
Monotone Models for Prediction

in Data Mining

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6546731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monotone Models for Prediction

in Data Mining

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit van Tilburg, op

gezag van de rector magnificus, prof. dr. F.A. van der Duyn Schouten, in

het openbaar te verdedigen ten overstaan van een door het college voor

promoties aangewezen commissie in de aula van de Universiteit op

maandag 13 november 2006 om 14:15 uur

door

Marina Velikova Velikova

geboren op 2 april 1977 te General Toshevo, Bulgarije.

Promotores: prof. dr. ir. H. A. M. Daniels
prof. dr. J. P. C. Kleijnen

Copromotor: dr. A. J. Feelders

The research reported in this thesis has been carried out under the auspices of

SIKS, the Dutch Graduate School for Information and Knowledge Systems

(Series No. 2006-20), and CentER, the Graduate School of the Faculty of

Economics and Business Administration of Tilburg University.

Copyright c© Marina Velikova, 2006

All rights reserved. No part of this publication may be reproduced, stored in

a retrieval system, or transmitted, in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission from the author.

To my family

and

To those seeking

beauty and value

in the monotony

Preface

The monotony and solitude of a quiet life

stimulates the creative mind (Albert Einstein).

What is your first association with the term monotone? Given the an-

swers of most of the people whom I have asked this question, I presume that

the reply would be boring, tedious, flat, or another of the dozen synonyms

related to everything that lacks interest. Although in some cases this might

be the right association, there is a wide range of real-world situations where

monotone implies interesting and useful. Here are a few examples.

First, monotone basically means order-preserving. A monotone property

is simple and easily applied in practice. Let us consider a task where students

must be seated in a classroom according to their heights: shorter get front

seats and taller get back seats. Given this ordering, a new student can easily

find her seat based on her height.

Second, monotone properties are often related to consistent behavior.

People usually prefer consistencies in their lives, and they do not like contra-

dictions. Typical cases occur in evaluation and selection procedures. It would

not be acceptable, for example, that a higher-qualified employee receives

lower wage than a lower-qualified employee with otherwise equal character-

istics; or a student with higher entrance grade is rejected, whereas another

student with lower entrance grade is accepted (ceteris paribus).

Finally, in our highly computerized world, the design of many devices is

made to preserve the monotone properties of the input-output system. Good

examples are digital-to-analog converters (DACs), which are widely used in

various audio and video applications like computers, TV, Radio, CD, and

MP3 Players. For instance, by converting digital (usually binary) signals into

analog signals, DACs allow us to hear music stored in MP3 format through

speakers. To make the conversion possible and appropriate, it is required

that DACs’ analog output increases with the increase in the digital input.

ii Preface

In this thesis I demonstrate the useful and interesting implications of

monotone properties in the field of information technology. In particular,

I consider monotone properties as a type of domain or expert knowledge,

which can be incorporated into a data mining process to improve knowledge

discovery and to facilitate decision making for end-users.

The completion of a PhD dissertation is a long journey, and I would not

have been able to realize it without the continuous efforts and support of

many people. It is a pleasure to convey my gratitude to them.

First, I have been very fortunate to have Professor Hennie Daniels, Pro-

fessor Jack Kleijnen and Dr. Ad Feelders as my supervisors. I am much

indebted to them for their invaluable guidance and encouragement during

my PhD journey. Professor Daniels has undoubtedly been my strongest mo-

tivator for the beginning and the successful completion of this PhD project.

His truly scientific intuition, his vast knowledge in many areas, and his assis-

tance in academic writing inspired and enriched my growth as a researcher.

I greatly enjoyed our scientific discussions, and the moments of Professor

Daniels’ “Let me puzzle you”, which often challenged my mind to reach deep

scientific analysis. In his supervision, Professor Daniels appeared to be not

only a great scientist but also a kind person. I deeply appreciate his concern

and support during difficult periods of my PhD journey, or when I dealt with

bureaucratic problems. A very special thanks goes out to Professor Kleijnen

for his timely and instructive comments at every stage of the thesis writing,

allowing me to complete this work on schedule. I have benefited tremen-

dously from working with Dr. Feelders, who served as a true mentor. I am

grateful for his invaluable guidance and for being always present for discus-

sions from the very early stage of this research. His expertise, insights, and

critical thinking greatly enriched my PhD experience. I am much indebted

to him for providing the Dutch translation of the summary at the end of this

thesis.

Next I wish to thank the other members of my thesis committee, Pro-

fessors Dick den Hertog, Jan Magnus, and Philip Franses, and Dr. Rob

Potharst for their valuable feedback and suggestions to improve this thesis.

I would also like to express my appreciation to the colleagues from the

Department of Information Management at Tilburg University. I want to

particularly thank Bartel Van de Walle, Bert Bettonvil, Hans Weigand, Leo

Remijn, and Manfred Jeusfeld for their help with ideas and support at var-

iii

ious stages of my research and teaching activities. Furthermore, I much

appreciate the kind assistance of Alice Kloosterhuis, Mieke Smulders, Ettie

Barajanan, Sandra de Bruin and Eva Jonkman without whom no adminis-

trative work would have gone smoothly and in time.

I am very grateful to Emiel Caron for providing the article on monotone

neural networks by Sill (1998), which is one of the main works used in this

thesis.

And then there are those people whose influence cannot be directly re-

lated to this thesis, but whose support and care have provided me with the

strength to successfully complete my PhD project.

During my stay in The Netherlands I met many wonderful people, who

made me feel at home. I am especially thankful to: Silvia Fernandez and

Gloria da Silva for making the beginning of my life in Tilburg easy and

pleasant; Amar Sahoo and Mohammed Ibrahim for their invaluable help

and understanding in my tough times; Lai Xu for being a great officemate

and my “PhD buddy”; Andrey Vasnev for his kindness and for being my

fantastic dancing partner; Akos Nagy, Aminah Santowikromo, Attila Kor-

pos, Corrado di Maria, Kanat Camlibel, Olena Lyesnikova, Marta and Piotr

Stryszowski, Reuben Jacob, Rejie George and many others for their support

and the cheerful time we spent together. Thank you all for your friendship,

which helped make my PhD journey more enjoyable and interesting. In The

Netherlands, I was happy and proud to meet many great Bulgarian people.

Among them, I am very grateful to my special friends Emilia Lazarova, Svet-

lana Bialkova, Boryana Inkova and her Dutch husband with Bulgarian spirit

Koen Giesen for always being kind, helpful and understanding whenever I

needed. Our Bulgarian gatherings are unforgettable!

I convey special acknowledgment to my Dutch friend Aldo de Moor and

his family for their kindness, hospitality and support in various ways. They

showed me that the cultural and language differences are not barriers to

understanding one other–on the contrary, they can establish great friendly

relationships of help and tolerance. I am very grateful for the wonderful

gezellige time I spent with them on various occasions. They provided me

with the unique opportunity to experience the most typical Dutch traditions.

I am especially thankful to Aldo for sharing his enthusiasm and natural

curiosity for life and learning. Hartelijk bedankt!

Needless to say, nothing would have been possible without my loving

family. To my parents, Maria and Veliko Velikovi, I am much indebted for

iv Preface

their encouragement, love and persistent confidence in me provided through

my entire life. They have set an example for devotion, responsibility and

hard work to follow my chosen path. To my caring sister, Valentina, I am

very grateful for her strong emotional support and great sense of humor that

helped me to overcome the PhD hardships.
���������	�
����������
��������������

� ���������
˜
�� �� � �!��"#��$!�
��%&����'(��)*������ ��,+����,-,���
 � ��.��/ � �0'�1+��#$!�����,+����2'
%����.'

���# 43657�0-,'0��8*�
'(���9�����#�:$���-#�,������;���%< ��='0�
-
>
I am greatly indebted to Penka Bocheva, Svetla Paneva, and Dimitar

Alexandrov for contributing to my intellectual and personal development.

Finally, I take this opportunity to thank all my teachers who showed me

that education is the road to a better future.

Contents

Preface i

1 Introduction 1

1.1 Introduction to the field of data mining 1

1.1.1 Definition of data mining 1

1.1.2 Data sets . 4

1.1.3 Data mining tasks 5

1.1.4 Data mining models, patterns, and methods 6

1.2 Monotonicity constraints as domain knowledge in data mining 12

1.2.1 Domain knowledge 12

1.2.2 Monotonicity constraints 15

1.3 Monotonicity in prediction problems and models 18

1.3.1 Monotone prediction problems and models 19

1.3.2 Partially monotone prediction problems and models . 20

1.3.3 Monotonicity and model evaluation 20

1.4 Research objectives . 24

1.5 Research methodology . 25

1.6 Thesis outline . 26

1.7 Thesis contributions . 27

2 Monotone and noisy data 31

2.1 Introduction . 32

2.2 Related work . 36

2.3 Testing monotonicity of a data set 42

2.3.1 Benchmark measures for monotonicity of a data set . 42

2.3.2 Statistical test of the difference between the observed

and benchmark monotonicity measures 45

2.4 Greedy algorithm for relabeling 46

vi CONTENTS

2.4.1 Notation and description 47

2.4.2 Efficiency . 52

2.4.3 Complexity . 58

2.4.4 Simulation studies 59

2.4.5 Other issues . 61

2.5 Real case studies . 65

2.6 Conclusion . 71

3 Monotone decision trees 75

3.1 Introduction . 75

3.2 Related work . 80

3.3 Algorithm for building monotone decision trees 88

3.3.1 Implementation. 88

3.3.2 Real case studies . 90

3.4 Conclusion . 96

4 Monotone neural networks 99

4.1 Introduction . 100

4.2 Related work . 104

4.3 Algorithms for building monotone neural networks 108

4.3.1 Two-layer monotone networks 108

4.3.2 Three-layer Sill monotone networks 114

4.3.3 Real case studies . 129

4.4 Conclusion . 133

5 Partial monotonicity 135

5.1 Introduction . 135

5.2 Related work . 139

5.3 Algorithm for partial monotonicity 139

5.3.1 Description . 139

5.3.2 Simulation studies 147

5.3.3 Real case studies . 157

5.4 Conclusion . 166

6 Conclusions and future research 167

6.1 Conclusions . 167

6.2 Future research . 172

CONTENTS vii

Appendices 175

A Network flow algorithm for making data monotone 175

A.1 Description . 175

A.2 Implementation . 180

B Universal approximation theorems for three-layer neural net-

works 183

B.1 Unconstrained neural networks 183

B.2 Partially monotone neural networks 186

C Agglomerative hierarchical clustering 189

Samenvatting 193

Bibliography 197

viii CONTENTS

Chapter 1

Introduction

1.1 Introduction to the field of data mining

Data Mining: One of the ten emerging technologies that will

“change the world” (MIT Technology Review, 2001).

1.1.1 Definition of data mining

Thanks to the fast development of computer technology and data stor-

age capacity, the amounts of data collected in all domains of life have in-

creased dramatically–from supermarket transactions and credit card records

to molecular bodies and images of astronomical objects. Analyzing and

understanding these data provide the decision makers with a vital tool to

improve the accuracy and usefulness of information for strategic decision-

making. The question, however, is how to gain insight into tremendous

amounts of data, and how to extract valuable information from those data.

The need for automatic approaches to effective and efficient manipulation

of massive amounts of data–to turn these data into useful knowledge–led to

the development of a new area in the information technology industry–data

mining.

The data mining literature gives several formal definitions of the field

(Berry and Linoff, 1997; Giudici, 2003; Hand et al., 2001; “Insightful Miner

3.0 User’s Guide”, 2003). Here are two of them:

2 Chapter 1. Introduction

Data mining is the analysis of (often large) observational data

sets to find unsuspected relationships and to summarize the

data in novel ways that are both understandable and useful to

the data owner (Hand et al., 2001).

Data mining is the application of statistics in the form of ex-

ploratory data analysis and predictive models to reveal pat-

terns and trends in very large data sets (“Insightful Miner 3.0

User’s Guide”, 2003).

This broad range of definitions is due to the interdisciplinary nature of

data mining: data mining is a synthesis of statistics, artificial intelligence,

machine learning, database technology, data visualization, etc., which ex-

plains the subjective user’s perspective on the goal of the field. Neverthe-

less, in the variety of definitions, one can still notice some common issues

related to the essence of data mining. They are discussed below by com-

paring data mining with mathematical statistics, which is another scientific

field for analyzing data.

First, similarly to mathematical statistics, data mining is not just a tool

or algorithm, but a complex process for “learning” from data that requires

profound understanding and mastering. The data mining process consists

of several phases, which are presented in Figure 1.1, following the CRISP-

DM (CRoss-Industry Standard Process for Data Mining) reference model

(Chapman et al., 2000). In the literature, often the overall process of de-

riving knowledge from data is called a knowledge discovery process and data

mining is considered to be a step in it related to the application of specific

methods and algorithms. In this thesis, however, the term data mining is

used to refer to the multistage process of knowledge discovery.

As the arrows in the figure show, the sequence of phases in a data mining

process is not strict: the outcome of a particular phase determines the next

phase, which needs to be performed, but moving back and forth is typical

in the process. The usual relationships between phases are indicated by the

arrows in Figure 1.1.

Another important issue is the purpose of the data used in the analysis

process. This concerns one of the fundamental differences between statistics

and data mining. Statistics is concerned with analyzing data that are primar-

ily collected for checking a hypothesis formulated beforehand, whereas data

1.1 Introduction to the field of data mining 3

Business
understanding

Definition of the goals of the analysis and
requirements from a business perspective

Data
understanding

Initial collection of the data for the analysis
and discovery of first insights into the data

Data
preparation

Transformation (cleaning, aggregation, etc.)
of the data to construct the final data set

Modeling Selection and application of appropriate
modeling technique(s) for the data analysis

Evaluation Assessment of the modeling results with
respect to the business objectives

Deployment Integration of the modeling results in suitable
format into the final decision-making process

Figure 1.1: Phases of the data mining process as defined by the CRISP-DM refer-
ence model (source: Chapman et al. (2000))

mining deals with “secondary” data, i.e., data gathered for other purposes

(e.g., operational), which are different from the data mining purposes.

Furthermore, data mining usually deals with vast amounts of data, from

hundreds to billions of observations, and with hundreds of characteristics

describing an observation. This characteristics requires appropriate and so-

phisticated methods for data access and analysis, which are often beyond

the scope of classical statistics. In addition, the conventional requirement in

statistical analysis that the data should be presented in a matrix form is not

necessarily imposed in data mining (see Section 1.1.2).

4 Chapter 1. Introduction

Last but not least, it is essential that the results obtained from a data

mining process are easy to understand by and explain to the human decision

makers; moreover, these results should comply with the business objectives.

For this purpose, domain experts are often involved in the development and

implementation of data mining methods.

1.1.2 Data sets

As its name suggests, data mining is a process based on data. Nowadays,

data are considered to be everything–from textual and numerical facts to

graphics, images, sound, and video objects. Here we discuss two main issues

concerning the data used in a data mining process, namely their form and

type.

Form of data

There exist various data forms, for example, multi-relational data, time-

series, spatial data, string sequences (e.g., DNA/RNA), and hierarchical

structures, as discussed in (Hand et al., 2001). The simplest data form,

however, often considered in the data mining literature is the matrix form.

So, data are represented as an N × k matrix (N rows and k columns).

The rows represent objects–such as customers, patients, transactions–and

they are called instances, records, individuals, or observations. The columns

contain set of measurements on each object, and they are called variables,

attributes, or features. We call such a collection of objects, on which a set of

measurements is taken, a data set.

Type of data: scaling

The data type is determined by the nature of the measurements on the

object. Here we make a major distinction, namely between continuous and

discrete data types. Continuous data are measured on a real-valued scale,

whereas discrete data take values from a range that has integer values or

nominal values.

Furthermore, within discrete data we distinguish between ordinal data,

which preserve a predefined ordering, and nominal data, where numbers

or names are used only to discriminate between different values without

preserving additional properties.

1.1 Introduction to the field of data mining 5

Finally, measurements that can take only two values are called binary

data.

Table 1.1 presents an example of a data set in a matrix form consist-

ing of information on ten houses with their characteristics. The attributes

Volume, Number of rooms, and Price are continuous; Garage and

Location are discrete (the former is ordinal and the latter is nominal);

finally Brick? is a binary attribute.

Table 1.1: Example of housing data

?
 Location Volume Number

(#) rooms Garage Brick? Price in
euro

1. Rotterdam 385.2 8 Large yes 788 500
2. Amsterdam 156.0 5 Small no 449 000
3. Utrecht 90.4 3 Small yes 169 300
4. Rotterdam 86.3 3 Medium yes 269 000
5. Amsterdam 73.7 2 Small no 225 200
6. Amsterdam 113.0 4 Medium yes 487 500
7. Utrecht 201.4 5 Large yes 560 400
8. Amsterdam 69.5 1 Small no 87 000
9. Rotterdam 94.2 3 Medium no 365 800

10. Utrecht 100.3 4 Medium yes 299 600

1.1.3 Data mining tasks

Although the main objective of any data mining system is the extraction

of valuable knowledge from large data sets, there are different data mining

tasks, which depend on the user’s goals:

• Classification and Regression: predicting the value of one of the vari-

ables of interest, called dependent, response, or target variable, given the

known values of the other variables, called independent, explanatory,

or predictor variables. In classification, the variable being predicted

is discrete, and it is called class, whereas in regression, the variable

is continuous. A classification example is predicting the bond rating

of a company based on its characteristics. A regression example is

the estimation of the price of a house, given its attributes (again see

Table 1.1).

6 Chapter 1. Introduction

• Association: finding interesting associations (relationships) between

attributes in a data set. A well-known example is market-basket analy-

sis, where the task is to find combinations of items (products) that are

often purchased together.

• Clustering : putting objects into a number of groups–called clusters–in

such a way that the objects within the same group are similar, whereas

the groups are dissimilar. A typical example is market segmentation

based on past purchasing behavior, demographic characteristics, or

other customers’ features.

• Visualization: exploring the data by using visual and interactive gra-

phical techniques, such as histograms, pie charts, scatter, and contour

plots. Of course, low-dimensional data are more easily displayed than

high-dimensional data. In the latter case, additional methods such

as principal component analysis (Jolliffe, 1986) and projection pursuit

(Friedman and Tukey, 1974; Huber, 1985), are used to reduce data

dimensionality or to allow projection of higher-dimensional into lower-

dimensional data.

The focus in this thesis is on classification and regression problems, here-

after called prediction problems, in general. In addition, clustering and vi-

sualization techniques are used in the development of some of the methods

presented here.

1.1.4 Data mining models, patterns, and methods

Models and patterns

The final outcome of a data mining process is knowledge, which can be pre-

sented in different ways. The usual representations are models and patterns.

Pidd (1996) broadly defines a model as follows:

A model is an external and explicit representation of part of rea-

lity as seen by the people who wish to use that model to un-

derstand, to change, to manage and to control that part of

reality.

In a more strict sense used in data mining, a model is a global represen-

tation of a data set that can be used for descriptive or predictive purposes

1.1 Introduction to the field of data mining 7

(Hand et al., 2001). In the descriptive case, the model is a simplified de-

scription of the data; examples are models for association and clustering. In

the predictive case, the model represents a process that generates the data,

and that is used to make inferences for future data values; examples are

models used for classification and regression.

A simple example of a predictive model is the linear regression function

y = β0 + βx+ ε, (1.1)

which specifies the relation between variables x and y; the β’s are called

parameters of the model; ε is a random variable that captures the noise

recorded in the data. The latter is discussed in more details in Chapter 2.

The model in (1.1) belongs to the class of parametric models for which a

particular functional form is assumed beforehand, and which are completely

specified by a set of parameters. The objective of modeling in this case is to

find appropriate values for the parameters by optimizing a criterion function

for fitting the data, for example, least squares. Linear parametric models

have the advantage of simplicity, as they are easy to estimate and interpret.

Their main disadvantage, however, is that they may produce much bias, i.e,

they have systematic error (see Section 1.3.3), if the assumed functional form

is inappropriate. This leads to the development of parametric non-linear

models such as neural networks (discussed below), which are very flexible

and accurate tools used for prediction.

In contrast to the parametric models, non-parametric models are data-

driven and do not require a specification of the functional form a priori. On

the one hand, non-parametric models prevent the construction of erroneous

models caused by incorrect assumptions about the underlying function. Fur-

thermore, non-parametric models are very flexible as they can fit (almost)

any data by using a few or no nuisance parameters (parameters that are used

in the modeling procedure but that are not of interest to the data analyst).

On the other hand, the learning process of these models might be expensive

in terms of training time and memory requirements, as all data need to be

stored. In addition, the incorporation of prior knowledge might be difficult,

especially for high-dimensional data, due to the lack of explicit parameters

used to express such knowledge. A type of non-parametric models are deci-

sion trees, which are very well-known in practice and used in this dissertation

too.

8 Chapter 1. Introduction

 VOLUME

≤ 106.6 > 106.6

468 250 674 450

GARAGE

156 100 275 925

ROOMS

≤ 2 > 2
Small,

Medium Large

Figure 1.2: Example of a decision tree built on the housing data of Table 1.1

Between these two extremes lies the class of semi-parametric models,

which combines features from both parametric and non-parametric models.

Examples are so-called mixture models, which are weighted linear combina-

tions of local parametric models built on subsets of the input space. The

models presented in Chapter 5 represent this class.

Whereas models in data mining are global summaries of the data mea-

surement space, patterns are local structures describing parts of this space.

One of the most typical applications of patterns is the detection of unusual

observations (outliers), which have values very different from the majority of

the data, for example, fraud detection in banking and fault detection in in-

dustrial processes. Again, patterns can be used for descriptive or inferential

purposes.

In this study, we are interested in the global nature of data for prediction

problems, so we discuss models only in the remainder of the thesis. In

particular, we restrict ourselves to models that are derived from two of the

most popular methods used for classification and regression tasks in data

mining, namely decision trees and neural networks.

Decision trees

The basic idea of tree-based models is to partition the input space by a

sequence of recursive splits into a set of rectangles. For each rectangle the

response variable is usually set to a constant. An example of a decision tree

based on the housing data in Table 1.1 is represented in Figure 1.2.

Typical tree-based algorithms employ a top-down, greedy search strategy

1.1 Introduction to the field of data mining 9

for growing a decision tree. The top (starting) node of a tree is called root ; it

contains the full data set. The terminal nodes (leaves) represent the rectan-

gles as a result of partitioning the input space; they determine the predicted

value of the response variable for the data belonging to a particular rectangle

(in the housing example, the average house price). The splitting of the input

variables is performed in the non-terminal nodes; it can take various forms

depending on

• Number of variables: the splitting is univariate if only one variable is

tested or multivariate if more than one variable is tested at once.

• Number of outcome splits: two (binary) or more.

• Type of splitting variable(s): continuous or discrete.

The splitting tests are mutually exclusive and exhaustive. The selection

of the variable(s) for splitting is based on a measure for the quality of the

partition–the best split results in nodes among which the values of target

variable vary at most; for example, if the predicted variable has a standard

normal distribution, then the nodes after the best split contain means, which

are very far apart from one other.

The target variable of a new observation is predicted by performing tests

on the independent variables–starting from the top node until a leaf node

is reached. As a result, a decision rule in if -then form is generated. The

if -part consists of a single or a conjunction of attribute-value pairs, whereas

the then-part contains only the predicted value of the target variable. For

example, suppose we have to predict the house price of a house with the

following characteristics

Location Volume # Rooms Garage Brick?
Rotterdam 98.4 3 Small no

Based on the tree in Figure 1.2, the decision rule generated for prediction

of the house price is then

if Volume ≤ 106.6 and # Rooms > 2 then Price = 275 925

One of the main strengths of decision trees is their ability to represent

rules that are easy to understand by human-decision makers. In many appli-

cations it is crucial not only to make accurate prediction but also to explain

10 Chapter 1. Introduction

the reason for the final decision. The discovered knowledge needs to be re-

cognized by the domain experts; this recognition requires good descriptions,

such as the ones provided by decision trees. Furthermore, the selection of

the variables used to construct a decision tree gives a clear indication for the

set of attributes that play the most important role in the prediction of the

target variable; the most important variable is at the top of the tree.

Another advantage of decision trees is that they do not require the speci-

fication of a functional form a priori. The models are derived from data,

which provides flexibility of the tree construction.

Like any other data mining method, decision trees also have their ap-

plication limitations. One of the main problems is to determine the right

size of the final tree. The construction of large trees leads to two problems:

(i) the model complexity increases, i.e., the resulting rules are very complex

and hard to interpret by the end user; (ii) “overfitting” leads to bad model

performance on new data, typical problem in the data mining field (see Sec-

tion 1.3.3 for further discussion). Low prediction accuracy of decision trees

may also be due to the lack of a sufficient amount of data.

