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1 Introduction

Technology advances quickly these days, and for firms it is important to keep up
with the latest developments since customers like to buy the most modern products.
However, a certain trade off may exist because of the presence of an adverse invest-
ment effect: if new versions of products appear soon after each other, customers
continually have to get used to handling these new versions. Obvious examples are
the new generations of software: people can be very reluctant to change the soft-
ware they use. The older version still works as though it were new, while changing
to a new (more powerful) version leads to an at least temporary drop in efficiency
since the user has to learn how to work with it and there may also be compatibility
problems. This is one of the reasons for the empirical fact that new technologies
are often adopted on a large scale only after a prolonged period of time (Chari
and Hopenhayn, 1991; Mansfield, 1968; Mulder et al., 2003). Further, if a firm has
a reputation such that new versions of its product follow each other quickly, cus-
tomers may refrain from buying a product and waiting for a more modern version
to appear on the market, causing a negative effect on the volume of sales

The firm has a certain technology level that is reflected in the technological con-
tent of its product. In general it holds that the greater the technological content
or the more modern the product, the more attractive it is to customers. Since an
important determinant of the firm’s sales is their degree of competitiveness, the
absolute technological content of its products is less important than its content rel-
ative to some baseline level, so when we speak of technological content of a product
in this paper, or the firm’s technology level, we mean the technological content, or
technology level, relative to the baseline level. Due to general technological progress,
this baseline level increases over time. This implies that if the firm does nothing to
increase its technology level, thus refrain from technology investments, its relative
standing will decrease over time.

Firms can raise their technology level by adopting new technologies or by per-
forming R & D themselves. It is clear that these technology investments are not
very effective when there is almost no know-how present within the firm. In this
case, the firm’s current technological level is low and will remain low unless a very
substantial effort is made to increase the technological content. Increasing the tech-
nological content is also a difficult task if the firm is already producing the most
modern products. In that case very advanced R & D activities are required to
increase the technological content of such a high quality product (see also Das and
Van de Ven (2000)). By now it is clear that the effectiveness of technology in-
vestments depends on the present technological content of the firm’s products. To
increase the technology level of the firm by a given amount, more effort is needed
either when the technology level is low or high compared to intermediate levels of
technology.

This paper presents a model in which the above characteristics are incorporated,
demonstrating that

(i) technology investments increase the firm’s technology level which increases the
number of customers and thus sales,

(ii) some customers are distracted by technological changes so that the sales vol-
ume decreases with technology investments, and

(iii) the effectiveness of technology investments depends on the firm’s technology
level.

The resulting model is an optimal control model with two state variables, the num-
ber of customers and the firm’s technology level, and one control variable, the firm’s
technology investment rate.
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The solution has very interesting characteristics. If the initial technology level
is low, it is not optimal to increase the technology level by technology investments
since such investments are not very effective due to a lack of know-how within the
firm. The implication is that the firm will quit its operations in the long run.
However, for a sufficiently high initial technology level it is worthwhile for the firm
to converge to a long run optimal limit set, which can either be a steady state or
a stable limit cycle. In a plane with the sales volume on the horizontal axis and
technology level on the vertical axis a curve (called DNS-curve) separates these two
regions of optimal convergence. On the DNS-curve the firm is indifferent between
two long-run optimal outcomes (steady state at the origin versus interior steady
state/limit cycle).

Above the DNS-curve oscillatory behavior of optimal paths is caused by model
characteristic (ii). When this negative effect of technological changes on the sales
volume is low, then converging to the interior steady state is optimal but happens in
a less damped oscillatory way as this effect becomes larger. At a certain level of this
effect, a limit point (blue sky) bifurcation occurs, which means that a semi-stable
limit cycle arises (“out of the blue sky”). The implication for long-run behavior
is that inside the limit cycle convergence to the steady state is still optimal, while
outside the limit cycle convergence to the limit cycle itself takes place. Increasing
the level of effect (ii) beyond the blue sky bifurcation level, the semi-stable limit
cycle splits to a stable and an unstable limit cycle, where the unstable limit cycle is
situated entirely within the stable one. Concerning long-run behavior, it now holds
that within the unstable limit cycle convergence to the steady state occurs, while
outside the unstable limit cycle, the system ends up at the stable limit cycle. A
further increase of the effect of model characteristic (ii) results in a larger size of the
stable limit cycle and a reduction in size of the unstable limit cycle; eventually the
unstable limit cycle and the steady state coincide. Exactly when this happens a Hopf
bifurcation arises, implying that above the DNS-curve we always have convergence
to the stable limit cycle. This stable limit cycle still exists and increases in size
when we increase effect (ii) beyond this point, but eventually it will turn out that
the firm will refrain completely from technology investments.

The paper is organized as follows: in Section 2 the model is presented, while
in Section 3 Pontryagin’s maximum principle is applied to establish the necessary
conditions for an optimal solution. The optimal solution is presented in Section 4
for different scenarios, while an economic interpretation is provided in Section 5.

