

cash reserves earn interests at the risk-free rate r.

The �nancing may come from a combination of equity and perpetual debt that

promises �ow coupon c. The value function of equity is denoted E and that of debt is

D. We allow for both �xed and proportional �otation costs of new issuance, denoted

L � 0 and � 2 [0; 1); respectively. For the sake of simplicity, the costs are the same
for both debt and equity.

The sequence of events and decisions is as follows. At time t = 0 the �rm issues a

combination of equity and debt to maximize the value of the original equity holders.

After that the �rm starts receiving the �ow of earnings and pays out the promised

coupon and corporate taxes. Net pro�ts (or losses) are left at the disposal of the �rm

and are either retained to increase (decrease) cash reserves or are paid out to equity

holders as dividends (in the case of instantaneous losses dividends may be paid out

from positive cash reserves). Cumulative dividends up to time t are denoted by Divt.1

To deal e¤ectively with indeterminate situations, we assume that equity holders pay

out marginal cash holdings whenever they weakly prefer to do so.

When the �rm has no means to cover the current coupon payments it defaults for

the reasons of illiquidity. We call such an event a liquidity default. The �nancial distress

is driven here by short-term factors. The �rm may also, acting in the interest of equity

holders, voluntarily default if the value of equity falls below zero. In this case, the �rm

is not pro�table enough for the equity holders to run it and pay the debt coupons.

Then, the �rm faces long-term distress; we refer to this type of default as a solvency

default.

In the event of either type of default, the �rm is liquidated, which is costly. The

debt claims have the absolute priority in the case of default and the liquidation value

is �A; � 2 (0; 1). Here 1� � is the proportional liquidation cost and A is the value of
the all-equity �rm at the moment of default.2

1We choose to refer to the payouts to equity holders as dividends but the whole model applies to stock repurchases
as well.

2Following the standard in the literature, we simplify the analysis by assuming that the �rm is not re�nanced with
an optimal capital structure after default.
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3.2.2 Earnings and uncertainty

The �rm generates a stochastic �ow of earnings before interest and taxes (EBIT):

dXt = �dt+ �dZt; (3.1)

where � is the mean of EBIT, � is its volatility and Z is a standard Brownian motion.

All parties (insiders and outsiders) have the same information at each time t. They

observe the cumulative EBIT process fXs; s � tg that generates a �ltration fFtg.
There are two sources of uncertainty. First, instantaneous �ows are subject to Brownian

shocks dZt, which represent short-term liquidity shocks. Second, the pro�tability of

the �rm is uncertain, which is represented by the fact that the true mean � is ex ante

unknown to all parties. We assume that � is �xed and can take either of the two values

�L or �H ; with �L < �H : All parties share a common prior expectation �0 about �,

with �0 2 (�L; �H) :
The two sources of uncertainty serve to capture the two main sides of corporate

�nancial distress. The unpredictable immediate earnings (due to Brownian shocks)

bring in the short-term liquidity risk. The uncertain drift � puts the �rm in a position

to undergo solvency distress and, ultimately, solvency default.

As time evolves, more information becomes available and the parties update their

expectation of mean earnings. The current set of information generated by Xt is de-

scribed by Ft and is used in a Bayesian fashion to update the conditional expectation
to

�t = E [�jFt] :

We can use the optimal �ltering theory to �nd the law of motion of the posterior ex-

pectation variable. Let us introduce an innovation process Z as the di¤erence between

the realized and expected earnings, de�ned by the di¤erential equation

dXt = �tdt+ �dZt: (3.2)

The process Z is a Brownian motion adapted to �ltration Ft. Note that Z di¤ers from
Z (which is not observable by the parties and not adapted to Ft). Equation (3.2)
describes the dynamics of X in terms of observables.

A version of Theorem 9.1 in Liptser and Shiryaev (2001) then yields that the pos-

terior expectation of the mean earnings level evolves as

d�t =
1

�
(�t � �L) (�H � �t) dZt: (3.3)
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Note �rst that the posterior expectation process is a martingale as it incorporates all

predictable information. Second, the volatility of � is inversely related to �; re�ecting

the fact that expectations adjust more rapidly if the noise term in the earnings process

is small (the earnings signals are informative). Finally, learning slows down as evidence

accumulates in favor of one state and � is close to either �L or �H .

3.2.3 Relation to existing literature

The main framework of our model closely follows the standard in the literature on

contingent claims modeling of capital structure based on the trade-o¤ theory. The

distinguishing feature of our model is the speci�cation of the cash �ow process in

(3.1), which, with the use of �ltering theory, can be rewritten as (3.2) and (3.3).

The motivation for our modeling choice is three-fold with the �rst two reasons stem-

ming from the need to expand and connect the two areas of literature related to our

analysis. First, cash �ows in our speci�cation are subject to unpredictable liquidity

shocks to introduce non-trivial cash and dividend policy. This is similar to in liquidity

management models that analyze optimal dividend policy and predict precautionary

cash reserves that cushion liquidity shocks (Jeanblanc-Picqué and Shiryaev (1995)).

Technically, cumulative cash �ows are modeled here as a stochastic process following

an arithmetic Brownian motion. As a result, instantaneous cash �ows are increments

of the process and are subject to Brownian shocks.3 In contrast, the structural de-

fault literature typically models instantaneous cash �ows as the level of a geometric

Brownian motion, in which case, cash �ows are predictable and liquidity management

becomes trivial.

Second, we also allow for the drift of the arithmetic Brownian motion to be uncer-

tain to enable endogenous solvency default. In the models based on a simple arithmetic

Brownian motion with constant drift, the expected pro�tability is constant, and, given

�xed debt obligations, the �rm is always either solvent or insolvent, erasing the en-

dogenous default from the model. With our assumption of uncertain drift, the �rm

may become insolvent, in the sense that it is not pro�table enough for equity holders

to cover its debt obligations (as in Leland (1994), Leland and Toft (1996) and others).

Third, it is analytically convenient to assume cash �ows following the stochastic

di¤erential equation (3.1). Speci�cally, we obtain closed-form solutions for corporate

securities values, optimal cash reserves, dividends and a default threshold. The same

stochastic environment has been successfully adapted in di¤erent contexts byMoscarini

3 Instantaneous cash �ows have also been modeled as increments of an arithmetic Brownian motion in the continuous-
time agency-based models of corporate �nance (DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin and Rochet
(2007)).
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(2005) to study job matching in labor markets and Keppo, Moscarini, and Smith (2008)

to analyze the value of and demand for information.

3.3 Solvency default without liquidity concerns

For the sake of comparison we start with a benchmark. Following the framework in-

troduced by Leland (1994) we assume in this section that the �rm is not subject to

liquidity default. The endogenous solvency default is triggered by equity holders when

equity value becomes negative. The equity holders are willing and able to inject any

funds necessary to keep operations running whenever the equity value is positive. Fol-

lowing Leland (1994), secondary equity �nancing proceeds are not subject to �otation

costs. As in numerous contingent claims models of capital structure, a closed-form

solution is available under the simplifying assumption that debt is issued only once at

the initial date (Leland (1994), Leland and Toft (1996), Fan and Sundaresan (2000),

Du¢ e and Lando (2001), Miao (2005), Hackbarth et al. (2007), Sundaresan and Wang

(2007)).4 Accordingly, we assume the following.

Assumption 3.1 New debt �nancing is constrained to time t = 0.

Assumption 3.2 Equity �nancing is costless beyond t = 0.

Under these assumptions the �rm is without liquidity concerns and there is no room

for cash holdings because any liquidity needs can be covered by an injection of equity

�nancing. We use subscript u with the value functions in this section to denote the

�nancially unconstrained case. For brevity, we suppress the dependence of the value

functions on other parameters except for �, but most notably they also depend on

coupon c.

We �rst consider the value of the �rm if it were �nanced fully by equity. If we assume

that �L � 0;5 then the �rm is always pro�table and its value is simply equal to the

expected discounted future after-tax cash �ows:

Au(�) = E
�Z 1

0

e�rt (1� �) dXtj�0 = �
�
= (1� �) �

r
:

The liquidation value that debt holders receive in the event of default is �Au(�); with

1� � representing the proportional liquidation cost.

4 In an alternative and more complex setup, Goldstein et al. (2001) allow for upward leverage adjustments.
5The alternative assumption that �L < 0 would introduce an optimal liquidation of the �rm even in the absence

of debt �nancing. In this case, Au(�) equals the expected discounted future after-tax cash �ows up to the time of
liquidation, which is optimally chosen by the equity holders. We omit this minor extension, which adds little to our
model, while slightly raising the complexity of expressions.
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At the next step we �nd the values of the claims held by the debt and equity holders.

These values depend on the �ows to the claimants and the default time. The optimal

default time, chosen by the equity holders, is the �rst time expected pro�tability �

falls to some threshold ��u.

The �rm issues perpetual debt that pays a constant continuous coupon at rate

c per unit of time. It follows from the standard arguments and Itô�s lemma that,

before default, debt value Du satis�es the following ordinary Bellman-type di¤erential

equation:

rDu(�) =
1

2�2
(�� �L)

2 (�H � �)
2D00

u(�) + c; (3.4)

subject to

Du(�
�
u) = �Au(�

�
u); Du(�H) =

c

r
:

This system states that if the �rm is not in default, the required rate of return on the

debt equals the sum of the coupon �ow and the expected increase in the value of debt.

At ��u the �rm defaults and the debt is valued at �Au(��u): The boundary condition

at �H ; which is an absorbing state for �; asserts that Du is bounded and equal to the

risk-free value.

At each period t before default, the equity receives the expected �ow of (1� �) (�t � c),
which is the expected free cash �ow after taxes and coupon payments. As in general

��u < c (con�rmed below in (3.8)), this means that non-negative dividends are ex-

pected as long as �t � c and that in periods with �t < c; equity receives "negative

dividends" in expectation. The negative distributions are typically interpreted in this

type of models as equity issuances. This implies that, unrealistically and inconsistently

with evidence on costly equity issuance, the �rm resorts to frequent external, especially

when close to default. We address this issue in our main model in Section 3.4, below.

Within this setting, the equity value Eu must satisfy the following di¤erential equa-

tion:

rEu(�) =
1

2�2
(�� �L)

2 (�H � �)
2E 00u(�) + (1� �) (�� c) ; (3.5)

subject to

Eu(�
�
u) = 0; Eu(�H) = (1� �)

�� c
r
:

This equation and the boundary conditions can be interpreted similarly to the ones

for debt valuation.

Having de�ned equity and debt values, we can calculate total levered �rm value Fu;

which, by de�nition, equals the sum of equity and debt:

Fu(�) = Eu(�) +Du(�): (3.6)
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The equity holders choose the default trigger ex post� after the initial �nancing.

This means that they maximize equity value Eu over ��u, which is equivalent to setting

the smooth pasting condition on Eu(�) at ��u:

E 0u(�
�
u) = 0: (3.7)

The condition requires the optimal value function to be smooth at the default trigger,

and indeed, it can be shown that it corresponds to the �rst order condition from

maximization of Eu(�) with respect to ��u:

The optimal capital structure is determined at the issuance point with the choice

of coupon c, which maximizes the value of the initial equity holders (to indicate the

dependence on c directly, we add it as a parameter to the value functions in the

remainder of this section). The �rm seeks to �nance the investment cost I with debt

and new equity. If the new equity holders obtain a fraction � of the equity and if the

proportional and �xed issuance costs are � and L then the following �nancing identity

holds

I = (1� �) (Du(�0; c) + �Eu(�0; c))� L;

which can be rewritten as

(1� �)Eu(�0; c) = Du(�0; c) + Eu(�0; c)�
I + L

1� � :

The left-hand side represents the value of the initial equity holders. Hence, maxi-

mization of the left-hand side is equivalent to maximization of Eu(�; c) +Du(�; c). It

then follows, using (3.6), that the optimal choice of coupon c (and thus of the initial

leverage) by the initial equity holders is equivalent to maximizing of Fu(�0; c):

We summarize the �ndings of this section in the following proposition.

Proposition 3.1 Suppose Assumptions 3.1 and 3.2 hold and �L � 0. The optimal

solvency default is characterized by the �rst time � is at or below ��u given by

��u =
�L�H + [(� � 1)�H � ��L] c

(1� �)�L + ��H � c
: (3.8)

If � � ��u; the values of equity Eu(�), debt Du(�) and total �rm Fu(�) are given by

Eu(�) = (1� �)
�� c
r

�
�
�� �L
��u � �L

�1�� �
�H � �
�H � ��u

��
(1� �) �

� � c
r

; (3.9)

Du(�) =
c

r
+

�
�� �L
��u � �L

�1�� �
�H � �
�H � ��u

�� �
�Au(�

�
u)�

c

r

�
; (3.10)
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and

Fu(�) = (1� �)
�

r
+�
c

r
�
�
�� �L
��u � �L

�1�� �
�H � �
�H � ��u

�� h
(1� �)Au(��u) + �

c

r

i
; (3.11)

where

� =
1

2
+
1

2

s
1 +

8r�2

(�H � �L)
2 > 1: (3.12)

The optimal coupon rate c� maximizes Fu(�0) over c.

The closed-form expressions for the value functions are interpreted as follows. The

value of equity (3.9) is the sum of the present value of perpetual distributions to equity

and the present value of cash �ows lost at default. The value of risky debt in (3.10)

consists of two terms. The �rst term, c=r, is the value of risk-free perpetual debt. The

second term re�ects the impact of default risk and equals the present value of cash

�ows lost by debt in case of default. Total �rm value (3.11) consists of three elements:

the �rst one is the present value of the perpetual �ow of net earnings, the second is

the present value of the tax bene�ts of debt, and �nally, the negative term corrects for

the present value of the cash �ows lost at default.

Equation (3.8) implies that, in general, ��u < c (see also the discussion below Propo-

sition 3.5 and Figure 3.2). This means that, as in other structural default models

following Leland (1994), the equity holders expect negative cash �ows when close to

default, yet they prefer to keep the �rm running. Moreover, it is worth noting that

neither the proportional �otation cost � nor the �xed one L in�uences the optimal

choice of c.

3.4 Model with liquidity concerns

Following the standard in the related literature, in the previous section we assumed

that, after the initial issuance, equity could be issued frequently and without cost

and that the debt �otation costs (or other implicit concerns) would prohibit debt re-

issuance. Empirical evidence clearly indicates the opposite: the issuance costs of debt,

both �x and variable costs, are signi�cantly lower than those of equity (Altinkiliç

and Hansen (2000), Leary and Roberts (2005)). Leary and Roberts (2005) further

document that new equity is issued less frequently than debt. Clearly, the assumption

of the benchmark model, that new equity serves to cover current coupon payments in

the case of insu¢ cient earnings, is di¢ cult to reconcile with this evidence.

To address this issue in a tractable way, we restrict the �rm�s access to external

�nancing. After the initial issuance, which is subject to �xed and proportional costs,



54 3. Corporate Liquidity and Solvency

the �rm cannot raise additional capital. This simplifying assumption, which facilitates

the analysis with closed-form solutions, can be justi�ed by the �xed issuance cost

and also by the same convention that excludes secondary debt issuance in numerous

contingent claims models of capital structure (see the references above Assumption

3.1). For further reference we introduce the following assumption.

Assumption 3.3 New external �nancing is constrained to time t = 0.

As in the benchmark case, debt holders� claims have absolute priority over the

productive assets in the case of default. However, the �rm now also holds liquid non-

productive assets, namely cash reserves, and we assume that these are distributed to

equity just before default. We abstract from any possible contracts that might limit

such distributions as they are not central to our model.6 This assumption simpli�es the

analysis and, moreover, as we show below, in most cases the optimizing �rm reaches

the endogenous trigger with zero cash holdings.

3.4.1 Cash and dividend policy

At each time before default the �rm generates stochastic EBIT dXt and pays out tax-

deductible debt coupon cdt. The dynamics of earnings net of taxes and debt obligations,

denoted by Yt; is thus

dYt = (1� �) (dXt � cdt) = (1� �) (�t � c) dt+ (1� �)�dZt: (3.13)

Without cash reserves and with �nancing constraints, the �rm becomes illiquid and

is forced into default as soon as dXt < cdt: In our model, positive cash reserves serve

as a means to decrease liquidity risk. Let us denote cash reserves at time t by Mt.

Cash reserves change at each time by the instantaneous interest earned on current

cash holdings and the di¤erence between net earnings and dividend payout:

dMt = rMtdt+ dYt � dDivt: (3.14)

In general, the higherMt; the lower is the risk of liquidity distress. Of special interest

is the level of cash holdings that allows the �rm to avoid liquidity default altogether.

The next proposition characterizes this level of cash reserves.

6 In any case, such covenants may be di¢ cult to enforce as the equity holders would try to preempt with the cash
distributions.
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Proposition 3.2 Let M be the lowest level of cash reserves that allows the �rm to

avoid liquidity default under Assumption 3.3. M(�) is given by

M(�) = (1� �)
�

�2

�H � �L
ln

�
�� �L
�H � �

�H � ��
�� � �L

�
+max

�
0;
1

r

�
c� �L + �H

2

���
:

(3.15)

The proof, given in the Appendix, relies on the requirement that the dividend process

Divt is non-decreasing. This requirement implies a set of ordinary di¤erential equa-

tions, with (3.15) being the minimal solution satisfying these equations.7

Before interpreting the expression for M in (3.15), we �rst determine the dividend

stream that is implied by the cash policy Mt = M(�t). First, by Itô�s lemma the

dynamics of M is

dM t = (1� �)
�
�t �

1

2
(�H + �L)

�
dt+ (1� �)�dZt: (3.17)

Then using (3.14) and (3.17), if Mt =M(�t) the dividend stream is given by

dDivt = rM tdt+ dYt � dM t =

�
rM t + (1� �)

�
�H + �L

2
� c
��
dt: (3.18)

Note that with (3.15), we can write dDivt as a function of �t only and not directly of

M t.

Equation (3.15) implies that M increases with � and decreases with ��. This is

because, if the current � is closer to default at ��, the liquidity shocks to be absorbed

by cash before endogenous solvency default become smaller. The e¤ect of the coupon

rate on cash holdings is twofold. The main e¤ect works for all levels of c indirectly

via ��. A higher c means earlier default or, equivalently, higher �� (see (3.29) below)

and thus lower M . The direct e¤ect results from the last term of (3.15). Thus, it

7An alternative and instructive way to see the result is to think of Mt as the level of cash that is su¢ cient to
withstand a shock in Zt that brings �t to �

� (irrespective of how quickly the shock is realized). For brevity, we focus
here on the case of c � 1

2
(�H + �L). Equation (3.14) then implies that M(�t) = (1� �)� (Zt � Z�), where Zt �Z� is

the shock that brings �t to default trigger �
�. To characterize Zt � Z�; let us de�ne �t = f(�t) =

�2

�H��L
ln

�t��L
�H��t

and �� = f(��) (note that �t = �� if and only if �t = �
�). Applying Ito�s lemma to �t; we have

�t0 = �t +

Z t0

t

1

2�2
(2�s � �H � �L) ds+

1

�
(Zt0 � Zt) :

This equation also holds for �t0 = �
� in particular. So the shock that brings �t to �� (and also �t to �

�) is Zt � Z� =
� (�t � ��). It follows that M(�t) must satisfy

M(�t) = (1� �)� (f(�t)� f(��)) = (1� �)
�2

�H � �L
ln

�
�� �L
�H � �

�H � ��

�� � �L

�
; (3.16)

which con�rms (3.15) in the proposition for the case c � 1
2
(�H + �L). To obtain the additional term in (3.15), one

must impose the condition that the implied dividend payout is not negative for all �t > �
� (which is not the case under

(3.16) if c > 1
2
(�H + �L)).
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FIGURE 3.1. Target cash M as a function of coupon c: The parameter values are: �L = 0;
�H = 0:2; � = 0:2; r = 0:06; � = 0:15; � = 0:6; and �0 = 0:1.

works only if c > 1
2
(�H + �L) and results in M increasing in c. If c is high relative

to the expected pro�tability, then higher cash holdings are required to complement

the operational cash �ows in meeting high debt obligations. Figure 3.1 illustrates the

e¤ects of the coupon on M (the parameter values are as calibrated in Section 3.5).

The total e¤ect of changes in the coupon is such that cash holdings decrease in c for

small c and increase if c exceeds 1
2
(�H + �L).