Numerous tree-based approaches have been developed to tackle these

limitations (see Section 3.2); this makes decision trees attractive methods

for application in many fields; for example market and customer analysis,

medicine and physics, and manufacturing data exploration.

Neural networks

The development of artificial neural networks (in short neural networks, NNs)

has been inspired by the way biological nervous systems (brains) are struc-

tured and work. Consisting of a number of interconnected elements called

units or neurons, neural networks process information in a parallel and dis-

tributed manner, which makes them powerful computational tools widely

applied in many areas; for example, finance and business, manufacture in-

dustry, chemical and electrical engineering, and telecommunications. As in

the human brain, learning in neural networks is a constant process, which is

based on the adjustment of the connections among the neurons.

Whereas neural networks were originally developed with simple architec-

tures (topologies) consisting of input and output elements only, their current

successors have more complex multilayer structures. Figure 1.3 is an exam-

ple of architecture of the most widely used type of neural networks, namely

1.1 Introduction to the field of data mining 11

LOCATION VOLUME # ROOMS GARAGE BRICK?

Input layer

Hidden layer

Output layer

HOUSE PRICE

1

BIAS

1

Figure 1.3: Example of a feed-forward neural network based on the housing data
of Table 1.1

a feed-forward neural network. The example is again based on the housing

data from Table 1.1.

The topology of a feed-forward neural network is based on multilayer

structure with three main components

• Input layer : provides external input to the neural network, where every

unit corresponds to an input variable, and one additional unit called

bias set to a constant value of 1.

• Hidden layer(s): transforms the input it gets from either the input

layer or another hidden layer to the next layer.

• Output layer : produces the output of the network.

All the layers consist of a set of one or more units, which are (fully)

connected with the units from the neighboring layers. All the connections

between the layers are weighted. The weights are the parameters in the

network model that are to be optimized.

The name “feed-forward” implies that the flow of information is one-way,

i.e., from the input layer to the hidden layer(s) to the output layer; there

are no feedback connections between the layers. The output from one layer

serves as an input to the next layer.

12 Chapter 1. Introduction

This one-way processing of information determines the basic functionality

of a feed-forward neural network. For every input vector, each input node

passes the value of an independent variable to all the nodes of the hidden

layer. Each hidden node computes a weighted sum of the input values.

Furthermore, an activation or transfer function (typically sigmoid) is applied

to the value thus computed to provide a bounded output of the hidden node.

This computational procedure is repeated for all hidden layers. Finally,

the output layer calculates a weighted sum of the inputs received from the

hidden nodes connected to this output layer. In regression problems, this is

often the final network’s output, whereas in classification problems, sigmoid

transformation is used again to determine the probability for the predicted

class. The final network’s output is compared with the target output and

the error (difference) is propagated back to adjust the connecting weights.

This procedure is called error backpropagation and it iterates until the error

is less than a pre-determined threshold.

The architecture and functionality of feed-forward neural networks gene-

rates arguments pro and con their application. On the one hand, neural

network’s learning ability and flexible nature–determined by an arbitrary

large number of degrees of freedom (parameters)–allow them to model com-

plex (non-linear) functional relationships with high accuracy. On the other

hand, over-parametrization usually result in modeling the noise present in

the data, which leads to overfitting. Furthermore, the non-linear functional

form of the network’s output makes the model hard to interpret by human

decision makers. Therefore, neural networks are often called black boxes.

Despite these weaknesses, in many applications where the accuracy of

prediction is the main objective, neural networks are one of the most popular

techniques used.

1.2 Monotonicity constraints as domain know-

ledge in data mining

1.2.1 Domain knowledge

The successful implementation of any data mining system depends on the

outcome of each stage of the mining process. Though, the data mining

literature emphasizes on the analysis and interpretation phase, other impor-

1.2 Monotonicity constraints as domain knowledge in DM 13

tant aspects in building a data mining system are data selection and data

pre-processing. The right description of the domain, data cleaning, data in-

tegration, and data transformation can significantly improve the efficiency

of the data mining process.

Besides limitations resulting from poor data quality, there can also be

problems in the application of the model if the mining process is conducted by

blind search. Frequently, the models derived are incompatible with business

regulations. Another problem may be the lack of interpretability of the

model; in general, human decision makers require models that are easy to

understand so that may not accept incomprehensible models, for example

very complex decision trees. Furthermore, the knowledge derived is inhe-

rently user subjective and domain dependent. In other words, the outcome

from a data mining system cannot be treated only quantitatively–without

understanding and interpretation.

Therefore, there is a need for integration of (i) the knowledge discovered

by data mining algorithms, and (ii) the knowledge based on intuition and

experience of the domain experts in order to construct comprehensible and

plausible decision models. In the literature, expert knowledge is also referred

to as domain knowledge or prior knowledge.

Several types of domain knowledge can be distinguished:

• Common sense: knowledge collected through life and working expe-

rience over time. Reasoning based on common sense is very typical for

humans and it is often done unconsciously. Unfortunately computer

systems cannot “draw an inference” from common sense as they do not

possess such knowledge.

• Normative knowledge: knowledge related to the desired input/output

and goals (e.g., simplicity, monotonicity of the outcome) of the data

mining process. Usually, it is hand-coded as requirements by a domain

expert. Normative knowledge can be used to constrain or prune the

search space, and thereby enhances the performance of the models

derived.

• Semantic knowledge: highly organized knowledge of concepts, facts and

their relationships within a particular domain. It is well structured and

formally represented as a hierarchy; for example, in organizations like

universities the hierarchy starts with the university as whole at the

14 Chapter 1. Introduction

highest level, followed by faculties, departments, groups, etc. This fa-

cilitates easy inference of causal relationships among facts and concepts

at a lower and higher level of abstraction.

In this study we focus on normative knowledge, which can be incorpo-

rated in several ways and at different stages in a data mining process.

First, the role of normative knowledge may be crucial for the design of a

data mining process where the aim is to determine the most effective way(s)

for knowledge discovery. Various requirements can provide mechanisms (in-

struments) to guide the process, which may lead to restricting the search

space of plausible solutions, reducing human and computational costs, saving

time, better managing and understanding of the whole knowledge discovery

process, etc.

At the data pre-processing stage, the use of normative knowledge might

be also necessary. As mentioned in Section 1.1.2 data in data mining are

usually represented by a single table in a matrix form. However, there are

domains where data are organized in a (multi-)relational structure corre-

sponding to several databases, which are connected in 1:M or M:M relations.

Then, it is necessary to combine (aggregate) all these databases to obtain

one single “flattened” source (Feelders et al., 2000).

Finally, one of the simplest approaches to apply normative knowledge in

data mining is by imposing various constraints on the data used or the model

built. We give three examples.

• Constraints for the values of the attributes; for instance, define a range

or a set of permissible values. In the housing example, the number of

rooms must take positive integer values.

• Constraints for the attributes and the relationships among them; for

example, attribute(s) can be excluded or combined in the mining pro-

cess. In the housing example, kitchen space cannot be larger than the

total house space.

• Constraints for the model built. In practice, the objective of data min-

ing is to obtain models that are novel, valid and useful. Furthermore, if

for a particular problem there are two or more models that give plausi-

ble solutions, then the simplest one is chosen as a final model (Occam’s

razor principle for simplicity). However, given the particular task at

1.2 Monotonicity constraints as domain knowledge in DM 15

hand, there may be additional constraints such as interpretability, ef-

ficiency, and misclassification costs of the model. Last but not least,

it is often required that the models built preserve certain relationships

between the predictor and target variables known a priori. In the hou-

sing example, the predicted house price is expected to increase with

the increase of the house volume.

Enforcing constraints on the decision models can significantly improve the

data mining process by making it more accurate, robust, and transparent.

Therefore, in this thesis, we consider a special type of constraint that is

typical in decision problems, namely monotonicity constraints described in

more details in the next section.

1.2.2 Monotonicity constraints

The motivation for considering monotonicity constraints in this research is

based on the following observations:

1. Monotonicity is common in scientific disciplines (domains).

Monotonicity is a simple and intuitive property stating that the greater

an input is, the greater the output must be, all other inputs being

equal (ceteris paribus). For example, given the data in Table 1.1, the

increase of the volume of a house would lead to increase of the house

price. This is so-called increasing monotonicity. Similarly, decreasing

monotonicity is defined whenever an input increases, the output de-

creases (ceteris paribus). Without loss of generality, we consider only

increasing monotonicity.

Monotonicity properties are known frequently in various scientific do-

mains:

• Business and Economics: Economic theory would state that peo-

ple tend to buy less of a product if its price increases (ceteris

paribus), so there would be a negative relationship between price

and demand. Another well-known example is the positive depen-

dence of labour wages on age and education (Mukarjee and Stern,

1994). In loan acceptance, the decision rule should be monotone

with respect to income, i.e., it would not be acceptable policy

that a high-income applicant is rejected, whereas a low-income

16 Chapter 1. Introduction

applicant with otherwise equal characteristics is accepted. Mono-

tonicity is also common in so-called hedonic price models where

the price of a consumer good depends on a bundle of characteris-

tics for which a valuation exists (Harrison and Rubinfeld, 1978).

In house pricing, for instance, the price of a house increases with

the house area, and decreases with the distance to the city center.

Another example is option pricing, where the price of an Ameri-

can call option is a monotone increasing function of the duration

and the price of the underlying asset, and a decreasing function

of the strike price (Gamarnik, 1998).

• Operations research: It is well known that more traffic on the

road or more customers at a supermarket leads to more waiting

time.

• Computer Science: Monotone relationships are present in diag-

nosing performance-problems of computer systems, e.g., paging

delays increase with the number of logged-on users (Hellerstein,

1989).

• Law systems: An example of a law application where the factors

(attributes) have monotone influence on the result of a judgment

process is a wage-earner system (Karpf, 1991). The objective

of the system is to classify an employee as either a wage-earner

or not (part-time operators, independent sales-consultants, etc.),

based on a number of factors. This is done for the purposes of

the employment law where wage-earner employees are entitled to a

substantial holiday allowance. In this system, for example, factors

such as “Working at the liability of the employer” and “Employer

has authority to instruct the employee” have monotone effects on

the judgment whether an employee is a wage earner. In other

words, the change of the value assigned to these factors from no

to yes implies a tendency of the result of the judgment to become

yes.

• Natural sciences: Numerous examples exist here. For instance,

the body size of an animal is in a monotone relationship with its

maintenance requirement, i.e., the larger the animal, the higher

the amount of energy required to keep the animal alive for move-

ment, production of body warmth, etc., without increasing or de-

1.2 Monotonicity constraints as domain knowledge in DM 17

creasing the body weight. Furthermore, for animals of the same

size young animals need proportionally more feed for maintenance

and of better quality than older animals. Another example is the

effect of the increase in the human body weight that leads to

substantial increase of the risk of heart disease, cancer, or other

chronic diseases (NIH Report, 1998).

2. Monotonicity improves the decision-making process. The ap-

plication of the monotonicity principle considerably reduces the amount

of data needed by human-decision makers or inductive systems to make

accurate judgments (Ben-David et al., 1989; Karpf, 1991). This speeds

up the decision-making process without worsening its correctness.

Furthermore, taking into account monotone relationships between the

dependent and independent attributes, allows us to fill in missing at-

tribute values in the data set as well as to make plausible predictions

about objects that are not present at the data at hand (Ben-David

et al., 1989; Moshkovich et al., 2002). This improves the quality of

the data and their analysis.

3. Monotone decision models perform better than non-monotone

models. For problems with monotonicity properties, monotone mod-

els outperform their non-monotone counterparts:

• Monotone models are easier to understand as they agree with the

decision makers’ expertise; in other words, non-monotone models

are much harder to interpret as they present inconsistent and

less intuitive dependencies (Feelders, 2000; Potharst and Feelders,

2002).

• Enforcing monotonicity of the models removes noise, resolves in-

consistencies, and suppresses overfitting. As a result monotone

models give better predictions, i.e., have smaller error rates, on

new data (Sill, 1998).

• Monotone models have less variability upon repeated sampling

(known as stable in data mining). The monotonicity leads to

reduction in the variance and hence the models derived are more

stable (Sill, 1998).

18 Chapter 1. Introduction

1.3 Monotonicity in prediction problems and

models

Now, we formally introduce the key concepts discussed in this thesis.

Let X =
∏k

i=1Xi be an input space represented by k attributes (features).

A particular point x ∈ X is defined by the vector x = (x1, x2, . . . , xk), where

xi ∈ Xi, i = 1, 2, . . . , k.

Furthermore, a totally ordered set of labels L is defined. In the discrete

case, we have L = {1, 2, . . . , `max} where `max is the maximal label. Note

that ordinal labels can be easily quantified by assigning numbers from 1 for

the lowest category to `max for the highest category. In the continuous case,

we have L ⊂ < or L ⊂ <+. Unless the distinction is made explicitly, the

term label is used to refer generally to the dependent variable irrespective of

its type (continuous or discrete).

Next a function f is defined as a mapping

f : X → L
that assigns a label ` ∈ L to every input vector x ∈ X . Hence, f is the

underlying model.

In prediction problems, the objective is to find an approximation f̂ of

f as close as possible; for example in L1,L2, or L∞ norm. In particular, in

regression we try to estimate the average dependence of ` given x, E [`|x],
whereas in classification, we look for a discrete mapping function represented

by a classification rule r(`
x
) assigning a class ` to each point x in the input

space.

In reality, the information we have about f is mostly provided by a data

set D = (xn, `
x
n)Nn=1, where N is the number of points, x ∈ X and `

x
∈ L.

In other words, X = {xn}Nn=1 is a set of k independent variables represented

by an N × k matrix, and L = {`
x
n}Nn=1 is a vector with the values of the

dependent variable. In this context, D corresponds to a mapping fD : X → L

and we assume that fD is a close proximity of f . Ideally, fD is equal to f

over X, which is seldomly the case in practice due to the noise present in

the data (see Chapter 2).

Hence, our ultimate goal in prediction problems is restricted to obtaining

a close approximation f̂MD
of f by building a prediction model MD from the

given data D.

1.3 Monotonicity in prediction problems and models 19

Furthermore, the main assumption we make here is that f exhibits mono-

tonicity properties with respect to the input variables; therefore, f̂MD
should

also obey these properties in a strict fashion.

In this study we distinguish between two types of problems, and their

respective models, concerning the monotonicity properties. The distinction

is based on the set of input variables, which are in monotone relationships

with the response:

1. Totally monotone prediction problems (models): f (f̂MD
) depends mo-

notonically on all variables from the input space.

2. Partially monotone prediction problems (models): f (f̂MD
) depends

monotonically on some variables from the input space but not on all.

Though this distinction is also made in the literature (e.g., by Tuy (2000)),

we want to emphasize that the terms “totally” and “partially” refer to the set

of inputs for which monotone relationships hold with respect to the target–

not to the monotonicity property as such. Furthermore, we omit “totally”

from the name of the first type of problems (models) in the remainder of this

thesis.

1.3.1 Monotone prediction problems and models

Suppose x,x′ ∈ X and there exists a total ordering ≥i on Xi, for i =

1, 2, . . . , k. We say that x dominates x′ if ∀1≥i≥k, xi ≥ x′i, in short ex-

pressed as x ≥ x′. The dominating relationships define a partial ordering

on X . Unless k = 1, the ordering is partial rather than total because there

exist points x and x′ such that neither x ≤ x′ nor x ≥ x′.

A monotone problem is defined by the partial ordering of the input space

X and a function f that is monotone in all input variables. This is repre-

sented by the constraint

∀x,x′ ∈ X : x ≥ x′ ⇒ f(x) ≥ f(x′). (1.2)

In particular, f is E [`|x] in regression tasks and r(`
x
) in classification

tasks, respectively.

Given a data set D = (xn, `
x
n)Nn=1, we call MD a monotone model if the

approximation f̂MD
of f satisfies the following condition:

∀x,x′ ∈ X : x ≥ x′ ⇒ f̂MD
(x) ≥ f̂MD

(x′). (1.3)

20 Chapter 1. Introduction

There have been developed several methods that incorporate monotoni-

city constraints such as decision trees (Ben-David, 1995; Bioch and Popova,

2002; Cao-Van and De Baets, 2003; Feelders, 2000), neural networks (Kay

and Ungar, 2000; Sill, 1998; Wang, 1994; Daniels and Kamp, 1999), isotonic

regression (Ayer et al., 1955; Robertson et al., 1988), regression with poly-

nomials (Siem et al., 2005), rational cubic interpolation of one-dimensional

functions (Sarfraz et al., 1997), rough sets (Popova, 2004). In this thesis

we consider two types of monotone models, namely monotone decision trees

(Chapter 3) and monotone neural networks (Chapter 4).

1.3.2 Partially monotone prediction problems and mo-

dels

Suppose X = Xm ∪ X nm with Xm =
∏m

i=1Xi and X nm =
∏k

i=m+1Xi for

1 ≤ m < k. Furthermore, let xm ∈ Xm, and xnm ∈ X nm. Then a data point

x ∈ X is represented by x = (xm,xnm).

A partially monotone problem is defined by the partial ordering of Xm

and a function f that is monotone in all input variables in Xm. This is

represented by the constraint

∀x,x′ ∈ X : xnm = x′nm and xm ≥ x′m ⇒ f(x) ≥ f(x′). (1.4)

Similarly, given a data set D = (xm,xnm, `
x
)N , where `

x
is the label of

x, we call MD a partially monotone model if the approximation f̂MD
of f

satisfies the following condition:

∀x,x′ ∈ X : xnm = x′nm and xm ≥ x′m ⇒ f̂MD
(x) ≥ f̂MD

(x′). (1.5)

In Chapter 5 we propose a method for building a class of partially mono-

tone models based on neural networks.

1.3.3 Monotonicity and model evaluation

Once a model is built, the next major step in the data mining process is

the evaluation of the model performance, which determines whether or not

the model will be employed in practice. Therefore, it is crucial to define

appropriate techniques for assessing the quality of the results obtained from

1.3 Monotonicity in prediction problems and models 21

the modeling step. These techniques should provide the end user with direct,

truthful and detailed insight into the model performance.

Given the objective of this thesis, we consider evaluation techniques re-

stricted to prediction tasks. From this perspective, the predictive accuracy

of the models built is one of most important characteristics that need to be

assessed. In other words, we seek models that can make as correct future

predictions as possible, i.e., models with good generalization capabilities.

The question is how to measure the generalization performance of a

model? Recall that the information we have is the (historical) data on which

the model is built. Hence, these data are also the source for our model

evaluation.

Suppose we have a prediction model MD built on a data set D for es-

timating the dependent variable `
x

given the set of explanatory variables

x. Then the quality of the estimator f̂MD
(x) based on MD is measured by

the so-called prediction error computed as the deviation of f̂MD
(x) from the

target `
x|D given in D.

In regression problems, the prediction error is usually taken to be the

mean-squared error (MSE):

MSE(x) = (`
x|D − f̂MD

(x))2. (1.6)

In classification problems, the simplest and most commonly used predic-

tion error is the misclassification (0–1) loss function (Miscl):

Miscl(x) =

{

0 if `
x|D = f̂MD

(x),

1 otherwise.
(1.7)

We use the expressions in (1.6) and (1.7) to measure the prediction error

of models for regression and classification problems, respectively.

Furthermore, given D and MD, the prediction error can be represented

as a sum of three components. As shown by Geman et al. (1992), MSE in

(1.6) can be decomposed:

MSE(x) = ED[(`x|D − f(x))2]

+ (f(x)− ED[f̂MD
(x)])2

+ ED[(f̂MD
(x)− ED[f̂MD

(x)])2]

= σ2ε + Bias2 + Variance

(1.8)

22 Chapter 1. Introduction

The term σ2ε is the variance of the target around its true mean, i.e., this

is the variance of the noise term ε. This is so-called irreducible error, which

cannot be avoided (unless σ2
ε = 0). The second term is the squared bias,

which gives the difference between the true function value and the average

estimate over all data samples of a fixed size. The last term is the variance

of an estimate obtained for a particular data set around its mean.

The decomposition of the misclassification error in (1.7) is derived in

(Kohavi and Wolpert, 1996); using our notation, this decomposition is

Miscl(x) =
∑

x

Pr(x)

[

1

2

(

1−
∑

`∈L

Pr(`
x|D = `)2

)

+
1

2

∑

`∈L

[

Pr(`
x|D = `)− Pr(f̂MD

(x) = `)
]2

+
1

2

(

1−
∑

`∈L

Pr(f̂MD
(x) = `)2

)

]

=
∑

x

Pr(x)
[

σ2ε + Bias2 + Variance
]

,

(1.9)

where Pr(·) denotes a probability.

The expressions in (1.8) and (1.9) represent the so-called bias-variance

decomposition of the prediction error, which have been extensively discussed

in the literature (Geman et al., 1992; Kohavi and Wolpert, 1996; Hastie

et al., 2001; Feelders, 2002). Here we briefly present the main idea of this

decomposition, which will facilitate the later discussion in this thesis.

Although the bias-variance decomposition of the prediction error can-

not be applied in practice–because the noise σ2
ε and the true function are

unknown–it has an important implication for the understanding of the per-

formance of the models obtained.

Since noise is intrinsic to real data and we cannot do much about it, we

consider the other two terms in the prediction error in more details. First

it is necessary to note that the squared bias and the variance have opposite

influence on each other: the decrease in the one leads to the increase of the

other. “Bias” of a model is related to its accuracy, i.e., an incorrect model

leads to high bias. In order to reduce the bias, one needs to increase the

flexibility of the model by, for example, increasing the size of the decision

tree or introducing more parameters in the neural network, so that the model

better fits the data. However, highly flexible models tend to be unstable due

1.3 Monotonicity in prediction problems and models 23

to their high variance, i.e., the results obtained from them will show much

variation if they are presented with other data samples of the same size.

Hence, the so-called bias-variance dilemma rises, which is one of the crucial

issues in the model construction stage. The optimal choice of the level of

the model’s flexibility or complexity determines the model performance. Of

course, this choice is not trivial in practice.

In this context, monotonicity plays an important role. On the one hand,

imposing monotonicity constraints on the data mining models leads to much

lower model variance because the results obtained from different data sets

preserve a main property in the true function. On the other hand, the va-

riance reduction is not expected to lead to significant increase of the bias

because there is no high deviation from the target. Hence, the overall pre-

diction accuracy of models with monotonicity constraints is supposed to be,

in general, better than that of unconstrained models.

Until now, we considered prediction errors from a computational point

of view. As mentioned earlier, we are interested in the generalization capa-

bilities (accuracy of future predictions) of the models built. Usually we have

only one data source on which a model is built and we do not have informa-

tion about the new data that may occur in reality. Hence, the problem is

how to measure the generalization prediction error of a model. An intuitive

solution is to use the same data again but this time to estimate the error.

Our objective is then to minimize this error by constructing a model that

fits perfectly the data at hand. In this way, however, we have also been mod-

eling the noise inherently present in the data. This phenomenon is known

as overfitting. To solve this problem, several approaches have been devel-

oped depending on the type of data mining models; for example, pruning

of decision trees (Breiman et al., 1984), regularization methods for neural

networks (Bishop, 1997).

In this study, we employ the most popular method in practice, which

is based on the random partitioning of the original data into three sets,

namely training, validation and test sets (Hastie et al., 2001). The training

set is used to build various models. The best one is selected on the basis

of the minimum prediction error computed on the validation set. Then the

generalization error of the final model is measured on the test set. In general,

this random splitting of the data is performed a number of times; the overall

average is computed as a final error estimate. This procedure implies that

the obtained error is an honest measure for the generalization capabilities of

24 Chapter 1. Introduction

the model.

Another important issue in model evaluation is the extent to which the

results obtained from data mining models comply with the human expertise

and business objectives. Incorporation of monotonicity as a type of domain

knowledge in data mining plays an important role because it prevents results

that are contrary to the knowledge of human experts. Hence, models that

preserve monotone relationships are preferred for future predictions.

1.4 Research objectives

Our general research objective is to study the incorporation of monotonicity

constraints as a way to express domain knowledge in a data mining process.

Given the description of the data mining process in Figure 1.1, there are

two stages where monotonicity can be incorporated, namely data preparation

and modeling. Hence, our general objective can be decomposed into the

following two more specific goals.

Research objective - 1 Preprocessing (transforming) data such that they obey

monotonicity constraints before using the data to build monotone de-

cision models.

Research objective - 2 Enforcing monotonicity in data mining models based

on decision trees and neural networks for prediction tasks.