2 A Model of Technology Investment and Cus-
tomer Attraction

With T (t) we denote the product’s technological content relative to some baseline
level at time t. In general it holds that the greater the technological content or the
more modern the product, the more attractive it is to customers. The state variable
T (t) is also a measure for the level of know-how within the firm at time t.

The firm has the possibility to undertake investments, I (t) , in order to keep up
with the technological development or even increase its own technological content
relative to the baseline level. It is assumed that the effectiveness of technology
investment depends on the technology level. Let us denote the rate of effectiveness
of technology investment by h (T ). The firm will have a higher technology level
when it invests (i.e. I > 0) than when it refrains from investment, which implies
that h (T ) > 0.

A firm lacking know-how can purchase/license standard technology and then
try to adapt and improve it, but this would neither substantially increase the tech-
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nological content of its products relative to the competitors nor the effectiveness
of further investments. Hence, if the firm has almost no know-how, we assume
that technology investments will not be very effective and, additionally, that it is
hard to raise the effectiveness of technology investment in the near future. Further,
it is certainly true that it is difficult to raise the technology level further when it
is already large, the extreme case is a firm already producing the most modern
products. Then in order to increase the technology level even further it needs to
develop new technologies on its own account, which is in general quite expensive.
Only top specialists can help to raise the firm’s technology level, but it requires
a lot of money to attract these people. Consequently, the technology increase per
unit of investment is low.

Translating these observations in terms of the function h (T ) we conclude that
the investment effectiveness function h must increase for low values of T , while it
decreases for high values of T. We model h unimodal with a peak for a medium
value of T. Furthermore, if it is taken into account that technology investments
will be not that effective when T is small (almost no know-how), and that h (T )
is non-negative also for very large technology levels, it can be concluded, that a
convex-concave-convex-bell shape for h is reasonable (cf. Figure 1). In this way we
arrive at the following specification:

lim
T→∞

h(T ) = 0, h(T ) > 0

h′(T )
(

>

<

)
0 for T

(
<

>

)
Tmax, h′(0) ≥ 0, (1)

h′′(T ) > 0 for T < T1 and T > T2,

h′′(T ) < 0 for T1 < T < T2,

where obviously for the inflection points T1 and T2 it holds that

T1 < Tmax < T2.

Concerning R & D investments there is some empirical evidence for such a bell-
shaped curve, in particular with respect to technological spillover effects and the
concept of a firm’s ’absorptive capacity’ (see Cohen and Levinthal (1989)). Actually,
Verspagen (1993) has empirically obtained a bell-shaped relationship between the
technological distance of a firm from the technology frontier and the ability to
integrate external knowledge through spillovers.

The state equation for the firm’s technological content relative to the baseline
level is (we omit the time argument t; Ṫ is the derivative of T w.r.t. t)

Ṫ = h(T )I − δT, T (0) = T0 > 0, (2)

where it is assumed that in this economy technology develops with a constant rate
δ (> 0).

With C (t) we denote the firm’s sales volume at time t. Function f(T ) describes
how much sales volume the firm would have attracted in a long run if it held its
technology level at T forever. We assume f(0) = 0, of course f ′(T ) > 0 (because
the better the technology, the higher sales volume the firm would have) and non-
increasing returns to technology level, f ′′(T ) ≤ 0. One could imagine that the rate
of change in the number of sales positively depends on the difference between the
current sales volume (C) and the number the current level of technology warrants
(f(T )). The speed at which customers adjust to the technology level of the firm’s
products is denoted by the positive factor γ.

4



50 100 150 200

technology
level

0.2

0.4

0.6

0.8

1

Raise in tech
per $1M invest.
per year

Figure 1: A generic shape of the effectiveness of technology investment h(T ) on the
basis of the existing know-how in the firm.

Customers like products with a larger technological content, but they may get
frustrated by rapid changes in the technology because it forces them to go up a
learning curve, there may be compatibility problems, or purchasing a new item can
happen too early, because especially in case of rapid technological developments
there is always the risk that a better version appears on the market soon after
the date of the present purchase. While the firm is investing a lot in improving
the technology, customers will tend either to go to competitors because they want a
stable product or simply wait longer with their purchase because they decide to wait
for newer versions. Also the demand for low cost daily products such as shampoo,
tooth paste, vanishing cream, and so on, can be affected by rapid technological
change. For instance, on a spam page on the World Wide Web it can be read that
”Infused with xyz’s legendary age-delaying ingredients and the best of modern
technology, xyz unite to transform the present - and future - of your skin.” A
firm has to improve the technology standard, for instance for a moisturizer, to stay
in or even to expand its market position. Before they opt for surgery, customers
demand creams with higher and higher technology level. On the other hand there
are customers who are attached to a particular version of the product, and they
like it for several reasons. At the moment that this version is replaced by a newer
one, and thus not available in the shop anymore, such a customer may switch to a
product from a competitive firm.