As M is the lowest level of cash reserves that allows the �rm to avoid liquidity

default, it is not surprising that M = 0 as � reaches �� in case c is not too large

(c � 1
2
(�H + �L)). If c is larger than

1
2
(�H + �L); then high coupon payments require

positive cash holdings at all times before default. Note that the additional term in

(3.15) when c > 1
2
(�H + �L), that is

1
r

�
c� 1

2
(�H + �L)

�
, makes the dividend rate in

(3.18) equal to zero at default.

Suppose that the dividend-cash policy aims at decreasing the risk of liquidity default.

We later verify that this is indeed optimal if the �rm�s objective is to maximize equity

value. Intuitively, this suggests that all cash �ows are retained if the �rm is at risk of

liquidity default and that dividends are paid out as long as such distributions do not

bring in liquidity risk. To characterize this proposed dividend policy more formally, let

us denote it by Div�t at each time t. If, for a given �t; the cash reserves are below the

target level M; the �rm retains all the earnings:

dDiv�t = 0 if Mt < M(�t): (3.19)
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If the cash level is at M(�t), the payout policy is such that this level is maintained as

�t �uctuates. This is, according to (3.18):

dDiv�t =

�
rMt + (1� �)

�
�H + �L

2
� c
��
dt if Mt =M(�t): (3.20)

If the cash level exceeds M(�t), the residual is paid out:

dDiv�t =Mt �M(�t) if Mt > M(�t): (3.21)

Before proving that this cash-dividend policy is optimal for equity holders, we

demonstrate an intuitive property of optimal equity value that states that the par-

tial derivative of the optimal equity value E(�;M) with respect toM is larger than or

equal to one. This is intuitive because any extra cash holdings can be paid out immedi-

ately as dividends, and the optimal dividend policy followed again. To see it, note that

for any cash level M; equity value E(�;M) of the �rm following the optimal dividend

policy must be at least equal to the sum of optimal equity value with M ��M cash,

E(�;M � �M); and �M in a dividend payout: E(�;M) � E(�;M � �M) + �M .
After rearranging the inequality and letting �M go to zero, we obtain

EM(�;M) � 1: (3.22)

We can state the following about the dividend policy.

Proposition 3.3 The payout policy (3.19)-(3.21) maximizes equity value.

Intuitively, the proposed payout policy is optimal because it directs the retention of

all cash �ows whenever marginal cash holdings decrease the probability of illiquidity

(so that the cash withheld in the �rm is worth more than its face value, EM(�;M) > 1)

and the payout of excess cash �ows otherwise (when marginal cash holdings in the �rm

are equal to their face value, EM(�;M) = 1).

3.4.2 Valuation of corporate securities

The values of corporate securities depend on a large number of factors, among them

the initial cash level �nanced by external investors. To obtain closed-form solutions,

we assume that the �rm issues securities su¢ cient to cover cash holdingsM(�0), which

allow the �rm to avoid liquidity risk.

Assumption 3.4 M0 =M(�0):



58 3. Corporate Liquidity and Solvency

We note that this assumption is partially validated by Assumption 3.3, which

constrains the availability of external �nancing to the initial date. Without addi-

tional external �nancing, all the required cash is raised with the initial issuance.8

If M0 =M(�0); then by Proposition 3.3 the optimal dividend policy is given in (3.20)

for all �t > �
�. This payout policy implies that Mt = M(�t) for all �t > �

�. In other

words, under Assumption 3.4, the �rm holds cash reserves at the levelM(�t) until the

endogenous solvency default and is hedged against liquidity risk.

Under our assumptions, debt value D equals the present value of continuous coupon

payments up to the time of default as soon as �t reaches �
�. D(�) must satisfy the

following di¤erential equation:

rD(�) =
1

2�2
(�� �L)

2 (�H � �)
2D00(�) + c:

At default debt holders receive a fraction � of the EBIT-generating technology. That

is, following the earlier literature, we simplify the �nancing issues after default. This

implies that the debt holders recover �A(��) at default, where A(�) = � (1� �)�=r if
�L � 0. Thus, the di¤erential equation for D is coupled with the following boundary

conditions:

D(��) = �A(��); D(�H) =
c

r
:

With the assumptions of the present model, up to default at the �rst time �t falls

to ��; the equity receives a �ow of dividends equal to

dDivt = a1 ln

�
�� �L
�H � �

�H � ��
�� � �L

�
dt+ a2dt;

where

a1 =
(1� �) r�2
�H � �L

and

a2 = (1� �)max
�
0;

�
�L + �H

2
� c
��

:

Then it follows from the standard arguments that equity value E must satisfy the

ordinary di¤erential equation:

rE(�) =
1

2�2
(�� �L)

2 (�H � �)
2E 00(�) + rM(�) + a1 ln

�
�� �L
�H � �

�H � ��
�� � �L

�
+ a2;

(3.23)

8Note that with a su¢ ciently high variable issuance cost �, the �rm might prefer issuing securities for less than
I +M(�0) (but more than I) and collecting the remaining cash up to M from the retained earnings. The �rm would
balance the cost of exposure to liquidity risk and the bene�t of cheaper source of capital. We assume this possibility
away to obtain closed-form solutions.
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subject to the following boundary conditions:

E(��) =M(��); E(�H) = (1� �)
�H � c
r

+M(�H): (3.24)

As usual, the left-hand side of (3.23) re�ects the required rate of return per unit of time

for holding equity. The right-hand side represents the expected change in equity value

plus the dividend �ow per unit of time. The boundary condition at �� is in line with

the assumption that the equity holders withdraw non-productive liquid assets prior to

default. The boundary condition at �H ensures that E(�H)�M(�H) is bounded and
equal to the risk-free value of free cash �ows.

Solving the respective di¤erential equations with the boundary conditions, we obtain

closed-form solutions for both equity and debt values. The following proposition shows

these results.

Proposition 3.4 Suppose Assumptions 3.3 and 3.4 hold. Then for a given �� and
� � �� debt and equity value satisfy

D(�) =
c

r
+

�
�� �L
�� � �L

�1�� �
�H � �
�H � ��

�� �
�A(��)� c

r

�
; (3.25)

and

E(�) =M(�) + (1� �) �� c
r

�
�
�� �L
�� � �L

�1�� �
�H � �
�H � ��

��
(1� �) �

� � c
r

; (3.26)

with � given in (3.12).

Equation (3.25) implies that, for a given coupon c and default trigger ��; the debt

value is the same as in the benchmark case reported in equation (3.10). This is not

surprising as the liquidity risk in the present model is e¤ectively hedged by appropriate

cash holdings. Nevertheless, liquidity concerns may a¤ect the optimal coupon and

default and thus indirectly alter debt value.

Combining (3.9) and (3.26) reveals that equity value equals Eu(�) +M(�); which

is the equity value of the �rm without the liquidity constraints given in (3.9) plus

the cash stock. By holding cash reserves M(�); the �rm is hedged against liquidity

distress and thus the value of its productive assets is equal to those of the �nancially

unconstrained �rm. In addition, equity holders hold the full rights to the cash holdings

(which they nevertheless prefer to retain in the �rm) and thus M(�) augments their

value. The cash in the �rmM(�) is worth exactlyM(�) to the equity holders because

the interest gained on cash equals the investors�discount rate.
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By de�nition, the levered �rm value equals the sum of the equity value and the debt

value. From Proposition 3.4, we obtain that if �L � 0; it holds that

F (�) = E(�) +D(�) =M(�) + (1� �) �
r

+ �
c

r
�
�
�� �L
�� � �L

�1�� �
�H � �
�H � ��

�� �
(1� �) (1� �) �

�

r
+ �

c

r

�
: (3.27)

Equation (3.27) demonstrates that the �rm value is a sum of four components. It

consists of the face value of cash holdings plus the present value of earnings net of

taxes plus the present value of tax shield of debt minus the probability-adjusted present

value of cash �ows lost at default. Using (3.6), F (�) can be written as Fu(�) +M(�).

That is, the levered �rm with liquidity concerns and with cash holdings that hedge

liquidity risk equals the value of the �rm without liquidity concerns plus the face value

of the cash.

3.4.3 Default and optimal capital structure

Under Assumptions 3.3 and 3.4, the �rm uses cash reserves to cushion liquidity shocks.

Then the timing of default is endogenously selected by the equity holders. Default takes

place at the moment that the �rm is not solvent enough. The default policy takes the

form of a lower threshold on �, which maximizes equity value. This is achieved at ��;

which satis�es the smooth pasting condition:

E 0(��) =M
0
(��): (3.28)

(Compare it with the smooth pasting condition (3.7) and the boundary condition for

E at � = �� in (3.24) in the present model.)

The initial equity holders using new equity and debt seek to �nance the investment

cost I and the initial level of cash reserves M(�0; c) (to stress the dependence on c;

we add parameter c to cash and value functions in the rest of this section). If the new

equity holders obtain a fraction � of equity and if the proportional cost of issuance

of both debt and equity is � and the �xed cost of issuance is L; then the following

�nancing identity holds:

I +M(�0; c) = (1� �) (D(�0; c) + �E(�0; c))� L:

This can be rewritten as

(1� �)E(�0; c) = D(�0; c) + E(�0; c)�
M(�0; c)

1� � � I + L
1� � :
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FIGURE 3.2. Optimal default trigger �� as a function of debt coupon c for various values of
� with �1 < �2 < �3 and �3 !1. � increases in � and r and decreases in (�H � �L).

The left-hand side represents the value to the initial equity holders. It follows that the

optimal c that maximizes (1� �)E(�0; c); also maximizes the right-hand side, and
the objective function can be expressed as (3.30) in the next proposition. In the same

proposition we also present the solution to the smooth pasting condition (3.28) for the

optimal default trigger.

Proposition 3.5 Under Assumptions 3.3 and 3.4 the optimal solvency default is char-
acterized by the �rst time that � is at or below ��; given by

�� =
�L�H + [(� � 1)�H � ��L] c

(1� �)�L + ��H � c
: (3.29)

The optimal coupon rate c� maximizes

F (�0; c)�
M(�0; c)

1� � (3.30)

over c.

Figure 3.2 presents the main properties of the optimal default trigger function (3.29).

�� is a convex increasing function of c. It is intuitive that �� is equal to �H (�L) with

coupon equal to �H (�L). This is because, with c = �H ; the equity holders expect

losses for all � and thus default immediately with �� = �H : When c = �L; the �rm

generates positive expected pro�t net of coupon for all � except at the absorbing state

at �L, and thus the equity value is maximized with a default at �
� = �L: For the

intermediate values of c in (�L; �H); the default threshold falls below the coupon rate;

in the �gure, �� lies below the diagonal �� = c. This di¤erence between the expected
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earnings at default and coupon represents the value of waiting to default. Because of

this value, the equity holders prefer to keep the �rm running despite that the coupon

obligations exceed the expected earnings.

As illustrated in Figure 3.2, default triggers �� increase in �: By Equation (3.12), �

depends on the earnings signal quality (that is on � and on �H ��L) and the discount
rate. It follows that the default trigger increases with the noisiness of the earnings

signals (higher � or smaller �H ��L) and with the level of discount rate r. Intuitively,
with noisy signals and high r; the value of postponing default in order to wait for new

information decreases.

�� in equation (3.29) is the same as ��u in the benchmark case reported in (3.8).

Since the �rm is e¤ectively hedged against liquidity distress, it makes sense that the

solvency default trigger that maximizes equity value is the same as for the �nancially

unconstrained �rm. Interestingly, this is despite the precautionary cash reserves that

need to be held in the �rm. However, the isomorphism of �� and ��u means only that

the default policy in both cases is the same if coupon obligations are the same. The

second part of Proposition 3.5 implies that in general the optimal coupons di¤er in

the two cases with and without liquidity concerns.

Using (3.27), the objective function (3.30) can be rewritten as

Fu(�0; c)�
�

1� �M(�0; c): (3.31)

Comparing this objective function with the one of the �nancially unconstrained �rm

(which was Fu(�0; c)), we note the major di¤erence between the cases. Whereas the

coupon choice in the benchmark analysis was independent of any issuance cost, the

optimal coupon of the constrained �rm is dependent on the proportional issuance cost

�. This is because now the capital structure choice interferes with the �rm�s �nancing

needs: the �rm needs to raise capital to cover the initial cash holdings, and the required

initial level of cash depends on the coupon rate itself. As raising additional units of

cash is costly due to the variable issuance cost, the �rm�s optimal choice of c also

takes into account its impact on the initial amount of cash to be raised. Recall from

Figure 3.1 that M is decreasing in c for low levels of c and increasing for high c.

It follows that to minimize the �otation cost of raising the initial cash reserves, the

constrained �rm issues more debt than the unconstrained �rm if the unconstrained

�rm�s optimal coupon is relatively low (below (�L + �H)=2). The opposite happens if

the unconstrained �rm�s optimal coupon is high (above (�L + �H)=2).

We note that, in the absence of �nancing frictions in the sense of zero variable cost of

issuance (� = 0), the objective function simpli�es to Fu(�0; c) and is exactly equivalent
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to the problem in the case without liquidity constraints. Moreover, the �xed cost of

issuance does not matter for the choice of the optimal c.

3.5 Impact of liquidity concerns on corporate �nance

In this section we analyze the implications of our model with liquidity concerns along

two dimensions. First, we discuss the main di¤erences between the standard trade-o¤

model and our model with both solvency and liquidity concerns. Second, we examine

a set of empirical implications of the extended model.

Changes in exogenous parameters typically a¤ect a number or all endogenous vari-

ables simultaneously. We analyze the comparative statics implied by our model us-

ing the base case as a reference level. The base case parameter values are the fol-

lowing: �L = 0; �H = 0:2; � = 0:2; r = 0:06; � = 0:15; � = 0:6; � = 0:1; and

�0 =
1
2
(�H + �L) = 0:1. The initial value of the expected cash �ows is the mean of

the binomial distribution. The volatility of cash �ows is chosen such that the (initial)

coe¢ cient of variation (that is, �=�0) is equal to 2. This corresponds to the annualized

coe¢ cients of variations reported in Irvine and Ponti¤ (2008)� they are equal to 1:59

for cash �ows and 2:42 for earnings. Our choice of the proportional �otation cost of

� = 0:1 is above the parameter values estimated in some other studies (Gomes (2001),

Hennessy and Whited (2005)), and is justi�ed by our focus on �rms that are fully

�nancially constrained beyond the initial issuance. The values of the risk free rate r,

the tax advantage of debt � , and the recovery rate � closely correspond to the recent

calibration exercises; see, for example, Hackbarth et al. (2006).

3.5.1 Cash holdings

The structural models of capital structure and credit risk following Leland (1994)

have typically assumed away a meaningful cash policy. As in our benchmark analysis

in Section 3.3, the equity holders are assumed to have no �nancial constraints and

equity issuance is costless. Consequently, any necessary funds are provided by new

equity issuance as long as the equity holders are willing to continue operating the

�rm. This leaves the cash policy irrelevant.

In contrast, our model predicts a non-trivial role for cash holdings. The �rm holds

a positive amount of cash to meet debt coupon payments in case these obligations

exceed current earnings. In other words, with costly external �nancing, cash reserves

serve as a cushion to prevent short-term liquidity distress. Our model further speci�es

that cash reserves are not meant to cover any losses. If the �rm persistently generates

losses for a longer time period, the (expected) pro�tability decreases and, ultimately,
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the �rm becomes insolvent. As a result, the optimal policy prescribes cash holdings

that are a function of the expected earnings and are su¢ cient to cover liquidity shocks

up to the point of endogenous default (the target level of cash is given by equation

(3.15)).9

It is worth noting that the cash ratio (de�ned as cash holdings divided by total �rm

value) that is implied by our model is in line with cash holdings observed among U.S.

�rms. With our base case parameters, the cash ratio equals 20:6%. This value is similar

to the average cash ratio of 23:2% documented for a sample of U.S. �rms in 2006 by

Bates et al. (2008).

The model predicts that cash holdings of �nancially constrained �rms are strongly

correlated with cash �ows (compare (3.17) and (3.2)), while cash holdings of uncon-

strained �rms are not systematically related to cash �ows. This implication provides

an alternative interpretation of the evidence of Almeida et al. (2004) that shows the

same pattern of cash �ow sensitivity of cash holdings. Almeida et al. (2004) explain

their �ndings and precautionary cash holdings by the �rms�need to fund future invest-

ments while facing �nancing constraints. In contrast, in our fully dynamic model, a

constrained �rm uses positive cash �ows to build up cash (and uses cash to cover neg-

ative cash �ows) in order to avoid ine¢ cient default in the future. Our interpretation

seems more in line with the empirical evidence in the study of Opler et al. (1999) that

shows cash holdings as serving mainly to cover losses (and not capital expenditures or

payouts to equity holders).

The empirical literature has been interested in the impact of debt on corporate

cash holdings, treating the former variable as exogenous. Figure 3.1 presents the cash

level M as a function of coupon c and shows that cash decreases in debt for low and

moderate levels of debt and increases with high levels of debt. The empirical evidence

of Opler et al. (1999) documents a negative relationship between cash and leverage. A

more re�ned study by Guney, Ozkan and Ozkan (2007) provides evidence for a similar

non-monotonic relationship between cash holdings and debt. Our model implies that

such correlations may be expected from the data but it also suggests caution when

interpreting the evidence and inferring any causal relationship since both cash stock

9The characteristics of the optimal cash policy predicted by our model seem to closely re�ect corporate practice.
Based on an extensive survey among international CFOs, Lins et al. (2007) conclude:

[S]trategic cash serves a basic function� to provide a general purpose bu¤er against future cash
shortfalls. CFOs state that this is the primary driver of strategic cash holdings� with its importance
ranking far exceeding that of other response choices. Thus, it appears that �rms use strategic cash to
insure against all types of negative shocks to cash �ows, rather than to just fund growth when external
capital may not be available. This �nding positions strategic cash holdings as a form of �nancial distress
(or bankruptcy) insurance.
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and debt level are endogenous and variations are driven by changes in exogenous

variables.

Another relationship of interest is the impact of cash �ow volatility on cash holdings.

Equation (3.15) for the target cash stock of the constrained �rm reveals that, ceteris

paribus, higher EBIT volatility � induces higher optimal cash holdings. In our model,

this is because larger cash reserves are required to hedge against more volatile cash

�ows. This prediction is consistent with the empirical �ndings of Opler et al. (1999)

and Han and Qiu (2007).

Our model predicts that the marginal value of cash holdings to equity holders di¤ers

across �rms. In particular, the model is able to encompass all the main hypotheses of

the recent empirical study of Faulkender and Wang (2006). Recall that the marginal

value of cash is equal to 1 for both unconstrained �rms and constrained �rms at or

above the target cash level M . The marginal value of cash in constrained �rms with

cash below M exceeds one, re�ecting the decreasing probability of liquidity default

with an additional unit of cash. It is clear that the marginal value of cash is larger for

constrained �rms and that it decreases with the level of cash holdings. Most interest-

ingly, we can derive a clear interpretation of the negative cross-sectional relationship

between the marginal value of cash and debt level documented by Faulkender and

Wang (2006) (Faulkender and Wang (2006) seem to build their hypothesis and in-

terpretation on the contingent claims models, which do not have a meaningful cash

policy). For small and moderate levels of debt, the comparative static exercise pre-

sented in Figure 3.1 reveals that the target level of cash decreases in debt. Then, for

a �xed cash level below M; an increase in debt implies that the current cash holdings

are closer to M so the �rm is closer to being fully hedged against liquidity shocks.

Consequently, the marginal value of cash decreases in debt. Our model also predicts

an untested possibility that the relationship is reversed for high levels of debt.

3.5.2 Smooth dividends

The standard structural trade-o¤models of capital structure treat dividends simply as

a balancing item: any residual cash �ows are paid out to equity holders. This leads to

a dividend pattern that bears little resemblance to actual corporate payout decisions.

As in our benchmark case in Section 3.3, in these models the implied payouts in each

period constitute 100% of positive free cash �ows, and dividends are omitted in periods

of negative free cash �ows.

Our model, being extended by liquidity concerns, predicts a very di¤erent optimal

payout policy. When cash reserves are at the target levelM(�), the level that prevents

liquidity default, the optimal dividend payout is given by (3.20). This dividend payout
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FIGURE 3.3. Simulated quarterly earnings and dividends. The parameter values are �L = 0;
�H = 0:2; � = 0:2; r = 0:06; � = 0:15; � = 0:6; � = 0:1 and �0 = 0:1.

allows the �rm to maintain cash reserves at M(�) with changing �. From (3.20) we

observe that in each period, dividend payouts are not only non-negative for � � ��,

which is by nature the case for corporate dividends, but also that the instantaneous

payout is predictable. The latter fact is due to the absence of the Brownian shock in

(3.20). This is in contrast to the dynamics of net earnings in (3.13), which apart from

the time drift component, also include a Brownian motion term. This implies that net

earnings are more volatile than dividends. In other words, the model predicts that

dividends are smoothed relative to earnings. This prediction is in line with persistent

evidence on the corporate practice of dividend payouts (Lintner (1956), Brav et al.