Based on the formulation of these two research objectives, we define a

number of research questions. Related to Research objective - 1 are the

following questions:

Given a data set at hand,

• How can we measure its degree of monotonicity?

• How can we transform this data set from non-monotone into monotone?

With respect to Research objective - 2, the research questions are:

• How can we build monotone models?

• How can we build partially monotone models?

1.5 Research methodology 25

In addition to these questions, we want to test the following three hy-

potheses:

Hypothesis - 1 For monotone problems, monotone models have superior pre-

dictive performance to non-monotone models.

Hypothesis - 2 For monotone problems, monotone models derived from mo-

notone data (i.e., data obtained after the transformation) outperform

monotone models derived from the original data, i.e., the former are

more accurate and their variance on new data is lower.

Hypothesis - 3 For partially monotone problems, partially monotone models

have superior predictive performance to non-monotone models.

1.5 Research methodology

To answer our research questions and accomplish the objectives of this study,

we apply a research methodology that is based on the development of theo-

retical concepts and practical computational methods. With respect to the

latter, some of the methods we shall propose in later chapters are novel for

the field (e.g., the procedure for testing monotonicity of data and the greedy

algorithm for relabeling in Chapter 2, and the approach for partial mono-

tonicity in Chapter 5), whereas other methods are extensions of existing

approaches (e.g., monotone trees in Chapter 3 and monotone networks in

Chapter 4).

Typically, in the field of data mining and any other quantitative research

study, new methods need to be validated in order to demonstrate their per-

formance: how accurate, how efficient and how fast are they (Galliers, 1992;

Vogel and Wetherbe, 1984). For the purpose of this study this validation is

provided by the following two research approaches.

1. Simulation experiments. Our simulation studies are designed to demon-

strate (i) the performance of our methods and (ii) the sensitivity of the

performance to change(s) in the input or internal parameters of the

approaches developed. The main advantage of the simulation is that

the conditions and the design of the experiments are well controlled.

This allows us to study the relationship between different factors and

provides insight for the anticipated performance of the methods in si-

tuations that have not yet occurred in practice.

26 Chapter 1. Introduction

2. Real-world applications. We use four case studies in this research,

namely two for monotone problems and two for partially monotone

problems. Furthermore, we illustrate the application of our methods

through real data for both regression and classification tasks.

1.6 Thesis outline

Although some of the work presented here has been already published (Ve-

likova and Daniels, 2004; Daniels and Velikova, 2003, 2006; Velikova et al.,

2006a, 2006b), this thesis is not organized as a collection of separate papers.

There are four main chapters, which are devoted on separate topics but they

are all related by commonly defined notations and concepts. Each chapter

begins with an introduction, which establishes the main concepts discussed

in that chapter. It then proceeds with presenting earlier work related to the

topic of that chapter, followed by a description of the methods we propose.

Each chapter ends with a summary of the work presented in it.

Chapter 2 introduces main definitions and theoretical concepts related to

monotone and noisy (non-monotone) data. Benchmark measures for the de-

gree of monotonicity of a data set are derived, which are used for comparison

with indicators obtained from real data. Furthermore, a greedy algorithm to

transform non-monotone into monotone data is presented. Simulation and

real case studies are used to demonstrate the application of the methods

proposed.

Chapters 3 and 4 present methods for deriving monotone models based

on decision trees and neural networks, respectively. These methods are based

on existing approaches, which we extend to deal with both classification and

regression problems.

Chapter 5 deals with the concept of partial monotonicity. The main theo-

retical contribution is an algorithm for building partially monotone models.

Simulation and real case studies are used to demonstrate the application of

the method.

Finally, Chapter 6 presents general conclusions of our research and dis-

cusses possible future developments of the current work.

1.7 Thesis contributions 27

1.7 Thesis contributions

We discuss the contributions of this thesis from two perspectives, namely

research perspective, and business and user’s perspective.

Research perspective

Although there have already been several studies in the literature dealing

with the incorporation of monotonicity in data mining, this thesis contributes

to the development of the research field in several ways.

The first contribution we propose is a novel straightforward procedure to

test the degree of monotonicity of a real data set. The procedure is based on a

comparison between the observed and benchmark measures for monotonicity

we derive. Two measures for monotonicity are considered, namely fraction

(percentage) of monotone pairs and number of monotone points. The bench-

mark measures are computed from data, which are defined simply by taking

the same structure (values) of the independent variables as in the original

data set and a random permutation of the set of the original labels. If the

observed measures obtained are significantly larger (this is checked by a sta-

tistical test) than the benchmark measures, then we can conclude that the

original data exhibit monotonicity properties; otherwise, monotonicity as-

sumptions are questionable. Compared to previous approaches, our testing

procedure has two main advantages: (i) the comparison analysis between

the observed and benchmark measures is independent of any assumptions

about the functional form for the data generating process, and (ii) it does

not require modeling the data beforehand.

Our second major contribution is a greedy algorithm for making data

monotone. Given a data set with a number of monotonicity violations, we

can simply change (relabel) the values of the dependent variable of some of

the points in order to resolve the inconsistencies. We argue that such trans-

formation leads to monotone data that are source for building better (more

accurate and stable) monotone prediction models than the ones derived from

the original (non-monotone) data.

In order to provide such comparison analysis, we construct monotone

models for classification and regression based on decision trees and neural

networks. The algorithms we use are enhanced versions of two existing ap-

28 Chapter 1. Introduction

proaches, namely Feelders (2000) for monotone decision trees and Sill (1998)

for monotone neural networks. The extension of these methods we consider

as our third contribution to the research field.

The fourth contribution of this thesis is the approach for building par-

tially monotone models. It is based on the convolution of monotone neural

networks built on the variables that are in a monotone relationship with the

response variable and weight functions built on the other variables. To the

best of our knowledge, this is the first method that deals with mixture-of-

networks modeling with partial monotonicity constraints. We prove that our

partially monotone models have universal approximation capabilities. Sim-

ulation and real case studies show that our approach has significantly better

performance than partially monotone linear models. Furthermore, the incor-

poration of partial monotonicity constraints not only leads to models that

are in accordance with the decision maker’s expertise, but also reduces con-

siderably the model variance in comparison to standard neural networks.

Our final contribution is the formal proof for the universal function ap-

proximation capabilities of three-layer neural networks with a combination

of minimum and maximum operators over linear functions. We show this

for two types of network: (i) without any constraints on the weights, and

(ii) with monotonicity constraints on some of the weights. The latter is an

alternative method to our approach for building partially monotone models.

Business and user’s perspective

The success of a data mining process is measured with respect to the business

objectives that are achieved, and the acceptance of the knowledge discovery

results by the end users. Therefore it is crucial to guarantee that the data

mining models derived meet the business requirements, comply with business

regulations and they agree with the human decision-maker’s expertise.

Hence, our research contributes to improve business practice and decision-

making processes by providing methods for incorporating domain knowledge

into a data mining process. In particular, monotonicity constraints are en-

forced by building models based on decision trees and neural networks. This

leads to better accuracy, robustness, or interpretability of the decision mod-

els.

Furthermore, our procedure for testing the degree of monotonicity of a

1.7 Thesis contributions 29

data set facilitates the data mining process at the data preprocessing step

where the suitability of a data set for deriving monotone decision models is

determined. In other words, if the tests indicate that the data at hand do

not exhibit monotonicity properties, then these data are not used for further

analysis in monotone problems. Thus, by using only appropriate data, we

can considerably improve the knowledge discovery process and obtain more

accurate and plausible results.

Finally, the approach we propose for transforming non-monotone into

monotone data resolves inconsistencies in the data and thus provides the

user with an unambiguous source of information for decision-making.

30 Chapter 1. Introduction

Chapter 2

Monotone and noisy data

The successful implementation of any data mining system depends to a large

extent on the quality of its main source–data. Given the objectives of our

study, in this chapter we discuss monotone and noisy (non-monotone) data

as a source for building monotone models. We focus on two main issues: (i)

how to measure the degree of monotonicity of a data set; (ii) how to make

data monotone. We begin with definitions of the main terms related to

monotone/non-monotone data. Next, we proceed with a review of previous

studies dealing with the notion of monotonicity of the data; in particular,

we discuss studies that are related to measuring the degree of monotonicity

of data, and making data monotone. We provide a summary of the ad-

vantages and disadvantages of these works, and we justify the need for the

development of our methods. The first major contribution we propose is a

new procedure to measure to what extent a data set is monotone. The se-

cond contribution is a greedy algorithm to make data monotone by changing

the labels (relabeling) of some of the data points. We conduct simulation

studies with artificial data in order to demonstrate the algorithm’s ability to

restore to a large extent the original monotone data by removing the noise.

Finally, we present two case studies on bond rating (classification problem)

and house pricing (regression problem) in order to illustrate the application

of the approaches we propose in this chapter. The greedy algorithm for rela-

beling, the simulation and real case studies have been published in Velikova

and Daniels (2004) and Daniels and Velikova (2006).

32 Chapter 2. Monotone and noisy data

2.1 Introduction

Consider the following table with information on five houses:

Table 2.1: A sample of house pricing data

No Area
Number of

Volume
Price

rooms (Euro)
1 90 2 210 121 000
2 86 2 255 130 500
3 125 3 320 119 750
4 210 4 405 165 200
5 174 3 373 190 000

Suppose the analysts would like to use these data to make future pre-

dictions for the price of a house based on its characteristics. Common sense

suggests a monotone dependency between the three house attributes given

in Table 2.1, and the house price: more area, rooms, and volume result in

a higher price, in general. However, the data in Table 2.1 show a number

of inconsistencies, i.e., pairs of observations contradicting the property of

monotonicity: the characteristics of the third house have larger values than

those of the first two houses, but the prices are in opposite order; the fourth

and fifth houses show a non-monotone relationship too.

Inconsistencies may have several reasons:

• Noise; for example, errors made during data entry, data collection, or

on a measurement process; discrepancies due to the change of data

over time and inconsistencies after merging data sets.

• Incompleteness, i.e., there might be a latent relationship between the

dependent variable and missing information. For instance, factors not

listed in Table 2.1 such as availability of a shopping center and sport

facilities, may have an important effect on the house price, which is

not explicitly shown in the recorded data.

To verify the monotonicity assumptions, we would like to check the extent

to which monotone relationships are present in the data under study. One

obvious question, therefore, is how to measure the degree of monotonicity of a

data set. A straightforward method is to compute the fraction of monotone

2.1 Introduction 33

pairs with respect to the total number of comparable pairs in the data.

Another measure is the number of monotone points (see Definition 2.1.2).

Besides measures computed from the data, we also need benchmarks for

comparison. In Section 2.3, we derive such benchmark measures to express

the degree of monotonicity of the so-called benchmark data–data that are

defined by taking the same structure (values) of the independent variables

as in the original data set and labels that are a random permutation of the

set of the original labels.

By comparing the values of the actual indicators with benchmark mea-

sures, one can verify the monotonicity of the data under study. We do

so by performing a statistical test for the significance of the difference. If

the benchmark measures are not significantly different from the actual in-

dicators, then the data set is highly non-monotone and the assumptions for

monotonicity are questionable. In this case, it is not appropriate to use the

data for building monotone models. However, if the comparison shows that

there is only a small fraction of instances in the real data contradicting the

monotonicity assumption, this confirms what is expected by theory. Then,

the presence of conflicting (inconsistent) pairs in the actual data indicates

noise in the data.

Using these noisy data for building monotone models for prediction can

mislead the decision-making process and produce a unreliable output with

a high variance on new data. Therefore, an appropriate modification of

the data–such as transformation from non-monotone into monotone data–

can remove the noise, better capture implicit dependences between missing

information and the decision variable, and reduce the model variance.

In Section 2.4, we present a greedy algorithm for transforming non-

monotone into monotone data by changing the value of the dependent vari-

able. We call this process relabeling. The idea is to reduce the number of

inconsistent pairs by relabeling one data point in each step–until the data

set is monotone (see Definition 2.1.3). In the example given in Table 2.1, we

may firstly modify (relabel) the price of the third house so that its price is

not smaller than the prices of the first two houses. Analogously, we proceed

with the fourth house with respect to the fifth house. The resulting data are

monotone.

In the remainder of this section we introduce some notation and defini-

tions, which are used in the discussion throughout the thesis.

34 Chapter 2. Monotone and noisy data

Notation and definitions

Let DN
π denote the ensemble of data sets each consisting of N points drawn

from a probability distribution π(x, `). Here π is defined on X × L, where

X is a k-dimensional input space and L is the set of univariate labels.

A data point is denoted by x = (x1, x2, . . . , xk), where x1, x2, . . . , xk are

the values of the independent variables; the label of x is `
x
. Hence, a data

set D is denoted by D = (xn, `
x
n)Nn=1.

Next for each x we define:

Down(x) = {x′ ∈ X | x′ ≤ x},
Up(x) = {x′ ∈ X | x′ ≥ x},

Incomp(x) = X −Down(x) ∪ Up(x).

Hence, all the points belonging to Down(x) and Up(x) are comparable

with x, whereas all the points belonging to Incomp(x) are incomparable with

x.

Furthermore, let X, X ⊂ X be the set of values of independent variables

belonging to D. Then for each x ∈ D we define:

DownD(x) = {x′ ∈ X | x′ ≤ x},
UpD(x) = {x′ ∈ X | x′ ≥ x},

IncompD(x) = X −DownD(x) ∪ UpD(x).

Definition 2.1.1. The pair (x,x′) is called non-monotone (inconsistent) if

x > x′ and `
x
< `

x
′ or

x < x′ and `
x
> `

x
′ or

x = x′ and `
x
6= `

x
′

(2.1)

Otherwise, (x,x′) is called a monotone (consistent) pair.

Hence, it is clear that the relationship between incomparable points is

always called monotone.

Definition 2.1.2. We call x ∈ D a monotone point if ∀x′ ∈ D : (x,x′) is a

monotone pair. This is equivalent to

x′ ∈ DownD(x)⇒ `
x
≥ `

x
′ and x′ ∈ UpD(x)⇒ `

x
≤ `

x
′ . (2.2)

2.1 Introduction 35

Definition 2.1.3. A data set is monotone if all pairs (points) in the data

set are monotone.

Total monotonicity of a data set is defined as `
x

being monotonically

dependent on all input attributes xi, i = 1, 2, . . . , k, in the data set.

Furthermore, for the monotone problems considered in this thesis, we

assume that the data set D is generated by the following process

`
x
= f(x) + ε, (2.3)

where f is a monotone function and ε is a random error. In regression

problems, ε has zero mean, whereas in classification problems ε is a small

probability that the assigned class is incorrect.

The total monotonicity of f on x is defined on all independent variables

by

∀x,x′ ∈ X : x ≥ x′ ⇒ f(x) ≥ f(x′)

Note that even though f is monotone, the data D generated by (2.3)

may not be monotone due to the random error ε. In other words, there are

non-monotone pairs of points in the data D. In such cases we refer to D as

non-monotone or noisy data.

To illustrate the notion and definitions introduced in this section, we

consider the simple example depicted in Figure 2.1. The figure shows a data

set D = (xn, `
x
n)5n=1 of five points that take values in a two-dimensional

input space. The dependent variable is discrete and ranges from 1 to 3. We

assume that there exist monotone relationships between the attributes and

the dependent variable.

There are ten pairs in total and seven out of them are comparable such

as (x1,x3). The remaining three pairs are incomparable; for example, the

pair (x1,x2) because x11 > x21 but x12 < x22.

Now we focus on point x3. The set DownD(x
3) consists of all points

smaller than or equal to x3, i.e., DownD(x
3) = {x1,x2,x3}. Analogously,

UpD(x
3) = {x3,x5} and IncompD(x

3) = {x4}. Furthermore, given the

labeling of the points, it is obvious that the pairs (x2,x3) and (x3,x5) are

monotone as they meet the conditions in (2.2), whereas the pair (x1,x3) is

non-monotone, which is also the only inconsistency in D (as shown by the

dotted line). Hence, the monotone points are only x2,x4 and x5, so the data

set D is non-monotone.

36 Chapter 2. Monotone and noisy data

•

•

•

•

)2;1,13();(=1x
1x l

1)(3,5;);(=2x
2x l

)3;19,25();(=5x
5x l

)1;14,21();(=3x
3x l

•

Down(x @)

Up(x @) Incomp(x @)

Incomp(x @)

)3;17,9();(=4x
4x l

Figure 2.1: An example of a data set D with five points.

2.2 Related work

As we discussed in Section 1.3, a monotone data set D can be considered as

a mapping function f̂ : X → L, which is assumed to be close proximity of a

monotone function f : X → L.

The problem of monotonicity testing of functions has attracted a great

deal of interest in the literature. Goldreich et al. (1998) consider this prob-

lem in the context of gap property testing where the goal is to determine

whether a given object (function) does have a particular property or is “far”

from satisfying it. The authors propose an algorithm (tester) for monotonic-

ity testing of Boolean functions. The tester has a probabilistic nature, i.e., it

determines the probability whether a function belongs to a class of monotone

functions or is “far” from it.

Raskhodnikova (1999) suggests further improvement of the algorithms

developed by Goldreich et al. (1998). On the one hand, she reduced the

query complexity of the tester compared to previous tester bounds. On the

other hand, she proposed an alternative test for Boolean functions whose

query complexity is independent of the size of the domain.

Monotonicity testing of Boolean functions over general partially ordered

sets is studied by Fischer et al. (2002). First, the authors show that the

problem of monotonicity testing of Boolean functions (Boolean monotonic-

ity) is equivalent to three testing problems in logic and graph theory. The

first problem is testing 2-CNF (conjunctive normal form) assignments of

2.2 Related work 37

Boolean variables. The second problem is testing whether a set of vertices

in a fixed graph is close to a vertex cover (a set of vertices in an undirected

graph where every edge connects at least one vertex). Here the closeness

is measured by the number of the vertices that need to be added to make

the set vertex cover. The third problem is testing if a set of vertices is close

to a clique (a complete subgraph of an undirected graph), where closeness

is defined by the number of vertices that need to be removed to make the

set a clique. Furthermore, Fischer et al. (2002) show that the problem of

monotonicity on general graphs can be reduced to monotonicity on bipartite

graphs.

The studies mentioned so far discuss the notion of “closeness” between

objects. Considering two functions f and f̂ , their distance is measured by

the number of domain elements on which they differ. Thus, the distance

of function f̂ to a property M , for example monotonicity, is given by the

minimum over all monotone functions f that satisfy M . Hence, the relative

distance is measured by the distance between f̂ and M divided by the size

(number of elements) of the domain. Finally, a function f̂ is ε-close to

monotone if f̂ can be made monotone by changing its value on at most an

ε-fraction of the domain.

In this context, the greedy algorithm for relabeling that will be described

in Section 2.4 constructs a function f̂ that is monotone and close to f in the

sense that the fraction of label changes is small. Here ε is the fraction of

label changes made to get monotone data of the total number of points in

the data.

Potharst (1999) also presents a mapping between monotone data sets

and a certain type of labeled directed graphs. The set of graph vertices

corresponds to the set of objects from the input space belonging to the data

set. Furthermore, each vertex is labeled with the respective class label of

the object in the data. The vertices are joined by arcs (links/edges) with

direction. Any path of verticies that forms a non-increasing sequence of

labels is called non-increasing. He proved that a data set is monotone if

and only if all the paths in the corresponding graph are non-increasing. He

also shows that by using such a type of labeled directed graphs, random

monotone data sets can be generated with predefined parameters: number

of data points, vectors of attribute values, labels.

Hellerstein (1989) also employs a graphical representation of the mono-

tone relationships between the input variables for diagnosing performance

38 Chapter 2. Monotone and noisy data

problems of computer systems. Such a representation is called a diagnosis

search-graph (DSG), which is a directed graph consisting of source nodes (de-

pendent or target variables), nodes (independent or measurement variables)

and arcs (variable relationships). The monotone relationships between the

dependent and influencing variables is indicated by labeling the arcs of the

DSG with the sign (direction) of influence–positive or negative.

By using a top-down strategy (arc traversal), a subset of the measurement

variables is identified that best explains the variations in the target variable.

As Hellerstein argues, this is equivalent to finding the subset of independent

variables that constitutes the best model for the dependent variable–which is

a typical problem in statistics. He proposes a statistical non-parametric test

that evaluates the significance of the monotone relationships in a given data

set. His approach is based on computing the fraction of observation-pairs

that agree with the monotonicity constraint; it does not require specifying a

function form a priori. His only assumption is that the dependent variable

has a monotone relationship with each independent variable. In other words,

the claim under the null hypothesis H0 in the test is that monotonicity ex-

plains nothing about the variations in the target, i.e, the function is constant.

In order to accept that monotonicity does play a role, it is necessary to reject

the null hypothesis. For this purpose, Hellerstein determines the probability

of getting at least a given number of monotone observation-pairs computed

from the data at hand. Under H0, if the probability obtained is less than the

critical values of 0.01 or 0.05, then the null hypothesis is rejected in favor of

the alternative hypothesis H1.

The results from the application of the test to diagnosing computer per-

formance problems show that the approach is superior to least-squares regres-

sion. However, as Hellerstein points out, whenever the algebraic functional

form is known, regression is preferred. Furthermore, given the definitions

of the hypotheses (H0 and H1), the test allows to check only whether the

functional form is constant or monotone. Thus, the possibility of having

non-monotone relationships between the variables is excluded, which limits

the application of the approach as non-monotone cases also occur in practice.

Finally, the test results are very sensitive to the number of comparable pairs

used, i.e., too few of them might produce statistically insignificant mono-

tone relationships, whereas too many lead to cumbersome data collection

and reduction.

Daniels and Kamp (1999) propose another approach for testing mono-

2.2 Related work 39

tone relationships in data. It is based on computing a monotonicity index

to measure the degree of monotonicity of the output of a neural network

with respect to each input variable. By taking the partial derivative ∂f/∂xi
at each data point xn, the monotonicity index in variable xi is formally

expressed as

mon(xi) =
1

N

N
∑

n=1

sign

(

∂f

∂xi
(xn)

)

where N is the number of points in the data, sign(u) = 1 if u > 0 and

sign(u) = −1 if u ≤ 0. The value of the monotonicity index thus computed

lies in the range [−1, 1]. A value close to 0 indicates a non-monotone rela-

tionship, whereas a value close to 1 (−1) indicates an increasing (decreasing)

monotone relationship.

The proposed monotonicity index has been applied to two economic clas-

sification problems, namely bond rating and house pricing. Although the

results comply with what is expected from theory, a major disadvantage of

this method is that it first requires building a model whose results are highly

dependent on the architecture of the neural network. In other words, con-

structing an inaccurate model (neural network with inappropriate structure)

would lead to a wrong monotonicity index and hence an incorrect conclusion

about the direction of influence of a particular variable on the output.

Apart from measures for the degree of monotonicity, there has been much

research on transformations of a non-monotone data set making the resulting

set monotone.

A popular technique for improving the quality of data is so-called isotonic

regression, discussed in Robertson et al. (1988). Isotonic regression stands

for a class of non-decreasing regression functions; non-increasing functions

are called antitonic. Both types of functions (isotonic and antitonic) are

generally referred to as monotonic functions.

The basic principle of isotonic regression partitions the input space into

consecutive subsets–called level sets or blocks–where the estimated regression

function is constant. In other words, the outcome is a piecewise constant

function.

A common method in isotonic regression is the Pool-Adjacent-Violators-

Algorithm (PAVA), which has been first developed by Ayer et al. (1955).

The algorithm works for input data X with a total order given by

40 Chapter 2. Monotone and noisy data

x1 ≤ x2 ≤ . . . ≤ xN .

Now given a function f on X and positive weight function w defined on

X , the objective of PAVA is to find an isotonic function m∗ such that m∗

minimizes

N
∑

n=1

(

f(xn)−m∗(xn)
)2

w(xn)

subject to the constraint

m∗(x1) ≤ m∗(x2) ≤ . . . ≤ m∗(xN).

If x is discrete, then the weights w are simply the number of points

belonging to each category of x; if x is continuous, then w is usually equal

to one.

The PAVA algorithm starts with checking whether there are points for

which the order restriction between their function values is violated. If no

violation is found, then the algorithm terminates and the isotonic solution is

simply the set of original function values. Otherwise, there is a pair of points

xn−1 and xn such that f(xn−1) > f(xn). Then to resolve the inconsistency,

these two points are pooled by replacing them with their weighted average.

The two weights w(xn−1) and w(xn) are replaced by w(xn−1) + w(xn). In

the next step, the algorithm checks whether the new set of function values

is isotonic. If not, the violating points are again replaced by their weighted

average. This process continues until an isotonic set of values is obtained.