If we denote the factor measuring the negative effect of technology investment on
the sales volume by k, we get the following dynamic equation for the sales volume:

Ċ = γ [f (T )− C]− k C I, C (0) = C0 > 0. (3)

Technology investments are irreversible, so that

I ≥ 0. (4)

It can be argued that it is not I that changes technology, but Ṫ . Thus the term
−k C I could also be −k C (Ṫ +δ T ) = −k C h(T ) I. (In case of I = 0, there is no loss
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of customers caused by technology change because the product remains unchanged;
the change of the technology content results due to the assumed increase of the
technology baseline by a constant rate δ.). Besides obvious simplification in the
next four paragraphs, we state additional motivation for using the first term:

In this context, we assume that customer acceptance of technology changes de-
pends on the actual technology content of the product. If the technology content is
low, the customers are attracted mainly by other features such as low cost or ”easy
to use” (in the sense of inability to use high technology products). Such customers
act most irritated to a technology increase. As an example we want to state the
strong adoption efforts in Latin American countries on Information and Commu-
nication Technology (ICT). The ICT use there was moderate, so Latin American
countries have invested huge amounts of money to adopt more sophisticated ICT.
The technology progress was moderate (compare the left branch of the bell-shaped
curve in Figure 1), and ICT adoption resulted in an absolute loss of customers.

On the other site of the bell-shaped curve in the case of an absolute technology
leader, further technology investment results in a futuristic technology where the
customer may not really be able to estimate its value and advantages and may even
be distracted; as an example we want to mention magnetic-levitation trains.

Additional motivation is that the firm’s image plays a role in appeasing the cus-
tomer. Customers are expecting that (especially) firms offering advanced product
technology have to increase the technology content of their products continuously,
so customers consent partly to accept the arduousness caused by a new version of
the product. Being honest, was it really necessary to purchase all the stages of
development of a wide-spread, well-known computer operating system in the last
decade? But people did.

Modeling these three effects we scale down the loss of customers due to changes
of the technology content of the product by h(T ),

−k C (Ṫ + δ T )
h(T )

= −k C I.

Finally, this firm invests in such a way that the discounted profit flow is max-
imized. Profits decrease with investment costs while they increase with revenue
where it is assumed that revenue per sale (α > 0) is constant . Investment costs,
the costs associated with carrying out technology investments can consist of pur-
chasing new machines by which more modern products can be made, laboratory
development of product improvements, and so on. Investment costs are denoted by
a convexly increasing function a(I) (a(0) = 0, a′ > 0, a′′ > 0). The convex shape
reflects the fact that there are decreasing returns to effort at any point in time.
Hence, the firm’s objective functional is given by

max
I

∫ ∞

0

e−rt[αC − a(I)]dt, (5)

where r is the constant discount rate.
Now the optimal control model consists of the objective (5) subject to the state

equations (2) and (3) and the non-negativity constraint (4).

3 Analysis

In this section we present the necessary optimality conditions and analyze the pos-
sible occurrence of steady states.
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3.1 Necessary Optimality Conditions

First we specify the current value Hamiltonian for the optimal control model (2) –
(5):

H = α C − a(I) + λ1

(
γ [f (T )− C]− k C I

)
+ λ2

(
h(T )I − δT

)
.

Applying Pontryagin’s maximum principle (for example, Feichtinger and Hartl,
1986; Léonard and Long, 1992) (i.e. maximizing the Hamiltonian w.r.t. I ≥ 0)
we derive for the control variable I that

{
I = 0 a′(0) + λ1 k C ≥ λ2 h(T )

a′(I) + λ1 k C = λ2 h(T ) a′(0) + λ1 k C < λ2 h(T ). (6)

Expression (6) shows that the firm invests such that marginal costs, consisting
of the marginal investment costs, a′(I), and the negative effect of marginal invest-
ment on the sales volume arising from the adverse investment effect, λ1 k C, equals
marginal revenue. The latter consists of the increase of the technology level due to
marginal investment, h (T ) , which is valued by the shadow price of technology, λ2.
The firm refrains from investment when marginal costs, valued for zero investment,
I = 0, exceeds marginal revenue.

According to the maximum principle an optimal path has to fulfill the following
dynamic system (combined with the algebraic equation (6)):

Ċ = γ [f (T )− C]− k C I, (7)
Ṫ = h(T )I − δT, (8)
λ̇1 = [r + γ + k I] λ1 − α, (9)
λ̇2 = [r + δ − h′(T ) I] λ2 − γ f ′(T )λ1. (10)

3.2 Steady States

From the algebraic-dynamic system (6) - (10) it can be obtained that there is a
trivial steady state at the origin of the state-control space,

C = T = I = 0, λ1 =
α

r + γ
λ2 =

γ

r + δ

α

r + γ
f ′(0), (11)

when we assume that for zero technology level the marginal costs of investments at
zero investment are greater than or equal to the marginal revenue of investment.
In other words, we assume h(0) small enough so that the inequality

a′(0) ≥ α

r + γ

γ

r + δ
f ′(0) h(0) (12)

is fulfilled. In what follows we narrow effectiveness of investment down to an as-
sumption that is sufficient that inequality (12) is fulfilled:

Assumption 1 We postulate that the average effectiveness of technology invest-
ment converges to zero when the technology level T decreases to zero ( i.e. limT→0+
h(T )

T = 0).