(2005)).

Figure 3.3 illustrates the dividend smoothing produced by the model. The left-hand

panel presents a simulation of EBIT process Xt and posterior expectations �t. We

then use the model with liquidity concerns of Section 3.4 to calculate optimal coupon,

default and cash holdings. The right-hand panel shows quarterly net earnings and

dividends from this simulation. Clearly, the net earnings are positive and negative in

di¤erent quarters, but these changes are only partly re�ected in dividend changes. The

dividends remain relatively stable. Even in the case of losses, the �rm continues to pay

out dividends.

This smoothing feature is driven by the interplay of liquidity and solvency default

and the role of cash holdings as a cushion against liquidity shocks. The mechanism can

be described as follows. Positive earnings shocks that bring in disposable cash �ows

also increase expected pro�tability. A more pro�table �rm is more valuable and thus

it requires more cash reserves to fend o¤ liquidity distress before declaring solvency
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default. In other words, dividends are �attened in the case of high earnings because

an increase in cash �ows is o¤set by increasing optimal cash reserves. In the case

of surprisingly low earnings, expected pro�tability decreases, the �rm gets closer to

endogenous solvency default, and the cash level that allows it to avoid liquidity distress

decreases. Consequently, low earnings lead to a release of some of the cash holdings

that are paid out to equity. Both positive and negative earnings surprises are smoothed

out, and as Figure 3.3 demonstrates, our model predicts positive and stable dividends

even if earnings are very volatile.

Another feature of the endogenous dividend policy that is supported by empirical

evidence is the prediction that �rms in distress will rather reduce dividends but not

omit them. This is documented by DeAngelo and DeAngelo (1990).

3.5.3 Issuance costs

Propositions 3.1 and 3.5 imply that issuance costs have no role in the choice of the

optimal capital structure of the unconstrained �rm (at least if the costs are uniform

for all types of �nancing), and that the proportional issuance cost � a¤ects the op-

timal capital structure in the case of �nancing constraints and liquidity concerns. As

explained before, � matters because the funds to be raised from external investors�

that is the investment cost and the initial cash I+M� depend on the structure of the

�nancing via M .

The role of � in determining the optimal coupon and thus the optimal capital struc-

ture is illustrated in Figure 3.4. We plot four curves of optimal coupon c� for varying

initial level of expected EBIT �0; each curve represents a di¤erent level of �. The dotted

line depicts the case of � = 0. As usual, higher cash �ows allow the �rm to take more
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debt and c� strictly increases in �0. With a positive �, the �rm takes into account how

much cash it requires to hedge liquidity risk. As M is the lowest at c = 1
2
(�H + �L)

(see Figure 3.1), minimizing the total issuance cost causes the optimal choice of c to

gravitate towards 1
2
(�H + �L). Consequently, we observe that for the unconstrained

�rm, for relatively low (or high) coupon payments, �nancing constraints increase (de-

crease) the optimal coupon. The e¤ect is stronger with higher �. This example reveals

that a very small issuance cost may have a notable e¤ect on the optimal coupon and

capital structure. A realistic cost of � = 0:1 leads to a pronounced distortion in the

optimal coupon.

The proportional issuance cost has important implications for corporate credit spreads.

Credit spreads are de�ned by the di¤erence between the debt yield and the risk-free

rate, c=D � r. Because, in the case of �nancing constraints and issuance cost, the op-
timal coupons are �attened, we may expect these factors to contribute to a decreased

dispersion of credit spreads when compared to the �nancially unconstrained case. This

e¤ect allows us to address the key problem with the predictive power of structural mod-

els as reported by Eom et al. (2004). Eom et al. (2004) test the yield spread predictions

of several structural models and conclude that the available models tend to produce

too high a dispersion of predicted credit spreads. Where the structural models predict

high credit spreads, these predictions notably exceed the actual spreads, and where

the models predict low credit spreads these predictions fall signi�cantly below the ob-

served ones. Our model, with liquidity concerns, moves the predicted credit spreads in

the desired direction. We illustrate this decreased dispersion of credit spreads in the

following two subsections when we calculate the spreads for various parameter values.

3.5.4 EBIT volatility

Increasing EBIT volatility � has two main direct e¤ects on the endogenous variables.

First, it increases the magnitude of liquidity shocks and, thus, liquidity risk. Second,

it makes the instantaneous cash �ows less informative about the true pro�tability �.

Less informative signals lead to an increase in �� due to a lower value of waiting with

the decision to default (see Figure 3.2).

Figure 3.5 presents the e¤ects of changes in �. The displayed values are calculated

with default triggers and coupons at the optimal level for each �. The solid line plots

the respective values for the �nancially constrained �rm with liquidity concerns, and

the dashed line plots the values for the unconstrained �rm. Figure 3.5.A reveals that the

issuance cost � has a signi�cant e¤ect on the optimal coupon when liquidity concerns

matter. The unconstrained �rm reduces the optimal coupon c�u in increasing �; because

of higher default risk. The situation of the constrained �rm is di¤erent, as it also has
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to raise funds for the initial cash reserves, and the target cash level M is the lowest

for intermediate coupon rates (see Figure 3.1). Hence, while minimizing the issuance

cost, the �rm�s optimal coupon c� is driven towards the mean (see also Figure 3.4 and

Section 3.5.3).

The behavior of the optimal coupon explains also the di¤erence in debt values for the

constrained and unconstrained �rms (Figure 3.5.B). Whereas the unconstrained �rm�s

debt value decreases in �; the opposite occurs for the �rm without liquidity concerns.

It shows that in the case with liquidity concerns the positive e¤ect of maintaining

a relatively high and stable coupon dominates other e¤ects that increase the default

trigger and decrease debt value.

The plot in Figure 3.5.D, showing the leverage ratio, reveals that, despite the di¤er-

ences in debt values, the leverage ratio decreases in both cases. This is in accordance

with the empirical evidence on leverage (Titman and Wessels (1988)). In the case of

the constrained �rm, the decrease in leverage is the result of the increase in equity

value exceeding the decrease in debt value (see Figure 3.5.C). The forces that push

the equity value up in � are, �rst, the well-known call-option characteristics of equity

(equity bene�ts from positive shocks and has an option to default in case of negative

shocks) and, second, the increase in cash holdings. Due to a larger liquidity risk in

increasing cash �ow volatility, optimal cash holdings increase in �, as shown in Figure

3.5.E. This prediction is consistent with the empirical evidence documented by Bates

et al. (2008). Our analysis con�rms that the explanation in Bates et al. (2008), that

the recent spectacular expansion in cash holdings among U.S. �rms is to a large degree

due to the increasing riskiness of cash �ows, has a theoretical grounding in a model

with endogenous cash and �nancing.

Figure 3.5.F shows that in the case of �nancing constraints and issuance costs, the

predicted credit spreads are less dispersed than in the case of no �nancing constraints.

As discussed in Section 3.5.3, this e¤ect is due to the �attening of the optimal coupon

and may improve the predictive power of the existing structural models for credit

spreads by addressing the critique of Eom et al. (2004).

The bottom two plots in Figure 3.5 display cash holdings versus leverage and credit

spread for various levels of � between 0:1 and 0:3. The relationships between cash and

leverage (Figure 3.5.G), and cash and credit spread (Figure 3.5.H) is negative, which

means that cash �ow uncertainty may be the exogenous variable responsible for the

similar regularities found in empirical studies (Opler et al. (1999), Acharya, Davydenko

and Strebulaev (2007)).
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3.5.5 Pro�tability uncertainty

Figure 3.6 reports the e¤ects of changes in the uncertainty about the true level of a

�rm�s expected EBIT, i.e., the second source of uncertainty in cash �ows apart from �.

Under our assumption of the binomial distribution of �, this uncertainty is captured

by the spread between the high (�H) and low (�L) realizations of mean instantaneous

earnings. This parameter captures the uncertain economic value of the �rm (as opposed

to �, which describes the volatility of operational cash �ows). In our comparative statics

exercise, we vary �H ��L around the mean �0 = 1
2
(�H + �L) = 0:1. One e¤ect is that

a higher �H��L increases both the pro�t and the loss potential of the �rm. The other
e¤ect is that with a higher spread �H��L; the learning process �t becomes more rapid
as the cash �ow signals are more informative about either realization of �. This leads

to a decrease in default trigger �� (see Figure 3.2).

Figure 3.6.A reveals that the unconstrained �rm increases the optimal coupon with

rising �H � �L. This is the result of a lower default risk stemming from a decrease

in ��. The rising c�u causes the debt value to increase in �H � �L (Figure 3.6.B). It
turns out that the equity value does not bene�t from increased pro�t potential because

this gain is o¤set by higher coupon payments (in Figure 3.6.C, the equity value of the

unconstrained �rm slowly decreases in �H � �L). The situation is di¤erent for the
constrained �rm. The driving force is the necessity to raise initial cash subject to the

issuance costs. As before, the required cash is the lowest for intermediate coupons,

so minimizing the �otation costs causes c� to be driven to intermediate values (the

solid line in 3.6.A). When c�u of the unconstrained �rm is relatively low (here for low

�H ��L), the �nancing constraints move the optimal coupon upwards. In such a case,
the debt value increases and the equity value decreases. When c�u and c

� are already

relatively high, the �nancing constraints prevent c� from growing in �H � �L, which
leads to a decrease in the debt value and an increase in the equity value. The e¤ects

on the debt and equity values are depicted in Figure 3.6.B and 3.6.C.

The forces just described for the case of the constrained �rm are aggregated in Figure

3.6.D in the non-monotonic leverage ratio in �H � �L� �rst rising and then falling.
The rising region is marked by low debt coupons, and the region of falling leverage

is characterized by relatively high coupon payments. For the unconstrained �rm, the

pro�tability uncertainty �H��L has a positive e¤ect on leverage, opposite to the e¤ect
of cash �ow volatility �.

Figure 3.6.E further shows that the cash holdings fall in increasing �H � �L. The
negative e¤ect comes from the increased speed of learning from cash �ow shocks about

the expected pro�tability. If negative liquidity translates quickly in a drop in �t; then

less cash is required to cushion liquidity distress before insolvency at ��. It turns out
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FIGURE 3.6. E¤ects of pro�tability uncertainty �H � �L (mean preserving spread around
�0 = 0:1). The solid lines plot the respective values of the �nancially constrained �rm with
liquidity concerns, and the dashed lines plot the values of the unconstrained �rm. Default
and leverage are determined endogenously. The other parameter values are � = 0:2; r = 0:06;
� = 0:15; � = 0:6 and � = 0:1.
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that this e¤ect dominates, and M falls. The sign of the e¤ect is again opposite to the

e¤ect of �.

The analysis in this subsection, shown in Figure 3.6.F, recon�rms the �ndings from

Figure 3.5.F, that the model with liquidity concerns and issuance cost predicts lower

(higher) credit spreads when the model without �nancing constraints predicts rela-

tively high (low) spreads.

In Figure 3.6.G and 3.6.H, cash holdings versus leverage and credit spread are shown

for various levels of �H ��L between 0:15 and 0:25. Notably, the e¤ects just described
lead to a negative relation between cash and credit risk. This means that the relation-

ship preserves the same sign as in the case corresponding to � uncertainty (cf. Figure

3.5). The relationship between cash and leverage is non-monotonic if the underlying

changing exogenous variable is the uncertainty about pro�tability.

Our analysis draws attention to the need to di¤erentiate between short-term volatil-

ity in cash �ows and long-term uncertainty about economic prospects. It would be

interesting to operationalize these measures of uncertainty and to test the predictions

of our model empirically.

3.5.6 Leverage

A weakness of the standard trade-o¤ model of capital structure that has frequently

been raised in the literature is that the optimal leverage implied by the model exceeds

the leverage ratios observed in empirical studies. Our model lessens this problem, as is

best revealed in Figures 3.5 and 3.6. The second plots on the right-hand side in both

�gures present leverage ratios for various parameters. The leverage ratio of the �rm

with liquidity concerns is consistently seen to be signi�cantly below the ratio of the

unconstrained �rm. While there are a number of e¤ects that liquidity concerns bring

to capital structure, the driving force behind this remarkably reduced leverage is the

recognition of the role of cash in corporate assets. As the total assets of the constrained

�rm incorporate the value of cash, the leverage ratio decreases.

3.6 Conclusions

Earlier literature has studied either solvency default with optimal capital structure or

liquidity default with cash and dividend policy separately. Our analytically tractable

framework allows us to study a combination of both of these sources of �nancial distress

and to enhance our understanding of the interaction of �nancing, cash, and dividends.

With an extension to liquidity concerns, our setting addresses some of the weaknesses

of the existing contingent claims models of corporate �nance.
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We believe that future research can use our model to study a number of additional

issues. In order to stay reasonably focused we have concentrated on the analytically

most tractable scenario under the assumption that a �rm fully hedges its liquidity risk

from the initial date. We leave it to future research to analyze the case of cash reserves

below the target level M . In this case, the �rm may actually default because of either

solvency or liquidity distress. We note here that such an analysis, by adding liquidity-

driven default, could potentially alleviate the recognized problem of structural models

based on solvency default� that is, the under-prediction of credit spreads and default

probabilities for shorter horizons. It would also be interesting to extend our analysis

to allow for di¤erent degrees of �nancing constraints. In such an extension, the �rm

would be able to raise new external �nancing beyond the initial date, but this �nancing

would be subject to issuance costs. Finally, future research may incorporate corporate

investments into the model to study the joint role of debt and cash in �nancing capital

expansion in the presence of �nancing constraints.

3.A Appendix: Proofs

Proof of Proposition 3.1. We �rst solve for the equity value function. Di¤erential
equation (3.5) has an analytical solution of the following general form:

Eu(�) = B1 (�� �L)
1�� (�H � �)

�+B2 (�� �L)
� (�H � �)

1��+(1��)�� c
r
; (3.32)

where � > 1 is the positive root of

�2 � � � 2r�2

(�H � �L)
2 = 0;

and B1, B2 are constants that are determined by boundary conditions. (3.32) can be

veri�ed by direct substitution. The �rst two terms constitute the general solution to

the homogenous part of (3.5) and the third term is an easy-to-guess particular solution

to the whole non-homogenous equation (3.5). The boundary condition at �H implies

that B2 = 0: This is because, with � > 1 for any other B2; Eu(�H) is unbounded.

Using the boundary condition at ��u to determine B1 delivers the expression for Eu(�)

given in the proposition.

Debt value is found analogously using that the general solution to di¤erential equa-

tion (3.4) is

Du(�) = B3 (�� �L)
1�� (�H � �)

� +B4 (�� �L)
� (�H � �)

1�� +
c

r
;
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with � as above and constants B3 and B4: Applying the boundary conditions on Du

at �H and �
�
u yields (3.10). Firm value Fu given in (3.11) follows by adding (3.9) and

(3.10).

Optimal default trigger ��u in (3.8) is delivered by applying the smooth pasting

condition (3.7) to equation (3.9).

Proof of Proposition 3.2. For an arbitrary function M(�; �), let Mt = M(�t; Xt)

so that Mt is allowed to depend on both state variables. Denote the default time

associated with trigger �� by t� = inf ft � 0 : �t < ��g. The �rm is liquid up to time

t� if Mt � 0 for all t � t�. Note that, for example, a simple cash policy Mt = 0; t � t�;
satis�es this liquidity condition, but such a policy is not feasible as it requires negative

dividends. From (3.14) we have

dDivt = rMtdt� dMt + dYt: (3.33)

The cash and dividend policy is feasible if the equality holds at each time. As the �rm

has full discretion over non-negative dividends, the cash policy remains feasible as long

as dDivt � 0 in (3.33). We want to determine the lowest cash level M that satis�es

both liquidity and feasibility conditions.

Suppose �rst that M(�;X) is a continuous and di¤erentiable function. Applying

Itô�s lemma to M , the right-hand side of (3.33) can be written as

dDivt =

�
rM + (1� �) (�t � c)�

1

2�2
(�t � �L)

2 (�H � �t)
2M�� � �MX

�1
2
�2MXX � (�t � �L) (�H � �t)M�X

�
dt

+

�
(1� �)� � 1

�
(�t � �L) (�H � �t)M� � �MX

�
dZt; (3.34)

where subindexes at M denote partial derivatives. Our requirement that increments

of this process are non-negative for all t � t� can be satis�ed if and only if, �rst, the
volatility coe¢ cient at dZt is constant and zero and, second, the drift parameter at dt

is non-negative. The �rst condition yields the following partial di¤erential equation:

1

�2
(�t � �L) (�H � �t)M� +MX = (1� �) : (3.35)

Its general solution is

M(�;X) = (1� �) �2

�H � �L
ln

�
�� �L
�H � �

�
+ C1

�
�H � �L
�2

X � ln
�
�� �L
�H � �

��
+ C2;

(3.36)
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where C1 and C2 are constants. As Xt; t � t�; can in general take any positive or

negative values, the liquidity condition Mt � 0; t � t�; is satis�ed only if C1 = 0.

This means that M is independent of X. To determine C2, we use the non-negativity

condition on the drift parameter in (3.34), which, with the use of (3.36), can be written

as

rM(�;X) + (1� �)
�
�H + �L

2
� c
�
� 0:

We note thatM is increasing in �; which implies that the inequality is most demanding

at � = ��: Moreover, the liquidity condition at all t � t� requires that

M(��; X) � 0:

Solving the last two inequalities for the constant C2, we obtain the formula given in

the proposition.

Finally, we rule out that there are points of discontinuity and non-di¤erentiability

in M if � > ��. If M is discontinuous, it can only have downward jumps. But if

immediately after the jumpM is the smallestM that allows the �rm to avoid liquidity

default, then in the continuous environment of the model, M before the jump could

not be the smallest M satisfying this desired property. Hence M must be continuous.

Suppose now that M has some non-di¤erentiable points. In between the points, M

must satisfy di¤erential equation (3.35) with the general solution in (3.36), subject

to the boundary conditions implied by the continuity of M . But with C1 = 0; it will

result in M that is a continuous di¤erentiable function of � for all � > ��.

Proof of Proposition 3.3. For a given ��, de�ne the value function E(�;M) as

follows. For � > �� and 0 < M < M(�); E(�;M) satis�es the di¤erential equation

rE(�;M) =
1

2�2
(�t � �L)

2 (�H � �t)
2E��(�;M) +

1

2
(1� �)2 �2EMM(�;M)

+ (1� �) (�� �L) (�H � �t)E�M(�;M) + [rM + (1� �) (�� c)]EM (�;M) ; (3.37)

For � � �� and M �M(�), E(�;M) is given by

E(�;M) = Eu(�) +M: (3.38)

For if � � �� and M = 0

E(�; 0) = 0:
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To prove that the policy speci�ed in (3.19)-(3.21) attains E(�;M) and that no other

feasible policy provides a higher value, de�ne for any feasible payout policy Divt

Wt =

Z t

0

e�rsdDivs + e
�rtE(�t;Mt):

If payout Divt is continuous at t, then, from Itô�s lemma applied to Et = E(�t;Mt),

dWt = e
�rtdDivt � re�rtE(�t;Mt)dt+ e

�rtdEt

= e�rtdDivt � re�rtE(�t;Mt)dt+ e
�rt
�
1

2�2
(�t � �L)

2 (�H � �t)
2E��(�t;Mt)

+
1

2
(1� �)2 �2EMM(�t;Mt) + (1� �) (�� �L) (�H � �t)E�M(�t;Mt)

+ [rM + (1� �) (�� c)]EM (�t;Mt)
o
dt� e�rtdDivtEM (�t;Mt)

+ e�rt
�
1

�
(�t � �L) (�H � �t)E�(�t;Mt) + (1� �)�E�(�t;Mt)

�
dZt

= e�rt (1� EM(�t;Mt)) dDivt

+ e�rt
�
1

�
(�t � �L) (�H � �t)E�(�t;Mt) + (1� �)�E�(�t;Mt)

�
dZt; (3.39)

where for the last equality we use (3.37) if 0 < M < M(�) or (3.38) combined with

(3.5) if M �M(�).
Note thatWt is a martingale if (1� EM(�t;Mt)) dDivt equals 0. As EM(�t;Mt) � 1

if Mt < M(�t) (by (3.22)) and EM(�t;Mt) = 1 if Mt � M(�t) (by 3.38), the policy

proposed in (3.19)-(3.21) guarantees that Wt is a martingale. This implies that the

value that is obtained by the equity holders from the dividend distribution speci�ed

in (3.19)-(3.21) is equal to E(�0;M0): Indeed,

E
�Z t�

0

e�rsdDiv�s

�
= E [Wt� ] =W0 = E(�0;M0);

where the second equality holds because Wt is a martingale.

