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Abstract

Digraph games are cooperative TU-games associated to digraph
competitions: domination structures that can be modeled by directed
graphs. Examples come from sports competitions or from simple ma-
jority win digraphs corresponding to preference profiles for a group
of individuals within the framework of social choice theory. Van den
Brink and Gilles (2000) defined the β-measure of a digraph competi-
tion as the Shapley value of the corresponding digraph game. This
paper provides a new characterization of the β-measure.
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1 Introduction

A directed graph can represent various domination structures that are based
on (partial) pairwise comparisons. An obvious example is a sports competi-
tion in which several teams play matches against each other and the digraph
summarizes the results of the various matches. Other examples include the
results of paired comparison experiments for example within a group of al-
ternative medicines, the results of aggregated pairwise preferences of a group
of individuals, based e.g. on simple majority voting, over a certain set of
alternatives, or, within a completely different framework, the hierarchical
structure in economic organizations.

In the sequel we use the term digraph competition for a domination
structure modeled by a digraph. The main issue under consideration is
how to measure the ”strength” of each node in a digraph competition. We
continue on the lines set out by Van den Brink and Borm (2002) and consider
an arbitrary digraph competition as a special type of allocation problem
where we initially assume that each node is assigned equal weight (say equal
to one). Measuring strength then can be seen as ”fairly” reallocating these
weights taking into account the domination structure that is represented
by the digraph. For this aim a digraph game is associated to each digraph
competition: in this game the players correspond to the nodes and the value
of a coalition represents the maximal total weight for which there is no
rightful direct claim from outside this coalition. Here a player has a rightful
claim on the weights of all nodes that he dominates directly. One way to
measure the strength of the nodes in a digraph competition is to consider
the Shapley value of the associated digraph game (cf. Shapley (1953)). We
follow Van den Brink and Gilles (2000) and Van den Brink and Borm (2002)
in calling this the β-measure of the underlying digraph competition.

Van den Brink and Borm (2002) extensively analyze the class of digraph
games. Among other things it turns out that these games are convex and
that the Shapley value of these games, -by convexity the barycentre of the
core-, is also the average of rather intuitive so-called simple score vectors
(which are in the core) related to specific sub-digraphs. Borm, Van den
Brink, and Slikker (2002) exploit the possibility to start out from arbitrary
initial weights by investigating the limit behavior in the iterative process
that takes the Shapley value of the digraph game as new weight parameters
of the nodes to determine the new digraph game in the next step. The
resulting limit measure is called the λ-measure. In Borm, Van den Brink,
Lev́ınsky, and Slikker (2004) the particular application area of aggregate
preferences over alternatives is investigated: the β- and λ-measures form
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the basis for defining and analyzing two new social choice correspondences.
The current short note provides a characterization of the β-measure on

the class of all digraph competitions using the properties of component effi-
ciency, symmetry, triviality and decomposition additivity. Characterizations
of the β-measure on specific subclasses of digraph competitions are provided
in Van den Brink (1994).

The paper is organized as follows. Section 2 recalls the main definitions
concerning digraph competitions, digraph games and the β-measure. Sec-
tion 3 provides the characterization of the β-measure. The final Section 4
considers the card game “Frank’s Zoo” as an illustration.

2 Digraph games

A digraph (competition) is a pair (N, D) where N is a finite set of nodes and
D ⊂ N ×N is a binary relation on N . The set of all digraphs is denoted by
D, the subclass DN consists of all digraphs that have N as the set of nodes.
For D ∈ DN and i ∈ N the set PD(i) = {j ∈ N | (j, i) ∈ D} is called the set
of predecessors of i in D. The set SD(i) = {j ∈ N | (i, j) ∈ D} consists of all
successors of i. The set of nodes with at least one predecessor is denoted by
ID, so ID = {j ∈ N | PD(j) 6= ∅}. The digraph game (N, vD) corresponding
to D ∈ DN is given by (cf. Van den Brink and Borm (2002))

vD(S) = |{j ∈ ID | PD(j) ⊂ S}| for all S ∈ 2N\{∅}.

As usual vD(∅) = 0. So a digraph game assigns to each coalition S the
number of nodes in N that have all their predecessors in S, provided that
this set of predecessors is non-empty. This means that the value of S is
determined by the number of nodes with positive indegree on which N\S
does not have any influence.

It is readily seen that for any digraph game D ∈ D, vD is the sum of
unanimity games1: vD =

∑

j∈ID
uPD(j). As a consequence, digraph games

are convex.

Example 2.1 Let N be {1, 2, 3, 4} and consider the digraph (competition)

1For T ∈ 2N\{∅}, the unanimity game uT is given by uT (S) =

{

1 if T ⊂ S,
0 if T 6⊂ S.
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The corresponding digraph game vD is given in the table below.

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
vD(S) 1 1 0 0 2 1 1 1 1 0 2 2 1 2 3

The set of nodes ID with at least one predecessor is {2, 3, 4}. The digraph
game vD can be written as vD = u{1} + u{2} + u{2,3,4}.