Robertson et al. (1988) discuss various other algorithms for isotonic reg-

ression, such as max-min, minimum lower sets (maximum upper sets), and

algorithms for the matrix partial order. All these algorithms are structure

algorithms that produce ordered-level sets until an isotonic solution is ob-

tained. In Section 2.4.5 we demonstrate the application of a matrix-ordered

approach for isotonic regression, and compare it with the algorithm for re-

labeling we describe in the next section.

In general, isotonic regression is a mean-squared error (MSE) technique.

In this sense, Robertson et al. (1988) prove that the solution generated by

the isotonic regression is unique.

The main advantage of isotonic regression is that it is a non-parametric

approach, which does not require any specific assumptions about the func-

2.2 Related work 41

tional form–apart from monotonicity. However, a disadvantage of standard

isotonic regression is that it sometimes produces a large number of level sets,

which may lead to overfitting the data. This implies that some level sets may

contain only one point or neighboring levels sets do not differ considerably in

their estimated response function. Schell and Singh (1997) propose a solution

to this problem by applying a backward elimination procedure to isotonic

regression, which leads to great reduction of the number of level sets. To do

so they first pool all the sets (blocks) with their predecessor (if no one exist

then with their successors) that contain less than a certain percentage of the

total data. Then, they pool all the blocks whose estimated response values

do not differ significantly according to a Fischer test. This procedure leads

to a smaller number of level sets and hence, more parsimonious models.

This section shows that there has been much research in the last 50

years, dealing with testing monotonicity of data or applying methods to

make data monotone. The following sections in this chapter describe our

contributions to this field. Our motivation for considering new methods,

which are alternatives to the approaches proposed so far in the literature, is

based on several observations.

Given the problem of testing monotonicity of a real data set, we find that

earlier approaches have certain limitations: (i) some methods are developed

only for particular type of functions; for example, Boolean functions; (ii) the

method proposed by Hellerstein (1989) is based on the assumption that the

data generating function is monotone, which may not be the case for any

data; this may lead to false conclusions about the existence of monotone rela-

tionships; (iii) the approaches, which use a graph to map the relationships in

a monotone data set, require an additional step for data representation; this

is not only time consuming but also may not be feasible for large data sets

with many attributes; (iv) other methods need first to model the data, and

then on the basis of the model, to check the presence of monotone dependen-

cies in the data; the drawbacks of such procedures are the additional time

and efforts devoted to pre-modeling the data, and the strong dependence of

the results on the model outcome.

To overcome the limitations of these approaches, in Section 2.3 we pro-

pose a novel procedure to test monotonicity of a real data set. The advan-

tages of our procedure are:

• It is intuitive, straightforward and can be applied to any data set,

irrespective of the number or type of variables.

42 Chapter 2. Monotone and noisy data

• It works for both continuous and discrete labels.

• It uses to large extent the information given in the real data.

• It is not constrained by the form or type (monotone/non-monotone)

of the function assumed to generate the real data.

• It does not require any pre-modeling data procedure.

Related to the problem of making data monotone, the previous ap-

proaches we discussed earlier have the following limitations: (i) many me-

thods are developed to deal with regression problems only; (ii) the applica-

tion and the efficiency of some methods depends on the dimensionality of

the data; for example, some approaches work for one-dimensional or low-

dimensional input data only; (iii) the data transformation in most of the

methods is based on the construction of a model, which requires setting

various parameters, or optimizing a certain function; this often may be a

cumbersome and a time-consuming procedure.

These drawbacks are avoided in the greedy algorithm for relabeling we

propose in Section 2.4. The main advantages of our algorithm are:

• It is straightforward and can be applied to low- and high-dimensional

data.

• It works for regression and classification problems.

• It uses only the information given in the real data, without the need

to model the data beforehand.

2.3 Testing monotonicity of a data set

2.3.1 Benchmark measures for monotonicity of a data

set

Let D ∈ DN
π be a data set of N points drawn from a probability distribution

π(x, `). We assume that the set of independent variables is drawn from a

probability distribution π1(x) (e.g., normal, uniform). Furthermore, π2(`)

denotes the probability distribution from which the labels are drawn; π2 has

2.3 Testing monotonicity of a data set 43

a density ρ if L is continuous, or is a discrete probability measure represented

by σ1, σ2, . . . , σ`max
, with

∑`max

i=1 σi = 1 if L is discrete.

Then, we define DB as the collection of all data sets generated with the

same structure of independent variables as D and a set of labels that is a

randomly generated permutation of the labels in D. The definition of DB
implies independence between the explanatory variables and the labels. We

call DB a benchmark class of data.

We now compute two measures for the degree of monotonicity of a bench-

mark data set DB ∈ DB:

• The expected value of the fraction of monotone pairs among the num-

ber of comparable pairs.

• The expected value of the number of monotone points.

We call these benchmark measures.

Lemma 2.3.1. For a data set DB ∈ DB, the expected value of the fraction

of monotone pairs is:

E [frM] = 1− 1

2

(

1 + fr
x=x

′

)

fr`x 6=`x′

where fr
x=x

′ is the fraction of pairs with identical points among the compa-

rable pairs in DB, and fr`x 6=`x′ is the fraction of pairs with different labels

among the total number of pairs in DB.

Proof. Let (x,x′) be a comparable pair of points x,x′ ∈ DB to which labels

from the set of the original labels in D are assigned randomly. This can

result in either a monotone pair corresponding to success or a non-monotone

pair corresponding to failure. In other words, this can be considered as a

Bernoulli trial (random variable) with two outcomes with probability Pr(M)

of obtaining a monotone pair and 1 − Pr(M), otherwise. Furthermore, let

A denote a Bernoulli random variable indicating whether or not a pair is

monotone, that is, A = 1 if and only if a pair is monotone, otherwise A = 0.

Then,

E [A] = 1 · Pr(M) + 0 ·
(

1− Pr(M)
)

= Pr(M).

Now if we consider a random permutation of the class labels, we have a

total of NCP (dependent) Bernoulli trials, one for each comparable pair. Let

44 Chapter 2. Monotone and noisy data

NM denote the number of successes (monotone pairs) among the number of

comparable pairs. Then,

E [NM] = E
[

NCP
∑

i=1

Ai

]

=

NCP
∑

i=1

E [Ai] = NCP Pr(M).

Hence, for the fraction of monotone pairs frM computed as NM/NCP we

get

E [frM] =
NCP Pr(M)

NCP

= Pr(M).

Now we compute the probability Pr(M) of a comparable pair being mono-

tone. First note that Pr(M) = 1 − Pr(NM) where Pr(NM) denotes the

probability of a comparable pair being non-monotone. Thus computing the

latter will suffice for our objective.

For every comparable pair the outcome of the random assignment of

labels to the points can be a pair with the same labels or a pair with diffe-

rent labels. According to the conditions in Definition 2.1.1 a non-monotone

pair can be obtained only for points with different labels. Furthermore, the

random assignment of different labels to a comparable pair of non-identical

points has simply a 50% chance of obtaining a non-monotone pair, whereas

for a comparable pair of identical points this chance is 100%. Hence,

Pr(NM) =
1

2
(1− fr

x=x
′) Pr(`

x
6= `

x
′) + fr

x=x
′ Pr(`

x
6= `

x
′)

=
1

2
(1 + fr

x=x
′) Pr(`

x
6= `

x
′),

where Pr(`
x
6= `

x
′) is the probability that a pair (x,x′) has different labels

in DB. To compute Pr(`
x
6= `

x
′), we proceed as follows.

By the definition of benchmark data, the labels in DB are a random

permutation of the labels in the original data. Since the latter may contain

identical points, we expect that a label may occur more than once in DB,

irrespective of the label type (discrete or continuous). Therefore, to compute

the probability that a pair of points has different labels, we simply need to

compute the fraction of pairs with different labels among the total number

of pairs in the data. Thus we obtain

Pr(`
x
6= `

x
′) = fr`x 6=`x′ ,

2.3 Testing monotonicity of a data set 45

and

Pr(M) = 1− 1

2

(

1 + fr
x=x

′

)

fr`x 6=`x′ .

We now compute the expected value of the number of points that are

monotone in an arbitrary benchmark data set DB ∈ DB. We do so by ap-

plying the Monte Carlo technique, which is a popular approach of statistical

sampling employed to approximate solutions to quantitative problems. The

classic reference on Monte Carlo methods is Hammersley and Handscomb

(1964) and a recent reference is Kleijnen (2004).

We generate a finite collection {DB}S of S benchmark data sets DB; for

each of them we compute the number of monotone points, NMpt. Then, over

the whole collection, the mean E [NMpt] is estimated by

E [NMpt] =
1

S

∑

s∈{DB}
S

N s
Mpt

as a final benchmark indicator for the number of monotone points in a data

set.

2.3.2 Statistical test of the difference between the ob-

served and benchmark monotonicity measures

Given a real data set D, we can simply compute two natural measures for

the degree of monotonicity of the data:

• The fraction of monotone pairs among comparable pairs, frM .

• The number of monotone points, NMpt.

Having computed these measures, we would like to compare them with

the respective measures obtained from the class of benchmark data sets DB
defined in the previous section. For this purpose, we design a statistical test

to check whether or not the difference between the actual indicators and

benchmarks is significant.

We consider the following null hypothesis:

H0: the data are not generated by a monotone process

46 Chapter 2. Monotone and noisy data

against the alternative

H1: the data are generated by a monotone process.

So, the null hypothesis states that in the real data the labels are not

ordered with respect to the points, whereas the alternative hypothesis implies

such an ordering.

To perform the test, we need to determine the distribution of a statistic

presuming that H0 is correct. In our case we use two statistics correspond-

ing to the benchmark measures for monotonicity (fraction of monotone pairs

and number of monotone points). Since we do not know the theoretical

distribution of the measures, we cannot perform standard statistical tests.

Alternatively, we simply generate the empirical distributions of both statis-

tics. To do so we first generate a finite collection of benchmark data sets, as

defined in the previous section. Then for each of the data sets we compute

the values of the corresponding benchmark measures. From the distributions

obtained we find the critical values of the statistics at 95% and 99% signifi-

cance levels. Here we consider right-hand tail tests since the null hypothesis

can be rejected only if the observed measures are significantly higher than the

benchmarks. Finally, we compare the critical values with the observed val-

ues of the indicators computed from the real data. If the former are smaller

than the latter then we reject the null hypothesis as the observed values fall

in the right tail area of the distribution; otherwise, we do not reject the null

hypothesis.

Remark. There are two pathological cases where the degree of mono-

tonicity of the original data is known a priori: (i) if all the points and

labels are identical, then the data are totally monotone; (ii) if all the points

are identical and all the labels are unique, then the data are totally non-

monotone. In both cases, the original data do not provide useful information

to build models for prediction tasks. In practice, however, we expect that

data sets mostly contain unique points, like in the case studies presented in

Section 2.5. Then, the proposed benchmark measures and the statistical test

are appropriate tools to check the degree of monotonicity of the data.

2.4 Greedy algorithm for relabeling

The objective of the greedy algorithm is to transform non-monotone into

monotone data. We make two assumptions about the original (non-monotone)

2.4 Greedy algorithm for relabeling 47

data:

• The data are presumably monotone meaning that there are only a

small number of non-monotone (inconsistent) pairs of points; this can

be checked by using, for example, the testing procedure described in

the previous section.

• The violation of the monotonicity assumption in the data is caused by

noise in the labels, i.e., the labels of the points participating in non-

monotone relationships are incorrect with a small fixed probability.

Given these assumptions, the monotone transformation in the greedy

algorithm is obtained by changing the values of the dependent variable (label)

of the points participating in non-monotone relationships; so-called relabe-

ling. Hence, our ultimate goal is to make the data monotone while we try

to preserve the original data by making as few label changes as possible.

The idea is to reduce the number of non-monotone pairs by relabeling only

one data point in each step. To do this, we choose a data point such that

the increase in correctly labeled points is maximal (this is not necessarily the

point which is involved in the maximal number of non-monotone pairs). The

process is continued, until the data set is monotone (see Definition 2.1.3).

2.4.1 Notation and description

Let D =
(

xn, `
x
n

)N

n=1
denote the original data set, and Q(D) denote the set

of all non-monotone points in D. For each data point x ∈ Q(D) and ` ∈ D,

we define A`(x) ⊂ DownD(x) and B`(x) ⊂ UpD(x) by

A`(x) = {x′ ∈ DownD(x) | x′ 6= x and `
x
′ = `}

B`(x) = {x′ ∈ UpD(x) | x′ 6= x and `
x
′ = `} .

Note that point x belongs neither to
⋃

`∈D A`(x) nor to
⋃

`∈D B`(x). For

example in Figure 2.1, we have A1(x
3) = {x2}, A2(x

3) = {x1} and B3(x
3) =

{x5}.
Let ax

` and bx` denote the number of points in A`(x) and B`(x), respec-

tively and c
x

denotes the number of points in DownD(x)∪UpD(x), i.e., this

is the number of all points comparable to x.

48 Chapter 2. Monotone and noisy data

Furthermore, we define

`min, `max − the minimum and maximum of the labels in D,

`maxDn(x) − the maximum of the labels in DownD(x),

`minUp(x) − the minimum of the labels in UpD(x),

Nx

`x
− total number of points correctly labeled with respect

to x for the current label of x, `
x
, i.e.,

Nx

`x
= ax

`min
+ . . .+ ax

`x
+ bx`x + . . .+ bx`max

.

Note that if there exist points x′ ∈ D such that x = x′ we can easily

modify Nx

`x
by adding the number of points x′ for which `

x
= `

x
′ . To simplify

the notations, however, in the remainder of Section 2.4 we assume that all

data points in the data set D are unique, i.e., no points are identical.

For each data point x ∈ Q(D) we compute the maximal increase, Ix

max,

in the number of correctly labeled points with respect to x if the label of x

is changed into `′ where `′ ∈ D. If there is more than one label with the

same maximal increase in correctly labeled points, then we choose the label

closest to the current label of x. Finally, we select a point x ∈ Q(D) for

which Ix

max is the largest, and change its label. This process is repeated until

the data set is monotone. The algorithm outline is given in Algorithm 2.1.

Algorithm 2.1 Transformation of non-monotone into monotone data

Initialization: Compute Q(D) on the basis of D
while Q(D) 6= ∅ do

for all x ∈ Q(D) do
Ix

max = max {N` −N`x |` ∈ D}
Λ = set of labels ` for which N` −N`x is maximal
Form a triple (x, Ix

max, `
′) where `′ ∈ Λ is the closest label to `

x

(in Lemma 2.4.2 it is shown that `′ is unique)
end for
From all triples, choose the one where Ix

max is maximal and change the
label of the point into `′

Update Q(D) on the basis of the modified data set D
end while

In general, the points correctly labeled with respect to x for its current

label, `
x
, are both all points incomparable to x and all the points in A`min

∪
. . .∪A`x and B`x∪. . .∪B`max

. Since the number of the points incomparable to

2.4 Greedy algorithm for relabeling 49

x is constant and these points do not contribute to Ix

max, we may completely

ignore them.

The correctness of the algorithm follows from Lemmas 2.4.1 and 2.4.2.

Lemma 2.4.1 states that it is always possible to reduce the number of non-

monotone pairs by changing the label of only one point, as long as the data

set is non-monotone. In Lemma 2.4.2, it is shown that there is a canonical

choice for the new label for which a maximal reduction can be obtained.

There may be more than one label for which this can be achieved, but these

are all smaller or all larger than the current label of the point–so the closest

one is chosen, which is unique.

Lemma 2.4.1. Let Di denote the data set D after i iterations. If Q(D) 6= ∅,
then there is at least one point x ∈ Q(Di) that can be relabeled such that the

number of non-monotone pairs is reduced by at least one.

Proof. Since Q(Di) is a non-empty partially ordered set, there is a maximal

point x with label `
x
. Because x participates in at least one non-monotone

pair, there is another point x′ ∈ Q(Di) with label `
x
′ such that x > x′ and

`
x
< `

x
′ . If we relabel x with `

x
′ , then the increase in the number of correctly

labeled points with respect to x, Ix

max will be

Ix

max = Nx

`
x
′
−Nx

`x
=

∑

`∈[`min,`x]

ax

`
+

∑

`∈(`x,`
x
′]

ax

`
+

∑

`∈[`
x
′ ,`max]

bx
`

−
∑

`∈[`min,`x]

ax

`
−

∑

`∈[`x,`
x
′)

bx
`
−

∑

`∈[`
x
′ ,`max]

bx
`

=
∑

`∈(`x,`
x
′]

ax

`
,

because
∑

`∈[`x,`
x
′)
bx
`
= 0 (x is maximal in Q(Di) and the points larger than

x have label ` ≥ `
x
′).

However,

Ix

max =
∑

`∈(`x,`
x
′]

ax

`
≥ 1,

as there is at least one point that is smaller than x and has label `
x
′ , that is

x′. Therefore, by relabeling x with `
x
′ , the number of non-monotone pairs

is reduced by at least one.

50 Chapter 2. Monotone and noisy data

Lemma 2.4.2. Suppose that the maximal increase in the number of correctly

labeled points with respect to x, Ix

max, can be obtained by at least two labels r

and s, r < s. Then

r < s < `
x

or `
x
< r < s,

where `
x

is the label of x.

Proof. In order to prove this lemma, we assume that r < `
x
< s. Next we

show that this leads to a contradiction.

First we choose labels p and q closest to `
x

such that r ≤ p < `
x
< q ≤ s

and the maximal increase for p and q is Ix

max. Then

Nx

p = Nx

q > Nx

` ∀`, ` ∈ (p, q). (2.4)

For `
x

(the current label of x) the number of correctly labeled points is

Nx

`x
=

∑

`∈[`min,`x]

ax

`
+

∑

`∈[`x,`max]

bx
`

and if x is labeled with q, it is

Nx

q =
∑

`∈[`min,q]

ax

`
+

∑

`∈[q,`max]

bx
`
.

Therefore, the maximal increase for x is

Ix

max = Nx

q −Nx

`x
=
∑

`∈(`x,q]

ax

`
−
∑

`∈[`x,q)

bx
`
.

We now define the set B(x) = ⋃

`∈D B`(x), and show that B(x) is non-

empty.

According to (2.4), Nx

p > Nx

p′ , where p′ is the label following immediately

p in the list sorted in ascending order of all labels in D, i.e.,

∑

`∈[`min,p]

ax

`
+ bxp +

∑

`∈[p′,`max]

bx
`
>

∑

`∈[`min,p]

ax

`
+ ax

p′ +
∑

`∈[p′,`max]

bx
`

⇒

bxp > ax

p′ . (2.5)

From (2.5) it follows that bxp ≥ 1 and therefore, Bp(x) and B(x) are non-

empty sets. Moreover, because we consider the case where p < `
x
< q, it is

2.4 Greedy algorithm for relabeling 51

impossible to have p′ = q. Otherwise, `
x

should be equal either to p or to q;

then Ix

max = 0, contradicting the fact that Ix

max is maximal.

We now choose a maximal point x′ ∈ B(x) with current label `
x
′ such

that p ≤ `
x
′ < `

x
. The number of correctly labeled points with respect to x′

is

Nx
′

`
x
′
=

∑

`∈[`min,`
x
′]

ax
′

`
+

∑

`∈[`
x
′ ,`x)

bx
′

`
+

∑

`∈[`x,`max]

bx
′

`
,

and if x′ is labeled with q, it is

Nx
′

q =
∑

`∈[`min,q]

ax
′

`
+

∑

`∈[q,`max]

bx
′

`
.

Therefore, the increase in correctly labeled points with respect to x′ is

Ix
′

= Nx
′

q −Nx
′

`
x
′
=
∑

`∈(`
x
′ ,q]

ax
′

`
−

∑

`∈[`
x
′ ,`x)

bx
′

`
−
∑

`∈[`x,q)

bx
′

`
. (2.6)

We now show that Ix
′

> Ix

max. Since `
x
′ < `

x
, the first summation in (2.6)

can be rewritten as

∑

`∈(`
x
′ ,q]

ax
′

`
=

∑

`∈(`
x
′ ,`x]

ax
′

`
+
∑

`∈(`x,q]

ax
′

`
. (2.7)

Considering both terms in (2.7), we have

∑

`∈(`
x
′ ,`x]

ax
′

`
≥ ax

′

`x
≥ 1, because x ∈ A`x(x

′),

and

∑

`∈(`x,q]

ax
′

`
≥
∑

`∈(`x,q]

ax

`
, because

⋃

`∈(`x,q]

A`(x) ⊂
⋃

`∈(`x,q]

A`(x
′).

Moreover, the choice of x′ implies that there is no data point that is larger

than x′ and has label ` ∈ [`
x
′ , `

x
), i.e.,

∑

`∈[`
x
′ ,`x)

bx
′

`
= 0. (2.8)

52 Chapter 2. Monotone and noisy data

Finally, since

⋃

`∈[`x,q)

B`(x
′) ⊂

⋃

`∈[`x,q)

B`(x)

for the third term in (2.6), we have

∑

`∈[`x,q)

bx
′

`
≤
∑

`∈[`x,q)

bx
`
. (2.9)

According to (2.7),(2.8), and (2.9)

Ix
′

= Nx
′

q −Nx
′

`
x
′
≥
∑

`∈(`x,q]

ax

`
−
∑

`∈[`x,q)

bx
`
+ 1 = Ix

max + 1.

Hence, Ix
′

> Ix

max contradicting the fact that Ix

max is maximal.

2.4.2 Efficiency

In this section we discuss several issues concerning the efficiency of the greedy

algorithm for relabeling.

Number of label checks

It is possible to reduce the number of label checks in the relabeling pro-

cess for each point x ∈ Q(D). First note that x is a non-monotone point

if and only if `minUp(x) < `maxDn(x). Therefore, the new labels `new that

need to be considered as candidates for relabeling x fall within the range

[`minUp(x), `maxDn(x)].

To show this, we first consider all labels `new ∈ D with `new < `minUp(x) ≤
`
x
. Then the change in the number of correctly labeled points with respect

to x if we relabel x with `new is

Ix

`new
= Nx

`new
−Nx

`x
,

2.4 Greedy algorithm for relabeling 53

where

Nx

`new
=

∑

`∈[`min,`new]

ax

`
+

∑

`∈[`new,`x)

bx
`
+

∑

`∈[`x,`max]

bx
`

Nx

`x
=

∑

`∈[`min,`new]

ax

`
+

∑

`∈(`new,`x]

ax

`
+

∑

`∈[`x,`max]

bx
`
.

Hence,

Ix

`new
=

∑

`∈[`new,`x)

bx
`
−

∑

`∈(`new,`x]

ax

`
.

Next, we compute the change in the number of correctly labeled points

with respect to x if we relabel x with `minUp(x),

Ix

`minUp(x)
= Nx

`minUp(x)
−Nx

`x
,

where

Nx

`minUp(x)
=

∑

`∈[`min,`minUp(x)]

ax

`
+

∑

`∈[`minUp(x),`x)

bx
`
+

∑

`∈[`x,`max]

bx
`
.

Hence,

Ix

`minUp(x)
=

∑

`∈[`minUp(x),`x)

bx
`
−

∑

`∈(`minUp(x),`x]

ax

`
.

However, we have `new < `minUp(x) ≤ `
x

meaning that there is no point

larger than x with a label smaller than `minUp(x), i.e.,

∑

`∈[`new,`minUp(x))

bx
`
= 0.

Hence,

∑

`∈[`new,`x)

bx
`
=

∑

`∈[`new,`minUp(x))

bx
`
+

∑

`∈[`minUp(x),`x)

bx
`
=

∑

`∈[`minUp(x),`x)

bx
`
. (2.10)

Furthermore, we have

∑

`∈(`new,`x]

ax

`
=

∑

`∈(`new,`minUp(x)]

ax

`
+

∑

`∈(`minUp(x),`x]

ax

`
. (2.11)

54 Chapter 2. Monotone and noisy data

According to (2.10) and (2.11)

Ix

`new
=

∑

`∈[`minUp(x),`x)

bx
`
−

∑

`∈(`new,`minUp(x)]

ax

`
−

∑

`∈(`minUp(x),`x]

ax

`

= Ix

`minUp(x)
−

∑

`∈(`new,`minUp(x)]

ax

`
.

Hence, Ix

`new
≤ Ix

`minUp(x)
.

Analogously, it can be shown that Ix

`new
≤ Ix

`maxDn(x)
if we relabel x with

`new > `maxDn(x) ≥ `
x
. Therefore, we can consider only the labels `new ∈

[`minUp(x), `maxDn(x)] as candidates for relabeling x.