For any other feasible payout policy it must hold that dDivt � 0 and EM(�t;Mt) �
1. It follows that the drift of Wt; (1� EM(�t;Mt)) dDivt; is non-positive and thus Wt

is a supermartingale. Consequently,

E
�Z t�

0

e�rsdDivs

�
= E [Wt� ] � W0 = E(�0;M0); (3.40)

so the present value of dividend payouts in this alternative policy is less than or at

most equal to E(�0;M0):
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There are no jumps in Div�t for t 2 (0; t�); so the argument above is complete with
respect to Div�t . If there is a jump of �Divt > 0 in an alternative payout Divt for

some t 2 (0; t�); then (3.39) does not apply at t. But then Wt jumps by e�rt�Divt +

e�rtE(�t;Mt ��Divt) � 0 as EM(�t;Mt) � 1: Thus Wt is a supermartingale and the

argument in (3.40) applies.

Proof of Proposition 3.4. Debt value is found as in the proof of Proposition 3.1.
To determine equity value, we use the general solution to di¤erential equation (3.23).

By direct veri�cation, it is

E(�) = B5 (�� �L)
1�� (�H � �)

� +B6 (�� �L)
� (�H � �)

1��

+
a1
r
+
a2
r

�
ln
�� �L
�H � �

+
�H � �L
r�2

�
�� �H � �L

2

��
:

Applying the boundary conditions at �H and �
� to determine constants B5 and B6,

we obtain the expression provided in the proposition.
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Finite Project Life and Uncertainty E¤ects on
Investment

4.1 Introduction

The standard theory of the real options approach to investment, as explained and

reviewed in Dixit and Pindyck (1994)1, states that uncertainty in combination with ir-

reversibility creates a value of the option to wait with undertaking capital investments.

Over time more information becomes available, which enables the decision maker to

make better investment decisions at a later date.

The general prediction of the real options literature is that a higher level of uncer-

tainty increases the value of waiting and thus has a negative e¤ect on investment. In

this chapter we revisit this conclusion. To do so we adopt the standard framework with

contingent claims valuation of the investment opportunity and change it in one aspect:

where the vast majority of the real options literature assumes projects to be perpetual,

we allow for the project to generate earnings only during a �nite amount of time.2 The

assumption of a project having an in�nite life is useful mostly due to its simplicity.

However, in corporate practice the investment projects are usually considered to have

a �nite life. This is especially true in today�s knowledge economy, in which innovations

limit the economic lifetime of technologies.3 We show that the simplifying assump-

1Some more recent contributions include studies of implications of learning (Décamps and Mariotti (2004), Thijssen,
Huisman and Kort (2006)), agency (Grenadier and Wang (2005)), strategic quality choice (Pennings (2004)), business
cycle (Guo, Miao and Morellec (2005)), policy change (Pawlina and Kort (2005)), and implications to capital structure
choices (Miao (2005)), mergers and acquisitions dynamics (Morellec and Zhdanov (2005)), or exit strategies (Murto
(2004)).

2Notably, Majd and Pindyck (1987) discuss some implications of �nite project life on real options modeling. While
they provide some arguments and cases when the �nite project life considerations can be omitted, these considerations
turn out to play an important role in our analysis.

3Certainly, the same arguments point toward introducing a �nite life of the investment opportunity and not only of
the project after investment. We do study this case in Section 4.4.1 where it is shown that our main result also holds
there.
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tion of perpetual projects is critical for the investment-uncertainty relationship. Our

main result is that the investment threshold decreases with uncertainty in case the

uncertainty level is low and the project life is short. So, changing the project life from

in�nite to �nite can imply a negative relationship between uncertainty and the value

of waiting, which reverses the basic real options result.

To be more precise, an increase in uncertainty a¤ects the investment threshold in

three di¤erent ways. The �rst e¤ect is the discounting e¤ect. An increase of uncertainty

raises the discount rate via the risk premium component. This reduces the net present

value of the investment and thus raises the investment threshold. The second e¤ect

is the volatility e¤ect, which a¤ects the value of the option to wait positively: higher

uncertainty increases the upside potential payo¤ from the option, leaving the downside

payo¤ unchanged at zero (since the option will not be exercised at low payo¤ values).

This increased option value implies that the �rm has more incentive to wait, which

also increases the investment threshold. The third e¤ect of an increase of uncertainty

on the investment threshold is the convenience yield e¤ect. The increase of asset risk-

iness raises the discount rate and thus also the convenience yield of the investment

opportunity. This decreases the value of waiting, so that it is more attractive to invest

earlier resulting in a lower investment threshold.

The discounting and volatility e¤ects thus raise the investment threshold, while the

convenience yield e¤ect works in the opposite direction. Projects with a short life are

relatively insensitive to discount rates. On the other hand, at low levels of uncertainty,

increased uncertainty has still little e¤ect on the probability of observing low prices,

and thus the volatility e¤ect is small in this case. Consequently, it is possible for the

negative convenience yield e¤ect to dominate the two other e¤ects when the project

life is �nite and uncertainty is low. In that case it thus holds that the investment

threshold decreases with uncertainty.

We examine the robustness of the non-monotonic e¤ect of uncertainty on investment

in the case of a �nite project life by considering several variations of the problem. First,

we show that this result survives in case the opportunity to invest in the project is

available only for a limited amount of time. Next, we prove that this also holds for

other relaxations of the in�nite project life assumption, like uncertain project duration

and capital depreciation. Furthermore, we �nd that generalized functional forms of the

convenience yield preserve the observed relationships. Finally, the non-monotonic e¤ect

is also present in case revenues are mean reverting.

The impact of uncertainty on investments has been of interest to economists for

a long time. One strand of literature relies on convex costs of capital adjustment

and convexity of marginal pro�ts in prices. As shown by Hartman (1972) and Abel

(1983), in such a setting uncertainty hastens investment. The other important strand
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of literature, based on the real options theory, acknowledges (partial) irreversibility of

investments and predicts that uncertainty delays investment. This chapter veri�es the

latter prediction and shows that the investment trigger is not necessarily increasing

in uncertainty. Most closely related papers are Caballero (1991) and Bar-Ilan and

Strange (1996). Caballero (1991) considers a perfect competition setting with convex

adjustment costs, and he obtains that irreversibility does not lead to the usual negative

investment-uncertainty relationship. Bar-Ilan and Strange (1996) assume that there are

lags between investment decisions and realizations. Firms have abilities to abandon

uncompleted projects in bad times, which creates a convexity in the output and value

functions. Bar-Ilan and Strange (1996) �nd that uncertainty may accelerate as well

as decelerate investment depending on speci�c parameter values. Both papers have in

common that they depart from the conventional result of the real options literature,

because the models create convexities in line of Hartman (1972) and Abel (1983). Thus

it comes with little surprise that in these papers uncertainty may either accelerate or

decelerate investment. The result of our analysis is unique in the sense that uncertainty

may hasten irreversible investment without building on the convexity of the marginal

product of capital. Our model remains in the pure real options framework and the

reversal of the conventional result builds solely on the contingent claims valuation of

investment opportunities and a �nite capital lifetime. Moreover, since we only depart

from the standard real option framework by imposing a �nite lifetime, our model is

more general and is thus applicable to more investment situations than the models in

Caballero (1991) and Bar-Ilan and Strange (1996).

A di¤erent approach to study the relationship between uncertainty and irreversible

investments is taken by Sarkar (2000). Sarkar analyzes the probability of investment

taking place within a certain time period and points at the fact that an increasing

trigger does not automatically mean that investment will be delayed. The di¤erence

with our result is that we show that increased uncertainty may not even lead to an

increased trigger.

Beyond this introduction the chapter is organized as follows. In the next section

we consider the model of the �nitely-lived project and derive the optimal investment

trigger. Section 4.3 studies how uncertainty in�uences the investment decision. In

Section 4.4 we discuss robustness, while Section 4.5 concludes. All proofs are contained

in Appendix 4.A.

4.2 The model and the optimal investment decision

We consider an irreversible investment project with �nite life of T years that can be

undertaken at any time. After the investment has taken place, the project generates a
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stochastic revenue of Qt per unit time. Qt evolves exogenously according to a geometric

Brownian motion

dQt = �Qtdt+ �QtdZt; (4.1)

where dZ is the increment of a standard Wiener process, � is the drift parameter and �

is the volatility parameter that introduces the uncertainty in our model. Throughout

the chapter we assume that �; � > 0. When the project is undertaken, a one-time

investment cost I is paid. For simplicity, the marginal costs are put equal to zero.

We employ the contingent claims approach to real options valuation.4 Under the

standard assumption of market completeness, the expected rate of return of the project

� is determined in the �nancial market equilibrium. The CAPM5 formula relates �,

the risk-free interest rate r, the correlation of the project return with the return of the

market portfolio �, and the market price of risk � as follows:

� = r + ���: (4.2)

The di¤erence between �, the expected return of the project, and �, the expected

rate of change of Q, is referred to as the convenience yield (or return shortfall) of the

investment opportunity. The later is denoted by � and satis�es

� � � � � = r + ��� � �: (4.3)

We assume that � > 0, which ensures that the investment is ever undertaken; otherwise

it is never optimal to exercise the option.

The level of uncertainty faced by the �rm is measured by the volatility parameter

�. From (4.3) we obtain that a change in � results in a change of �, which must lead

to an adjustment of either � or � or both. In general, this relation depends on what

is assumed to be an endogenous parameter a¤ected by changes in volatility. A certain

guideline in this respect could be Pindyck (2004), that relates commodity inventories,

spot and future prices and the level of volatility. The model is estimated for several

commodities and the results show that a volatility shock has a signi�cant e¤ect on the

convenience yield and only a small e¤ect on the price. Consistent with this evidence, it

also seems to be more common in the related literature on the investment-uncertainty

4The standard methods in real options theory to value an investment opportunity are dynamic programming and
contingent claims valuation (Dixit and Pindyck (1994)). Compared to dynamic programming, the contingent claims
approach o¤ers a better treatment of the discount rate, because it is endogenously determined as an implication of the
overall equilibrium in capital markets.

5The assumption that the intertemporal Capital Asset Pricing Model (CAPM) of Merton (1973) holds is in accor-
dance with the related literature. The CAPM brings a linear relationship between the discount rate and �. In Section
4.4.3 we show that the results we present also hold for more general discount rate functions.
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relationship to assume that � is �xed and � changes with � (e.g. Sarkar (2000) and

Sarkar (2003)). We follow this modeling convention.

The value of the project V (Q) evolves over time and depends on the current real-

ization of Q. Upon installation the project value is equal to the expected present value

of the revenue stream discounted by the risk-adjusted discount rate. If the project has

a �nite life of T years, then the project value at the time of the investment is

V (Q) = E
�Z T

0

e��tQtdtjQ0 = Q
�
=

Z T

0

e�(���)tQdt = Q
1� e�(r+�����)T
r + ��� � � : (4.4)

Before the project is installed, the �rm holds an option to invest. The option is

held until the stochastic revenue �ow reaches a su¢ ciently high level at which it is

optimal to exercise the option and invest. The option value F (Q) can be found by

the replicating portfolio argument. Employing the standard methods (cf. Dixit and

Pindyck (1994)) yields that F (Q) must satisfy the di¤erential equation:

1

2
�2Q2F 00(Q) + (�� ���)QF 0(Q)� rF (Q) = 0: (4.5)

We solve this di¤erential equation subject to the value matching and smooth past-

ing conditions at the investment trigger Q� and a zero value condition at Q = 0.

The derivations are standard and are omitted here. The resulting �rm value prior to

investment is

F (Q) = (V (Q�)� I)
�
Q

Q�

��1
:

The optimal investment rule is given by the upper trigger

Q� =
�1

�1 � 1
r + ��� � �

1� e�(r+�����)T I; (4.6)

while �1 is the positive root of the quadratic equation

L0 �
1

2
�2�(� � 1) + (�� ���)� � r = 0; (4.7)

and equals

�1 =
1

2
� �� ���

�2
+

s�
�� ���
�2

� 1
2

�2
+
2r

�2
: (4.8)

Under the net present value (NPV) rule the investment is undertaken as soon as the

risk-adjusted project value exceeds the investment cost, that is at the revenue level

equal to r+�����
1�e�(r+�����)T I. This value is always lower than Q

� in (4.6), as �1 > 1. So there
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are states where the expected payo¤ of investment is positive and the �rm chooses to

wait and not to invest. The option to invest captures this positive value of waiting.

4.3 The e¤ects of uncertainty on the investment trigger

This section studies the e¤ect of uncertainty on the value of waiting. First, we show

that, as usual, the value of waiting, re�ected in the level of investment trigger, always

increases with uncertainty when the project life is in�nite or when discount rates are

una¤ected by uncertainty. Second, if the equilibrium discount rate contains a positive

risk premium, we derive that the value of waiting decreases with uncertainty in case

of �nite project lives and low levels of uncertainty. Finally, we provide an economic

analysis of these results.

4.3.1 Monotonicity results

We start out with the basic real options result for the investment project with in�nite

life.

Proposition 4.1 If the project life is in�nite, the investment trigger increases with
uncertainty.

In case of an in�nite project life the e¤ect of uncertainty on the investment trigger

is unambiguously positive. This is the standard real options result, which says that

the value of waiting increases with uncertainty. This is re�ected by higher trigger

values, because the revenue must reach a higher level before investment is optimally

undertaken.

Now, let us move on to the �nite life project case. We �rst consider the scenario

where the impact of systematic risk is absent or not priced by the market. This implies

that the discount rate is constant, and requires that either the market price of risk is

zero, � = 0, or that the correlation of the project return with the return of the market

portfolio is zero, � = 0.

Proposition 4.2 If the discount rate is constant (zero market price of risk or zero
correlation of project return with the return of the market portfolio), the relationship

between the investment trigger and uncertainty is always positive.

Proposition 4.2 states that, in the absence of the risk premium e¤ect the investment

trigger always increases with uncertainty irrespective of the project lifetime, which is

again the usual real options result. It is important to point out, however, that the

conditions necessary for constant discount rates are in general di¢ cult to accept in the

context of investment models; see discussions in e.g. Zeira (1990) and Sarkar (2003).
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The next proposition considers one case where the discount rate is not constant.

Proposition 4.3 If �� < 0, then the relationship between the investment trigger and
uncertainty is always positive.

This result shows that in case of a negative risk premium (possible if either the

correlation of the project return with the return of the market portfolio or the market

price of risk is negative), the usual positive relationship arises.

4.3.2 Non-monotonicity result

We proved in the previous subsection that both in the model with a project of in�nite

life and in the model without a risk premium or with a negative risk premium, the

impact of uncertainty on the investment trigger is always positive. These are interesting

special and limit cases; however, the assumptions of Propositions 4.1 and 4.2 are serious

abstractions from reality, and the negative risk premium condition of Proposition 4.3

is a relatively rare phenomenon in the markets. Next, we turn to the most common

situation where the project life is �nite and the discount rate is set in the capital

market equilibrium with a positive risk premium. We now show that the e¤ect on the

trigger is no longer monotonic in uncertainty.

Proposition 4.4 If the project life is �nite and �� > 0, the uncertainty e¤ect on the
investment trigger is non-monotonic: it decreases in � for low levels of � and then

increases. The length of the �-interval where the negative e¤ect occurs is negatively

related to the project lifetime.

Figure 4.1 presents some numerical examples, where the parameter values correspond

to earlier work on the investment-uncertainty relationship, in particular to Sarkar

(2000). We see that indeed there is a negative relation between � and Q� for lower

values of �. The e¤ect is more pronounced for short-term projects, but even in the

case of a 30-year project Q� decreases until � is around 0:12. The example shows that

the positive e¤ect of uncertainty on investment (negative on the trigger) arises for

economically relevant parameter values. The �gure, of course, also con�rms that for

an in�nitely long project the relation is monotonic and increasing in line of the results

in Proposition 4.1.

4.3.3 Economic analysis of the non-monotonicity result

In this section we provide an economic interpretation of the non-monotonic e¤ect of

uncertainty shown in Proposition 4.4 (we assume here that �� > 0). From (4.3) and
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FIGURE 4.1. Investment trigger as a function of volatility for various project lenghts T and
the set of parameters: � = 0:08, r = 0:1, � = 0:7, � = 0:4, I = 10.

(4.6) it follows that the investment trigger can also be expressed as

Q� =
�1

�1 � 1
�

1� e��T I: (4.9)

At this point it is convenient to trace all the variables that are a¤ected by uncertainty

and consider the trigger as a function of three parameters: Q� (�; �(�); �1(�; �(�))).

Then the derivative of the investment trigger with respect to � can be decomposed

into three e¤ects in the following way:

d

d�
Q� (�; �(�); �1(�; �(�))) =

@Q�

@�

@�

@�| {z }
Discounting e¤ect

+
@Q�

@�1

@�1
@�| {z }

Volatility e¤ect

+
@Q�

@�1

@�1
@�

@�

@�| {z } :
Convenience yield e¤ect

(4.10)

The three e¤ects have a clear interpretation and each has an unambiguous sign (for

the case of �� > 0). The �rst term on the right-hand side, the discounting e¤ect, mea-

sures the impact of revenue uncertainty on the rate used to discount the project value.

Rising uncertainty increases the discount rate, which reduces the net present value of

the investment project. This implies that it is less pro�table to invest in this project,

which leads to an increase of the trigger value. Consequently, as is straightforward to

derive, the discounting e¤ect is always positive.

Since the second and the third term of (4.10) both a¤ect the trigger value via �1,

they re�ect the in�uence of uncertainty on the value of the option to wait. Below we



4.3 The e¤ects of uncertainty on the investment trigger 87

refer to these two e¤ects combined as the option e¤ect. The volatility e¤ect, which is

represented by the derivative @Q�

@�1

@�1
@�
, captures the direct impact of uncertainty on the

value of the option to wait. Higher uncertainty increases the upside potential payo¤

from the option, leaving the downside payo¤ unchanged at zero (since the option

will not be exercised at low payo¤ values). This is the well-known positive impact

of uncertainty on the option value. An increased option value implies that the �rm

has more incentive to wait. This raises the opportunity cost of investing so that the

investment trigger will increase. Hence, the e¤ect is unequivocally positive.

The product @Q
�

@�1

@�1
@�

@�
@�
in (4.10) represents the impact of uncertainty on the option

value through the convenience yield, and we refer to it as the convenience yield e¤ect.

Increased uncertainty raises the risk premium of the expected rate of return and thus

also the convenience yield, which in turn elevates the opportunity cost of holding the

option and consequently decreases its value. For this reason it is attractive to invest

earlier, which reduces the trigger.

Summarizing, we conclude that the discounting and volatility e¤ects are positive,

while the convenience yield e¤ect is negative. Clearly, the negative relationship between

uncertainty and investment occurs only if the convenience e¤ect dominates the two

other e¤ects. The following proposition shows how the uncertainty level and the project

length in�uence the relative size of the three e¤ects.

Proposition 4.5 (i) De�ne �̂ = f� � 0 : (�1 � 1)� � �� = 0g. The combined option
e¤ect is negative at � < �̂ and positive at � > �̂.

(ii) The shorter is the project life T , the smaller is the discounting e¤ect and the larger

in absolute terms are the two option e¤ects.

The �rst part of the proposition states that the sign of the e¤ect of uncertainty

on the option value is ambiguous but separable into two regions.6 At a relatively

high uncertainty level the positive volatility e¤ect dominates the negative convenience

yield e¤ect. At low levels of uncertainty the negative e¤ect dominates. In such a case,

a marginal increase in uncertainty has little impact on the probability of reaching

extreme values by the underlying process and hence the volatility e¤ect is relatively

small. On the other hand, the convenience yield e¤ect is also signi�cantly present at

low levels of uncertainty, since the convenience yield � is linear in �, implying that the

marginal e¤ect of � in � is constant (in fact the convenience yield e¤ect is not constant

but diminishes at higher �, as the full e¤ect works via the discount factor).