Straightforward calculations show that the steady state (11) is saddle point stable
in the 4-dimensional state co-state space and appears as a stable node in the state
space.
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Concerning the possible interior steady states (i.e. T > 0) it can be obtained
from (7) - (10) that they have to satisfy:

I =
δ T

h (T )
, (13)

C =
γ f(T )
γ + k I

, (14)

λ1 =
α

r + γ + k I
, (15)

λ2 =
γ f ′(T )

r + δ − h′(T )I
λ1. (16)

Furthermore, from (6) and (13) - (16) it can be derived that at a steady state it
must hold that

G (T ) = a′(I) +
α

r + γ + k I


k C − γ f ′(T )

r + δ
[
1− h′(T )

h(T ) T
] h(T )


 = 0. (17)

Assumption 2 We postulate that the ”technology investment effectiveness elastic-
ity“ h′(T )

h(T ) T decreases monotonically from a positive value for T = 0 to a negative
value for T →∞.

Proposition 3 Under the Assumption 1 and 2 we get at most three interior steady
states.

The function G in (17) decreases from infinity for T → 0+ to a local minimum
and increases to infinity for T → ∞. Depending on the minimum value of G,
there are zero, one or two roots of G. If there exists a zero in the denominator
r + δ

[
1− h′(T )

h(T ) T
]
, which can only happen at a T larger than the minimum point,

G “jumps” from +∞ to −∞ (asymptotic pole); there exists another root right to
the pole. Depending on the minimum value of G and the existence of a pole the
equation G(T ) = 0 either has zero, one, two or three solutions.

4 Numerical Analysis

The next step is to investigate the dimensions of the stable invariant manifolds of
the steady states. Due to the complexity of the analysis we have to rely on numer-
ical tools. The numerical computations were done by MATHEMATICA (Version
4.1.0.0, Mathematica is a registered trademark by Wolfram Research) using a pre-
cision of 22 digits. The bifurcation analysis was done by CONTENT, which is an
environment designed for investigating the properties of dynamical systems; its core
was developed by Y.A. Kuznetsov and V.V. Levitin at the Centrum voor Wiskunde
en Informatica (CWI), Amsterdam, The Netherlands, ftp.cwi.nl/pub/CONTENT.

4.1 Functional specifications

To start our numerical analysis we first need to specify the functions occurring in
the model. For the investment costs we choose the following function:

a (I) = a1I + a2I
2. (18)

For the function f (T ) we simply take

f (T ) = f1T. (19)
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A functional form for h (T ) that satisfies the requirements in (1) while its elasticity
decreases monotonically from a positive value for T = 0 to a negative value for
T →∞ is

h (T ) =
h1T

2

1 +
(

T
h2

)3 . (20)

Substitution of these specifications in the optimal control model formed by (2) –
(5) leads to the conclusion that the model contains ten parameters. This model can
be transformed to a model with only five parameters, facilitating numerical analysis.
Moreover, this makes the results more general since a particular specification of
these five parameter values coincides with many combinations of parameter values
of the original model. (The transformation is put into the Appendix. Note that
the Appendix will not appear in hard copy but it will be available on the JEBO
website.)

The physical dimension of C, T and I are sales in million, technology units,
and investment in million $, respectively; the unit of time is one year. With the
parameter values

r = 5%, δ ≈ 4.17%, α = $2, (21)

γ = 0.0625, f1 = 1, a1 = 1, a2 =
1
3

(22)

h1 =
1

2700
, h2 = 75, k = 0.00852, (23)

the function G in expression (17) has the shape depicted in Figure 2.
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Figure 2: For the chosen parameter values the equation G (T ) = 0 has two roots.

From Figure 2 it can be concluded that two steady states with positive technol-
ogy level exist. Varying parameters, numerical calculations show that the smaller
one is always unstable while the larger one can be saddle point stable or occurs
simultaneously with a saddle point stable limit cycle. Investigating long-run out-
comes we are interested in the stable invariant manifold of the saddle point stable
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steady state, or in the stable invariant manifold of the limit cycle. In the projec-
tion of these stable manifolds into the state space, saddle point stability changes to
stability. Therefore, we refer to these long run outcomes as “stable steady state”
and “stable limit cycle.” Numerical experiments suggest that this result seems to
be robust in the sense that it also holds for other parameter sets.

Besides one non-optimal unstable steady state, we face two optimal steady states
(including the origin). The question arises from what starting values convergence to
which steady state is optimal. Furthermore, it must be investigated whether there
exists a DNS set (i.e. whether there exist initial state values from which the optimal
controlled system is indifferent to converge to one or the other steady state), and
where this DNS set is located. As we will see, the situation is even more interesting
since around the positive stable steady state a (saddle point) stable and an unstable
limit cycle can occur simultaneously. For a particular parameter set the unstable
limit cycle and the stable steady state merge and result in an unstable steady state.