Number of candidate points for relabeling

Our algorithm can be further improved by reducing the number of candidate

points considered for relabeling. For this purpose, we first compute the

number of all points comparable to each point x ∈ Q(D), c
x
, and sort Q(D)

in descending order by c
x
. Then, starting with the first point x ∈ Q(D), we

compute the maximal increase in correctly labeled points with respect to x,

Ix

max. Now, all points x′ ∈ Q(D) with c
x
′ < Ix

max can be skipped in the next

step, because Ix
′

max < Ix

max.

Choice of a point with a maximal increase in the number of cor-

rectly labeled points

In general, there is no straightforward way to directly find the point with

a maximal increase in the number of correctly labeled points. All labels in

the range defined in Section 2.4.2 must be considered for relabeling, because

the dependence of the change in correctly labeled points on the label can be

arbitrary. This is illustrated in the following example.

Let D =
(

xn, `
x
n

)9

n=1
denote a data set of nine points and labels `i < `i+1,

i = 1, . . . , 4; see Figure 2.2 (for clarity we present only the labels of the

points). We focus on the point x ∈ D with label `1.

We now compute the change in the number of correctly labeled points

with respect to x if we relabel x with ` 6= `1. Figure 2.3 shows the results.

It is obvious that the maximal increase is obtained for `4, and that Ix

max =

4. Furthermore, it is easily seen that for all other points x′ ∈ D, Ix
′

max ≤ 3.

2.4 Greedy algorithm for relabeling 55

l2 •
l2 •

l2 •

l2 •

l3 •

x, l1
•

l4 •
l4 •

l4 •

Figure 2.2: Distribution of all points in D with respect to x.

0

1

2

3

4

5

A A A A

1 2 3 4

Figure 2.3: The change in the number of correctly labeled points with respect to
x for the range of labels from `1 to `4

Consequently x is the point with the maximal increase.

Minimum number of label changes

Given the description of the algorithm and the efficiency issues discussed

so far, there is no guarantee that the greedy algorithm will lead to a mini-

mum number of label changes. To illustrate this property, we consider the

following example.

56 Chapter 2. Monotone and noisy data

x B , 1 •

•

•

•
x C , 2

xD , 2 xE , 1

x F , 2

x G , 1
•

•

x H , 2 •

Figure 2.4: Data set of seven points in a two-dimensional input space

Figure 2.4 represents the structure of a data set of seven points with

their labels, in a two-dimensional input space; the dotted lines show the

non-monotone relationships between the points. Obviously, the data set

is non-monotone. In order to make these data monotone, we apply the

greedy algorithm. First, we compute the maximal increase in the number of

correctly labeled points with respect to each point, as follows.

x1,x2,x3 x4 x5,x6 x7

N1N1N1 = 0 N1 = 1 N1 = 1 N1 = 5

N2 = 2 N2N2N2 = 0 N2N2N2 = 1 N2N2N2 = 2

⇓ ⇓ ⇓ ⇓
Ix

1

max = Ix
2

max = Ix
3

max = 2 Ix
4

max = 1 Ix
5

max =Ix
6

max = 0 Ix
7

max = 3

The results show that the maximal increase in the number of correctly

labeled points, Imax = 3, is obtained for x7; so, this will be the point chosen

to be relabeled at the first step. In the next steps, the algorithm needs to

relabel three other points to make the data monotone. In other words, the

greedy algorithm will make four label changes in total. However, if we relabel

only the three points x1, x2, and x3, we also obtain a monotone data set.

2.4 Greedy algorithm for relabeling 57

This indicates that the greedy algorithm could make a sub-optimal choice for

the set of points to be relabeled. However, we expect that this will happen

only in pathological examples (such as the one shown here), which are rare

in practice.

Comparison between the greedy algorithm for relabeling and the

minimum flow algorithm

As we showed in the previous section, the greedy algorithm for relabeling

does not guarantee a minimum number of label changes to make the data

monotone. There exists a polynomial-time optimal relabeling algorithm that

is based on the flow network (graph) concept. In Appendix A we discuss the

theoretical background of network flow problems, in general, and minimum

network flow problems, in particular; the solution to the latter gives the

solution to the problem of making data monotone with the minimum number

of label changes. We apply both the greedy algorithm and the minimum flow

algorithm to the real data sets described in Section 2.5. It turns out that

both algorithms give the same number of points that need to be relabeled to

make the data monotone. Below we compare the algorithms from different

perspectives.

For practical applications, the most attractive characteristic of both algo-

rithms is their efficiency, i.e., they solve the problem of making data mono-

tone in polynomial time (see Sections 2.4.3 and A.2). Furthermore, the

minimum flow algorithm guarantees finding the minimum number of points

that need to be relabeled. In our experiments with real data, in all cases

the same minimum number was found by the greedy algorithm for relabel-

ing. This suggests that the number of label changes made by the greedy

algorithm is very close to the minimum, in general.

One advantage of the greedy algorithm over the minimum flow algorithm

is that the former has explicit stepwise nature. This allows the user to

get more insight into the data by directly finding points that violate the

monotonicity constraint most. This result can be used for additional data

analysis. The outcome from the minimum flow algorithm is a set of points

that can be relabeled in an arbitrary order. To find the points with most

violations, the user needs to make additional computations.

58 Chapter 2. Monotone and noisy data

2.4.3 Complexity

In the greedy algorithm for relabeling the basic operations at each step are

finding the set of non-monotone points, Q(D), and computing the maximal

increase in the number of correctly labeled points with respect to each point

x ∈ Q(D). Hence the time required by the algorithm depends on both the

structure of the data under study (number of monotone points, number of

comparable pairs) and the order in which the points are chosen for relabeling

(see the example in Section 2.4.2). Since in practice the data structures vary,

it is impossible to estimate the exact complexity of the algorithm. Therefore,

we discuss only the worst case.

Let D denote a data set of N points and L̃ labels. At each iteration

of the algorithm, we compute Q(D′) where D′ denotes the modified data

set after a number of label changes. Suppose there are p points in Q(D′).

Then, for each step described in Algorithm 2.1 (see Section 2.4.1), the effort

is computed as follows:

p
N(N − 1)

2
to compute Q(D′)

p L̃(N − 1) to compute Imax

L̃ to compute Λ

p L̃ to form the triples

p to find the triple with maximal Imax

Hence, the total effort for one iteration, C(p), is

C(p) = p
N(N − 1)

2
+ p L̃(N − 1) + L̃+ p L̃+ p.

In the worst case when there are N non-monotone points in the data set

and Q(D) decreases by only one point at each step, the complexity is

N
∑

p=2

C(p) = O(N 3L̃).

This result shows that the greedy algorithm is polynomial in the number

of points and labels in the data.

2.4 Greedy algorithm for relabeling 59

2.4.4 Simulation studies

In order to check to what extent the algorithm for relabeling can remove

noise added to a monotone data set, simulation studies were conducted using

artificial data with continuous and discrete labels, respectively.

Continuous labels

First we generate a data set D1 of N points with k independent variables

that are drawn randomly from the uniform distribution on [0,1]. The label

of each point is computed by applying a monotone function to the inde-

pendent variables. Depending on the number of the independent variables,

several monotone functions are used to construct the initial label; for exam-

ple, x1sin
π
2
x2 based on two independent variables x1 and x2, or x1x2sin

π
2
x3

based on three independent variables x1, x2, and x3. Then, the monotone

data set is converted into a non-monotone one D2 by adding random noise

to the labels. Next, the algorithm for relabeling is applied to the modified

data to obtain a monotone data set D3. In the next step, the mean-squared

error (MSE) is used as a performance measure to check to what extent the

algorithm restores the original data:

MSEmon =
1

N

N
∑

i=1

(

`D3
i − `D1

i

)2
and MSEnonmon =

1

N

N
∑

i=1

(

`D2
i − `D1

i

)2

where `Dj is the label set in the data set Dj, j = 1, . . . , 3.. This experi-

ment was repeated ten times with different numbers of points, independent

variables, and percentages of noise ranging from 7% to 16%. The results,

summarized in Table 2.2, show that the cleaned data are much closer to the

original one than the noisy data.

Discrete labels

Following the same experimental set-up we also carried out simulation stu-

dies with discrete label data. The only difference is that we discretize the

continuous dependent variable (label) into a finite number of classes. To

do so, we split the range of estimated (continuous) function values into a

number of intervals corresponding to the number Ncl of classes in the final

60 Chapter 2. Monotone and noisy data

Table 2.2: Results after implementation of the algorithm for relabeling on artifi-
cially generated data sets with continuous labels

MSE # points in
a data set

independent
variables Noise Monotone

data
Non-monotone

data
100 2 10 % 0.0008 0.0211
100 2 15 % 0.0015 0.0240
100 3 12 % 0.0014 0.0055
100 3 15 % 0.0029 0.0133
100 5 14 % 0.0079 0.0292
200 2 7 % 0.0009 0.0224
200 2 15% 0.0006 0.0518
200 3 10% 0.0044 0.0250
200 5 12% 0.0152 0.0222
200 5 15% 0.0244 0.0885

data. Each interval i, i = 1, 2, . . . Ncl, is defined by
[

lb(i), lb(i + 1)
)

; lb(i) is

the lower bound of the interval computed by

lb(i) =
i− 1

Ncl

· zmax,

where zmax is the maximum in the range of continuous values.

In the next step, we turn again the monotone data set into a non-

monotone set by adding random noise to the discrete labels. This is done by

changing randomly the labels with certain probabilities; for example, label `2
does not change with a probability of 90% and change to either `1 or `3 with

a probability of 5%. The algorithm for relabeling is applied to the modified

data and the percentage of correctly restored labels was computed. Table

2.3 shows that the algorithm restores the original data set to a large extent

(7 out of 10 times the restoration is above 90%).

Software. The implementation of the greedy algorithm for relabeling is

done in MATLAB (MATrix LABoratory), a powerful language providing an

interactive environment for algorithm development, data analysis, simulation

and technical computing (see the MATLAB web-site in the bibliography).

2.4 Greedy algorithm for relabeling 61

Table 2.3: Results after implementation of the algorithm for relabeling on artifi-
cially generated data sets with discrete labels

points in a
data set

independent
variables

label
categories Noise Restoration (%)

100 2 3 15 % 99 %
100 2 3 15 % 98 %

100 2 4 11 % 96 %
100 3 4 15 % 94 %

100 5 3 15 % 88 %
200 2 3 15 % 97 %

200 3 4 16 % 92 %
200 3 5 16 % 92 %
200 5 4 15 % 89 %

200 7 5 15 % 88 %

2.4.5 Other issues

Comparison of the algorithm for relabeling with isotonic regression

As we discussed in Section 2.2, isotonic regression is a popular technique

for transformation of a non-monotone into a monotone data set. Given the

same objective of the greedy algorithm for relabeling, in this section we

compare both approaches by providing two simple examples and draw some

conclusions about their application.

Example–1. Let us consider a simple data set D of two data points x1

and x2 with labels `
x

1=3 and `
x

2=1, respectively. Furthermore, we assume

that x1 ≤ x2. Hence, the pair (x1,x2) is non-monotone, so D also is a non-

monotone data set. In order to resolve the inconsistency, we can apply either

the greedy algorithm for relabeling or isotonic regression. The results from

the application of both approaches are presented in Figure 2.5.

As the dashed lines in Figure 2.5 show, the greedy algorithm for relabeling

will relabel only one of the points: either `
x

1 from 3 to 1, or `
x

2 from 1 to

3 in order to obtain monotone data. The double dotted lines in the figure

represent the changes made by the isotonic regression: both data points

will obtain new labels, namely `
x

1 = `
x

2 = 2, because this method tries to

minimize the mean-square error. So, this simple example illustrates three

main differences between both approaches:

62 Chapter 2. Monotone and noisy data

1xl

2x
l

3

1 • (1,1)

(2,2)

(3,3)

Isotonic regression
Greedy algorithm for relabeling

21 xx
ll =

Figure 2.5: Application of the algorithm for relabeling and isotonic regression on
a non-monotone data set of two points.

1. Isotonic regression yields a unique solution for the monotone data set

in least-square sense, whereas the greedy algorithm for relabeling may

lead to more than one monotone data sets.

2. At each step of the modification procedure, isotonic regression may

relabel more than one point at once, whereas the greedy algorithm for

relabeling changes the label of one point only.

3. The new labels assigned by the greedy algorithm for relabeling always

belong to the label set in the original data, which may not be the case

in isotonic regression.

Example–2. Now we consider a data set D of four points that take values

in a two-dimensional input space. The partial ordering between the points is

represented by a matrix order, i.e., the set of points form a two-dimensional

grid and the ordering is the natural two-dimensional ordering (xij ≤ xpq if

i ≤ p and j ≤ q). The structure and the corresponding labels of the points

in D are given below:

2.4 Greedy algorithm for relabeling 63

D =

(

10 4

4 6

)

.

In these data there are three non-monotone pairs, namely x11 with the

remaining three points; for example, x11 ≤ x12 but `
x11 = 10 > 4 = `

x12 .

Hence, D is a non-monotone data set. Again, we apply the greedy algorithm

for relabeling and isotonic regression to make the data monotone and we

compare the outcomes.

In the greedy algorithm for relabeling, first we find the point with the

maximal increase in the number of correctly labeled points; it is x11 with

Imax = 3, if we relabel x11 from 10 to 4; note that Imax = 0 for x12 and x21,

and Imax = 1 for x22. Then we perform the relabeling of x11. The resulting

data are monotone:

D′ =

(

4 4

4 6

)

.

In isotonic regression, first we combine in one block all the points that

violate monotonicity, i.e., the four points in D. Then we relabel these points

with their weighted average, which is (10 + 4 + 4 + 6)/4 = 6. The resulting

data are monotone:

D′′ =

(

6 6

6 6

)

.

Though in one step in both algorithms we obtain a monotone data set,

the resulting data sets, D′ and D′′, are different, which is due to the different

objectives of the methods. The greedy algorithm tries to obtain monotone

data by relabeling only one point at each step, and as few points as possible

in the whole data. Isotonic regression aims to make the data monotone

by minimizing the least squares deviations between the labels of the non-

monotone points. Hence, other major differences between both algorithms

are:

1. Our algorithm for relabeling preserves the major set of original la-

bels, whereas isotonic regression may lead to completely different set

of labels; this means that with the greedy algorithm we try to obtain

monotone data that are close to the original data by making as less

changes as possible.

64 Chapter 2. Monotone and noisy data

2. In the presence of outliers violating monotonicity, the isotonic regres-

sion yields a constant value solution for all the points participating in

non-monotone relationships with the outliers (as in the above example),

whereas the greedy algorithm modifies only the labels of the outliers,

preserving the labels of the other points.

Relabeling versus deletion of data points

In the following proposition we show that the minimum number of points

that need to be either relabeled or removed from a data set in order to make

the data monotone is the same.

Proposition 2.4.1. Suppose D is a non-monotone data set. To make D

monotone, either a minimum number of data points mr can be relabeled

appropriately or a minimum number of data points md can be deleted from

D. Then

mr = md.

Proof. First we consider the minimum number of points mr that should be

relabeled to turn D into a monotone data set. If we remove all these points

from D, we obtain monotone data. Hence,

mr ≥ md. (2.12)

Now, we remove the minimum number of points md that should be

deleted from D in order to get monotone data. By applying an appro-

priate relabeling procedure to all these points, the data set obtained is

monotone. To show this, take one of the deleted points, say x. Define

` = max {labels in DownD(x)\ {x}}, and ` = min {labels in UpD(x)\ {x}}.
Note that ` ≤ ` as the data are monotone after the removal of md points,

including x. Then, we can add x to the data set with a new label from the

range [`, `]. Thus, the relabeling of x does not violate monotonicity with the

other points in the data, and the new data set is again monotone. Similarly,

this procedure can be repeated for the other deleted points such that the

monotonicity of the final data set is preserved. Hence,

mr ≤ md. (2.13)

From (2.12) and (2.13) it follows that mr = md.

2.5 Real case studies 65

Note that although the minimum number of points to be relabeled is

equivalent to the minimum number of points to be deleted from a data set,

we obtain different monotone data sets as a result. As the latter case leads

to loss of information that might have significant influence on the decision-

making process, ignoring data points is hardly considered as a good approach

to get monotone data. Therefore in the case studies presented in Section 2.5

we use the greedy algorithm for relabeling to make the data sets monotone.

2.5 Real case studies

In this section, we introduce two case studies where monotonicity should hold

in the data. The first one (bond rating) is a classification problem whereas

the second one (house pricing) is a regression problem. For each case study

we briefly describe the nature of the data set. Monotonicity of the data sets

is verified by using the testing procedure introduced in Section 2.3. Since

these data sets contain non-monotone pairs, we apply the greedy algorithm

for relabeling to resolve the discrepancies. In Chapters 3 and 4 these data

sets are used for building monotone models for prediction tasks.

A. Bond rating

As explained in Daniels and Kamp (1999), bond ratings are subjective opi-

nions on the ability to pay interest and debt by economic entities such as

industrial and financial companies, municipals, and public utilities. Bond

ratings are published by two major bond rating agencies, namely Moody’s

and Standard & Poor’s, in the form of a letter code, ranging from AAA–for

excellent financial strength–to D for entities in default. Bond ratings are

based on extensive financial analysis by the bond rating agencies. The exact

determinants of a bond rating, however, are unknown, since the interpreta-

tion of financial information relies heavily on professional judgment.

Publications of bond rating agencies offer some insight into the relevant

factors that determine bond ratings. Bond rating analysis recognizes the fol-

lowing areas of attention: profitability, liquidity, asset protection, indenture

provisions, and management quality.

Bond rating models use independent variables, often calculated as ratios,

which are predominantly derived from public financial statements. However,

not all of the above-mentioned areas are covered by financial statement; for

66 Chapter 2. Monotone and noisy data

Table 2.4: Definition of the variables for the bond rating data

Symbol Definition
D/C Debt to capital ratio
CF/D 5 years average cash flow to debt ratio
CF 5 years average cash flows (in 100 millions)
COV 3 years average interest coverage ratio
VOL/COV 3 years volatility of interest coverage

Table 2.5: Correlation coefficients between the input variables (Table 2.4) and
bond rating

Variable D/C CF/D CF COV VOL/COV
Corr. coef. 0.50 -0.64 -0.46 -0.52 0.38

example, aspects like quality of management, market positions, and asset

protection are captured to a limited extent only.

From the Standard & Poor’s Bond Guide (April 1994), we select 256

companies. The bond ratings of these companies range from AAA to D. The

ratings are not homogeneously distributed; i.e., the largest classes are A,

BBB, and B. Only a few companies have ratings lower than CCC. Therefore,

we decided to remove all ratings below CCC. As in other studies, the + and

− signs were omitted; for example, AA+, AA, and AA− are all considered

as AA. Finally, the bond rating (class variable) contains seven distinctive

categories.

From the S&P Bond Guide, several financial figures are obtained. From

Datastream, we download additional financial figures and ratios relating to

leverage, coverage, liquidity, profitability, and size. These figures have been

transformed into 5 years averages and trend indicators, resulting in 45 ex-

planatory variables. For each variable, the linear correlation with the quanti-

fied bond rating is calculated. For the purposes of the current case study, five

variables with high correlations with respect to the bond rating are chosen;

see Tables 2.4 and 2.5.

To synchronize the direction of influence of all the variables with respect

to the bond rating, we perform a linear transformation on cf/d, cf, and

cov such that they have a positive effect on the target variable. This is done

2.5 Real case studies 67

simply by reversing the range of values for each of the three variables.

The data set thus constructed contain unique points only. To verify the

monotonicity of the data, we compare the indicators (fraction of monotone

pairs and number of monotone points) computed from the real data with the

benchmark measures defined in Section 2.3.1. The results are presented in

Table 2.6.

Table 2.6: Degree of monotonicity of the bond rating data compared with bench-
mark data

Indicators Bond rating Benchmark data
Comparable pairs 9 685 9 685
Fraction of monotone pairs 0.99 0.60
Number of points 256 256
Monotone points 168 2.7

Next we perform a statistical test as described in Section 2.3.2 to check

the significance of the difference between the indicators obtained from the

real and benchmark data. For this purpose we generate a collection of 1000

benchmark data sets and for each of them we generate the empirical distribu-

tion of both indicators (fraction of monotone pairs and number of monotone

points); see Figures 2.6 and 2.7. Note that the empirical mean of the fraction

of monotone pairs computed from the collection of benchmark data sets is

0.60, which is the same as the theoretical benchmark measure reported in

Table 2.6.

Next we compute the critical values of the statistics corresponding to

both indicators at 95% and 99% significance levels; see Table 2.7.

Table 2.7: Critical values of both benchmark measures for monotonicity of the
bond rating data based on the empirical distribution of a collection of 1000 data
sets

Significance
level

Fraction of
monotone pairs

Number of
monotone points

95 % 0.66 6
99 % 0.68 8

68 Chapter 2. Monotone and noisy data

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

10

20

30

40

50

60

70

80

Fraction of monotone pairs

Figure 2.6: Empirical distribution of the fraction of monotone pairs generated from
a collection of 1000 benchmark data sets based on the bond rating data

0 2 4 6 8 10 12
0

50

100

150

200

250

Number of monotone points

Figure 2.7: Empirical distribution of the number of monotone points generated
from a collection of 1000 benchmark data sets based on the bond rating data

2.5 Real case studies 69

The results show that the critical values of the benchmark measures are

smaller than the observed indicators reported in Table 2.6. Hence, at the

given significance levels the observed indicators fall in the right tail of the

distribution and we reject the null hypothesis in favor of the alternative.

This implies that the labels in the bond rating data preserve ordering with

respect to the points, i.e., there exist monotone relationships between the

target and all predictor variables in the data. This clearly indicates that the

bond rating data represent a class of monotone problems, and therefore these

data can be used to build monotone decision models for prediction tasks.

Finally, as a data pre-processing step before using the data in the mo-

deling process, we suggest to remove the noise and resolve the discrepancies

in the bond rating data by applying the greedy algorithm for relabeling. As

a result, monotone data have been obtained after 28 label changes.

B. Moscow house pricing

The basic principle of a hedonic price model is that the consumption good

is regarded as a bundle of characteristics for which a valuation exists (Har-

rison and Rubinfeld, 1978). The price P of the good is determined by a

combination of these valuations x

P = P (x1, x2, . . . , xk).

In the case study presented here we want to predict the house price, given

a number of house characteristics. The data set consists of 150 observations

of flats in the city of Moscow. In the original data set, there are ten explana-

tory variables. For each of them, we calculated the correlation coefficient

with the flat price. For the purposes of the current case study, we chose six

variables with the highest correlation; see Table 2.8.

The correlations in Table 2.9 suggest that the total flat area, living room

area, and the number of rooms are the most important determinants of the

housing value. The direction of influence corresponds to common sense: more

area and rooms will, in general, result in a higher flat value. In addition,

for the sake of computational and analytical convenience, we reversed the

direction of influence of distkm on the flat price. This is done by the

following linear transformation:

∀1≤i≤150distkmi = distkmmax − distkmi + distkmmin,

70 Chapter 2. Monotone and noisy data

Table 2.8: Definition of the input variables for the Moscow data

Symbol Definition
TOTSPACE
LIVSPACE
KITSPACE
DISTKM
ROOMS
BRICK

Total flat area
Living room area
Kitchen room area
Distance in km from the center
Number of rooms
Brick flat or not

Table 2.9: The correlation coefficients between the input variables (Table 2.8) and
the house price

Variable TOTSPACE LIVSPACE KITSPACE DISTKM ROOMS BRICK
Corr.coef. 0.88 0.85 0.65 -0.38 0.74 0.42

Table 2.10: Degree of monotonicity of the Moscow data compared with benchmark
data

Indicators Moscow data Benchmark data
Comparable pairs 1 699 1 699
Fraction of monotone pairs 0.81 0.51
Number of points 150 150
Monotone points 25 7.2

where distkmmax and distkmmin are the maximal and minimal value of

distkm in the data. Furthermore, for computational convenience the de-

pendent variable was transformed by taking its logarithm.

The data set thus constructed contain unique points only. Similarly to

the bond rating case study, we verify the monotonicity of the Moscow data

set by comparing the observed indicators with the benchmark measures; see

Table 2.10.

Analogously to the bond rating case study, we perform a statistical test

to check the significance of the difference between the two observed and

benchmark measures. We again generate a collection of 1000 benchmark

data sets and for each of them we generate the empirical distribution of both

2.6 Conclusion 71

indicators (fraction of monotone pairs and number of monotone points); see

Figures 2.8 and 2.9. The empirical benchmark measure for the fraction of

monotone pairs is 0.51, which is the same as the theoretical measure given

in Table 2.10.