6From Proposition 4.5 (i) it is clear that in a setup where only the option e¤ects are present, the non-monotonic
investment-uncertainty relationship would arise irrespective of the project lifetime. This could be the case for example,
if the project value V behaves according to geometric Brownian process. This was shown in a contemporaneous work
by Wong (2007). However such a setup is a rather serious abstraction from reality (see Dixit and Pindyck (1994; p. 175)
for arguments) and the negative e¤ect disappears as soon as perpetual revenues from the project are directly modelled.
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The second part of the proposition states that the project and option-related e¤ects

react di¤erently to changes in the project life. The discounting e¤ect becomes smaller

with shorter project lives. Clearly, short-lived projects are relatively insensitive to

marginal changes of the discount rate. On the other hand, the option-related e¤ects

increase with shorter project lives. This is because a shorter project life implies that

the current revenue �ow needs to be larger for the investment to be optimal, which

leads to larger option e¤ects.

Now we are ready to establish when and why an increasing uncertainty level may

lower the investment threshold. At low levels of uncertainty, the positive volatility

e¤ect is small and the e¤ects working via discount rate and convenience yield are still

signi�cant. These two last e¤ects have opposing signs so that a low � alone is not

enough to observe a negative total e¤ect (cf. Proposition 4.1). If, however, in addition

the project life is short then the positive discounting e¤ect will be small and the

negative convenience yield e¤ect dominates. Therefore, at low levels of � and T , it is

possible that the negative convenience yield e¤ect dominates the two positive e¤ects

(see Proposition 4.4).

These mechanisms are illustrated in a numerical example presented in Table 4.1. It

allows for a closer inspection of the magnitude of the e¤ects of uncertainty a¤ecting

the position of the investment trigger. The volatility and convenience yield e¤ects

increase with shortening the project life. The discounting e¤ect decreases with smaller

T . The combined option e¤ect is negative for low levels of � but it is increasing in �

(it becomes positive for � > �̂ = 0:241). The longer the project life, the faster is the

negative convenience yield e¤ect o¤set by the positive impact of the discounting and

volatility e¤ects. If T = 10, the total e¤ect is negative for � between 0 and 0:16; while

for T = 30 the total e¤ect remains negative for � between 0 and 0:10.

4.4 Robustness

The model of the previous sections has been geared to show our results in the simplest

setting. The aim of this section is to demonstrate that our main result, i.e. that the

value of waiting decreases with uncertainty in case of a short project life and a limited

amount of uncertainty, can be generalized. First we consider a scenario where the

investment opportunity is available only for a limited amount of time. After that we

analyze the case where the project has an uncertain duration. Next, we consider more

general, thus not necessary linear, convenience yield functions in uncertainty. Finally,

we allow the revenue process to be mean reverting.
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� T = 10 T = 30
Q� (1) (2) (3) (4) Q� (1) (2) (3) (4)

0.00 5.52 7.47 0.00 -77.23 -69.77 2.22 8.38 0.00 -31.03 -22.65
0.02 4.44 5.95 1.19 -48.51 -41.37 1.87 6.86 0.50 -20.44 -13.08
0.04 3.77 5.01 2.15 -33.70 -26.54 1.66 5.92 0.95 -14.86 -8.00
0.06 3.34 4.39 2.99 -25.03 -17.65 1.54 5.29 1.38 -11.53 -4.86
0.08 3.05 3.97 3.75 -19.47 -11.75 1.46 4.88 1.80 -9.35 -2.67
0.10 2.86 3.68 4.40 -15.66 -7.57 1.43 4.60 2.20 -7.82 -1.02
0.12 2.74 3.49 4.95 -12.92 -4.48 1.42 4.43 2.57 -6.70 0.29
0.14 2.67 3.38 5.36 -10.90 -2.17 1.44 4.34 2.88 -5.86 1.36
0.16 2.65 3.31 5.65 -9.38 -0.42 1.47 4.30 3.15 -5.22 2.22
0.18 2.65 3.28 5.85 -8.24 0.90 1.53 4.30 3.37 -4.74 2.93
0.20 2.68 3.28 5.99 -7.37 1.91 1.59 4.34 3.55 -4.37 3.52
0.22 2.73 3.31 6.09 -6.70 2.69 1.67 4.39 3.72 -4.09 4.02
0.24 2.79 3.34 6.17 -6.19 3.32 1.75 4.46 3.87 -3.89 4.45

TABLE 4.1. The three e¤ects of uncertainty a¤ecting the position of the investment trigger
for the set of parameters: � = 0:08, r = 0:1, � = 0:7, � = 0:4, I = 10, Q = 1. The columns
present: the discounting e¤ect (1), the volatility e¤ect (2), the convenience yield e¤ect (3),
and the total e¤ect (4).

4.4.1 Finite-life option

We now assume that the project and the option to invest both have �nite durability.

McDonald and Siegel (1986) also allow for a �nite life of the investment opportu-

nity, but their project is implicitly perpetual. Finite life options have been extensively

studied, and the book by Detemple (2005) provides background on recent analytical,

approximation and numerical methods.

The project life is T years and its value V (Q) is given by equation (4.4). Denote

the life length of the option as TF . Since the option expires at TF , its value F (Q; �F )

depends on remaining time �F to maturity. To �nd the di¤erential equation de�ning

the option value we follow the same steps as in Section 4.2. The resulting partial

di¤erential equation includes the time derivative and is given by

1

2
�2Q2FQQ + (�� ���)QFQ � F� � rF = 0: (4.11)

The option value must satisfy the terminal condition at the expiry date TF :

F (Q; 0) = max (V (Q)� I; 0) ;

which states that at � = 0 the option is exercised (the investment is undertaken) if

the project�s expected present value exceeds the investment cost. The option satis�es

also the boundary conditions at Q = 0 and Q = Q� similar to the ones used in Section

4.2: F (Q�; �F ) = V (Q�)� I, FQ(Q�; �F ) = V 0 (Q�) and F (0; �F ) = 0:
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FIGURE 4.2. Project and option with �nite life: investment trigger boundary, Q�(�F ), for
various levels of volatility and the set of parameters: � = 0:08, r = 0:1, � = 0:7, � = 0:4,
I = 10; T = 10, TF = 10.

Unlike in the previous problem, in which Q� was a single point, here the optimal

investment trigger Q�(�F ) is a function of time. The problem we have to solve is

analogous to the valuation of American-style options with a �nite expiry date, to

which no closed-form solutions exist. We numerically solve equation (4.11) together

with the boundary conditions using the Crank-Nicholson �nite-di¤erence scheme. We

apply the logarithmic change of variable and use a mesh size of 500� 500 points.
Figures 4.2 and 4.3 present our results for the optimal investment trigger boundary

Q�(�F ). We assumed the option life TF to be 10 years and the project life T to be

either 10 years (Figure 4.2), or perpetual (Figure 4.3). All other parameters are as in

the numerical example of Figure 4.1. The triggers Q�(�F ) are drawn for various levels

of � ranging from 0:10 to 0:30. The horizontal axis depicts the remaining option life

�F .

As expected, the right-hand-side of both �gures at �F = TF = 10 is well approxi-

mated by the model with a perpetual real option, so that the trigger boundary values

are very close to those in Figure 4.1 (T = 10 and T = 1 curves). At �F = 0, when

the investment decision becomes a now-or-never decision, all curves are at the values

implied by the NPV investment rule.

Figure 4.2 clearly con�rms our result that a �nite project life may cause the real

option investment rule to be non-monotonic in uncertainty. An increase of � from 0:10
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FIGURE 4.3. A perpetual project and a �nitely-lived option to invest: investment trigger
boundary, Q�(�F ), for various levels of volatility and the set of parameters: � = 0:08, r = 0:1,
� = 0:7, � = 0:4, I = 10; T =1, TF = 10.

to 0:15 moves the curve downwards.7 But an increase of � from 0:20 to 0:25 and 0:30

shifts the optimal triggers upwards. The important �nding of this numerical analysis

is that after comparing Figure 4.2 and Figure 4.1, we can conclude that the levels of

� at which the trigger decreases and increases with uncertainty, remain roughly the

same. In both cases the revenue uncertainty level at which the change of sign occurs

lies between � = 0:15 and � = 0:20. Thus the �nite-life option assumption neither

mitigates nor augments the positive relationship between investment and uncertainty

due to the decreasing trigger.

Figure 4.2 shows also that the e¤ect of uncertainty may di¤er depending on the

remaining option life. The dashed curve of � = 0:15 is below the dot-marked curve of

� = 0:25 at high �F and above at low �F . The reason is the nearly �at horizontal shape

of the optimal investment trigger curve at relatively low � (� = 0:10 or � = 0:15) for

most of the option life and a sudden drop close to �F = 0. This shape is caused by

the convenience yield being low at lower �; implying that there is only a small gain

of undertaking the investment early (recall that a call option is never prematurely

exercised if the convenience (dividend) yield is zero).

The behavior of the investment boundary in Figure 4.2 can be contrasted with the

case of the perpetual project. Figure 4.3 shows that when the project life is in�nite

7Except at the expiry date �F = 0, at which Q�(t) increases in � for all �.
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then Q�(t) moves upwards with increasing uncertainty. This is the usual monotonic

relation consistent with the model with perpetual opportunity to invest.

4.4.2 Stochastic project life

An alternative for assuming a deterministic �nite project life is to impose that a

Poisson arrival brings the project to an end. We study this here and assume that the

project lifetime (after installation) follows a Poisson process with rate 
. Among the

numerous studies applying this set up we like to mention Merton (1976), who uses it

in a �nancial option context, and McDonald and Siegel (1986), who apply it to the

case of real investments.

Using equation (4.4) and the probability density of the stochastic lifetime, we obtain

the project value

V (Q) =

Z 1

0

Q
1� e�(r+�����)t
r + ��� � � 
e�
tdt =

Q

r + ��� � �+ 
 :

Note that the mortality rate 
 leads to an environment equivalent to the one with

perpetual projects except that the e¤ective discount rate is now r+�����+
 rather
than r+�����. The resulting formula prompts that a project with stochastic lifetime
can be interpreted as a perpetual project that is exponentially depreciated with rate


 (see Dixit and Pindyck (1994, p.200)).

Analogous to the previous analyses, the optimal investment trigger can be derived:

Q� =
�1

�1 � 1
(r + ��� � �+ 
) I: (4.12)

We can now show that the non-monotonic uncertainty e¤ect carries over to the case

of a stochastic project life.

Proposition 4.6 If 
 > 0 and �� > 0, then the uncertainty e¤ect on the investment
trigger is non-monotonic: it decreases in � for low levels of � and then increases. The

length of the �-interval where the negative e¤ect occurs increases in 
.

This result points out how strongly the monotonic relationship between the invest-

ment trigger and uncertainty hinges on the assumption of the project being perpetual.

If there exists just a small probability that the project will be �nished in �nite time, the

investment trigger will be decreasing with increasing uncertainty for a small enough

�. To illustrate this result, a numerical example is presented in Figure 4.4. Here we

indeed see that even a very small 
 causes the trigger to decrease in uncertainty at

low but realistic levels of uncertainty. We also see that the boundary moves upward as
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FIGURE 4.4. Investment trigger as a function of volatility for various Poisson arrival rates

 and the set of parameters: � = 0:08, r = 0:1, � = 0:7, � = 0:4, I = 10.


 increases, re�ecting that a higher instantaneous �ow is needed for the investment to

be optimal, once the probability that a project ends increases.

4.4.3 General convenience yield

The previous results stated in Propositions 4.1-4.6 are obtained for the framework of

Section 4.2 (and Section 4.4.2 in the stochastic life case). In that model, the equilibrium

discount rate, and also the convenience yield, are determined by the standard CAPM

and thus are linear in �. Here we check whether this linearity is crucial for the results

that we obtained. This issue is relevant as, apart from the standard CAPM, there

exist theory and some evidence in favour of nonlinearity. For example, it is well-know

that the presence of �nite heterogeneous investment horizons leads to a non-linear

CAPM with a nonlinear relationship between returns and risk (see, e.g., Lee, Wu and

Wei (1990)). Moreover, there is a growing literature on factor pricing models with

nonlinearities (see Bansal and Viswanathan (1993)).

Let the convenience yield be a non-decreasing, continuous, twice di¤erentiable func-

tion of uncertainty, �(�) for � � 0. In the previous sections we obtained results for the
linear case, i.e. �00(�) = 0. We now present propositions that generalize those results.

Corresponding to Proposition 4.1 we have the following.

Proposition 4.7 If the project life is in�nite and �0(�) � 0, then the investment

trigger increases with uncertainty.
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Proposition 4.4 can be generalized as follows.

Proposition 4.8 If the project life is �nite, �0(�) > 0, and �00(�) � 0, then the

uncertainty e¤ect on the investment trigger is non-monotonic: it decreases in � for

low levels of � and then increases. The length of the �-interval where the negative

e¤ect occurs decreases with project lifetime.

So in the case of a �nite project life, the previously observed properties for linear

�(�) carry over to a concave �(�). In case of a convex �(�), we can have either a

U-shaped relationship or a monotonic one.8

4.4.4 Mean reverting revenues

In this section we relax the assumption that revenue follows a geometric Brownian

motion by allowing Q to be mean reverting. There have been several studies that

considered the impact of mean revision on real options valuation (Metcalf and Hassett

(1995), Schwartz (1997), Sarkar (2003)). We analyze here whether our result that

a �nite project life may cause a non-monotonic investment-uncertainty relationship

carries over to the framework with mean revision.

Suppose that the revenue �ow follows a geometric mean reverting process charac-

terized by the following stochastic di¤erential equation:

dQt = [�Qt + �(�e
�t �Qt)]dt+ �QtdZt: (4.13)

The process corresponds to the generalized mean revision in equation (2) of Metcalf

and Hassett (1995). � > 0 is the speed of revision of the process towards its mean.

The mean is �e�t and grows exponentially at rate � > 0. If � = 0 the process becomes

a geometric Brownian motion with drift � as in (4.1). If � = 0; the process in (4.13)

becomes a simple mean revision with constant mean as studied by Sarkar (2003).

Denote the project value with remaining time � to maturity at time t by V (Q; � ; t)

(the mean of Q depends on calendar time and this dependence is re�ected in V ). Using

standard arguments, we �nd that V (Q; � ; t) must satisfy the following di¤erential

equation

1

2
�2Q2VQQ + [(�� ���)Q+ �(�e�t �Q)]VQ � V� � rV +Q = 0; (4.14)

8To check it, take, for instance, �(�) = r+���3=2�� with the parameter values as in Table 4.1 and the uncertainty
e¤ect is U-shaped. However, if �(�) = r + ���3 � �; the e¤ect of uncertainty is always positive.
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with the terminal condition at maturity � = 0

V (Q; 0; t) = 0: (4.15)

Di¤erential equation (4.14) with boundary condition (4.15) has an analytical solu-

tion9 which is linear in Q:

V (Q; T; t) = AQ+B;

where

A =
1� e�(r+�����+�)T
r + ��� � �+ � ;

B =
��e�t

�+ ���

�
1� e�(r��)T
r � � � 1� e

�(r+�����+�)T

r + ��� � �+ �

�
:

As expected, when � = 0 the value function is identical to (4.4) with revenues following

a geometric Brownian motion. When � = 0 the formula simpli�es to the value function

in equation (2) in Sarkar (2003).

Similarly, using standard arguments one can show that the value of the option to

invest F (Q) satis�es

1

2
�2Q2FQQ + [(�� ���)Q+ �(�e�t �Q)]FQ � rF = 0; (4.16)

with boundary conditions: F (Q�) = AQ� + B � I, FQ(Q�) = A and F (0) = 0: The

di¤erential equation (4.16) with the boundary conditions has no known analytical

solution, but it can be readily solved numerically. To �nd the optimal investment

trigger we use a simple shooting method. The method is very accurate as long as the

value function does not have to be evaluated numerically (see Dangl andWirl (2003) for

more details and further discussion). We convert the second order di¤erential equation

(4.16) into a system of two �rst order di¤erential equations and employ a Runge�Kutta

algorithm to solve the initial value problem.

To examine the e¤ect of uncertainty on investment in the presence of mean revision,

we repeat the numerical exercise for various project durations and levels of speed of

revision �. Figure 4.5 illustrates the results for two di¤erent project lifetimes T = 10

and 30; and various levels of �. The other parameters are as in the previous numerical

examples with the addition of � = 0:5 and t = 0. In principle, for each t the mean of

Q is di¤erent (it grows deterministically and equals �e�t) and so the trigger strategy

9The analytical solution for the project value with �nite lifetime when revenues follow a generalized geometric mean
reverting process (4.13) might be of interest on its own; see also Li (2003) who solves a similar problem.
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FIGURE 4.5. Investment trigger as a function of volatility for various levels of speed of
revision � and the set of parameters: � = 0:08, r = 0:1, � = 0:7, � = 0:4, � = 0:5; I = 10;
t = 0. Project life time T is 10 (left) and 30 (right).

changes over time. � is the mean at t = 0 and its value is chosen in such a way that it

is not above the optimal investment triggers at t = 0.

It is clear that in general uncertainty e¤ects are less pronounced in the presence of

mean revision. Therefore, as illustrated in Figure 4.5 uncertainty e¤ects on investment

are �attened especially for larger � and long-lived projects. Yet the main result of

this chapter still holds, since the non-monotonic relationship between uncertainty and

investment is present if the project life is short and the region of the negative e¤ect

is larger the shorter is the project lifetime. For higher levels of � and for larger T the

uncertainty e¤ect weakens and ultimately the e¤ect only holds for very low values of

�.

4.5 Conclusions

Our analysis shows that a �nite life of an investment project in combination with a

risk premium in expected rates of return may reverse the usual e¤ect of uncertainty on

irreversible investments. In particular, we determined a scenario under which increased

uncertainty reduces the value of waiting with investment. We now brie�y discuss some

implications of this result.

In corporate practice investment projects are usually considered to have a �nite

life, which supports the importance of our result. It thus seems that assuming the

project life to be in�nite, which is done in the overwhelming majority of real options

contributions, is useful for simplicity reasons but dangerous since adverse uncertainty

e¤ects are lost.
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From a policy point of view our results demonstrate that there exists a positive level

of uncertainty at which the investment trigger admits its lowest value. If the policy

aim is to increase investment, then the implication is that it is not necessarily optimal

in all cases to decrease the level of uncertainty of policy instruments. However, any

speci�c recommendation may be a bit far-reaching in the current single-�rm model

with a general source of uncertainty. To derive policy implications out of our non-

monotonic investment-uncertainty relationship deserves a separate study. Similarly, in

order to focus on the main features of the described mechanism, we have not attempted

to construct a richer model of industry equilibrium. This can be done by considering

a competitive industry (as in Leahy (1993) and Caballero and Pindyck (1996)) or

imperfect competition (as in Smets (1991), Smit and Ankum (1993), Grenadier (1996)

and Smit and Trigeorgis (2004)). However, we are quite con�dent that, qualitatively

spoken, our result carries over to these frameworks.

Our non-monotonicity result accords with empirical �ndings of Bo and Lensink

(2005). In a panel of Dutch �rms, the investment-uncertainty relationship is positive

at low levels of uncertainty and negative at high levels. Until now, a clear theoretical

explanation for such empirical results is missing. The factors hastening investment

with greater uncertainty indicated in this chapter lend themselves to empirical tests.