In the next section we disregard the stable steady state at the origin for the
moment and focus our attention on the analysis of the dynamic behavior around
the interior stable steady state.

4.2 Bifurcation Analysis

One of the key parameters of our model is k since it measures the adverse effect of
investment on the sales volume. To be more precise, k equals the loss of sales vol-
ume due to each $1M investment per year (cf. −k C I in (3)). The system exhibits
different types of optimal long run outcomes: a steady state solution at the origin, a
steady state solution with a positive technology level, and an undamped oscillation
(limit cycle). Varying k the model shows all possible combinations of these differ-
ent long run outcomes. Therefore, we choose k to be the bifurcation parameter.
Depending on the value of this parameter four regimes can be distinguished; they
are described below:

4.2.1 Regime I

If $1M investment per year causes a loss of approximately 0.844% sales volume
(i.e. 844 of 100K sales or k = 0.00844), investment, sales volume, and technology
level converge to their steady state values. If the loss is much less than 0.844%,
convergence is monotonic, otherwise it is damped oscillatory.

4.2.2 Regime II

We obtain that limit cycle behavior occurs for a loss greater than approximately
0.844%.

Figure 3 shows how the shape and the amplitude of stable and unstable limit
cycles projected onto the state plane (C, T ) depend on the bifurcation parameter k.
Parameter k varies between 0.84% and 0.88%. For a given value of k the intersection
of the big ”basket” with the state plane (C, T ) gives the stable limit cycle while the
intersection of the small interior ”basket” (which is placed upside down in the big
basket) gives the unstable limit cycle.

Regime IIa At k ≈ 0.00844 there occurs a “ limit point ” (“ blue sky ”) bifurcation
(cf. e.g. Guckenheimer and Holmes (1983), Kuznetsov (1995)). The stable and
the unstable limit cycles coincide and result in just one semi-stable limit cycle
(being attracting from outside and repelling inside). Inside this semi-stable
cycle convergence to the steady state occurs (inside and outside refers to the
projection onto the state space).
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Figure 3: Shape and amplitude of stable and unstable limit cycles (parameter k in
tenth percentage points).

For a loss of sales volume between ≈ 0.844% and 0.866% there are two limit
cycles around the stable steady state: the inner one being unstable and the
outer one being (saddle point) stable. Inside the inner cycle convergence to
the stable steady state occurs, whereas outside the outer cycle and between
the inner and outer cycle, convergence to the outer (stable) limit cycle takes
place. In Figure 4 the (damped) oscillatory behavior around the stable steady
state is shown. The movement of all trajectories is clockwise, which will be
economically interpreted in Section 5.2.

The amplitude of the unstable (repelling) limit cycle decreases in size when k
increases, while the amplitude of the stable (attracting) limit cycle increases
in size. At k ≈ 0.00866 a sub-critical Hopf bifurcation (cf. e.g. Guckenheimer
and Holmes (1983), Kuznetsov (1995)) arises. Then the smaller (unstable)
limit cycle collapses to the steady state.

Regime IIb For a loss between 0.866% and 1.302% only the larger (stable) limit
cycle exists and the steady state is now unstable. Increasing k results in a
growing amplitude of the limit cycle. For initial levels of the state variables
located in- or outside the limit cycle, it is optimal to converge to the limit
cycle.

4.2.3 Regime III

If the loss of sales volume due to $1M investment per year is greater than ≈ 1.3%,
in the long run it is not optimal to sustain a positive stock of customers. For a more
detailed description we refer to the next section.
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Figure 4: The oscillatory behavior around the stable steady state for parameter
value k = 0.00852.

4.3 DNS–curves

So far we only have considered initial values in the neighborhood of the interior
(stable) steady state and the limit cycles. Another candidate for an optimal long
run outcome is the solution at the origin, as with, zero sales volume and zero
technology level; see (11). (Note that zero investment is not only limited to the
origin, but for instance along the limit cycles there are periods of time with zero
investment; cf (6).)

Expanding Figure 4, Figure 5 shows candidate trajectories converging to the
origin represented as dotted curves. Additionally, the candidates converging to the
stable limit cycle are represented as solid curves. Apparently there is a region where
it is possible to converge to both the origin and the stable limit cycle. In this region
the objective function has to be evaluated for both of these solution candidates in
order to find out to which region of optimal convergence this initial point belongs:

Definition 4 The region of optimal convergence of an optimal steady state/limit
cycle is the set of all initial states from which it is optimal to choose a trajectory
converging to the steady state/limit cycle.

Definition 5 A DNS (Dechert-Nishimura-Skiba)-point is a point in the state space
that belongs to at least two different regions of optimal convergence. The DNS-set
is the set of all DNS-points.