Next, we find the critical values of both benchmark measures for mono-

tonicity at 95% and 99% significance levels; see Table 2.11. The results show

that both critical values are smaller than the corresponding observed indi-

cators given in Table 2.10, which leads to rejection of the null hypothesis

in favor of the alternative. The conclusion drawn from the statistical test

is that there is a significant difference between the observed and benchmark

measures for the degree of monotonicity. This indicates that the Moscow

data set is another example of a monotone problem, which can be used to

build monotone models for prediction tasks.

Table 2.11: Critical values of both benchmark measures for monotonicity of the
Moscow data based on the empirical distribution of a collection of 1000 data sets

Significance
level

Fraction of
monotone pairs

Number of
monotone points

95 % 0.60 13
99 % 0.63 16

Finally, the greedy algorithm for relabeling is applied to the Moscow data

set to obtain monotone data, which led to 54 label changes.

2.6 Conclusion

In this chapter, we discussed the notion of monotonicity in data sets. We

started the discussion with the definitions of several concepts, namely mono-

tone point, monotone/non-monotone pair of points, and monotone/non-mo-

notone (noisy) data set. In practice, we wish to know to what extent the

monotonicity assumption holds for given real data. For this purpose, we

introduced a novel procedure for testing the degree of monotonicity of a

real data set. The procedure is based on the comparison between measures

computed from the real data and benchmark data. The latter is defined by

72 Chapter 2. Monotone and noisy data

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

10

20

30

40

50

60

70

80

Fraction of monotone pairs

Figure 2.8: Empirical distribution of the fraction of monotone pairs generated from
a collection of 1000 benchmark data sets based on the Moscow data

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Number of monotone points

Figure 2.9: Empirical distribution of the number of monotone points generated
from a collection of 1000 benchmark data sets based on the Moscow data

2.6 Conclusion 73

taking the same structure of the independent variables as in the real data and

adding a random permutation of the set of the original labels. Two measures

are computed from the real data–fraction of monotone pairs and number of

monotone points. We derive their counterparts from the benchmark data

as expected values. By using a statistical test, we check the significance of

the difference between the real and benchmark measures. If the real indica-

tors are significantly larger than the benchmarks, then we can conclude that

there are monotone relationships established in the real data; otherwise, the

monotonicity assumption is questionable.

Given a real data set with a small number of monotonicity violations,

another interesting problem is how to make it monotone. The solution we

provided in this chapter is the greedy algorithm for relabeling, which modifies

the labels of the points participating in non-monotone pairs. The main idea

is to make as few label changes as possible so that the original data are

preserved. We prove that the greedy algorithm always leads to monotone

data, though the solution may not be unique. We conducted simulation

studies with artificial data with discrete and continuous labels in order to

show that the greedy algorithm is capable of removing noise to a large extent.

Finally, we demonstrated the application of the procedure for testing

monotonicity of data and our algorithm for relabeling on two real case stud-

ies: bond rating (classification problem) and house pricing (regression prob-

lem). The results from the testing procedure confirm our expectations that

the monotonicity assumption holds in both data sets. The greedy algorithm

for relabeling is used further to make the data sets monotone by resolving

the inconsistencies.

74 Chapter 2. Monotone and noisy data

Chapter 3

Monotone decision trees

As explained in Chapter 1, decision trees are one of the most popular tech-

niques for prediction in data mining. Given the objectives of our research,

in this chapter we discuss monotone decision trees as a method to derive

monotone prediction models. We begin with an introduction of a standard

algorithm for tree construction and definitions of the main concepts, which

are used in the follow-up discussion. Then, we provide a general overview

of earlier studies that deal with the generation of decision trees with mono-

tonicity constraints, and discuss their main advantages and disadvantages.

In the main part of the chapter, we describe our extended version of an algo-

rithm for building monotone decision trees, which is based on an approach

proposed by Feelders (2000). By using the two case studies introduced in

the previous chapter, we demonstrate the application of the algorithm and

draw some general conclusions regarding the performance of the monotone

decision tree models. The work presented in this chapter has been published

in Velikova and Daniels (2004) and Daniels and Velikova (2006).

3.1 Introduction

Several approaches have been developed for building decision trees. Among

the most popular ones are CART (Classification and Regression Trees) de-

veloped by Breiman et al. (1984) and ID3 (Induction Decision Tree) with

its later versions C4.5 and C5.0 developed by Quinlan (1986, 1993, 2005).

Both approaches use similar principles to build a tree.

Now we present the main tree construction scheme, which is primarily

76 Chapter 3. Monotone decision trees

based on CART. Starting from the root of a tree, binary splits are made on

each non-terminal node t; terminal nodes (leaves) are without branches and

contain the predicted value of the response variable. The splits are based

on one input variable x. If x is continuous, the split is of the form x ≤ c

or x > c, for some constant c. If x is categorical, the split is of the form

x ∈ S or x /∈ S, where S is a non-empty subset of x’s possible categories.

The variable x and its value for splitting are selected through a criterion i(t),

which measures the “impurity” of a node t. The basic idea is to choose a

split such that the child nodes are “purer” than their parent node, i.e., they

contain objects that have the same or close (for example in least-squares

sense) responses.

In practice, various splitting criteria are used depending on the task at

hand. In classification problems, the class probabilities Pr(`|t), ` ∈ L in each

node t are first estimated by:

Pr(`|t) = 1

N(t)

∑

x∈t

I (`
x
= `) ,

where I (`
x
= `) = 1 if `

x
= ` and I (`

x
= `) = 0 if `

x
6= `; N(t) is the total

number of objects belonging to t.

Then, typical splitting criteria are the following:

• Gini-index : this measures the variance of the response variable ob-

tained by observing the class label of an example drawn at random

(with replacement) from node t. The ideal objective is to obtain pure

nodes with zero variance in the class label. The actual variance is

i(t) =
∑

`

Pr(`|t) (1− Pr(`|t)) .

• Entropy : this measures the average amount of information yielded

by observing the class label of an example drawn at random (with

replacement) from node t. If a node is pure, this information and thus

the entropy is zero. The actual entropy as defined by Shannon (1948)

is

i(t) = −
∑

`

Pr(`|t) log Pr(`|t).

3.1 Introduction 77

In regression problems, the most natural and commonly used splitting

criterion is the mean-squared error, which measures the total squared devia-

tions of the value of the response variable `
x

of each case x in node t from

the average response value ¯̀(t) for all cases belonging to that node:

i(t) =
1

N(t)

∑

x∈t

(

`
x
− ¯̀(t)

)2
.

Besides the splitting criterion (impurity measure), we also define the

quality of a split as the reduction of impurity that the split achieves; that is

for split s in node t:

∆i(s, t) = i(t)− π(λ)i(λ)− π(r)i(r),

where π(λ) is the proportion of objects sent to the left by the split, and π(r)

is the proportion of objects sent to the right.

The partitioning process is applied recursively to each node continuing

until either all leaves are pure (i.e., they contain one or more objects with

a unique label) or further splits cannot be performed (e.g., identical objects

belonging to a node have different labels). Then the resulting tree (almost)

perfectly fits the data used for the model construction. However, we are

interested in the general prediction capabilities of the tree, which is deter-

mined by its performance for new data. Fitting the tree perfectly to the

data under study, we have “overfitted” the model; this may result in a high

prediction error on new data. Therefore, a crucial issue in tree construction

is to determine the right size of the final tree.

One approach is to use a stopping rule, which prevents expanding a node

if the maximum reduction in the impurity measure for the best split is below

some threshold θ. However, it is not trivial to determine the value of θ. On

the one hand, too low a value of θ leads to many splits, which results in a

large tree. On the other hand, too large a value of θ may result in a node

to be declared a terminal node–due to small impurity reduction; its child

nodes, however, may have good splits, which will be lost in this case. An

alternative stopping rule is defined by the minimal number of observations

that fall in a node. In other words, the splitting of a node is terminated

when the number of observations is below some threshold. Again, setting

the value of the threshold is done in an ad-hoc way, which may complicate

the process of finding the right size of a tree. In summary, using stopping

78 Chapter 3. Monotone decision trees

rules to determine whether to grow a new node does not produce satisfactory

results in general.

Therefore, a more plausible approach is to apply pruning on the initial

tree. The idea is to build a large tree with pure nodes first. Next, a sequence

of pruned subtrees is generated from this tree by merging the nodes back

up to the root of the tree. Finally the right-sized tree is selected from the

resulting sequence of trees on the basis of a consistent estimate of the pre-

diction error. The main problem with pruning is that the number of pruned

trees may become very large and it would be infeasible to find the best tree.

One of the most popular and efficient pruning procedures applied in prac-

tice is so called cost-complexity pruning proposed by Breiman et al. (1984).

Using similar notations as Breiman et al. (1984), we now give a general

description of their approach.

Let Tmax denote the initial tree obtained from a tree construction algo-

rithm. Furthermore, let T be any pruned subtree of Tmax (in short T ≤
Tmax). Suppose R(T) is the error measure (cost) of T , and |T̃ | is the comple-

xity of T defined as the number of terminal nodes. Then, the cost-complexity

measure Cα(T) is defined by

Cα(T) = R(T) + α|T̃ |,
where α ≥ 0 is the complexity parameter, which plays the role of a penalty

for tree size.

Thus, Cα(T) represents the trade-off between the cost of a tree and its

complexity. Now the objective of cost-complexity pruning is to find the

sequence of smallest subtrees T (α) ≤ Tmax for different values of α such that

Cα(T) is minimized, that is

Cα(T (α)) = min
T≤Tmax

Cα(T).

This is done in a recursive manner. We start with Tmax and find the

smallest pruned subtree T1 of Tmax at α1 = 0 such that R(T1) = R(Tmax).

Thus we obtain a tree that has the same total cost as Tmax but because it is

smaller it is preferred over Tmax. Then, for all non-terminal nodes t in T1,

we define the following function g(t):

g(t) =
R(t)−R(Tt)

|T̃t| − 1
,

3.1 Introduction 79

where R(t) and R(Tt) are the errors in node t and the tree Tt with root node

t, respectively. Next, we select the nodes for which g(t) is the smallest, and

prune T1 in these nodes to obtain T2, the next tree in the sequence. The new

value α2 of α is set to be

α2 = min
t
g(t).

In other words, α2 is the minimal value of α at which Cα(t) = Cα(Tt).

This is easily derived from the definition of g(t).

In the next step, we proceed with T2 as the current tree to be pruned.

This process is repeated, until the root node t0 is reached. As a result a

nested sequence of pruned subtrees of Tmax is obtained, i.e.,

T1 > T2 > . . . > t0.

The final stage selects the optimum-sized tree from the generated tree

sequence. The most natural way is to choose the tree with the best perfor-

mance (lowest error) on new data. As we pointed out in Section 1.3.3, this

can be done by using a separate test set held apart from the original data.

The efficiency of the cost-complexity pruning is due to two main factors,

as shown by Breiman et al. (1984). First, the authors prove that for each

value of α there exists a smallest minimizing subtree. In other words, if there

is more than one tree that minimizes the cost-complexity measure, then the

smallest one is chosen, which is a subtree of all other minimizing trees. This

means that it is impossible to have exactly two trees that minimize the cost-

complexity measure but are incomparable, i.e., neither tree is a subtree of the

other. This finding leads to the second important result obtained by Breiman

et al. (1984), namely that the final outcome of the cost-complexity pruning

is a nested sequence of trees. It means that the next tree in the sequence

can be obtained by pruning the current tree. As a result the number of trees

that need to be pruned is considerably reduced, which leads to an efficient

pruning procedure.

The tree construction algorithm thus described, in its original form does

not guarantee that the constructed tree is monotone, even if the underlying

data set is monotone.

Potharst (1999) proposes a straightforward approach for testing the mono-

tonicity of a decision tree. His approach is based on a comparison of the

so-called minimal and maximal elements of the leaves in the decision tree,

80 Chapter 3. Monotone decision trees

which are defined as follows. Given a leaf node t of tree T , the subset of the

input space X associated with that node is represented by

t = {x ∈ X : a ≤ x ≤ b}, for a,b ∈ X̄ ,
where X̄ = X ∪ {+∞} ∪ {−∞}. Then, a(t) is the minimal element and

b(t) is the maximal element of t; both elements are called corner elements

of t. The test for monotonicity of the tree T is performed by the following

algorithm proposed by Potharst (1999), where `(t) denotes the label assigned

to node t:

Algorithm 3.1 Monotonicity testing of a decision tree

for all pairs of leaves t, t′:
if (`(t) > `(t′) and a(t) ≤ b(t′)) or

(`(t′) > `(t) and a(t′) ≤ b(t))
then stop: T not monotone

Potharst (1999) proves that if a decision tree T is passed through the

above algorithm without stopping, then T is monotone.

The idea of using minimal and maximal elements in the leaves in order

to test the monotonicity of a decision tree is very intuitive and therefore, it

has been applied in various research studies as described in the next section.

3.2 Related work

There are a number of approaches for constructing decision trees that incor-

porate monotonicity properties.

One of the earliest approaches is introduced by Ben-David (1995), which

is a modification of the traditional tree algorithm ID3. The only difference is

the use of a new splitting criterion called the total-ambiguity-score TA; for

node t it is defined by adding a non-monotonicity index Inm to the standard

entropy-based impurity measure i(t):

TA(t) = i(t) + δInm(t),

where the weight parameter δ > 0 expresses the relative importance of mono-

tonicity to the prediction accuracy. The non-monotonicity index Inm is com-

puted as the ratio of non-monotone leaf pairs of the tree obtained after

3.2 Related work 81

the candidate split is performed to the maximum possible number of non-

monotone leaf pairs in the tree. The attribute with the lowest TA-score is

selected to split a node.

The advantages of Ben-David’s approach are that it balances the accu-

racy and monotonicity properties of a tree, and it works for both monotone

and non-monotone data. The results from the case studies in Ben-David

(1995) show that the trees generated with this approach have a significantly

lower degree of non-monotonicity–without a significant deterioration in the

prediction accuracy. However, a disadvantage is that the monotonicity of

the resulting tree is not guaranteed.

Makino et al. (1999) propose a method to construct monotone decision

trees for two-class problems with ordinal attributes. It also uses a modi-

fication of the splitting criterion in the ID3 algorithm. Furthermore, the

monotonicity of a tree is enforced by adding at each step (if necessary) the

corner (minimal and maximal) elements of a node with appropriate labels.

Their approach has been extended by Potharst and Bioch (2000) for k-class

problems; it also deals with continuous attributes. Though the monotonicity

of a tree is guaranteed by these methods, the main limitation for their appli-

cability is that they require totally monotone data sets (see Definition 2.1.3),

which is seldomly the case in practice.

Bioch and Popova (2002) address the problem of generating monotone

binary decision trees from noisy data. Their approach is a modification

of the algorithm proposed by Potharst and Bioch (2000). The main idea

is to add data points to the original data sample whenever inconsistencies

occur during the tree construction. At each step of the algorithm, the corner

elements of the node considered for splitting are relabeled with the consistent

labels that are calculated from the data. Bioch and Popova (2002) prove that

this procedure always generates a monotone decision tree.

Furthermore, Bioch and Popova (2002) note that the presence of noise

in the data may require the addition of many new points to the data, which

leads to complex (large) trees. In order to remedy this problem, they suggest

two methods for pruning the constructed tree. The first method, called pre-

pruning, is based on the application of a pruning procedure while growing

the tree. This is done by stopping the generation of a branch if the number of

points falling in each of the new leaves drops below a pre-defined threshold;

the current node then is turned into a leaf. This node is labeled in such a way

that monotonicity is preserved. The second method, called post-pruning,

82 Chapter 3. Monotone decision trees

is applied after a large tree has been generated. It is based on pruning

back branches from the tree such that the misclassification rate of the new

tree is below a pre-defined threshold. Again the monotonicity of the tree is

guaranteed by a consistent labeling procedure. Experimental studies with

artificial and real data are used to compare both pruning procedures. The

advantage of pre-pruning is that it leads to smaller data sets, so it requires

less resources for generating and storing the tree. However, with pre-pruning

it is more difficult to decide when to stop expanding a node and what label

to assign to it. Hence, as noted by Bioch and Popova (2002), for some data

sets their post-pruning produces better results by pruning a large part of the

tree without increasing the misclassification error.

Strobl et al. (2003) suggest to build monotone decision trees by combin-

ing the standard CART algorithm with isotonic regression (see Section 2.2).

More specifically, the authors propose an extension of CART by allowing the

tree-based algorithm to make multiple (not only binary) splits. The prob-

lem, which usually arises with multiple splits, is the fast increasing amount

of possible splits that need to be tested and compared during the tree con-

struction; this leads to a considerably slower algorithm and results in very

large trees. To solve this problem, the authors use the reduced version of

isotonic regression to determine the splits (cutpoints) in the tree. Their idea

is that applying the reduced isotonic regression on each node considered for

splitting leads to a small number of solution blocks, which act as subnodes

after splitting. Furthermore, they suggest a modification of the goodness-

of-split criterion, which takes into account the number of subnodes obtained

after splitting and provides a fairer comparisons of two or more splits with

different independent variables. Their criterion is based on a specially de-

signed likelihood ratio test, which measures the likelihood of the subnodes

obtained after splitting–given the parameters of the reduced isotonic regres-

sion used to perform the splitting. The lowest p-value of the likelihood ratio

test determines the overall best split. By using simulation studies, the au-

thors demonstrate that their approach can indeed find the correct cutpoints

in the tree construction. In addition, the reduced isotonic regression could be

applied as a stopping rule in the tree generating process. Finally, the authors

compare the performance of their non-binary tree approach with the binary

standard CART algorithm; they use a real data set on the occurrence of

chronic bronchitis (dependent variable) given time and overall dust measure

(independent variables). The results show that: (i) both approaches have

3.2 Related work 83

comparable performance in terms of misclassification error and can detect

similar cutpoints; (ii) the non-binary tree tends to be more balanced (the

branches of the tree have similar height) than its binary counterpart. Their

enhanced version of the CART algorithm not only guarantees that the gen-

erated tree is monotone, but also reduces the computational effort and yields

parsimonious models with optimal complexity.

Another tree-based approach that incorporates monotonicity (ordering)

constraints is proposed by Cao-Van and De Baets (2003). The authors

argue that most of the approaches for monotone classification focus on the

prediction accuracy, and tend to ignore acceptability (ease of understanding

and interpretability) of the models by the human decision makers. Therefore,

Cao-Van and De Baets (2003) suggest a method to derive an interpretable

and intuitive rule base for ordinal classification, which is represented by

a tree. The method is based on concepts from the field of multicriteria

decision aid (MCDA). The monotonicity in the approach is defined by the

so-called principle of partial dominance preservation, which states that an

object x with (partial) measurements dominating the (partial) measurements

of another object x′ should get evaluation (classification) f that is also at

least as good, that is

x > x′ ⇒ f(x) ≥ f(x′). (3.1)

It should be noted that (3.1) is a weaker version of (1.2) as the latter

requires that two objects with identical measurements should have the same

evaluation. Furthermore, the term partial in the definition of the principle

means that the comparison between two objects is based on the information

available for them; that is, in order to establish the partial dominance rela-

tionship between two objects it is sufficient to have their common subset of

independent variables for which measurements are available. This property

is especially useful in a tree growing process where at each step only one or

a subset of independent variables are considered for splitting. The authors

address several typical problems in the standard tree-based approaches for

ordinal classification. First, they argue that the choice of split values is not

trivial, because often some of the splits violate the monotonicity assump-

tion. Second, the selection of the nodes for expansion is important because

the leaves are interconnected by the partial dominance relation. Finally, the

resulting tree may contain leaves with ambiguous evaluation or empty leaf

84 Chapter 3. Monotone decision trees

nodes. Their solutions for these problems are demonstrated by a real case

study where the objective is to predict the use of contraception (low, mo-

derate, high) based on four criteria: average number of years of education,

urbanization, gross national product per capita, and expenditure on family

planning. The authors start with growing a ranking tree. At each step of the

tree construction procedure, the variable that leads to the smallest number

of violations of the (weaker) principle of partial dominance preservation is

chosen to split the current node. Furthermore, the order in which the nodes

are expanded is determined by the degree of impurity of the nodes, i.e., the

most impure node at a given step is selected for splitting. Their rationale

is that this procedure will lead to a faster decrease in the overall impurity.

Finally, to prevent overfitting, the authors stop growing a node if it contains

less than four objects.

Based on the tree thus constructed, the next step is to derive a rule

base. The main problem is related to the assignment of labels to the leaves.

The authors argue that the traditional misclassification techniques might be

inadequate in the context of ranking problems. Therefore, they apply two

labeling strategies depending on the number of objects that belong to the

leaves. If a leaf is empty, then the principle of partial dominance preservation

is used to assign a label that is consistent with the labeling of the remaining

leaves. If a leaf contains more objects with different class labels, then the

label assigned is not a singleton (usually the most frequent class category)

but an interval for the permissible values of the response variable that are

consistent with the principle of partial dominance preservation. Further re-

finement of the derived rule base leads to a parsimonious model for ordinal

classification. The final output of the approach is a labeled partial domi-

nance graph that has a semantic interpretation. This property is the main

advantage of the method, because it helps to reveal complex interactions

between the attributes and their effects on the target variable.

The ultimate objective of the tree-based approaches considered so far is

to construct monotone decision trees, which predict the value of the depen-

dent variable. However, Lee et al. (2003) develop an alternative approach

for generating monotone decision trees (MDT) for classification tasks. As-

suming that all the attributes in the input space are ordinal, the authors aim

to predict the implicit ordering between the objects rather than the labels

themselves. Although the labels are related to the ordering of the objects,

they do not necessarily reflect the original ordinal classification of the ob-

3.2 Related work 85

jects. Hence, the proposed approach can generate monotone decision trees

even if the underlying data set is non-monotone or inconsistent (two objects

with the same attribute values have different labels). The authors try to

build a tree that can effectively separate the more dominant elements from

the less dominant elements. Instead of using the standard misclassification

error, the authors propose two new criteria to measure the quality of the de-

rived ordinal classification model. The first measure provides insight into the

similarity between the induced model and the original ordinal classification;

it is based on the number of concordant pairs (pairs that exists in both or-

derings) and discordant pairs of observations. The second measure shows the

effectiveness of the tree model to predict the pair ordering; it is computed as

a percentage of the net concordant pairs (concordant less discordant pairs)

in the ordering induced by the model.

The performance of MDT is tested on eight real data sets and compared

with the performance of the standard CART algorithm. The results show

that the MDT trees are smaller and hence easier to interpret than the CART

trees. Furthermore, the accuracy of MDT is higher than that of CART in 20

out of 24 tests. In addition, MDT guarantees that the trees generated are

monotone, which is required in ordinal classification.

A limitation of their approach, however, is that it requires the attributes

to be ordinal, i.e., it does not deal with numeric attribute values. Although

numeric data can be transformed into ordinal by taking a number of levels,

this has several drawbacks: (i) additional data pre-processing is needed; (ii)

setting the number of levels is not trivial, and is usually done ad-hoc; (iii)

combining several attribute values into one level may lead to loss of important

information in the knowledge discovery process.

Most of the approaches considered so far enforce monotonicity during tree

construction. Although this strategy guarantees that the generated trees are

monotone, Feelders (2000) argues that there are several disadvantages. First,

the order in which the nodes are expanded is important; for example, the

depth-first search and breadth-first search generally produce different trees

(as shown by Bioch and Popova (2002)). Second, a non-monotone tree may

become monotone after additional splits. Therefore, Feelders (2000) applies

an alternative strategy for generating monotone decision trees. His approach

is based on the standard CART algorithm with recording the corner elements

of the nodes during tree construction in order to check the monotonicity of

the generated tree. The method simply constructs many trees, and checks

86 Chapter 3. Monotone decision trees

whether or not they are monotone. In addition, Feelders (2000) proposes the

following improvement of the non-monotonicity index introduced by Ben-

David (1995): give each non-monotone leaf pair a weight computed as the

proportion of the objects belonging to those leaf nodes. The rationale is that

the non-monotone leaf pairs with small weights would violate monotonicity

less than the non-monotone leaf pairs with large weights. This weighting

procedure provides an upper bound for the degree of non-monotonicity of a

tree.

Depending on the nature of the problem and data at hand, Feelders’s

method might be computationally intensive. However, for monotone pre-

diction problems, it is expected that it will generate more monotone trees.

Furthermore, by using this approach one can estimate the degree of non-

monotonicity of a tree and check to what extent the assumptions for mono-

tonicity are valid; this is an empirical alternative of the theoretical measures

we derived in Section 2.3.