4.A Appendix: Proofs

4.A.1 Deterministic project life

The derivative of the investment trigger (given in (4.6)) with respect to � is

dQ�

d�
=

I�1
(�1 � 1)

2

1

�2
�
�1 � 1

2

�
+ �� ���

1

1� e�(r+�����)T (M �N�) ; (4.17)

where

M = (�1 � 1)
�
�1 +

1

2

�
���2 + (�1 � 1) (r � �)� + �1 (�� ���)��� r��;

N = (�1 � 1)
�
�1 �

1

2

�
���2 + (�1 � 1) (�� ���)��;

� = (r + ��� � �)T
�
e(r+�����)T � 1

��1
:

Denote the termM �N� by L1. The �rst three fractions of (4.17) are always positive
(recall that �2

�
�1 � 1

2

�
+ � � ��� = @L0=@�j�=�1 > 0, as the derivative is evaluated

at the higher root of the convex quadratic L0). The sign of L1 thus determines the
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sign of the derivative. From (4.7) we observe that

(�� ���) �1 = �
1

2
�21�

2 +
1

2
�1�

2 + r;

which can be substituted twice into M and N to obtain

M =
1

2
(�1 � 1)

2 ���2 + (�1 � 1) (r + ��� � �)�; (4.18)

and

N =
1

2
(�1 � 1)

2 ���2 + (r + ��� � �)��: (4.19)

Proof of Proposition 4.1. First, suppose that �� > 0. Combining T ! 1 with

(4.17) and (4.18), we obtain that

dQ�

d�
=

I�1
(�1 � 1)

2

1

�2
�
�1 � 1

2

�
+ �� ���

�
(�1 � 1)�

�
r +

1

2
(�1 + 1)��� � �

��
>

I�1
(�1 � 1)

2

1

�2
�
�1 � 1

2

�
+ �� ���

[(�1 � 1)� (r + ��� � �)]

� 0;

where the �rst inequality stems from the observation that 1
2
(�1+1) > 1 and the second

from the assumption that r + ��� � � = � > 0.
The two other possibilities �� = 0 and �� < 0 are covered by the proofs of Propo-

sitions 4.2 and 4.3, respectively.

Proof of Proposition 4.2. Within our model we can impose absence of the impact
of systematic risk by setting � = 0: The derivative of the investment trigger (given in

equation (4.6)) with respect to � is

dQ�

d�
=

I�1
(�1 � 1)

2

1

�2
�
�1 � 1

2

�
+ �

1

1� e�(r��)T (�1 � 1)� (r � �) :

The resulting expression is always positive if r > �, which holds by the assumption

that � > 0.

Proof of Proposition 4.3. Suppose that �� < 0. Then the assumption that � > 0
holds if and only if � 2 [0; ��), where �� = ��r

��
. We have that, denoting �(�) and �1(�)

as functions of �, �(��) = 0 and �1(��) = 1. So [0; ��) is the relevant domain for � in

this case. Next, we claim that

1

2
(�1 + 1)� < ��, for all � 2 [0; ��): (4.20)
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To verify, note that

d

d�

1

2
(�1 + 1)� =

�
�2
�
�1 �

1

2

�
+ �� ���

��1 �
1

2
(3�1 � 1)�2 + (�1 � 1)�� ���

�
> 0

and 1
2
(�1(��) + 1) �� = ��. So, for positive � less than ��, the inequality (4.20) is true.

Now, �� < 0 implies that N < 0. Combining (4.20) and (4.18) we have that

M = (�1 � 1)�
�
r +

1

2
(�1 + 1)��� � �

�
> (�1 � 1)� (r + ���� � �) = (�1 � 1)��(��) = 0:

Since M > 0, N < 0, and 1 � � > 0, the derivative (4.17) is also positive and the

proposition is proved.

Proof of Proposition 4.4. Suppose that T is �nite and �� > 0. We want to show
that L1 is negative for low � � 0 and becomes positive when � increases. First, it is
useful to observe the simple fact that 1 � � > 0 and

d�

d�
< 0: (4.21)

It can also be veri�ed that

L1 � 0) (�1 � 1)� � �� < 0 ()
d�1
d�

> 0: (4.22)

Then note that at � = 0, L1 = � (r � �)��� < 0. So dQ�

d�
is also negative at � = 0.

As � increases, � converges to zero and L1 becomes positive. We show now that L1
changes its sign from negative to positive only once with increasing �. If L1 = 0, then

� = M
N
and

dL1
d�

=
dM

d�
� dN
d�
��N d�

d�
>
dM

d�
� dN
d�
� =

1

N

�
dM

d�
N � dN

d�
M

�
=

���

N

�
d�1
d�
� + �1 � 1

�
f(�1 � 1) [��� (�1 � 1)�]� + �g

> 0: (4.23)

The inequalities follow from (4.21) and (4.22). So L1 increases in � at the point at

which L1 = 0. Now, continuity of L1 implies that it changes its sign only once from

negative to positive at some �� > 0. Hence the �rst part of the proposition is proved.
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To verify that the �-interval where the negative e¤ect occurs is larger the shorter is

the project life, we consider

d��

dT
= �

@L1
@T
@L1
@�

�����
�=��

=
N d�

dT
@L1
@�

�����
�=��

< 0:

The inequality follows from the fact that d�
dT
< 0 and (4.23).

Proof of Proposition 4.5. The sum of the two option e¤ects is

@Q�

@�1

@�1
@�

+
@Q�

@�1

@�1
@�

@�

@�
=

I�1
(�1 � 1)

2

�(�)

1� e��(�)T
(�1 � 1)� � ��

�2
�
�1 � 1

2

�
+ �� ���

: (4.24)

As �1 > 1 and �
2
�
�1 � 1

2

�
+ r � �(�) > 0, the sign of expression (4.24) depends on

the sign of L2 � (�1 � 1)� � �� in the way stated in the proposition.
It remains to be shown that there exists a unique non-negative �̂: Note that, if

�� > 0, at � = 0 we have that L2 = ��� < 0 and the combined option e¤ect is

negative. To verify that the option e¤ect changes its sign only once from negative

to positive with increasing �, we show that L2 (being continuous in � > 0) always

increases with � if L2 � 0. That is,

dL2
d�

=
��� � (�1 � 1)�2

�2(�1 � 1) + �� ���
+ �1 � 1 � �1 � 1 > 0;

if L2 � 0.
The discounting e¤ect is given by

@Q�

@�

@�

@�
=

I�1
�1 � 1

1� e��(�)T � �(�)Te��(�)T

(1� e��(�)T )2
��;

which is always positive and increasing in T . It is straightforward from derivations

leading to (4.24) that @Q
�

@�1

@�1
@�
and @Q�

@�1

@�1
@�

@�
@�
decrease in absolute terms in T .

4.A.2 Stochastic project life

Let �(�) be a continuous twice di¤erentiable convenience yield function. The derivative

of Q� given in (4.12) with respect to � eventually becomes:

dQ�

d�
=

I�1
(�1 � 1)

2

1

�2
�
�1 � 1

2

�
+ r � �(�)

L3; (4.25)
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where

L3 =
1

2
(�1 � 1)

2 �0(�)�2 + (�1 � 1) �(�)� + [(�1 � 1)� � �0(�)] 
: (4.26)

The �rst two fractions of the right-hand side of (4.25) are always positive, so the sign

of the derivative is determined by the sign of L3.

Proof of Proposition 4.6. The proof follows from the proof of Proposition 4.8 below
with linear �(�).

We prove Propositions 4.7 and 4.8 only for stochastic project lifetime; similar proofs

can be obtained for the deterministic case.

Proof of Proposition 4.7. Note that if 
 = 0 and �0(�) > 0 then
L3 =

1
2
(�1 � 1)

2 �0(�)�2 + (�1 � 1) �(�)� > 0.

Proof of Proposition 4.8. We want to show that for 
 > 0, �0(�) > 0 and �00(�) < 0,
L3 is negative for low � � 0 and turns to positive with increasing �. First we note

that at � = 0, L3 = ��0(0)
 < 0. Then observe that a straightforward consequence of
(4.26) is that

L3 � 0) (�1 � 1)� � �0(�) < 0 ()
d�1
d�

> 0: (4.27)

Using this, if L3 � 0, we have that

dL3
d�

=
d�1
d�

�
(�1 � 1) �0(�)�2 + � (�(�) + 
)

�
+ (�1 � 1)

2 �0(�)�

+(�1 � 1) (�(�) + 
 + �0(�)�) +
�
1

2
(�1 � 1)

2 �2 � 

�
�00(�)

>

�
� 1

�0(�)
(�1 � 1)� (�(�) + 
)

�
�00(�) > 0:

So L3 always increases in � if L3 � 0. From the continuity of L3 it now follows that

L3 changes its sign only once from negative to positive at some �� > 0. This proves

the �rst part of proposition.

To verify that the �-interval where the negative e¤ect occurs is larger, the shorter

is the project life we consider

d��

d

= �

@L3
@


@L3
@�

�����
�=��

=
�0(�)� (�1 � 1)�

@L3
@�

�����
�=��

> 0;

where for the inequality we employ (4.27) and the �rst part of the proof of this propo-

sition.
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5

Partial Divestment and Firm Sale under
Uncertainty

5.1 Introduction

Firms can downgrade their operations and release the capital to investors in response

to unfavorable market conditions or a deterioration of e¢ ciency relative to competitors.

In essence, corporate assets can be either divested and sold gradually over time or the

whole �rm can be sold at once. These two alternative phase-out modes di¤er in two key

aspects. On the one hand, gradual divestment allows �rms to maintain �exibility and

to bene�t from possible future positive market developments. In this respect gradual

divestment is advantageous compared to �rm sale. On the other hand, partial displaced

assets are sold with a discount on secondary markets whereas �rms are sold with a

substantial takeover premium. In this chapter we study optimal divestment directly

addressing the trade-o¤between the �exibility of gradual divestment and the premium

of whole �rm sale.

The �exibility advantage of gradual divestment is related to the optionality of the

irreversible (dis-)investment decisions. The real options approach to investment stresses

the value created by uncertainty when investment timing is �exible. In the case of

gradual divestment, the �rm holds a bundle of options to sell its partial assets. A

marginal sale of assets leaves the options to sell the remaining assets and allows the

�rm to bene�t from their optimal execution in the future. In the case of �rm sale,

the decision is also an option at owners discretion. The available evidence on takeover

transactions supports the stance we adopt in this chapter. Andrade, Mitchell and

Sta¤ord (2001) show that 94 percent of takeover transactions are initiated by the
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selling party.1 While the timing of �rm sales is �exible, all �exibility is lost after the

�rm sale and exit.

If the whole �rm is sold at the same price as the sum of partial asset sales, gradual

divestment is always a preferable choice. This is no longer the case if partial asset sale

is associated with a discount in comparison to whole �rm sale. The literature on asset

sale provides strong empirical evidence for the partial asset sale discount and the �rm

sale premium. The discount for partial displaced capital stems from �rm and sectorial

capital speci�city, the thinness of the used capital market and costs of redeploying the

capital. For example, Ramey and Shapiro (2001) cite such reasons for substantially

discounted prices of used capital relative to replacement value found in the aerospace

industry. Pulvino (1998) shows that �nancial constraints add to depress selling prices

for used aircraft in transactions between airlines. Firm sales, on the other hand, are

attributed with premiums relative to some benchmark values. The two main sources of

the premium are the following. First, a �rm is sold with a premium over the selling price

of partial physical capital because many types of intangible assets are purchased only

with the full corporate entity. These assets include mainly competitive intangibles such

as customer and suppliers relations, know-how and organization, and may account to

a signi�cant portion of �rm value (see, e.g., Hand and Lev (2003)). Second, persistent

empirical evidence documents substantial takeover premiums de�ned as the di¤erence

between the selling price and the value of the target �rm before the transaction. A

recent study of Boone and Mulherin (2007) reports a mean premium of 40 percent in

the announced transaction price relative to the price of the target �rm 4 weeks before

the �rst announcement of the takeover. This means that even after controlling for

intangible assets (included in the pre-announcement �rm value), whole �rms are sold

with premiums. These takeover premiums are typically explained as originating from

strategic synergies or higher productivity of the buying �rm coupled with bargaining

power of the selling party. Part of the surplus created by a merger is paid out to the

target �rm owners.

Given the above characteristics of corporate divestments, some interesting questions

remain unanswered. What does the optimal downsizing path look like? How does the

structure of the price discount-premium a¤ect the choice between partial divestment

and �rm sale? Should �rms with more volatile pro�ts divest partially or sell at once?

1Using a smaller sample, but with more detailed information, Boone and Mulherin (2007) document that 15 percent
of takeover bids are unsolicited. However small is the fraction of unsolicited takeover bids, even these sale transactions
leave some �exibility and discretion in the hands of the selling party. Boone and Mulherin (2007) report that most
of the unsolicited bids are executed by competitive auctions to solicit bids from other potential buyers. Furthermore,
Schwert (2000) shows that the so-called hostile takeover deals are economically equivalent to friendly takeovers and
hostility is mostly related to strategic negotiations.
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Do �rms in more declining markets prefer gradual divestment or �rm sale? Do �rms

with more industry-speci�c capital opt for gradual exit or takeover sale?

To answer these questions we construct a stylized real options model in which a

�rm faces a stochastic pro�t �ow and optimally chooses its divestment path. Marginal

units of capital may be released and sold at a discounted unit price. Alternatively, the

whole �rm can be sold at a premium price that depends on the capital level at the

transaction time. To focus on the main trade-o¤ problem between partial divestment

and �rm sale we assume that both decisions are irreversible. From a technical point of

view, the problem is not trivial as it involves two di¤erent stochastic control technics.

Partial divestment is modeled as a barrier control, and the �rm adjusts capital level

at each time the underlying pro�tability state variable reaches a new minimum on

a barrier. On the other hand, whole-�rm sale is a discrete decision, and the �rm�s

problem takes the form of an optimal stopping problem.2

Our analysis indicates that the optimal divestment policy depends critically on the

structure of the discount-premium of the capital price. We �rst study the simplest

case, in which the �rm-sale premium is linear (proportional in the level of capital).

In this case, the optimal policy is either to divest only gradually if the proportional

premium is below a certain threshold or to divest the whole �rm if the proportional

premium is su¢ ciently large (it is assumed here that the �rm has followed the optimal

divestment path before and does not start o¤ the optimal policy path).

The optimal divestment policy takes a notably di¤erent form if the �rm-sale pre-

mium is a¢ ne, i.e. if the premium consists of both proportional and �xed components.

The �xed part of the premium arises because of, e.g., non-tangible assets sold only with

the whole �rm. In this case, if the proportional premium is su¢ ciently large, the �rm

optimally decides to use only the �rm-sale option, as the premium o¤sets the gains

from the �exibility of gradual divestment. But if the proportional premium is not too

high, the �rm optimally divests marginal units of capital in a declining market until its

size reaches a certain threshold. Subsequently, the remaining capital is sold with the

whole �rm, but this only happens after an anticipation phase in which the market falls

to a su¢ ciently low level. Intuitively, while at high levels of capital the �rm prefers to

maintain the �exibility of partial divestment against a moderate �rm-sale premium, at

lower levels of capital the bene�t of a positive �xed premium will o¤set the �exibility

advantage of gradual adjustments.

The model generates some new predictions on the optimal choice of divestment

policy and, speci�cally, on the choice between partial divestment and �rm sale. We

2Two other recent papers study corporate investment as mixed stochastic control problems. Guo and Pham (2005)
analyzes optimal entry and subsequent investment, and Décamps and Villeneuve (2007) deals with dividend choice and
optimal exercise of a growth option of a �nancially constrained �rm.
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�nd that in more uncertain markets the value-maximizing �rm is more inclined to

divest its capital fully at once. This means that, somewhat surprisingly, the value

of �exibility of partial divestment does not become more valuable in more volatile

markets compared to one-time �rm sale. This e¤ect arises because �rm sale, being

less �exible, has a higher value of waiting, which is directly and positively a¤ected by

uncertainty. We also show that �rm sale is more preferable over partial divestment in

more declining markets. This is because in a declining market there is less room to

bene�t from the �exibility of gradual divestment.

We extend the model to allow the selling price of capital to be correlated with the

market state variable. The correlation coe¢ cient between the market state and the

price level is interpreted as a measure of industry-speci�city of capital. We model in

a reduced form the e¤ect that, in a declining market, the demand for used capital de-

creases, and consequently prices also fall. We are interested how the industry-speci�city

of capital a¤ects optimal divestment policies. We obtain that the more industry-speci�c

is capital, the more preferable is partial divestment over �rm sale. The explanation for

this result is again related to the large value of waiting in the option to sell the �rm at

once. Because the speci�city of capital a¤ect the values of alternative strategies mostly

via the values of waiting, and increasing speci�city decreases these values, �rm sale

becomes less desirable.

The distinction between incremental capital adjustment and full-�rm sale has been

noted by several previous authors. In a series of two papers Ghemawat and Nalebu¤

(1985, 1990) study divestment and exit in declining industries. Ghemawat and Nale-

bu¤ (1985) consider the equilibrium order of full-�rm exit in an oligopolistic market,

while Ghemawat and Nalebu¤(1990) allows �rms to adjust their capital incrementally.

In contrast, our paper incorporates both modes of capital adjustment in one model

with uncertain demand, but we choose not to focus on the competitive e¤ects. Lieber-

man (1990) and Maksimovic and Phillips (2001) empirically study the choice between

partial and whole-�rm divestment. While these studies do not test the whole set of

predictions implied by our model, they nevertheless provide some supporting evidence.

In particular, Lieberman (1990) and Maksimovic and Phillips (2001) show that large

�rms adjust capital partially and small �rms tend to sell their all assets at once.

The remainder of the chapter is organized as follows. In Section 5.2 we set up a

model of a �rm with both partial and full-�rm divestments. Section 5.3 derives the

optimal divestment policies and the corresponding �rm values. Section 5.4 discusses

the implications of the model for divestment policies. Section 5.5 studies the e¤ects

of industry-speci�city of capital. Section 5.6 concludes and the Appendix provides the

proofs omitted in the main text.
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5.2 Model

Consider a �rm that produces a uniform non-storable good and faces stochastic de-

mand. To produce the good the �rm uses capital and possibly other variable inputs.

The �rm�s operating pro�t at time t depends on the installed capital stock Kt and the

market conditions variable Xt and is given by

�t = �(Xt; Kt) = XtK


t ; 
 2 (0; 1): (5.1)

The formulation has been frequently employed in previous studies (Bertola and Ca-

ballero (1994), Abel and Eberly (1996), Abel and Eberly (1999), Guo et al. (2005))

and is consistent with either a monopolist facing an isoelastic demand function and

production technology with non-increasing returns to scale, or a price taking �rm with

decreasing returns to scale technology.3 The investors are risk neutral and discount

cash �ows at a constant rate r.

The market conditions variable Xt captures the exogenous time varying business

environment; more speci�cally Xt re�ects demand shocks, but can also include pro-

ductivity shocks and the prices of variable inputs (see footnote 3). We assume that the

process (Xt)t�0 evolves according to the geometric Brownian motion

dXt = �Xtdt+ �XtdZt;

where Zt is the standard Brownian motion, � is the drift parameter and � > 0 is

the volatility parameter. We denote the �ltration (the �-algebra) generated by (Xt)t�0

with (Ft)t�0. To ensure convergence of the problem, it is assumed that � < r.
Marginal units of capital can be sold at a price normalized to 1. Selling the whole

�rm at once results in a premium with a �xed component A � 0 and a unit price

of capital equal to a � 1.4 This means that the owners of the �rm with a level of

capital k divesting at once receive ak+A. The �xed premium may stem from the non-

tangible assets or from a part of the takeover premium. It must be understood that

our formulation incorporates the discount for partial displaced capital in the di¤erence

3Suppose that the production function is Qt = K
�
t , where Qt is output produced at time t and � 2 (0; 1] measures

the degree of returns to scale. The inverse demand function is given by Pt = XtQ
� 1
"

t , so that for a given quantity
the price evolves in time together with the demand shock Xt. " > 1 is the constant price elasticity of demand. Then
instantaneous operating pro�t at time t is

�t = PtQt = XtQ
"�1
"

t = XtK
� "�1

"
t :

De�ning 
 = �� �=" we obtain (5.1) with 
 2 (0; 1) if either the �rm has a monopoly power (that is if " <1) or the
technology exhibits decreasing returns to scale (� 2 (0; 1)). As shown by Abel and Eberly (2004) the argument can be
extended to the case with variable outputs in the production function (e.g. labor) and time varying productivity.

4The unit prices of capital are time constant in the current setup, but we relax this assumption in Section 5.5, where
we allow for stochastic capital sale prices that are correlated with the market conditions variable.
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between a and 1, so the normalization of the selling price of partial capital is without

loss of generality. Capital divestment, either marginal or complete exit, is irreversible.

The objective of the �rm is to maximize the value of the original owners. The

control policy comprises the choice of capital and the exit time. The admissible capital

contraction is a non-increasing process K = (Kt)t�0 that is progressively measurable

with respect to �ltration (Ft)t�0. The exit time � is a stopping time with respect to
(Ft)t�0. The value of the �rm following the optimal investment policy is the solution

to the following optimization problem:

W (Xt; Kt) = sup
�

sup
fKt+sg

Et
�Z ��t

0

e�rs�(Xt+s; Kt+s)ds

+

Z ��t

0

e�rsdKt+s + e
�r(��t) (aK� + A)

�
: (5.2)

The �rm�s problem involves two stochastic control problems, i.e. instantaneous control

over a divestment path fKt+sg and optimal stopping at a stopping time � .