Figure 5 illustrates three optimal long run outcomes and their regions of optimal
convergence for a loss of sales of 0.852%:

1. dotted lines in the gray-shaded area show paths of optimal long run zero
investment policies (steady state at the origin),

2. solid lines in the white region show paths with an optimal long run cyclical
sequence of zero and positive investment periods (limit cycle depicted by the
thicker line), and
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Figure 5: Three optimal long run outcomes and their regions of optimal convergence
for k = 0.00852 : (1) gray-shaded area for the origin, (3) interior area of the unstable
limit cycle (limit cycle depicted with the thinner line) for the interior steady state
and (2) remaining white area for the stable limit cycle (limit cycle depicted with
the thicker line).

3. in the interior of the limit cycle, which is depicted by the thinner line, in the
long run a constant investment policy is optimal (steady state with approx.
6.2M sales per year and technology level of approx. 100).

In Figures 5, 6 and 7, the DNS-set is the borderline between the gray-shaded and
the white region. There is no doubt that there the DNS-sets are curves. The proce-
dure chosen to determine the DNS-curve (and the regions of optimal convergence)
numerically is extensively explained in Haunschmied et al. (2003).

Increasing k reduces the amplitude of the unstable limit cycle which finally
disappears completely when k is equal or higher than approximately 0.00866 (cf.
Regime IIa and IIb). Figure 6 is computed for a loss of sales volume of 1.1%. For
every initial point located on and above the DNS-curve, convergence to the stable
limit cycle is optimal, whereas for every initial point located on and below the
DNS-curve convergence to the origin is optimal.

Increasing k further increases the amplitude of the stable limit cycle. As we can
see in Figure 7 the DNS–curve folds back for larger losses (i.e. where k = 0.012).
Also, as we can see in Figures 5, 6 and 7, the DNS-curves move upwards as parameter
k rises, and for larger k they get closer to the stable limit cycle. For parameter values
of k near 0.013 we faced noticeable numerical instabilities when we tried to compute
the regions of optimal convergence and DNS curves. These numerical instabilities
are not astonishing knowing that for (a numerically computed) parameter value
k = 0.0130194 the DNS-curve and the limit cycle coincide. In other words, starting
from any initial value inside the limit cycle, convergence to the limit cycle is optimal,
whereas for any initial value outside the limit cycle, convergence to the origin is
optimal.
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Figure 6: This figure illustrates two optimal long run outcomes and their regions
of optimal convergence for k = 0.011: dotted lines in the gray-shaded area show
paths of optimal long run zero investment policies (origin), solid lines in the white
region show paths with an optimal long run cyclical sequence of zero and positive
investment periods (limit cycle).

In case of a loss higher than approximately 1.3%, it is always optimal to converge
to the origin. (Trajectories that converge to the limit cycle still fulfill the necessary
optimality conditions, but a numerical analysis shows that this limit cycle is no
longer path efficient. )

5 Economic Interpretation

In this section we provide the economic intuition for our results. As mentioned in
the introduction, the main model characteristics are the following:

(i) technology investments increase the firm’s technology level, increasing the num-
ber of customers and thus sales,

(ii) customers are distracted by technological changes, thus sales volume decreases
with technology investments, and

(iii) the effectiveness of technology investments depends on the firm’s technology
level: it is difficult to build up technology when the technology level is small
(no know-how makes building up the technology difficult) or large (when the
firm is already producing the most modern products, advanced R&D is needed
to increase the technology level even further). Hence technology investments
are most effective for intermediate values of the technology level.

There are two different kinds of optimal long run behavior: on the one hand
moving out of the market (see Section 5.1), and on the other hand staying in the
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Figure 7: Similar to Figure 6 but now computed for parameter value k = 0.012.
With the chosen precision of 22 digits the accuracy of the computed value function
for k = 0.012 was enlarged to 6 digits. As we can see here the borderline between
the gray-shaded and white region is fringed. The reason is that in case of parameter
values k ≈ 0.013, the value functions of the two different optimal long run outcomes
differ, even at considerable distances to the DNS-curve (where the value functions
intersect) of about values less than 10−6.

market either with constant sales volume or persistent oscillation with periods of
positive and periods of zero technology investment (see Section 5.2). Consequently,
the state plane (sales volume is on the abscissa and technology level on the ordinate)
partitions to regions where in the long run a path efficient firm

• follows a zero investment policy (=moves out), or

• follows either a constant positive investment policy (=constant sales volume),
or a cyclical sequence of zero - positive investment policy (=persistent oscil-
lation).

Generically these two regions overlap and we call this overlapping area DNS (Dechert-
Nishimura-Skiba) – curve (see Section 5.3). Numerical results show that this area
is indeed a curve.

5.1 Moving out

For a firm with a lack of know-how, investing in technology is not effective. Hence,
if the technology level is low (i.e. below the DNS-curve), an efficient firm does not
invest sufficiently to prevent that sales volume and technology level from eroding
to zero.