A digraph rule f assigns to each digraph D ∈ D a payoff vector f(D) ∈
R

N , if D ∈ DN . One particular digraph rule is provided by the β-measure,
which assigns to every D ∈ D the Shapley value of the associated digraph
game vD. Using the decomposition in terms of unanimity games one obtains
that for each D ∈ DN and i ∈ N the β-measure is given by

βi(D) =
∑

j∈SD(i)

1

|PD(j)|
. (1)

So, the β-measure of the digraph competition in Example 2.1 equals (1, 0, 0, 0)+
(0, 1, 0, 0) + 1

3(0, 1, 1, 1), which makes (1, 4
3 , 1

3 , 1
3).

3 A characterization of the β-measure

This section provides a characterization of the β-measure as a digraph rule.
To do so, we first introduce some properties. Two nodes i and j are said
to be connected in a digraph D if there is a sequence of nodes (x1, . . . , xm)
such that x1 = i, {(xk, xk+1), (xk+1, xk)} ∩ D 6= ∅ for all k ∈ {1, . . . , m − 1}
and xm = j. A set C of nodes is maximally connected in D if each pair of
nodes in C are connected and no pair (i, j) with i ∈ C and j ∈ N\C are.
Such a set is also called a component of N . The node set N is the disjoint
union of its components. A digraph rule f is called component efficient if
for every component C, the sum of payoffs assigned to nodes in C equals
the number of nodes in C with a non-empty set of predecessors.

Property 3.1 (Component efficiency): A digraph rule f is component
efficient if for all D ∈ DN and all maximally connected subsets C ⊂ N we
have

∑

i∈C fi(D) = |C ∩ ID|.
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Two nodes are symmetric if they have the same sets of predecessors and
successors.

Property 3.2 (Symmetry): A digraph rule f satisfies symmetry if for all
D ∈ DN and all i, j ∈ N such that SD(i) = SD(j) and PD(i) = PD(j) we
have fi(D) = fj(D).

The following property states that a node without outgoing arcs gets noth-
ing. We call such nodes trivial nodes.

Property 3.3 (Triviality): A digraph rule f satisfies triviality if for all
i ∈ N with SD(i) = ∅ we have fi(D) = 0.

The fourth property states a decomposition additivity of nodes. Consider a
digraph D ∈ DN . We can decompose a node i in D in the following way:
replace i by a set of |SD(i)|+ 1 nodes {ij : j ∈ SD(i)∪{0}}.2 The incoming
arcs of i are led to node i0, so arc (j, i) is replaced by (j, i0) for all j ∈ PD(i).
The node ij becomes the starting point of the original arc (i, j), i.e. (i, j) is
replaced by (ij , j).

After decomposing node i a new digraph d{i}(D) arises with node set
(N\{i}) ∪ {ij : j ∈ SD(i) ∪ {0}}. In d{i}(D), another node of N\{i} can
be decomposed, or several ones consecutively. The graph arising from D by
decomposing all nodes in a subset S is denoted by dS(D). It is easily seen
that the order in which the nodes in S are decomposed does not affect the
resulting graph dS(D). A digraph rule satisfies decomposition additivity if
for every S ∈ 2N\{∅}, the payoff that a node i ∈ S achieves in D equals the
sum of the payoffs achieved by the nodes arising from i in dS(D).

Example 3.1 Consider the digraph D in Example 2.1. The graphs d{2}(D)
and dN (D) are drawn in Figure 1.

Property 3.4 (Decomposition additivity): A digraph rule f satisfies
decomposition additivity if for all D ∈ DN , for all nonempty subsets S of N
and for all i ∈ S we have

fi(D) =
∑

j∈SD(i)∪{0}

fij (dS(D)).

The idea of decomposition additivity is as follows: a node with no predeces-
sors can be joint with another node if they have disjoint sets of successors.
The payoff to the “composite” node equals the sum of the payoffs of the
original nodes.

2We assume that 0 /∈ N .
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Figure 1: The graphs d{2}(D) and d{N}(D).

Theorem 3.1 The β-measure is the unique digraph rule that satisfies com-
ponent efficiency, symmetry, triviality and decomposition additivity.

Proof: It is directly clear from formula (1) that β satisfies triviality, sym-
metry and decomposition additivity. The proof of component efficiency is
straightforward and left to the reader.

Let D ∈ DN and assume that the digraph rule f satisfies component
efficiency, symmetry, triviality and decomposition additivity. Decomposing
all nodes in D yields the graph dN (D). Clearly, the node set of dN (D)
consists of |N | components. Let for all j ∈ N , Cj be the component con-
taining node j0. Component Cj contains, besides node j0, a node ij for
every predecessor i of j (in D). There is an arc in dN (D) from every such
node to j0, as illustrated in Figure 1. In any case, node j0 is trivial, so
fj0(dN (D)) = 0. Consider a component Cj of dN (D) with PD(j) 6= ∅. Node
j0 is the only node in Cj with predecessors, so by component efficiency f
will divide one unit of payoff among the nodes in Cj \ {j0}. The |PD(j)|
other nodes in Cj are symmetric, so they share the unit of payoff equally:
fij (dN (D)) = 1

|Cj |−1 = 1
|PD(j)| for all i ∈ PD(j).