5.3 Optimal divestment policy

5.3.1 Benchmark cases and linear premium

In this subsection we consider the two limit cases. In the �rst case, the �rm has only

gradual divestment available. In the second case, the �rm can only downsize by �rm

sale. Both cases are straightforward simpli�cations of the more general optimization

problem (5.2). This analysis is then used to study the case where both divestment

modes are available and the �rm-sale premium is linear in capital, i.e. a � 1 and

A = 0.

Denote by V m(x; k) the value of the �rm that follows optimal divestment policy

in the case the �rm can only sell partial capital. The optimal policy is characterized

by a barrier function Xm(k) that, for a given k, triggers in�nitesimal divestment (see

Pindyck (1988), Abel and Eberly (1996)). The standard arguments lead to the following

Bellman equation that must be satis�ed by V m:

rV m(x; k) =
1

2
�2x2V mXX(x; k) + �xV

m
X (x; k) + �(x; k): (5.3)

The equation states that the required rate of return (the left-hand side) must be equal

to the expected gain in �rm value plus pro�t �ow �(x; k) (the right-hand side).

The divestment trigger Xm(k) and the value V m can be obtained by solving the

di¤erential equation (5.3) subject to appropriate boundary conditions. At the divest-
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ment trigger the �rm sells the in�nitesimal capital dk for a price of 1 per unit. It must

hold that V m(Xm(k); k) = V m(Xm(k); k � dk) + dk. Writing this in derivative form,
we obtain the smooth-pasting condition

V mK (X
m(k); k) = 1: (5.4)

The condition requires that the marginal value of capital at the optimal divestment

barrier Xm(k) must be equal to its selling price.

The optimality condition for Xm(k) requires that the slopes of the value function

are equal at Xm(k). The requirement in derivative form is known as the high-contact

condition (see Dumas (1991)) and is written as

V mXK (X
m(k); k) = 0: (5.5)

Finally, we also require that, as the demand shift increases to in�nity, the option value

to divest remains �nite. This means that5

lim
x!1

V m(x; k)� �(x; k)
r � � <1: (5.6)

In the second extreme case, the �rm has only the option to phase out by �rm sale.

Denote by V e(x; k) the value function of the �rm following an optimal �rm sale policy

at trigger Xe(k). Given that the values in both cases are driven by the same stochastic

process and the same payo¤ function, it is clear that before exit, V e must satisfy the

same type of Bellman equation as before:

rV e(x; k) =
1

2
�2x2V eXX(x; k) + �xV

e
X(x; k) + �(x; k): (5.7)

In order to obtain the �rm value and the optimal trigger strategy, we need to

solve (5.7) subject to the appropriate boundary conditions. When the trigger Xe(k)

is reached, the �rm sells k units of capital for unit price a and obtains a non-negative

�xed premium A. The value function must be equal to the proceeds from sale, which

means that the value-matching condition is

V e (Xe(k); k) = ak + A: (5.8)

The �rm maximizes its value by choosing the optimal Xe(k) and this requires that

the slopes of the value function are equal at the sale trigger. This translates into the

5The discounted expected pro�t �ow (the second term on the left-hand side) goes to in�nity as x ! 1, but the
remaining value, i.e. the value of the option to divest, should be �nite.
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smooth-pasting condition at Xe(k):

V eX (X
e(k); k) = 0: (5.9)

In addition, the value function should be �nite as X raises to in�nity, so that the

�rm-sale option remains �nite:

lim
x!1

V e(x; k)� �(x; k)
r � � <1: (5.10)

Using the above analysis, we prove the �rst result of the mixed case where both

gradual divestment and �rm sale are available, and the �rm sells at a proportional

premium. Before we state the result, let us de�ne a� by

a� =
1




�
1� � (1� 
)




� 1
��1

:

Proposition 5.1 Suppose that a � 1, A = 0 and (X0; K0) is at or above the relevant

triggers characterized below.

(a) If a < a�, the �rm divests only via partial divestment at

Xm(k) =
�

� � 1
1



(r � �) k1�
;

and the �rm value is

W (x; k) = B1(k)x
� +

1

r � �xk

;

where

B1(k) =
1

1� �
k

1� � (1� 
)X
m(k)��

and

� =
1

2
� �

�2
�

s�
�

�2
� 1
2

�2
+
2r

�2
� 0:

(b) If a � a�; then the �rm sale trigger is given by

Xe(K0) =
�

� � 1a (r � �)K
1�

0

and the �rm value is

W (x; k) = B2(k)x
� +

1

r � �xk

;



5.3 Optimal divestment policy 111

FIGURE 5.1. Divestment triggers with linear �rm-sale premium. The left panel presents the
case of a < a� and A = 0. In this case the �rm divests only partially following barrier control
at Xm(k). The right panel presents the case a � a� and A = 0. In this case the �rm divests
only by �rm sale at trigger Xe(K0).

where

B2(k) =
ak

1� �X
e(k)��:

The proposition characterizes the optimal divestment triggers and the �rm values

in two cases. When the proportional premium is su¢ ciently large, a � a�, the whole
�rm is sold at once as soon as the market shock reaches Xe(K0). If a < a�, the

�rm divests only gradually following the barrier control at Xm(k). Figure 5.1 presents

the optimal divestment policies in the two cases. The reason for this dichotomous

outcome is that the proportionality of payo¤s in the two alternative divestment modes

translates into the proportionality of the value function. If the premium is su¢ ciently

small, then �exibility of partial divestment always o¤sets the premium of �rm sale. If

a is su¢ ciently large, then the premium counterbalances the �exibility advantage of

partial divestment at all levels of capital.6

6The results and the conclusions presented here depend on the assumption that (X0;K0) is at or above the relevant
triggers. The case is economically the most interesting. For the starting value to fall below the triggers, the �rm must
have deviated for some unmodeled reasons from the optimal policy before the initial date. Nevertheless, if a < a� and
X0 � Xm(K0) (in other words, the �rm starts "too large" for a given market), the analysis resembles the model of
Décamps, Mariotti and Villeneuve (2006) that studies an investment decision in one of two alternative projects. For
a given x, there is a level of capital at which the �rm is indi¤erent between partial divestment and whole-�rm sale.
Intuitively, if the �rm has a high level of capital for the current (low) state of the market, it is better o¤ selling all the
capital with a premium than making a large partial adjustment at discounted prices and stay at the low market. If x
falls below this indi¤erence point, �rm sale is preferable, if x rises, the value of partial divestment will exceed the value
of �rm sale. As in Décamps et al. (2006), it is possible to show that at the point of indi¤erence the �rm optimally does
not make an divestment decision, and instead prefers to wait for the development of the market to decide for either
partial adjustment, if x increases su¢ ciently, or �rm sale, if x falls su¢ ciently and the market becomes unattractive
for partial adjustment. The bottom line is that there is an inaction region at low levels of x for a given k, in which the
�rm does not make divestment decisions, but divest the whole �rm if the market deteriorates and divests partially if
the market improves.
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5.3.2 Divestment with non-linear �rm-sale premium

In this section we consider a more general case of �rm-sale premium and allow it to

be a¢ ne in the level of capital. In other words, we assume that a � 1 and A > 0. The
previous section shows that with A = 0, a � a� implies that V e(x; k) � V m(x; k) and
the �rm is better o¤ selling the whole entity. As we show next, this conveys to the

a¢ ne case, but if a < a�, it needs no longer be true that V e(x; k) < V m(x; k) for all

levels of capital.

Lemma 5.2 Suppose that a � 1 and A > 0. If a � a�, then V e(x; k) � V m(x; k). If
a < a�, then there exists a level of capital ~k that separates two regimes: V e(x; k) �
V m(x; k) for k � ~k; and V e(x; k) > V m(x; k) for k < ~k.

In the a¢ ne case, V e(x; k) exceeds V m(x; k) for su¢ ciently low k. The intuition is

that at small levels of capital the bene�t of achieving a positive �xed premium will o¤-

set the �exibility advantage of partial divestment. However, the inequality V e(x; k) >

V m(x; k) is only a necessary condition for whole-�rm sale. Even if V e(x; k) > V m(x; k)

holds, the �rm may still be better o¤ selling some capital by partial divestment before

selling the remaining capital at once. This will be the case as long as the marginal

value of partial divestment exceeds the marginal value of capital sold with the whole

�rm. These arguments suggest that in the case of a < a�, optimal divestment will

take the form of a two-stage policy. If the capital level is relatively large, such that

it exceeds a certain threshold on capital K�, the �rm will optimally divest partially.

Below K�, investors will be better o¤ selling the whole �rm. The aim of the remainder

of this section is to characterize this policy and the corresponding �rm value.

As before, it is standard to show that the value function W (x; k) satis�es the fol-

lowing Bellman equation:

rW (x; k) =
1

2
�2x2WXX(x; k) + �xWX(x; k) + �(x; k): (5.11)

The optimal solution to the optimization problem (5.2) can be characterized using

the di¤erential equation (5.11) and the appropriate boundary conditions. As long as

k > K�, the marginal value of capital at the optimal divestment barrier Xm(k) must

be equal to its selling price. This means that the following holds

WK (X
m(k); k) = 1: (5.12)

The optimality condition for Xm(k) requires the high-contact condition:

WKX (X
m(k); k) = 0: (5.13)
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When the �rm switches from the marginal divestment mode to the �rm sale mode

we require that the marginal values of capital from the respective policies are equal.

Speci�cally, it must hold that

lim
k#K�

WK (X
m(k); k) = lim

k"K�
WK (X

m(k); k) : (5.14)

If the equality did not hold at K�, the �rm would increase its value by choosing

another point to switch from partial to whole-�rm divestment. The optimal �rm sale

is triggered at Xe(k) and the value must satisfy the value matching condition:

W (Xe(k); k) = ak + A: (5.15)

The condition means that the �rm value must be equal to the proceeds from the

sale. The optimality of the endogenous trigger requires that the value function is

di¤erentiable at the trigger, which leads to the smooth pasting condition:

WX (X
e(k); k) = 0: (5.16)

Before we characterize the solution of the divestment problem (5.2), let us de�ne

R(k) �
�



�
a+

A

k

���� �
(1� �) a+ 
�

�
a+

A

k

��
� 1: (5.17)

Suppose A > 0 and a < a�, and let K� be the unique k � 
A
1�a
 that satis�es R(k) = 0.

If a � a�, let K� =1.

Proposition 5.3 Suppose A > 0 and (X0; K0) is at or above the relevant triggers

characterized below. The optimal divestment policy is characterized by the marginal

divestment barrier

Xm(k) =
�

� � 1
1



(r � �) k1�
 if k > K�

and the �rm sale trigger is

Xe(k) =
�

� � 1 (r � �) (ak + A) k
�
 if k � K�:

The �rm value is given by

W (x; k) =

(
B3(k)x

� + 1
r��xk


 if k � K�and x � Xe(k)

B4(k)x
� + 1

r��xk

 if Ke � k � K� and x � Xe(k);

(5.18)
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FIGURE 5.2. Divestment triggers with a¢ ne �rm-sale premium (A > 0) and a < a�. The
�rm divests partially following the barrier control at Xm(k) as long as k > K�. If k � K�

the �rm divests the remaining capital at trigger Xe(k).

where

B3(k) =
1

� � 1
1

� (
 � 1) + 1
�
kXm(k)�� �K�Xm(K�)��

�
+B4(K

�);

B4(k) =

�
ak + A� 1

r � �X
e(k)k


�
Xe(k)��;

and � is as characterized in Proposition 5.1.

5.4 Analysis and implications

Proposition 5.3 characterizes the optimal divestment path. The optimal policy is il-

lustrated in Figure 5.2 and can be described as follows. The �rm divests marginally if

the capital level is relatively high, above K�, and whenever x reaches the divestment

barrier Xm(k). As soon as capital reaches K�, the �rm stops partial divestment. This

is con�rmed by Proposition 5.3, which states that partial divestment stops at Xm(K�)

and �rm sale is triggered by Xe(K�). As in general Xm(K�) will exceed Xe(K�), the

optimal divestment path is characterized by an anticipation region, in which the �rm

does not divest marginally. Instead it waits until a su¢ ciently negative pro�tability

shock occurs. This triggers �rm sale and exit.

Figure 5.2 clearly illustrates the prediction of the model on the relationship between

�rm size and divestment policies. Large �rms divest partially and small �rms divest

by �rm sale. This prediction �nds a strong con�rmation in the evidence presented

by Maksimovic and Phillips (2001). They �nd that the average �rm that sells partial

capital (partial divisions) has revenues of $1:859 billion and operates 23:7 plants, and
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the average �rm that sells in a merger has revenues of $51 million and operates 1:78

plants.

An interesting special case is a premium with only the �xed component A > 0 and

no proportional one, that is a = 1. In this case, K� can be characterized explicitly by

K� =

A

1� 
 :

The �rm size at which the �rm is sold is increasing in the �xed premium A and in the

level of returns to scale 
. The case of a = 1 is also special because the anticipation

region Xm(K�) � Xe(K�) disappears and the �rm continuously moves from partial

divestment to full-�rm sale.

We are interested in the impact of parameters characterizing the �rm and its envi-

ronment on the choice between partial divestment and �rm sale. We �rst consider the

e¤ects of uncertainty represented by the volatility parameter � in the Xt process.

Proposition 5.4 a� decreases in �. K� increases in � if a 2 (1; a�).

The proposition states that the e¤ect of uncertainty on the preference between the

�exibility of partial divestment and the premium of �rm sale is unequivocal. The

cuto¤ level of a that makes the �rm to opt for full-�rm sale decreases in the level

of uncertainty. This means that in a more uncertain environment, the �rm prefers

full-�rm sale for a larger set of parameters. This same kind of prediction is implied

by the e¤ect of � on K�: the �rm exits with higher level of capital after some partial

divestment.

These results may seem surprising at �rst. From the standard real options theory

we know that higher uncertainty increases the value of waiting. One might expect that

the �exibility advantage of partial divestment is more valuable in a more uncertain

market. We �nd the opposite and the intuition for our result is the following. Firm sale

is one irreversible real option and, as such, has a substantial value created by the value

of waiting. Partial gradual divestment forms a sequence of real options, and despite

the fact that these marginal divestment decisions are irreversible, the whole policy

is, in a sense, less irreversible than �rm sale. Hence the optimal gradual investment

policy takes less into account the value of waiting and the value of the policy will be

less responsive to the parameters a¤ecting the value of �exibility.7 Consequently, the

value of �rm sale is more responsive to the changes in uncertainty than is the value of

gradual partial divestment and the former value increases more in � making �rm sale

more attractive.

7These observations are similar to Malchow-Moeller and Thorsen (2005) who constrast repeated investment options
and a single investment option.
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Proposition 5.5 a� increases in �. K� decreases in � if a 2 (1; a�).

The result in the proposition implies that in a more declining market, the option

to sell the whole �rm and exit becomes more preferable over gradual divestment. In

particular, with lower �, the cuto¤ premium a� decreases and the size of full-�rm sale

K� increases. Intuitively, in a more declining market, there is less room to bene�t from

the �exibility of gradual divestment.

5.5 Industry-speci�c capital and divestment

The price of capital has been �xed in the above formulation. Arguably, in a declining

market the selling prices of capital are linked with the state of the market. One reason

for prices changing together with market/pro�tability shocks is industry-speci�city of

capital. If capital is less productive outside industry, then, after a negative industry-

related shock, demand for displaced capital falls and prices decrease. The argument

is in line with the industry-equilibrium model of Shleifer and Vishny (1992). Their

paper explicitly models potential buyers of displaced capital and predicts that negative

industry-speci�c shocks and �nancing constraints will result in depressed prices of used

capital.

We model these e¤ects in a reduced form by linking the capital price Pt with the

market/productivity process Xt. Speci�cally, we suppose that the evolution of Xt and

Pt is given by

dXt = �XXtdt+ �XXt(dZX)t

and

dPt = �PPtdt+ �PPt(dZP )t;

where E[(dZX)t(dZP )t] = �dt. We interpret the correlation coe¢ cient � as the parame-
ter measuring the industry-speci�city of capital. A high positive � means that capital

is industry speci�c and a decline in Xt results, on average, in a de�ated capital price.

To ensure that the problem is well de�ned and has a �nite solution we assume that

�X < r and �
2
X � 2��X�P + �2P > 0.

The extension with variable capital price adds to the complexity of the model. In

order to stay in a tractable environment we assume in this section that the whole �rm

sells only at a proportional premium, that is A = 0 and a � 1. To summarize, a unit
of capital divested partially at time t sells at price Pt; and the �rm holding Kt units

of capital sells at aPtKt.

In this setup we are interested in the impact of industry-speci�city of capital on the

optimal divestment policy. We obtain the following result.
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Proposition 5.6 The more industry-speci�c is capital (the higher is �), the more
preferable is gradual partial divestment over �rm sale.

The intuition for the result is related to the value of waiting created by the divest-

ment options. The usual prediction of the real options theory is that in an environment

as in this section, the value of waiting decreases if productivity and capital price are

more correlated (see, e.g., Hartman and Hendrickson (2002)). As discussed in Section

5.4, the value of waiting is larger for the single option to sell the whole �rm than for

the sequence of marginal options to divest partially. Thus increasing � decreases the

value of �rm sale more than the value of gradual divestment. To put it di¤erently,

when capital is highly industry-speci�c (high �), then, after waiting for the market to

deteriorate su¢ ciently to trigger full-�rm sale, the �rm will, with high probability, sell

its capital at low prices. Consequently, the �rm�s preference moves towards gradual

divestment.

5.6 Conclusions

The chapter has studied divestment decisions and addressed directly the trade-o¤

between the �exibility of gradual divestment and the price premium from full-�rm

sale. It provides analytical results for �rm values and optimal divestment policies

under alternative premium-discount structures. In particular, if the �rm-sale premium

is a¢ ne, the �rm optimally divests marginal units of capital in a declining market until

its size reaches a certain threshold. Subsequently, but after an anticipation phase in

which the state of market falls to a su¢ ciently low level, the remaining capital is sold

with the whole �rm.

The model produces a number of novel predictions on the optimal choice of divest-

ment policy and, speci�cally, on the choice between partial divestment and �rm sale.

We analyze the impact of displaced capital discount, �rm sale premium, �rm size,

pro�t volatility, market growth and industry-speci�city of capital. Future empirical

research could directly test these predictions.

Future research should also explore if the same mechanisms that are described in

this chapter carry over when competition and potential buyers of capital are modeled

explicitly. It may be particularly interesting to study a dynamic oligopoly model of

a shrinking industry in which �rms play a war of attrition as, for example, in Murto

(2004), but then to allow �rms to undertake partial divestment and takeovers.

The framework presented in the chapter can be adapted to study the other side

the capacity adjustment decision, namely investment. It will be interesting to consider

a combination of gradual capital expansion and discrete technological change, analo-
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gously to capital downsizing and �rm sale analyzed in this chapter. The problem of

capital accumulation and technology investment has received considerable attention

in deterministic models (see, e.g., Feichtinger, Hartl, Kort and Veliov (2006)), but has

not been addressed in the stochastic framework of real options.

5.A Appendix: Proofs

Proof of Proposition 5.1. Solving (5.3) subject to (5.4)-(5.6), we obtain that

Xm(k) =
�

� � 1
1



(r � �) k1�
;

and, if x � Xm(k),

V m(x; k) =
1

1� �
k

1� � (1� 
)

�
x

Xm(k)

��
+

1

r � �xk

:

The solution to (5.7) subject to (5.8)-(5.10) is

Xe(k) =
�

� � 1 (r � �)
�
a+

A

k

�
k1�
;

and, if x � Xe(k), then

V e(x; k) =

�
a� 
�

� � 1

�
a+

A

k

���
x

Xe(k)

��
+

1

r � �xk

:

Now suppose that A = 0 and x � max fXe(k); Xm(k)g. Using the value functions
characterized above, we have that

V m(x; k)� V e(x; k) = k

1� �

�
x

Xe(k)

�� �
a�
�

1� � (1� 
) � a
�
:

The sign of the expression depends on the sign of the term in the square brackets. This

means that if a � a� then V m(x; k) � V e(x; k) and if a < a� then V m(x; k) > V e(x; k).
In the case of a < a�, the value of gradual divestment always exceeds the value of

�rm sale, so it is never optimal for the �rm to choose the latter strategy. It follows

that the optimal trigger policy of the �rm with both divestment strategies available

is given by Xm(k) and its value W is equal to the value of the �rm with marginal

divestment V m(x; k).