Moreover, if the loss of sales due to investment is high and if the firm’s sales are
booming, investment causes a serious absolute loss of customers, making it is less
attractive to invest, but low or even zero investment results in a decline in technology
level, which in turn results in a decline in sales volume. This pattern continues until
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sales volume is so small that the absolute loss of sales due to investment is reasonably
negligible. Further, it could be the case that the firm’s know-how is not high enough
for investments to be sufficiently effective. This would imply that the firm refrains
from investing. Consequently, in the long run the firm moves out of the market, in
spite of having been in business with booming sales and a relatively high technology
level.

5.2 Staying in the market

When the initial technology level is large (above the DNS-curve), in the long run
we can have limit cycles on which the movement is clockwise. Hence, persistent
oscillations arise for which sales volume lags behind technology level. Let us have
a closer look at this undamped oscillation:

• Let us assume that the current sales volume is low. This implies that not
too many customers are lost when investment is increased dramatically. The
difference from the case of being below the DNS-curve is that now there is
sufficient know-how within the firm for technology investment to be effective.
Intensifying investment causes a boost in the technology level, and the sales
volume starts to rise.

• At the end of this technology boost further technology growth is too expensive
mainly due to the diminishing effectiveness of investment. Hence investment
is lowered, which implies that the technology level starts to decline. As the
technology level is high, sales volume still increases.

• The firm does not invest to stop declining technology because it does not want
to antagonize a large stock of customers. However, due to zero investment
the technology level erodes.

• When the technology level becomes dramatically low, the firm starts to invest
moderately (cf. the ”kink” in the right lower part of the limit cycles in Fig-
ure 5, 6, and 7). As both the low technology level and investment distracts
customers, in a short period (compared with the other three phases of the
oscillation) the sales volume becomes that low that it is now time to boost
the technology level again.

Apparently, oscillation is induced mainly by the adverse investment effect (ii).
Thus it can be expected that oscillatory behavior is especially present when the loss
of sales volume due to investment (the parameter k in the term k C I in the state
equation for C) is high. In order to investigate this fact we analyze the sensitivity
of the solution with respect to the parameter k (see additionally Figure 8):

• In case of a relatively small loss (i.e. 0.844%), the firm converges after a
transition period to a constant (positive) investment policy. For a negligible
small loss the convergence is monotonic, and for a slightly larger but still small
loss the convergence is damped oscillatory. In the latter case we have higher
investment for smaller sales volume and smaller investment for higher sales
volume (cf. Regime I).

• Increasing k, at a certain value (“out of the blue sky”) an optimal semi-
stable limit cycle comes into existence. This implies that convergence to the
steady state only takes place from within the limit cycle. From the outside,
convergence to the limit cycle is optimal, thus preserving oscillating behavior
forever.
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Figure 8: Oscillating behavior for different values of the parameter k.

• If k is increased further, the semi-stable limit cycle splits into a stable and an
unstable limit cycle. Convergence to the (larger) stable limit cycle is optimal
when starting outside the (smaller) unstable limit cycle, whereas inside the
unstable limit cycle convergence to the steady state takes place.

• For intermediate values of k, the unstable limit cycle vanishes, and convergence
to the steady state never occurs. This implies that all trajectories eventually
end up at the stable limit cycle; in other words, the firm applies eventually an
undamped oscillatory investment policy. This undamped oscillatory invest-
ment policy is characterized by technology boost during periods of dull sale
and by no investment during periods of booming sale. With this behavior the
firm is able to reduce the negative impact due to (ii).

• In case of a relatively high loss even oscillatory investment policy does not
suffice to reduce the negative impact due to (ii). Hence, the firm refrains from
investing and moves out of the market in the long run.

The result of oscillating behavior suggests that over time the firm switches be-
tween being (close to) the technological leader in the industry and falling behind.
Admittedly, in many industries changes in technological leadership are not common.
However, there are still examples where such a change can easily occur, such as, for
example, the camera business (see, e.g., the Economist (March 13th-19th, 2004)).
For this industry it holds that in America the point has been reached that digital
cameras now outsell conventional film-based cameras. The switch to digital pro-
vides an opportunity for new players like pc-makers such as Hewlett-Packard, Dell,
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and Gateway to enter the market. Meanwhile, digital technology speeds up techno-
logical progress. For instance, the quality of the images produced by camera-phones
is fast improving. This will further intensify competition as handset-makers such
as Nokia muscle in, which can easily cause incumbents like Canon, Sony, Olympus,
Nikon and Kodak fall behind.

In another example, for a long time the Swiss companies (Omega, Breitling, Tag-
Heuer, etc.) were leading the watch industry with classic technology (mechanical
or automatic movement). Then a new disruptive technology, the quartz movement,
appeared and the market leaders did not go into this new direction (or at least
not early enough). The Japanese (Seiko, Casio, ...) took over the market, and
the classical watch companies had severe problems. Most of the American watch
companies (Hamilton, Bulova, Elgin, Waltham, Illinois, etc.) disappeared, and the
Swiss companies almost suffered the same fate. Only when Swatch came up with
the idea of making watches a fashion product and a fairly cheap collector’s item
could they come back in the market with quartz watches. Recently, there has again
been a boom of expensive and complicated automatic movement (Tourbillon, etc.)
lead by Swiss companies and the revived old Saxonian companies in Glashuette,
Germany (IWC, Lange, etc.). The Japanese watch companies were not able or
willing to go into this direction.