Decomposition additivity yields for every node i ∈ N

fi(D) =
∑

j∈SD(i)∪{0}

fij (dN (D))

=
∑

j∈SD(i)

fij (dN (D))

=
∑

j∈SD(i)

1

|PD(j)|

= βi(D). �
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We conclude the section by showing the logical independence of the four
properties. Firstly, let f be the digraph rule that divides all points generated
within a component equally among its non-trivial nodes, i.e.

fi(D) =







|{j ∈ Ci | PD(j) 6= ∅}|

|{j ∈ Ci | SD(j) 6= ∅}|
if SD(i) 6= ∅,

0 if SD(i) = ∅.

Here, Ci denotes the component in which node i is situated.3 It is straight-
forward that this rule satisfies component efficiency, symmetry and triviality,
but not decomposition additivity.

In order to be able to distinguish symmetrical nodes, we require an
ordering ≺ on nodes. The alphabetical order applies. In the case names
contain subscripts, we first compare their primary parts, so

ij ≺ kℓ if and only if i ≺ k or (i = k and j ≺ ℓ)

and

i ≺ kℓ if and only if i � k.

Now we can define f to be the digraph rule that assigns the point of a node j
to the predecessor i of j that alphabetically precedes the other predecessors
of j, i.e.

fi(D) = |{j ∈ SD(i) | i � m for all m ∈ PD(j)}|.

It is easy to verify that this rule satisfies component efficiency, triviality and
decomposition additivity, but not symmetry.

Thirdly, let f be the rule that assigns the point of a node to the node
itself, i.e.

fi(D) =

{

1 if i ∈ ID,
0 if i /∈ ID.

This rule satisfies component efficiency, symmetry and decomposition addi-
tivity, but not triviality.

Finally, the digraph rule that assigns zero to every node in a digraph
competition satisfies symmetry, triviality and decomposition additivity, but
not component efficiency.

3Note that this notation differs from the notation used in the proof of Theorem 3.1.
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4 Application: a card game

In the card game “Frank’s Zoo” (originally “Zoff im Zoo”), each card rep-
resents an animal. One of the players shows a set of cards, all representing
the same animal. A second player can beat this collection by either showing
a larger set of cards representing the same animal, or showing a set of cards
of equal cardinality, but displaying an animal that can beat the animal of
choice of the first player. There are twelve types of cards, representing the
animals: whale (w), elephant (e), crocodile (c), polar bear (b), lion (ℓ), seal
(s), fox (f), perch (p), hedgehog (h), goldfish (g), mouse (m) and mosquito
(q). The digraph representing the hierarchical structure of the animals is
drawn in Figure 2. For example, the arc from node e to node ℓ indicates
that elephants can beat lions. Because each set of animals can be beaten
by a larger set of the same animals, the digraph is actually reflexive. In
order to reduce the number of arcs to be drawn, loops are omitted. One can
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Figure 2: Graph corresponding to the game “Frank’s Zoo”.

use the β-measure of the digraph to determine the best card of the game.
The results of this calculation can be found in Table 1. For example, the
mouse beats three types of animals, i.e. elephants, mosquitos and mice. It
shares the point generated by the elephant with the elephant, the point of
the mosquito with four types of animals and its own point with seven types.
Hence, its β-score equals 1

2 + 1
4 + 1

7 = 25
28 .

The game can be used to compare the β-rule with alternative rules.
One could think of a score rule fs that counts the number of successors.
If one likes to take into account not only the number of successors, but
also the number of predecessors, the number of types of animals that can
beat a specific animal, a net score rule fns that subtracts the number of
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animal β rank(β) fs rank(fs) fns rank(fns)

whale 31/15 1 5 1 − 4 4 1
elephant 61/30 2 5 1 − 4 3 2 − 3
crocodile 87/70 3 5 1 − 4 3 2 − 3
polar bear 127/105 4 5 1 − 4 2 4

mouse 25/28 5 − 6 3 6 − 9 −4 12
hedgehog 25/28 5 − 6 3 6 − 9 1 5 − 7

seal 92/105 7 4 5 1 5 − 7
fox 59/70 8 − 9 3 6 − 9 −2 8
lion 59/70 8 − 9 3 6 − 9 1 5 − 7

goldfish 9/20 10 2 10 − 11 −3 9 − 11
perch 2/5 11 2 10 − 11 −3 9 − 11

mosquito 1/4 12 1 12 −3 9 − 11

Table 1: “Frank’s Zoo”

predecessors from the number of successors is convenient. We have included
these alternatives in the table.

The three rules all consider the whale to be the (a) strongest animal. If
we look for distinctive features of the β-rule, we find that it produces much
less ties than the score rule. A striking difference between the β-rule and
the net score rule is the position of the mouse. This can be explained by the
fact that the β-rule rewards the mouse strongly for being the only animal
that can beat the elephant (apart from the elephant itself). Score rules
typically only consider numbers of successors and do not explicitly consider
their relative strengths.
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