Feelders and Pardoel (2003) provide another study where pruning is

applied to generate monotone classification trees. The authors propose a

method that is similar to CART for growing the initial tree. As in Feelders

(2000), the only difference is that the corner elements of each node are

recorded during the tree construction in order to check the monotonicity of

the tree. If there are monotonicity violations (i.e., there are non-monotone

leaf pairs in the tree), then so-called fixing methods are applied to prune the

tree such that the inconsistencies are resolved. The basic idea is to make

a minimal number of adjustments by pruning parent nodes that have at

least one child node participating in a non-monotone leaf pair. Depending

on the choice of a parent node for pruning, those authors suggest various

fixing methods. The most natural fixing method selects the node that leads

to the biggest reduction in the number of non-monotone leaf pairs. In case

the fixing method gives equally good fixes at a given step of the procedures,

the authors consider an additional heuristic for choosing to prune the parent

with the least number of observations. The argument is that the mono-

tonicity violation is expected to be caused by a small number of inconsistent

observations.

In addition to these methods, Feelders and Pardoel (2003) suggest vari-

ous ways to combine their fixing methods with existing pruning techniques

such as cost-complexity pruning (Breiman et al., 1984), discussed in the

introduction of this chapter. One approach is to switch between the cost-

3.2 Related work 87

complexity pruning and fixing steps, which results in a sequence of monotone

trees. If a pruned tree is monotone, it is added to the sequence; otherwise,

it is fixed (made monotone) and then added. Another approach is to take

the sequence of trees generated from cost-complexity pruning, and to apply

fixing methods to all trees. As a third method, the authors suggest to take

the best tree from the sequence (in terms of smallest misclassification error),

and fix only that tree.

Feelders and Pardoel (2003) conduct various experimental studies with

artificial and real data sets to check the performance of their fixing me-

thods. The authors use two benchmarks for comparison, namely the best

tree (with the smallest error) generated by the standard CART algorithm

with cost-complexity pruning and the best monotone tree selected from the

tree sequence produced by the standard algorithm. The results show that

applying fixing methods to generate monotone trees leads to slightly but

not significantly better predictions than the benchmarks. However, their

approach has several advantages, as pointed out by Feelders and Pardoel:

(i) it guarantees that the generated tree is monotone; (ii) it can be applied

to both monotone and non-monotone data; (iii) it leads to monotone trees

that are much smaller than the ones built by the standard algorithm.

Given the objectives of our research and the advantages and disadvan-

tages of the discussed tree-based approaches with monotonicity constraints,

we found that the simplest approach in practice is the one developed by

Feelders (2000). We emphasize that our primary goal is to compare the per-

formance of the monotone models derived from monotone and non-monotone

data–showing that the former are better–rather than to build a new method

or compare the prediction accuracies of different monotone tree-based al-

gorithms. Hence, any of the developed approaches for generating monotone

decision trees would serve our goal, but our choice to use Feelders’s algorithm

can be justified by the following pragmatic considerations:

• His approach is intuitive and easily applied; it simply generates trees

and checks whether they are monotone.

• It is based on the standard CART algorithm; its wide application in

practice is evidence of its effectiveness.

• While the approach has been originally developed to deal with classifi-

cation problems, it is easily extended to regression problems (as shown

in the next section).

88 Chapter 3. Monotone decision trees

Therefore, we apply Feelders’s algorithm with some extensions to build

monotone decision trees for the real case studies in Section 3.3.2. In the next

section, we provide a detailed description of the approach with the additional

modifications we have made.

3.3 Algorithm for building monotone decision

trees

3.3.1 Implementation.

As mentioned in the previous section, the algorithm developed by Feelders

(2000) in many respects is similar to the CART program described in Breiman

et al. (1984). The original algorithm was created to construct classification

trees, whereas we extend it to regression trees as well.

Our algorithm works as follows. Starting from the root node, which con-

tains the full training data set, the program makes binary splits only using

as the splitting criterion either the Gini-index in classification trees or the

mean-squared error (MSE) in regression trees. The partitioning process is

applied recursively to each non-leaf–continuing until all leaves are pure, or

further splitting cannot be performed. The final tree is denoted by Tmax.

Since this tree almost certainly overfits the data, cost-complexity pruning is

applied next (as described in the introduction of this chapter). This gene-

rates a nested sequence of minimizing subtrees, Tmax > . . . > t0, where t0 is

the root node of the tree. From this sequence, the best monotone subtree

is selected on the basis of its validation set performance (explained below).

The monotonicity of a tree is checked by using Algorithm 3.1 presented in

the introduction of this chapter; it is based on the comparison of the mini-

mum and maximum elements of the leaf nodes. Finally, the generalization

(prediction) error of the chosen model is computed using a separate test set.

The algorithm outline is given in Algorithm 3.2.

Depending on the task at hand, we check the performance of the con-

structed trees on the validation and test sets by using the two measures for

prediction accuracy, namely misclassification error in classification trees or

mean-squared error in regression trees.

3.3 Algorithm for building monotone decision trees 89

Algorithm 3.2 Derivation of monotone decision trees
Train_set = Training data
Validation_set = Validation data
Test_set = Test data

Tmax = a large tree built on Train_set

Trseq = a nested sequence of minimizing subtrees (Tmax > . . . > t0) built
by applying cost-complexity pruning on Tmax

Bmtr = the best monotone tree from Trseq selected on the basis of the
Validation_set performance
Determine the generalization prediction accuracy of the final model by
applying Bmtr on Test_set

Modifications in Feelders’s algorithm

Given our algorithm, we now present the modifications we made in the orig-

inal approach developed by Feelders (2000)–to meet the objectives of our

research study.

First, as we are interested only in monotone models, we select the mono-

tone tree with the best prediction accuracy from the nested sequence of

pruned subtrees. This is the main difference with the algorithms in Feelders

(2000) and Breiman et al. (1984), where the choice of the best subtree is

based only on the test (or validation) set performance irrespective of the

type of the tree (monotone/non-monotone).

Furthermore, in our experiments with real data sets (Section 3.3.2) it

turns out that the non-monotone trees generated by the tree construction

algorithm have comparable performance but are much larger than monotone

trees. This is demonstrated in Figure 3.1 (at the end of this section) where

both the non-monotone and the monotone tree are derived from the Moscow

house pricing data used as a real case study in this research. The finding

is also supported by earlier studies for classification trees (Feelders, 2000;

Potharst and Feelders, 2002).

In addition, for problems with monotonicity properties (e.g., house pri-

cing), monotone models are easier to understand than their non-monotone

counterparts because they agree with the decision makers’ expertise. In

other words, non-monotone models are much harder to interpret because

they present inconsistent and less intuitive dependencies. Therefore, only

monotone trees are selected in our tree-based algorithm applied to the present

90 Chapter 3. Monotone decision trees

case studies.

Second, as we consider here both types of prediction problems (classifica-

tion and regression), we modify Feelders’s algorithm, and we build not only

classification trees but also regression trees. For this purpose, the splitting

criterion we use in growing regression trees is the mean-squared error; we

label the leaves with the average response value of the objects belonging to

them. Thus, our algorithm allows us to make predictions in an intuitive

way in typical monotone regression problems such as house pricing. Feelders

(2000) also applies his algorithm to a pricing case study, but first he dis-

cretizes the continuous house price in a number of classes. We do not find

such a discretization natural; as we discussed in the previous section, it may

lead to loss of important information in the knowledge discovery process.

Third, in order to guarantee that each class is properly represented in the

training, validation, and test sets, we apply a stratification procedure when

we split the data during the construction process of classification trees. In

this case, each class is represented in approximately the same proportion in

the three subsets as in the full data set.

Besides these modifications, we also point out a possible limitation of

Feelders’s approach, which concerns the number of monotone trees derived.

His method guarantees that at least one monotone tree is generated, namely

the one-node (root) tree. Due to its simplistic nature, in general the root tree

does not perform satisfactorily for new data. Therefore, it is not preferred

in practice as a final decision model for making predictions. However, if

the data used to build trees are non-monotone, then it is well possible that

the root tree is the only monotone tree generated by the algorithm. As a

result, the monotone models derived would have bad performance on new

data. As a simple solution, we suggest first to make the data monotone by

using the greedy algorithm for relabeling (see Section 2.4), and then to apply

the modified version of Feelders’s tree-based approach as described above.

In the next section, we present two cases where we apply this strategy and

compare the performance of the models obtained from both monotone and

non-monotone data.

3.3.2 Real case studies

Based on the two case studies introduced in Section 2.5, we would like to

test the hypothesis that the models derived from the modified data perform

3.3 Algorithm for building monotone decision trees 91

LIVSPACE

68

< 12 ≥ 12

KITSPACE

25336

< 5.1 ≥ 5.1

TOTSPACE

33462

< 34 ≥ 34

39306

LIVSPACE

68

< 12 ≥ 12

KITSPACE

< 5.1 ≥ 5.1

TOTSPACE

< 34 ≥ 34

39306

LIVSPACE

< 22 ≥ 22

23981 31571 DISTKM

< 19 ≥ 19

< 6.5 ≥ 6.5

30242 34073

KITSPACE

< 29.3 ≥ 29.3

32370

TOTSPACE

< 32.2 ≥ 32.2

38949

TOTSPACE

34833

Figure 3.1: Non-monotone (left) and monotone trees for the original Moscow hous-
ing data. The shaded leaves represent the non-monotone leaf-pairs in the non-
monotone tree. The estimated error of the non-monotone tree is 1.01 and the
estimated error of the monotone tree is 1.02.

better than those derived from the original data. Therefore, we construct

decision trees from both monotone and non-monotone data sets by using

the tree-based algorithm described in the previous section and compare the

models’ performance measures.

To obtain a statistically sound assessment of our tree-based approach ap-

plied on both data sets, the following experiment is carried out 20 times. The

original (non-monotone) data set is randomly partitioned into a construction

set with 75% of the observations and a test set with 25% of the observations.

The construction set is further randomly separated into a training set with

50% of the observations and a validation set with 25% of the observations.

The training set is used to generate a tree of maximal size as explained in the

introduction of this chapter, and to construct a sequence of subtrees using

cost-complexity pruning. From this sequence of trees, the best monotone tree

is selected on the basis of the prediction (misclassification or mean-squared)

error computed on the validation set; in case of a tie, the smallest tree was

chosen. The monotonicity of a tree is checked by using Algorithm 3.1. The

random partition into training and validation sets is repeated five times, re-

92 Chapter 3. Monotone decision trees

sulting in a sequence of five trees, from which the one with the lowest error

iss chosen as a final tree. In order to evaluate the performance of the final

tree, the generalisation error is computed on the test set. The main steps of

the experiment are depicted in Figure 3.2.

The same experiment is carried out with the cleaned (monotone) data.

The only difference is the way the error is computed: instead of using a test

set with 25% of the observations from the cleaned data, we compute the

generalisation error on the basis of the same 25% observations from the ori-

ginal data, which are used as the test set in the previous experiment. Thus,

the model is constructed from the cleaned data, whereas the performance is

measured on the original data.

The prediction error and the size of a tree are popular performance mea-

sures for tree classifiers. Given our objective, we add one more measure,

namely the number of monotone trees generated after pruning a large tree.

The idea is that a higher number of monotone trees is preferred to guarantee

that the decision model is monotone.

 Construction set (original data / cleaned data)

Repeat 20 times

Repeat 5 times

1. Construct a large tree and a
nest ed sequence of subtrees
using cost - complexity pruning

2. Select the best
monotone tree from
the sequence using
error estimation
procedure

3. Estimate the
prediction
error of the
final tree

Training set (50%)
Validation set

(25%)

 Test set
(original data)

(25%)

Figure 3.2: Main steps of the experiment conducted with the original and the
cleaned real data sets

Software. The experiments with the extended algorithm for generating

monotone decision trees were developed in S-PLUS, a software package for

statistical and data analysis (see the S-PLUS web-site in the bibliography);

the original program was also implemented in S-PLUS.

3.3 Algorithm for building monotone decision trees 93

Below, we present a detailed description of our two case studies; bond

rating data are used to construct monotone classification trees and Moscow

house pricing data are used to construct monotone regression trees.

A. Bond rating

A summary of the results from the experiments with the bond rating data

is given in Table 3.1.

Table 3.1: Experiments with monotone and non-monotone bond rating data based
on decision trees

Mean Variance

Indicators Monotone
data

Non-
monotone

data

Monotone
data

Non-
monotone

data
Error on test set 0.50 0.53 0.003 0.003
Average number of
monotone trees generated
after pruning a large tree

5.1 4.7 0.195 0.431

Average number of leaves 8.2 7.5 1.958 5.526

To check the significance of the results we performed three t-tests. Since

the test set in both experiments is the same, we apply the paired t-test of

the null hypothesis that the trees derived from both data sets have the same

classification error against the one-sided alternative (the trees derived from

the monotone data have a smaller error than the trees derived from the non-

monotone data). For the other two indicators (number of monotone trees

generated after pruning a large tree, and number of leaf nodes) we use t-tests

assuming unequal variances of the null hypotheses that the means are equal

against the one-sided alternative hypotheses (the trees generated from the

monotone data have larger indicator values than the trees generated from

the non-monotone data). Table 3.1 suggests that the differences between

the variances for these indicators are significant, which is also confirmed by

the p-values of the two F-tests with 19 degrees of freedom, namely 4.6% and

1.4% (so these tests are significant at 5%). The p-value of the F-test for

the difference in the errors is 33.4%, which indicates insignificant differences.

Furthermore, the significantly lower variances of the number and the size

of monotone trees generated from the monotone data show that the mono-

94 Chapter 3. Monotone decision trees

Table 3.2: p-values yielded of statistical t-tests and one-sided confidence intervals
for the indicators in the bond rating case study

Confidence intervals
Indicators p-value

95% 90%
Error on test set 6.9% [-1, 0.003) [-1, -0.004)
Average number of monotone trees
generated after pruning a large tree 2.2% (0.070, +∞) (0.137, +∞)

Average number of leaves 13.1% (-0.330, +∞) (-0.101, +∞)

tone trees constructed from the cleaned data have less variability than that

generated from the raw data.

The p-values obtained from the three t-tests and the respective one-sided

confidence intervals at 95% and 90% levels are reported in Table 3.2.

The results show that the first null hypothesis (classification error of

trees) can be rejected at a 10% significance level. Furthermore, the average

number of monotone trees derived from the monotone data is significantly

larger than that for non-monotone data.

B. Moscow house pricing

To generate decision trees from the original and the cleaned Moscow housing

data, we apply the same tree-based algorithm and carry out the experiments

described in the bond rating case study. A summary of the results is given

in Table 3.3.

Table 3.3: Experiments with monotone and non-monotone Moscow housing data
based on decision trees

Mean Variance

Indicators Monotone
data

Non-
monotone

data

Monotone
data

Non-
monotone

data
Error on test set 0.45 0.97 0.365 0.775
Average number of
monotone trees generated
after pruning a large tree

4.7 2.4 0.876 0.828

Average number of leaves 4.9 2.1 1.568 2.261

3.3 Algorithm for building monotone decision trees 95

To check the significance of the results we again performed three t-tests

(as we did for the bond rating case study). So, we use again a paired t-test

for the prediction error. For the other two indicators (number of monotone

trees generated after pruning a large tree and number of leaf nodes) we use

t-tests assuming equal variances; the p-values of 45% and 22% for the two F-

tests with 19 degrees of freedom indicate insignificant differences between the

variances. The p-value of the F-test for the difference in the errors is 5.4%,

which indicates insignificant differences at 5% significance level. The slightly,

though not significantly, lower variances of the indicators in Table 3.3 show

that the monotone trees constructed from the cleaned data tend to be more

stable than that generated from the raw data. The p-values obtained from

the three statistical t-tests are reported in Table 3.4.

The results show that the first null hypothesis (error of trees) can be

rejected at the 5% significance level. Furthermore, the average number of

monotone trees derived from the monotone data is significantly larger than

that for the non-monotone data. Actually (not shown in the table) in 45%

of cases, the only monotone tree generated by the non-monotone data is the

root, which explains the smaller number of leaf nodes in the trees generated

by the raw data.

Table 3.4: p-values yielded of statistical t-tests and one-sided confidence intervals
for the indicators in the Moscow case study

Confidence intervals
Indicators P-value

95% 90%
Error on test set 0.0% (-∞, -0.284) (-∞, -0.340)
Average number of monotone trees
generated after pruning a large tree 0.0% (1.868, +∞) (1.979, +∞)

Average number of leaves 0.0% (2.115, +∞) (2.281, +∞)

Discussion of results

Based on the results obtained from the two case studies we conducted in this

chapter, we draw the following conclusions:

1. Our experiments with regression trees support the finding in Feelders

(2000) and Potharst and Feelders (2002) for classification trees, namely

96 Chapter 3. Monotone decision trees

monotone trees perform comparably to non-monotone trees, but the

former are considerably smaller and therefore easier to interpret by the

human decision-makers.

2. The prediction error of the monotone trees generated from the mono-

tone (cleaned) data is significantly smaller than the prediction error of

the monotone trees generated from the non-monotone (original) data.

3. The cleaned data yield more monotone trees after pruning the initial

large tree than the raw data. This is preferred in monotone problems

where it is necessary to guarantee that the prediction model is mono-

tone.

4. The size (measured by the number of leaves) of the monotone trees

derived from the original data is smaller than the size of their coun-

terparts derived from the cleaned data; the difference is between one

and three leaves on average. This is mainly due to the fact that often

the only monotone tree generated from the original (non-monotone) is

the one-node (root) tree. This also explains the better performance of

the monotone trees obtained from the cleaned data compared with the

monotone trees obtained from the raw data.

In summary, for problems that have monotonicity properties in the do-

main (such as bond rating and house pricing), pre-processing the data by

making them monotone leads to considerable improvement in the perfor-

mance of the monotone models in terms of smaller errors on the test data,

less variability, and a larger number of generated monotone models.

3.4 Conclusion

In this chapter, we discussed monotone decision trees as a method to build

monotone models for prediction tasks in data mining. At the beginning of

the chapter, we introduced the basic terms and concepts concerning mono-

tone trees. We presented a general tree construction procedure that is based

on standard algorithms such as CART and ID3. Then, we reviewed pre-

vious studies related to generating decision trees with monotonicity con-

straints, and we discussed their main advantages and disadvantages. Based

3.4 Conclusion 97

on this overview, we justified the choice of a particular approach developed

by Feelders (2000) for deriving monotone classification trees, which we fur-

ther extended for monotone regression problems. The implementation of the

algorithm with our own modifications were described in the main part of

this chapter. We conducted two case studies on bond rating (a classifica-

tion problem) and house pricing (a regression problem) to derive monotone

decision trees by using our extended version of the tree-based approach.

We compared the performance of the monotone trees derived from both the

monotone cleaned and non-monotone original data. The results confirm our

second hypothesis stated in the introduction of this thesis (Section 1.4),

namely monotone models obtained from the monotone (transformed) data

outperform monotone models obtained from the original data. Besides the

experiments we conducted with monotone models, we also compared the

performance of monotone and non-monotone regression trees. Our results

support the finding in Feelders (2000) and Potharst and Feelders (2002)

for classification trees, namely monotone trees perform comparably to non-

monotone trees, but the former are considerably smaller and therefore easier

to interpret by the human decision-makers. This result confirms our first

hypothesis that for monotone problems monotone models have superior pre-

dictive performance to non-monotone models.

98 Chapter 3. Monotone decision trees

Chapter 4

Monotone neural networks

As we mentioned in the introduction of this thesis, neural networks are

another popular technique widely applied in data mining prediction prob-

lems. In this chapter, we consider monotone neural networks to build mono-

tone prediction models. First, we introduce some theoretical concepts about

the architecture and functionality of neural networks. Then, we discuss ear-

lier studies related to the development of monotone neural networks. In the

main part of this chapter, we consider two approaches for building monotone

neural networks. The first approach is proposed by Kay and Ungar (2000),

who argue that their type of two-layer neural networks can approximate any

monotone function. This proposition, however, is valid only for functions

with a one-dimensional input; it does not hold for multi-dimensional spaces,

as we show through a counter-example with two inputs. The second approach

is developed by Sill (1998). He constructs a special class of three-layer neu-

ral networks, and proves that this class can approximate arbitrarily well any

monotone function with one or more inputs. Given the universal approxima-

tion properties of Sill’s networks, we use them–with some modifications–to

build monotone models for prediction in this study. To demonstrate the uni-

versal approximation capabilities of Sill’s networks, we conduct simulation

studies with artificial data. Finally, we apply Sill’s class of monotone neural

networks to build monotone models for prediction in the two case studies

that we have presented in Chapter 2, and we draw conclusions about the

performance of the models.

100 Chapter 4. Monotone neural networks

4.1 Introduction

A standard feed-forward neural network with a multi-layer architecture is

represented as follows.

• One input layer with k nodes, each corresponding to an input variable,

and one bias unit set to a constant value of 1.

• One or more hidden layer(s) with a set of h+ 1 nodes.

• One output layer with one or more nodes.

In the literature, there is no consensus about the total number of layers

when specifying the architecture of a particular neural network. For some

researchers, the total number of layers includes the input, hidden, and output

layers. For others, it represents only the hidden and output layers, whereas

the input layer is considered as a link to the external world. We follow the

second convention; for example, a three-layer neural network consists of two

hidden layers and one output layer.

All the connections between the layers are weighted. Let wij denote the

weight for the connection between input j and hidden unit i, and vi the

weight for the connection between hidden unit i and the output. Then,

given an input x, the functional form of the output O
x

corresponding to a

network with one hidden layer is represented by

O
x
= σ

(

h
∑

i=1

viσ

(

k
∑

j=1

wijxj + θi

)

+ θ0

)

(4.1)

where θ0, θi, i = 1, . . . , h are the bias terms, and σ is the activation function,

which is usually taken to be the sigmoid function, σ(u) = 1/(1 + e−u).

For regression problems, the activation function applied at the output of

network is usually linear. The class of networks in (4.1) can approximate

any continuous function of k input variables on any compact subset of <k

(Cybenko, 1989).

The wide and successful application of neural networks is due to their

principal capability, namely learning. Analogously to the process in a human

brain, learning in neural networks is achieved by adjusting the connection

weights of the network. In prediction problems, the weight adjustment du-

ring the learning process aims at minimizing the difference (error) between

4.1 Introduction 101

the target (value of the dependent variable in the data) and the network’s

output corresponding to a particular input. The actual presentation of input

and target data is called training. A neural network learns by being trained.

The presentation of the entire data set to the network is called an epoch.

There are several learning algorithms for training a multi-layer feed-

forward neural network. The most popular algorithm, outlined already in the

introduction of this thesis, is error backpropagation (Rumelhart et al., 1986).

Because this algorithm has been discussed extensively in the literature, we

give only the following brief formal description of its working scheme.

The error backpropagation algorithm is based on the repeated application

of the following two passes:

1. Forward pass : the network is activated for one input, and the error

between the given target and network’s actual output is computed.

2. Backward pass : the network error is used to update the weights. Start-

ing at the output layer, the error is propagated backwards through the

network, layer by layer. This is done by recursively computing the

local gradient of each neuron; see (4.5) below.

This explains the name of the algorithm, “backwards propagation of the

error”.

Depending on the type of prediction problem, the network error is com-

puted in different ways. In regression, we have a network with one output,

which produces a real value. Then, given the data D =
(

xn, `
x
n

)N

n=1
, we aim

to minimize the mean-squared error (MSE) defined by

E =
N
∑

n=1

(`
x
n −O

x
n)2 , (4.2)

where On
x

is the network output for the input xn.

In classification, we typically have a network with a number of output

nodes corresponding to the number of class categories. Then, as shown by

Bishop (1997), the error function we typically try to minimize is the so-called

cross-entropy function given by

E = −
N
∑

n=1

`max
∑

c=1

`c
x
n ln

(

Oc
x
n

`c
x
n

)

. (4.3)

102 Chapter 4. Monotone neural networks

Here the target `c
x
n can be considered as the probability that input xn be-

longs to class `c. More precisely, the target `c
x
n is represented by a binary

vector containing the value one for c = `
x
n , and zero, otherwise. Hence, the

network’s output Oc
x
n must also be computed as a probability, which lies in

the range (0, 1) and adds up to one. This is achieved by using the softmax

activation function in the output layer; that is, for class c

Oc
x
n =

ewcx
n+θc

∑`max

c′=1 e
wc′x

n+θc′
. (4.4)

This function is a soft version of the winner-takes-all activation model, which

equals one for the largest output, and zero for all other outputs. Thus, the

error function in (4.3) is non-negative, and reaches its global minimum when

Oc
x
n = `c

x
n , for all c and xn.