5.3 DNS–curve

A necessary condition for the existence of the DNS-curve is the occurrence of effect
(iii). As already stated the reason is that for a low technology level the effectiveness
of technology investment is too low for building up the firm.

The shape of the DNS-curve is in general upward sloping. This is caused by effect
(ii), implying that the number of customers has a negative effect on the profitability
of investment.

For a large sales volume (and when effect (ii) is pronounced) the DNS-curve is
not only upward sloping, but in fact it folds back to north-west; see for example
Figure 7. The reason for the latter is that if the technology level is very high (and,
or although, the sales volume is moderate), one need not invest in technology to
increase the sales volume. Then, eventually the sales volume becomes so large that
(because of the absolute loss of sales volume) it is also not reasonable to invest
because this would mainly erode the current sales. Refraining from undertaking
technology investments implies that the technology level decreases. In the end the
firm’s technology level is so small that investment in technology is not sufficiently
effective to build up the firm.

6 Conclusions

In this paper, we present an investment control model where investment in technol-
ogy is controlled by a firm in order to maximize profit. A higher technology level
of the product has a positive effect on sales. The effectiveness of investment, how-
ever, depends on the existing know-how in the firm, and, additionally, investment
in technology has a negative side effect on sales volume (adverse investment effect).

The investigated model class exhibits different types of optimal long run be-
havior. If the initial technology level is too low, it is not optimal to increase the
technology level by investments. The reason is that technology investments are not
very effective due to a lack of know-how within the firm. The implication is that
in the long run the firm will cease its operations. For a sufficiently high initial
technology level, in the long run, it is worthwhile for the firm to converge to either
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a constant or undamped oscillatory investment policy. Depending on the initial
endowment the firm applies one of these types.

For certain initial endowments in the long run, the firm is indifferent between
zero investment on the one hand and constant positive or a least a cyclical zero
and positive investment policy on the other hand. In the plane with sales volume
on the horizontal axis and technology level on the vertical axis an upward sloping
curve separates these two regions of optimal convergence (different long run behav-
ior). Deriving the terminology from one-state-optimal control models (Skiba, 1978;
Dechert and Nishimura, 1983), we denote this curve by DNS-(Dechert-Nishimura-
Skiba) curve. The adverse investment effect leads to an upward sloping DNS-curve
since now the profitability of investment depends on the number of customers: the
more customers this firm has, the more will be distracted by technology changes.

Optimal oscillatory investment policy has its seeds in the model characteristic
adverse investment effect: if this effect is negligible, convergence to a constant
investment policy is optimal. Otherwise, in the long run a cyclical sequence of zero
and positive investment periods is applied to reduce the negative impact of the
adverse investment effect. If the adverse investment effect is relatively high, the
firm only remains in the market when its initial sales volume and technology level
allow in to establish the optimal long run sequence of zero - positive investment
policy without a long transition phase; otherwise the firm will finally quit business.
In case of a pronounced adverse investment effect the firm ceases business in any
case.

Recapitulating we have three main features:

• Coexistence of an optimal steady state (origin) and an optimal limit cycle
separated by a DNS-curve.

• For a particular level of the adverse investment effect, the DNS-curve coincides
with a limit cycle. For larger values of this effect only the steady state at the
origin (zero sales volume) is optimal.

• An unstable limit cycle separating regions of optimal convergence of an opti-
mal limit cycle and an interior steady state.

Appendix

The parameter reduction is achieved by the following linear time scaling transfor-
mation:

τ = δt. (24)

Then we reformulate the state and control variables as follows:

C̄ (τ) =
δ

γf1h2
C

(τ

δ

)
, (25)

T̄ (τ) =
1
h2

T
(τ

δ

)
, (26)

and

Ī (τ) =
h1h2

δ
I

(τ

δ

)
. (27)
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Furthermore, we define the parameters:

ρ =
r

δ
, (28)

β1 =
γ

δ
,

β2 =
a1δ

αf1h1h2
2

,

β3 =
a2δ

2

αf1h2
1h

3
2

,

β4 =
k

h1h2
.

Now, substituting f (24)-(28) into the original optimal control model (5), (2),
(3), and (4), including the functional forms (18)-(20), gives the following model:

max
I

αf1h2

δ

∫ ∞

0

e−ρτ

[
β1C̄ − β2Ī − β3

2
Ī2

]
dτ, (29)

subject to

˙̄C = T̄ − β1C̄ − β4C̄Ī, (30)

˙̄T = h̃
(
T̄

)
Ī − T̄ , (31)

Ī ≥ 0, (32)

in which

h̃ (T ) =
T 2

1 + T 3
. (33)

This model provides the basis for our numerical analysis. For the parameters (21)
- (23) we get

ρ = 1.2, β1 = 1.5, β2 = 0.01, β3 = 0.005, β4 = 0.36 (34)
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