In the case of a � a�, the value of strategy comprising of only gradual divestment is
always below the value of optimal �rm sale. To conclude that the �rm does not divest
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gradually, we still need to rule out a strategy consisting of some gradual divestment

followed by �rm sale. Suppose the �rm divests a marginal unit of capital before the

whole �rm is sold. The marginal value of capital that is sold optimally by partial

divestment is equal to V mK (x; k) if x > X
m(k) and equal to 1 if x � Xm(k). In the �rst

case, if x > Xm(k), comparing this marginal value with the marginal value of capital

from �rm sale, we have that

V mk (x; k)� V ek (x; k) =
1

1� �

�
x

Xe(k)

�� �
a�
� � [1� � (1� 
)] a

	
� 0;

which is non-positive because a � a�. In the second case, if x = Xm(k), the di¤erence

in marginal values is

1� V ek (Xm(k); k) =
1

1� �
�
1� [1� � (1� 
)] a1��
��

	
� 0:

The last inequality holds because a � a�: It can be easily veri�ed that for Xe(k) � x �
Xm(k), V ek (X

m; k) is decreasing in x, so the di¤erence 1�V ek (x; k) remains non-positive
(to see that V ek (X

m; k) is decreasing in this interval, observe that V exk(X
m(k); k) < 0

and that V exk(x; k) is a convex function on the relevant interval). It follows that the

marginal value of capital sold by the �rm sale always exceeds the marginal value

of capital from partial divestment, so the maximizing �rm never chooses to divest

partially.

Proof of Lemma 5.2. The same steps that in the proof of Proposition 5.1 lead to
the following formula for the di¤erence between the values:

V m(x; k)� V e(x; k) = k

1� �

�
x

Xe(k)

�� �
� � A

k

�
;

where � � a�
� [1� � (1� 
)]�1 � a: It was also shown there that � � 0 is equivalent
to a � a�. It follows that a � a� implies that � � A=k for all k � 0. Thus a � a�

implies that V e(x; k) � V m(x; k):
In the case of a < a�, it holds that � > 0. So there exists ~k > 0 such that � = A=~k.

Moreover, V m(x; k) > V e(x; k) if k > ~k, and V m(x; k) < V e(x; k) if k < ~k.

Proof of Proposition 5.3. It is straightforward to verify that (5.18) satis�es (5.11)-
(5.13) and (5.15)-(5.16) for a given K�. Note that limk#K�WK (X

m(k); k) = 1. Now

we consider two cases to verify (5.14). First, if K� is such that Xe(K�) > Xm(K�),

then the �rm is sold at Xm(K�), and so limk"K�WK (X
m(k); k) = a. It follows that,

as long as a > 1, (5.14) cannot be satis�ed if Xe(K�) > Xm(K�). Second, we consider
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Xe(K�) � Xm(K�), which can be shown to be equivalent to k � 
A
1�a
 . Applying then

(5.14) to (5.18) we obtain that K� must satisfy R(K�) = 0. To verify that K� is unique

in the case of a < a�, we show that there is a unique root to R(k) = 0 if k � 
A
1�a
 . It can

be easily checked that R0(k) < 0 if k > 
A
1�a
 . Moreover, R(


A
1�a
 ) = (1� �)

�1 (a� 1) �
0. SoR(k) is monotonically decreasing starting from a positive value. WhetherR(k) has

a root for k > 
A
1�a
 depends on a. Note that lim k!1R(k) = 


��a1�� [1� �(1� 
)]�1
is negative if a < a� and positive if a > a�. We conclude that if a < a� there exists a

unique �nite K� such that (5.14) holds. If a � a�, the marginal value of capital sold
with the whole �rm always exceeds the marginal value of capital sold partially and

K� =1.

Proof of Proposition 5.4. We �rst consider the e¤ect on a�. � in�uences a� via �.
Taking the derivative of a� with respect to � we have that

da�

d�
=

a��1
(1� �)2

;

where

�1 =
(1� 
) (1� �)
1� � (1� 
) � log

�
1� � (1� 
)




�
:

The sign of the derivative depends on the sign of �1; which is a sum of a positive and

negative term. We now show that �1 is always less or equal to zero. Observe that �1
increases in � � 0:

d�1
d�

=
(1� 
)2 (1� �)
[1� � (1� 
)]2

� 0:

Moreover, lim�!0 �1 = 1� 
 + log 
 < 0 for all 
 2 (0; 1). Thus �1 is non-positive for
all � � 0 and consequently da�=d� � 0. Finally, it is straightforward to verify that

d�=d� > 0 so da�=d� � 0 as stated in the proposition.
Now consider the derivative of K� with respect to �. Recall that if a 2 (1; a�), then

K� is the unique k � 
A= (1� a
) such that R(k) = 0. Thus

dK�

d�
= � @R=@�

@R=@K� :

First, let �2 = [
 (a+ A=k)]
�� and consider @R=@�:

dR

d�
= �2

�
� log

�



�
a+

A

k

���
(1� �) a+ 
�

�
a+

A

k

��
� a+ 


�
a+

A

k

��
= � 1

�
(a�2 � 1� log �2) > 0;
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where in the second equality we twice use substitutions implied by R(k) = 0, and

the inequality follows from the observation that �2 � 1 � log �2 for all positive �2
with equality holding only at �2 = 1. Combined with the previous observation that

d�=d� > 0; we have that dR=d� > 0. Second, consider @R=@K�:

@R

@K� = �� (� � 1)

A

k2

�



�
a+

A

k

�����1 �



�
a+

A

k

�
� a
�
< 0:

The inequality follows from the fact that 
a � 
 (a+ A=k) � 1 for k � 
A= (1� a
).
Combining the above observations we obtain that dK�=d� > 0.

Proof of Proposition 5.5. The proof is very similar to the proof of Proposition 5.4.
� a¤ects a� and K� only via �. The only di¤erence with the e¤ect of � in Proposition

5.4 is that� as can be readily veri�ed� d�=d� > 0. Applying this to the derivatives in

the proof of Proposition 5.4 we obtain the result.

Proof of Proposition 5.6. The �rm optimization problem is now the following

W (Xt; Pt; Kt) = sup
�

sup
fdKt+sg

Et
�Z ��t

0

e�rs�(Xt+s; Pt+s; Kt+s)ds

+

Z ��t

0

e�rsPt+sdKt+s + e
�r(��t)aP�K�

�
: (5.19)

We take the same strategy as in Section 5.3.1 and Proposition 5.1. That is we suppose

that (X0; P0; K0) is at or above the relevant triggers and we consider two limit cases,

one in which the �rm has available only partial divestment and one in which the �rm

can only divest all capital at once. Both cases are straightforward simpli�cations of the

more general optimization problem (5.19). Denote by V m(x; p; k) the value function of

the �rm following optimal partial divestment and by V e(x; p; k) the value function of

the �rm following optimal �rm-sale policy. The value functions V �(x; p; k), � 2 fm; eg,
must satisfy the following partial di¤erential equation (where we omit the function

arguments for brevity):

rV � =
1

2
�2Xx

2V �XX +
1

2
�2Pp

2V �PP + ��X�PxpV
�
XP + �XxV

�
X + �PpV

�
P + xk


: (5.20)

Using that V �(x; p; k) is homogeneous of degree one in x and p, we can simplify the

problem and reduce one state variable. Let y = x=p and v�(y; k) = V �(x=p; 1; k) =

V �(x; p; k)=p. This implies that V �X = v�Y , V �XX = v�Y Y =p, V �P = v� � yv�Y , V �PP =
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y2v�Y Y =p and V �XP = �yv�Y Y =p. Then we can rewrite (5.20) in terms of v�:

(r � �P ) v� =
�
1

2
�2X � ��X�P +

1

2
�2P

�
y2v�Y Y + (�X � �P ) yv�Y + yk
.

The two ordinary di¤erential equations for � = m and � = e have known general

analytical solutions and are solved for the optimal value and divestment policy by

setting appropriate boundary conditions. In the case of � = m, the optimal policy

takes the form of barrier control at lower boundary Y m(k) in the space (y; k). We

set the boundary conditions similar to conditions (5.4)-(5.6), i.e. vmX (Y
m(k); k) = 1;

vmXK(Y
m(k); k) = 0 and the �niteness condition as y goes in�nity. In the case of

� = e, the optimal policy takes the form of an exit trigger Y e(k). The boundary

conditions in this case are similar to the conditions (5.8)-(5.10), i.e. ve(Y e(k); k) = ak;

veX(Y
e(k); k) = 0 and the �niteness condition as y goes in�nity.

Applying the boundary conditions we obtain in the case of � = m that

Y m(k) =
�1

�1 � 1
1



(r � �X) k1�
;

and, if x=p � Y m(k),

V m(x; p; k) = pvm(y; k) =
1

1� �1
pk

1� �1 (1� 
)

�
x=p

Y m(k)

��
+

1

r � �X
xk
;

where �1 is the negative root of the quadratic equation:�
1

2
�2X � ��X�P +

1

2
�2P

�
� (� � 1) + (�X � �P ) � + �P � r = 0: (5.21)

In the case of � = e, we have

Y e(k) =
�1

�1 � 1
(r � �X) ak1�
;

and, if x=p � Y e(k), then

V e(x; p; k) = pve(y; k) = ap
1� �1 (1� 
)

1� �1

�
x=p

Y e(k)

��
+

1

r � �X
xk
:

As in Proposition 5.1 we compare the values from the two limit policies, namely V m

and V e. Straightforward calculations following the argument in Proposition 5.1 lead

to the conclusion that there is a threshold level of a� on a such that partial divestment

is preferable over �rm sale if a < a�, and if a � a� the �rm will optimally sell at once
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without partial divestment. It can be veri�ed that

a� =
1




�
1� �1 (1� 
)




� 1
�1�1

.

The derivative of a� with respect to �1 is the same as the one analyzed in the proof

of Proposition 5.4, and it was shown there that da�=d�1 � 0. Di¤erentiating (5.21) we
obtain that d�1=d� < 0. It follows that da

�=d� � 0, or in words, that with higher �

the �rm requires more premium to optimally choose �rm sale over partial divestment.
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Samenvatting

Dit proefschrift is een bundeling van vier research papers met als gemeenschappelijk

thema de economische e¤ecten van tijd, onzekerheid en informatie.

Hoofdstuk 2 levert een bijdrage aan de dynamische speltheorie en, door toepass-

ing van het algemene model, aan de theorie van de industriële organisatie. Het model

introduceert een categorie continue signalling games voor twee spelers, waarbij de

onge
,
dnformeerde speler inzet op een door beide spelers waargenomen di¤usieproces.

Wij veronderstellen dat de betaling van de inzet afhankelijk is van het type van de

ge
,
dnformeerde speler zoals de tegenspeler dit zelf heeft waargenomen, en dat de ge

,
dn-

formeerde speler andere types kan nadoen, maar wel tegen een bepaalde �prijs�. Wij

tonen aan dat het signalling game gespeeld wordt zolang de inzet binnen de tweezijdige

limiet van de onafhankelijke variabele (de inzet) blijft. In een evenwichtstoestand zal

de ge
,
dnformeerde speler bij een randomized lower trigger laten zien van welk type

hij/zij is. De onge
,
dnformeerde speler ontdekt welk type de andere speler werkelijk

vertegenwoordigt door het minimumproces van de inzet te observeren en speelt om de

inzet bij een bovengrens die afneemt met het lopende minimum.

Vervolgens passen we het spel toe op een model van dynamische limietprijzen bij

een stochastische vraag en leiden daaruit een aantal gevolgtrekkingen af die onmogelijk

zijn met tijdsafhankelijke deterministische modellen. Het model van op onvolledige in-

formatie gebaseerde limietprijzen is voor het eerst gebruikt door Milgrom en Roberts

(1982) voor een gevestigd bedrijf dat door middel van zijn prijsstelling duidelijk maakt

dat toetreding tot de markt niet winstgevend kan zijn en daarmee potentiële toetred-

ers afschrikt. Wij hebben het algemene model voor signalling games geschikt gemaakt

om het probleem van de limietprijzen te bestuderen, en wel door het di¤usieproces

te interpreteren als de stochastische vraag, de ge
,
dnformeerde speler als het geves-
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tigde bedrijf en de onge
,
dnformeerde speler als de toetreder. Eén voordeel van deze

dynamische opzet is dat deze een prijsevenwicht genereert en vooral dat dit evenwicht

de limietprijs van de gevestigde marktpartijen toont. In een evenwichtstoestand ver-

raadt de gevestigde partij door middel van limietprijzen tot welk type hij behoort

door zijn prijzen te verhogen wanneer de markt moeilijker toegankelijk wordt voor

nieuwe toetreders. Prijsverhogingen in een krimpende markt kunnen dus duiden op

het hanteren van limietprijzen om toetreders te weren. Het model impliceert verder

dat, hoewel de vraag als een Markov-variabele is vormgegeven, de beslissing om al dan

niet tot de markt toe te treden mede wordt ingegeven door historische continu
,
dteit

(path dependence) en dat bij de beoordeling van de winstgevendheid van de toetreding

niet alleen naar de huidige marktsituatie wordt gekeken, maar ook naar de historische

minimumprijs.

Hoofdstuk 3 bevat een bijdrage aan de corporate-�nancetheorie. In dit hoofdstuk

analyseren we de e¤ecten van �nanciële problemen op de keuze voor bedrijfs�nanciering

en andere �nanciële beslissingen. Anders dan in de tot nu toe gepubliceerde literatuur

hebben wij zowel de liquiditeit op korte termijn als de solvabiliteit op lange termijn

bestudeerd. De opname van liquiditeitskwesties in het �contingent claims trade-o¤

model�heeft allerlei implicaties voor corporate �nance. Wij tonen aan dat er een be-

langrijke wisselwerking bestaat tussen liquiditeit en solvabiliteit. Omdat bedrijven met

een geringere solvabiliteit minder geldmiddelen nodig hebben om liquiditeitsschokken

op te vangen alvorens in staat van insolventie te geraken, leidt een geringere solvabiliteit

tot grotere liquiditeit bij bedrijven. Aan de andere kant is de liquiditeit zowel direct

van invloed op de �nanciële beslissingen � het is namelijk duur om geld te lenen om

aan de liquiditeitseisen te voldoen � als indirect, via de keuze voor de optimale vermo-

gensstructuur en daardoor op de solvabiliteit van het bedrijf. Het model geeft een reden

voor de soms omvangrijke liquide middelen die bedrijven aanhouden en voorziet in een

dynamisch liquiditeitsbeleid in lijn met empirische regelmatigheden. De wisselwerking

tussen liquiditeit en solvabiliteit maakt dat positieve schokken in de kasstroom worden

ingehouden en negatieve schokken leiden tot een daling van de optimale omvang van de

liquide middelen. Het gevolg is dat de optimale dividenduitkeringen worden afgevlakt

ten opzichte van de kasstromen. Door liquiditeit in het model te introduceren, kunnen

we de kritiek op de voorspellende waarde van structurele modellen deels ondervangen.

Ten eerste blijkt het uit empirisch onderzoek van Eom, Helwege en Huang (2004) een

veel voorkomend probleem van structurele modellen te zijn dat de voorspelde spreiding

van de credit spreads te groot is. Ons model voorspelt een geringere spreiding van de

credit spreads over bedrijven dan het model zonder liquiditeit. Ten tweede pakken bij

het gebruik van standaard structurele modellen de voorspelde leverage ratios vaak te
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hoog uit. Door de liquiditeit mee te rekenen, valt het aandeel vreemd vermogen in de

waarde van een bedrijf in onze analyse aanzienlijk lager uit.

In hoofdstuk 4 en 5 bestuderen we investeringsbeslissingen van bedrijven. Hoofdstuk

4 gaat nogmaals in op de belangrijke resultaten van de �reële-optiebenadering� van

investeringen, die inhoudt dat het bij toenemende onzekerheid steeds gunstiger wordt

om te wachten met investeren, met als gevolg dalende investeringen. In de literatuur

over dit onderwerp wordt er standaard van uitgegaan dat de looptijd van investeringen

oneindig is. In de huidige economie verandert de technologie echter voortdurend en

dat betekent dat bedrijven bij technologische investeringen doorgaans uitgaan van

een beperkte levensduur. In strijd met de bestaande theorie blijkt uit de resultaten

eveneens dat toenemende onzekerheid juist leidt tot meer investeringen. Dat blijkt

vooral het geval te zijn bij geringe onzekerheid en een korte projectduur.

Hoofdstuk 5 bestudeert het optimale desinvesteringsbeleid voor bedrijven: is dat

geleidelijk afbouwen en verkopen of het gehele bedrijf ineens van de hand doen? Gelei-

delijke desinvesteringen bieden grotere �exibiliteit, terwijl het hele bedrijf tegelijk van

de hand doen een hogere prijs oplevert. Wij tonen aan dat een groot bedrijf er het beste

aan doet eerst enkele bedrijfsonderdelen af te stoten alvorens de rest van het bedrijf

ineens te verkopen. Hierbij geldt wel de voorwaarde dat de (hogere) prijs uit zowel een

vaste als een procentuele component bestaat. In de volgende gevallen blijkt volledige

verkoop te verkiezen boven gedeeltelijke verkoop: bij relatief sterk �uctuerende win-

sten, bij dalende markten en als kapitaal minder sectorspeci�ek is.

Ook op methodologisch gebied draagt dit proefschrift bij aan de literatuur door op

innovatieve manieren stochastische controletechnieken in te zetten bij de oplossing van

nieuwe economische problemen. Hoofdstuk 2 bestudeert met behulp van de theorie van

de optimale controle van extremumprocessen hoe we kunnen achterhalen van welk type

onbekende, andere spelers zijn. Om te beginnen formuleren we het probleem met twee

onveranderlijke Markov-variabelen, namelijk de beloning van het spel en het Bayesi-

aanse geloof omtrent het type speler dat de ander vertegenwoordigt. Vervolgens laten

wij zien dat het oorspronkelijke probleem met zijn complexe Bayesiaanse updating in

een veel eenvoudiger probleem kan worden vertaald, waarin de onveranderlijke geloofs-

variabele wordt vervangen door het minimumproces van de opbrengstvariabele. Het

probleem van de onge
,
dnformeerde speler kunnen we vervolgens oplossen met behulp

van �optimal stopping of maximum processes�(zie Peskir (1998) en Peskir en Siryaev

(2006)) dat daartoe een uiterst �exibel kader biedt.

In hoofdstuk 3 introduceren we onbekende drift- en �lterparameters in een model

voor twee vormen van onzekerheid: korte liquiditeitsschokken en langdurige onzeker-

heid over de solvabiliteit. De kortdurende onzekerheid wordt direct weergegeven door

onvoorspelbare Brownse toenamen van de kasstromen. Voor de langdurige onzeker-



138 Samenvatting

heid gaan we ervan uit dat de waarde van de gemiddelde momentane kasstroom

aanvankelijk onzeker is maar een bekende distributie kent. De uitkomsten van het

stochastische proces worden gebruikt om inzicht te krijgen in de ware aard van het

kasstroomproces. Deze werkwijze heeft als aantrekkelijk punt dat aanhoudende liq-

uiditeitsschokken daadwerkelijk worden vertaald in solvabiliteitsschokken (zo duiden

aanhoudende negatieve liquiditeitsschokken op geringe winstgevendheid). Door aan

het model voor kasstroomontwikkeling een �lter toe te voegen, krijgen we een corpo-

rate �nancemodel dat sober en analytisch wendbaar is en tegelijk een grote reikwijdte

en voorspellende kracht heeft.

In hoofdstuk 5 hanteren we een combinatie van �barrier control�en �optimal stop-

ping�om de kosten en baten af te wegen van geleidelijke of abrupte aanpassingen van

het bedrijfsvermogen. Geleidelijke aanpassingen, die als �barrier control�-probleem in

het model zijn opgenomen, bieden het bedrijf meer �exibiliteit. Die �exibiliteit is van

waarde in stochastische omgevingen en blijft waardevol, ook als de aanpassing onom-

keerbaar is. Daar staat tegenover dat onomkeerbare, abrupte (des)investeringen, in het

model weergegeven als stopprobleem, minder �exibiliteit bieden maar vaak een hogere

prijs opleveren. De combinatie van �barrier control�en �optimal stopping control� is

nieuw en in de reële-optiebenadering nog niet eerder toegepast.