In the second step of the backpropagation algorithm, we propagate the

error–computed by either (4.2) or (4.3)–in order to update the weights such

that they reduce the error. As the derivation of the update rule for the

weights has been extensively discussed in the literature (see, for example,

Bishop (1997)), we present only the general form of the rule, that is, at step

s

ws = ws−1 − η
N
∑

n=1

∇E|ws , (4.5)

where ∇E|ws is the gradient (the set of partial derivatives) of the error

function E in (4.2) or (4.3) with respect to the weights ws. The update rule

in (4.5) is known as batch learning, since the weights are updated after each

epoch. In contrast, in sequential learning the weights are updated after the

presentation of each input.

The parameter η in the update rule for the weights is called the learning

rate, which determines the step size of the learning process. Finding the

optimum value of η is not trivial. If η is relatively small, we expect to obtain

the minimum error, but at the cost of very slow learning (i.e., long computa-

tion time). If η is large, the learning process is speeded-up, but at the risk of

jumping over the minimum, which may result in a large error. Several pro-

cedures have been developed to overcome these difficulties (Bishop, 1997).

In summary, the backpropagation algorithm tries to minimize the network’s

error through the negative gradient of E, evaluated at ws at step s.

4.1 Introduction 103

As we have already discussed in this thesis, our ultimate goal is to build

prediction models with good generalization capability, i.e., the models should

not be specialized for the training data only (overfit), and should have rea-

sonable predictive accuracy for new data.

In the introduction of this thesis (p. 12), we mentioned that one of the

main drawbacks of neural networks is their tendency to overfit the data,

especially for small samples. This is caused by: (i) an excessive number

of network parameters (layers, hidden neurons and weight connections); (ii)

very large weights. Given these causes, there are two main approaches to

remedy this problem: model selection and regularization.

The objective of model selection is to find the model with the appropriate

number of network parameters for the particular problem at hand. One

method–like in decision trees–is to apply a pruning procedure, i.e., start with

a large network, and subsequently remove connections or neurons during the

training procedure; the final model is selected on the basis of the lowest

estimated prediction error.

Another more ad-hoc approach used for model selection in practice is

simply to apply a set of networks with different numbers of parameters on

the same data, and then compare their performance; again the model with

the smallest prediction error is preferred. Of course, this procedure might

be computationally expensive, and does not guarantee that the set of pre-

selected networks will lead to a satisfactory model. This method might be

more efficient if we have a priori knowledge, which can guide us to set the

parameters of the different networks; for example, a number of natural clus-

ters in the data may play the role of the number of hidden neurons (see

Section 4.3.2).

Regularization methods are used for weight restriction in order to improve

the generalization capabilities of the network. It is known that large weights

lead to network mappings with high curvature, i.e., all the observations in the

data are approximated exactly. Two methods are commonly used to prevent

the weights from growing too large, and to smooth out the network’s output:

stopped training and weight decay.

The idea in stopped training is to terminate the training process before

convergence is reached. This is done by either reducing the number of epochs

or using independent test set to compute the prediction error. The first

approach works in an ad-hoc manner, because it is not trivial to determine

the appropriate number of epochs; therefore, it is not very applicable. The

104 Chapter 4. Monotone neural networks

second approach is more realistic: it stops training the network as soon as

the prediction error on the test set starts increasing.

In weight decay, the error function E to be minimized is modified by

adding a term to penalize large weights:

Ẽ = E + λ
∑

ij

w2
ij

where λ is the regularization parameter. In other words, minimising Ẽ is

a trade-off between the goodness of fit and the smoothness of the network

mapping. An advantage is that the optimization problem is well defined;

a disadvantage is that the additional parameter λ needs to be determined

beforehand.

4.2 Related work

In the last few years, several researchers have developed methods for incor-

porating monotonicity constraints in neural networks.

A monotone unbiased model for two-class problems is presented by Archer

and Wang (1993b). They use two neural networks, one generating an opti-

mistic and one generating a pessimistic monotone frontiers. These frontiers

determine areas where the classification of a new observation can be specified

as “preferred”, “questionable”, or “not-preferred”. The optimistic boundary

lies in the “not-preferred” class, whereas the pessimistic boundary lies in the

“preferred” class. Now if a new point is below (above) both the optimistic

and pessimistic frontiers, its class would be determined as not-preferred (pre-

ferred) with a high degree of certainty. However, if the point lies between

the frontiers, then its classification is ambiguous and additional information

might be used to take a decision. The authors show that their model has

the effect of controlling the learning bias, because it provides more complete

information than a single neural network.

Archer and Wang (1993a) and Lory and Gietl (2000) present two other

neural network approaches that deal with monotonicity constraints for two-

group classification problems. Lory and Gietl (2000) study so-called learning

vector quantization type of networks where monotonicity is imposed by an

appropriate modification of the Euclidean distance between the so-called

codebook and input vectors. Archer and Wang (1993a) suggest a monotone

4.2 Related work 105

function (MF) model, which is a modification of the backpropagation learn-

ing algorithm. First, they pre-process the training data sample by using a

linear classification function with monotonicity constraints in order to ob-

tain monotone data. Then, the transformed data are used to train the net-

work. To guarantee that the final model is monotone, the authors constrain

the weights to be non-negative during the training process. In simulation

studies with artificially generated data, the authors demonstrate that their

monotone neural network approach outperforms linear discriminant analysis

in terms of lower misclassification rates.

Wang (1994) introduces another approach that enforces monotonicity

constraints on the network’s weights during the training process. His ap-

proach employs a neural-network curve-fitting model that produces density

estimation for univariate unimodal data. The topology of the network is a

standard backpropagation neural network with one input layer consisting of

one input node and one bias node, one hidden layer, and one output. As

Wang notes, univariate unimodal cumulative density functions (CDF) are

S-shaped, i.e, they are monotone increasing, and concave upwards and down-

wards on both sides of the mode point. To assure monotonicity, he enforces

the derivative of the network output to be non-decreasing. In addition, he re-

quires the second (partial) derivatives to be non-increasing/non-decreasing in

order to guarantee that the estimated function is concave downward/upward.

Wang demonstrates the application of his approach on real data, which con-

tain measurements of iris sepal width for 150 plants; it is known from pre-

vious studies that these data are unimodal. Wang’s results show that his

approach provides better fit than the traditional density method, because

he does not require any a priori assumptions for the functional form and he

preserves the unimodality of the data. Wang points out that–like any other

approach–his method for density estimation based on a neural network model

has the following disadvantages: (i) it is sensitive to the true estimation of

the mode in the data, and (ii) the weights in the neural network do not reveal

much information about the relationship between the input and the output

of the model.

Daniels and Kamp (1999) propose two approaches for the training of

neural networks that are monotone by construction; these approaches are

modifications of the standard backpropagation algorithm. The increasing

monotonicity of the networks in both approaches is guaranteed by enforcing

positive weights. The first algorithm sets all negative weights equal to zero

106 Chapter 4. Monotone neural networks

during each training step. The second algorithm modifies the standard error

function E by adding a bias term as a penalty for negative weights:

Em = E + λ
∑

ij

(|wij| − wij)

During the training phase, the parameter λ gradually increases until all the

weights are non-negative.

Daniels and Kamp apply the first type of monotone neural networks to

a house pricing case study, and compare its performance with the perfor-

mance of ordinary neural networks. As expected, the results show that the

monotone networks have better generalization capabilities, if the problem is

largely monotone.

Kay and Ungar (2000) present another method with monotonicity con-

straints enforced through the signs of the weights. They call their method

a Monotonic Semi-QUantitative system IDentification method (MSQUID).

They aim at estimating monotone functions based on a two-layer backpropa-

gation neural network with non-negative weights. They prove for univariate

functions that such a type of neural network can approximate any continuous

monotone function. This proposition, however, is not valid for multivariate

functions, as we show by a counter-example in Section 4.3.1. In addition,

they argue that the estimate computed by the monotone network will not be

close to the target, because it is affected by the finite size of the data sample.

Therefore, they extend their MSQUID by computing bounding envelopes for

all possible functions that could generate the data under study with a cer-

tain probability. This is done by first linearizing the functional form of the

network’s output, and then using an F-statistic to compute the confidence

interval of the network’s estimate. When using knowledge about the mono-

tone nature of a function, the confidence intervals obtained are smaller and

thus the prediction accuracy is better. Kay and Ungar demonstrate the ap-

plication of MSQUID by a real study for predicting the amount of inflow

(dependent variable) in a watershed on the basis of the water level (indepen-

dent variable) obtained from different streams; the two variables are known

to have a monotone relationship. The results show that MSQUID provides

a good fit to the data.

Sill and Abu-Mostafa (1997) also consider the incorporation of prior infor-

mation about the monotone nature of the target function in neural network

algorithms, which they call learning from monotonicity hints. Similarly to

4.2 Related work 107

Daniels and Kamp (1999), Sill and Abu-Mostafa modify the standard error

function by adding a penalty term for deviation from monotonicity. For a

candidate function f , they define so-called monotonicity error, which is a

scalar measure for the degree to which f obeys monotonicity, given a set of

input variables. They apply their method to two real cases: credit card appli-

cations (classification problem), and medical analysis (regression problem).

The results show that using monotonicity hints can significantly improve the

performance of a neural network compared with linear models and standard

neural networks.

Although the addition of monotonicity error enforces monotonicity on

the network and leads to improvement in the network’s performance, it does

not guarantee that the final model is totally monotone. Furthermore, this

approach can also be computationally expensive, because it requires the

optimization of a more complex function. To overcome these drawbacks, Sill

(1998) develops another type of neural networks with monotonicity preserved

by virtue of construction. The structure of these networks is similar to the

structure of the so-called adaptive logic networks, introduced by Armstrong

and Thomas (1997).

The adaptive logic network is a feed-forward multilayer network that uses

linear functions in the first hidden layer, and originally used the logic ope-

rators AND and OR (they explain the name “logic”) in the other hidden

layers. Obviously, such a network produces Boolean output. Later on the

logic operators were replaced by MAX and MIN functions, which allowed

real-valued functions to be computed as well. Due to their architecture,

adaptive logic networks have several advantages: (i) computation of the out-

put is simple and fast, due to the limited number of linear unit calculations

and simple comparison operators performed. In addition, at each iteration of

the training process only the weights of a single linear unit (the active one)

are modified, which speeds up network’s learning; (ii) by constraining the

coefficients of the linear units it is easy to incorporate domain knowledge.

Therefore, monotonicity can be easily imposed by restricting the coefficients

to be positive or negative; (iii) given an input, the network’s output is easy

to understand and interpret by the end user as the parameters of the linear

units directly reflect the relationships in the data. These networks have been

successfully applied in many fields, for example, prediction, data analysis,

control problems, robotics, and optimization of communication networks.

Yet, their main disadvantage is that they remain accessible commercially

108 Chapter 4. Monotone neural networks

only through “Dendronic Decisions Limited” (see Armstrong (1974)), and

are not fully disclosed in an academic setting, which limits their use for

research purposes.

Sill (1998) proposes an alternative approach. Using an architecture and

properties similar to the adaptive logic networks, he develops a three-layer

neural network with monotonicity constraints. In addition, he proves that

his type of network has universal approximation capabilities, and can out-

perform linear models and standard neural networks in real-world problems.

The theoretical and practical advantages of Sill’s monotone networks

make them attractive for application in monotone prediction problems. The-

refore, we apply his type of network to build monotone models. We refer

to it as a Sill network in the remainder of the thesis. In Section 4.3.2, we

formalize the architecture and functionality of Sill networks.

4.3 Algorithms for building monotone neural

networks

4.3.1 Two-layer monotone networks

Suppose we have a monotone problem with the dependent variable ` being

monotone in all independent variables and we want to predict ` by using

a neural network as defined in (4.1). To preserve the property of ` being

monotonically increasing in an input xj, the partial derivative of the output

O
x

with respect to xj must be enforced to be non-negative:

∂O
x

∂xj
= σ′ ·

h
∑

i=1

viσ
′

(

k
∑

j=1

wijxj + θi

)

· wij ≥ 0. (4.6)

Because σ′ > 0, (4.6) holds if and only if

h
∑

i=1

viσ
′

(

k
∑

j=1

wijxj + θi

)

· wij ≥ 0.

As shown by Kay and Ungar (2000), this condition is equivalent to the

constraint

4.3 Algorithms for building monotone neural networks 109

∀1≤i≤h vi · wij ≥ 0, for each input j, j = 1, . . . , k.

In case of decreasing monotonicity, the inequality is reversed. Kay and

Ungar prove for the one-dimensional case that a neural network constrained

in this manner can approximate any continuous monotone function. This

proposition, however, does not hold for multivariate functions. This is illu-

strated by the counter-example for two dimensions presented on p. 110.

First we show that the class of networks defined in (4.1) has an analogue

(see Proposition 4.3.1), which is used in the following counter-example. For

simplicity and without loss of generality, the networks considered here do

not include a sigmoid function at the final network’s output.

Proposition 4.3.1. The following two classes of neural networks coincide:

Class-1 (considered by Kay and Ungar (2000)):

O
x
=

h
∑

i=1

viσ

(

k
∑

j=1

wijxj + θi

)

+ θ0

subject to

∀1≤i≤h vi · wij ≥ 0, for each input j, j = 1, . . . , k.

Class-2:

O
x
= C +

h
∑

i=1

viσ

(

k
∑

j=1

wijxj + θi

)

+ θ0

where C is a constant, and

∀1≤i≤h vi ≥ 0, ∀1≤j≤k wij ≥ 0.

Proof. The proof follows from

1− ϕ(x) = −ϕ(−x), with ϕ(x) = 1/(1 + exp−x).

The same proposition also holds for ψ, with

110 Chapter 4. Monotone neural networks

ψ(x) =
ex − e−x

ex + e−x
,

but without the constant C, because ψ(x) = −ψ(−x).

Counter-example for the approximation capabilities of two-layer

monotone neural networks

Consider the Class-2 functions as defined in Proposition 4.3.1. Class-2 corre-

sponds to a neural network with one output, one hidden layer with sigmoid

activation function σ(x) = 1/(1 + exp−x) and parameters v, w, and θ. The

input vector is denoted by x = (x1, x2 . . . , xk).

To show that Class-2 cannot approximate every monotone continuous

function–except for the one-dimensional case (k = 1)–we give a counter-

example with k = 2 (a counter-example in a slightly different context was

originally communicated to us by Dr. A.J.E.M. Janssen of Philips Research

Laboratories, Eindhoven, The Netherlands).

Let X = {x1, x2} be the two-dimensional input space with values on

[0, 1]2, and let f : X → [0, 1] be a function defined by three regions: fε = 0

in region R1, fε = 1 in region R2, and 0 ≤ fε ≤ 1 in region R3, for ε ∈ (0, 1).

To determine the boundaries for the three regions, we use the following four

linear functions:

a1 = 3x1 + x2 − 1 + ε

a2 = x1 + 3x2 − 1 + ε

a3 = 3x1 + x2 − 1− ε

a4 = x1 + 3x2 − 1− ε.

(4.7)

Next, we define three regions in the input space:

R1 :
{

(x1, x2) | a1 < 0 and x1 < x2
}

∪
{

(x1, x2) | a2 < 0 and x1 ≥ x2
}

R2 :
{

(x1, x2) | a3 > 0 and x1 < x2
}

∪
{

(x1, x2) | a4 > 0 and x1 ≥ x2
}

R3 : X −R1 ∪R2,

(4.8)

and define fε by:

4.3 Algorithms for building monotone neural networks 111

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

 a1=0

 a2=0

λλλλ

λλλλ
R3

R2

 a3=0

 a4=0

1

1

0

0 R1

Figure 4.1: Graphical representation of fε defined in (4.9)

fε =

0 on R1

1 on R2

λ on R3,

(4.9)

where

λ =

{

3x1+x2−1+ε
2ε

if x1 < x2,
x1+3x2−1+ε

2ε
otherwise.

The graphical representation of fε is given in Figure 4.1.

By taking ε small enough we can find points A,B, and C on a straight

line with fε(A) = 0, fε(B) = 1 and fε(C) = 0; see Figure 4.2.

Now suppose we have a neural-network approximation f̂ of fε of the form

f̂(x) = C +
h
∑

i=1

viσ

(

k
∑

j=1

wijxj + θi

)

+ θ0 (4.10)

with ∀1≤i≤h vi ≥ 0, ∀1≤j≤k wij ≥ 0, and

112 Chapter 4. Monotone neural networks

0 1

1

x1

x2

C

B

A P

Q

 Flat line

 Steep line

Figure 4.2: Graphical representation of the lines [A, B, C] and [P, Q].

max
x∈[0,1]2

∣

∣

∣
fε(x)− f̂(x)

∣

∣

∣
<

1

8
. (4.11)

We will show that this leads to a contradiction if ε is small enough. To

do so, we show that the increase in fε from A to B implies that the neural-

network approximation f̂ also increases from A to B. However, this causes

at least the same increase in f̂ from P to Q. Given that fε(P) = fε(Q) = 0,

we have a contradiction with the fact that the neural-network approximation

f̂ is close to the true function fε in terms of (4.11).

First, consider the term i in (4.10)

f̂i = viσ

(

k
∑

j=1

wijxj + θi

)

.

The contour lines of f̂i are straight lines with normal vector (wi1, wi2) in

the positive quadrant since wi1 ≥ 0 and wi2 ≥ 0. So points for which f̂i is

constant must lie on a straight line.

We now split the sum of f̂ in (4.10) into the following three terms:

4.3 Algorithms for building monotone neural networks 113

Normal vector to [A,B,C]

w1

w2

Normal vectors to
steep lines

Normal
vectors to
 flat lines

Figure 4.3: Normal vectors to [A, B, C], flat and steep lines.

f̂ = C +
∑

i∈Flat

f̂i +
∑

i∈Steep

f̂i,

where Flat corresponds to the lines that are “flatter” than or as flat as the

line [A,B,C], i.e., the vector (wi1, wi2) perpendicular to the lines is in the

shaded area in Figure 4.3. Similarly, Steep corresponds to lines that are

“steeper” than or as steep as the line [A,B,C].

The increase in f̂ in (4.10) when moving from A to B can be caused by

flat lines only. So

∑

i∈Flat

f̂i(B)−
∑

i∈Flat

f̂i(A) ≥
6

8
,

because fε(A) = 0, fε(B) = 1 and |fε − f̂ | < 1/8 everywhere.

Now consider the line [P,Q] in Figure 4.2, which is parallel to the x2-axis.

Then

∑

i∈Flat

f̂i(Q)−
∑

i∈Flat

f̂i(P) ≥
6

8
,

since P is below all flat lines that cross the line [A,B] somewhere, and Q is

above all lines that cross the line [A,B] somewhere. Hence

114 Chapter 4. Monotone neural networks

f̂(Q)− f̂(P) =
∑

i∈Flat

f̂i(Q)−
∑

i∈Flat

f̂i(P)

+
∑

i∈Steep

f̂i(Q)−
∑

i∈Steep

f̂i(P)

≥ 6

8
,

because

∑

i∈Steep

f̂i(Q)−
∑

i∈Steep

f̂i(P) ≥ 0.

Note that all terms in f̂i are non-decreasing on the line [P,Q]. However,

fε(P) = fε(Q) = 0 and |fε − f̂ | > 1/8, contradicting (4.11).

4.3.2 Three-layer Sill monotone networks

As the counter-example in the previous section proved, two-layer monotone

networks cannot approximate all continuous monotone functions.

Therefore, we now consider another class of monotone neural networks,

proposed by Sill (1998); these networks prove to have universal approxima-

tion capabilities. Below we provide a detailed description of their architec-

ture and training algorithm.

A Sill network has a three-layer architecture (with two hidden layers).

Figure 4.4 gives an example of Sill network’s architecture. The input layer

is connected to the first hidden layer consisting of a set of linear units (hy-

perplanes), which are combined into several groups (the number of units in

each group is not necessarily the same). Corresponding to each group is a

second hidden-layer unit, which computes the maximum over all first-layer

units within the group. The final output unit computes the minimum over

all groups.

In formal notation, a Sill network can be represented as follows. Let R

denote the number of nodes in the second hidden layer; that is, the number

of groups in the first hidden layer, with outputs g1, g2, . . . , gR. Let hr denote

the number of hyperplanes within group r, r = 1, 2, . . . , R. The parameters

(weights) of the hyperplanes in r are k-dimensional vectors denoted by w(r,1),

w(r,2), . . ., w(r,hr); the matrix of all weights and biases is denoted by W .

4.3 Algorithms for building monotone neural networks 115

1 x1 xk …

M A X M A X M A X

M I N

M O N O T O N E O U T P U T

2nd hidden layer

1st hidden layer
(linear units)

All weights are constrained
positive except for the bias

Input layer

I N P U T V E C T O R B I A S

Figure 4.4: An example of Sill network’s architecture.

Then, the output at group r is defined by:

gr(x) = max
j

(

w(r,j) · x + θ(r,j)
)

, 1 ≤ j ≤ hr, (4.12)

where θ is a bias term.

The final output of the network is given by

O
x
= min

r
gr(x), (4.13)

or in classification problems

O
x
= min

r
σ(gr(x)), (4.14)

where σ is the sigmoid function.

From (4.13) and (4.14), it follows that one group and one hyperplane

within this group uniquely determine the output of the network for each

input vector. Such group and hyperplane are called active. In case of ties in

the group or network outputs (though this is unlikely, because the outputs are

continuous), the choice of the active hyperplane or group is made randomly.

To guarantee that the network output is monotone, all weights for an

input to the first hidden layer are constrained to be non-negative (non-

116 Chapter 4. Monotone neural networks

positive), if increasing (decreasing) monotonicity is desired for that input.

Here, we enforce the parameters in (4.12) to be non-negative by taking an

appropriate transformation such as w = z2, where z is a free parameter.

As proven by Sill (1998), a Sill network is capable of approximating

any continuous monotonic function arbitrarily well, given sufficiently many

groups and hyperplanes within each group. For completeness, we present

the theorem for the universal approximation capability of Sill networks.

Theorem 4.3.1 (Sill, 1998). Let m(x) be any continuous bounded mono-

tone function with bounded partial derivatives, mapping [0, 1]k to <. Then,

for any ε > 0 there exists a function mnet(x) which can be implemented by a

monotone network and is such that |m(x)−mnet(x)| < ε, for any x ∈ [0, 1]k.

Due to their architecture, Sill networks can approximate convex surfaces

by the maximum operator, and concave surfaces by the minimum operator;

see Figure 4.5 (the solid lines represent the approximation). The combination

of both minimum and maximum operators also enables the Sill networks to

approximate any type of monotone function, for example, functions that are

neither convex nor concave (see Experiment 1, p. 122).

x

g(x)

x

g(x)

(a) (b)

Figure 4.5: Approximation of (a) a convex function by the maximum operator,
and (b) a concave function by the minimum operator in a Sill network

Training algorithm

Given the architecture of a Sill network, the training algorithm is easily

implemented. We start with W0, the initial values for W , the matrix of

4.3 Algorithms for building monotone neural networks 117

parameters (weights and biases), which are obtained from the initialization

procedure described below. To guarantee that the trained network does not

overfit the data, we first randomly partition the whole data into a construc-

tion set and a test set. Next, we repeat the following procedure five times.

We randomly split the construction set into a training set and a valida-

tion set. We run an iterative optimization technique, such as Quasi-Newton

line search, on the training set to find the parameters of the network that

minimize the prediction error. At each iteration, for all input vectors xn,

n = 1, . . . , N , the network’s outputs O
x
n are computed and the network’s

error E is calculated over all data points. The update of the parameters is

done in batch mode, i.e., after each pass of the training data. The iterative

process terminates when either convergence is reached or some other stop-

ping criterion is satisfied (e.g., the maximal number of iterations or function

evaluations is reached). By using the parameters of the trained network, we

compute the prediction error on the validation set. From the five trained

networks we select the network with the lowest prediction error on the va-

lidation set. The generalization error of the final model is computed on the

test set. The training algorithm outline is given in Algorithm 4.1.

Modifications in the architecture and the training algorithm of Sill

networks

As we mentioned in the description of a Sill network architecture (p. 116),

the network’s output is guaranteed to be monotone by enforcing the weights

to be non-negative. We take w = z2, which is our simple modification of the

Sill network’s architecture. In the original approach, Sill guarantees mono-

tonicity by applying an exponential transformation on the weights, namely

w = ez. However, this exponential function cannot give a zero value, so it

does not allow the weights to be zero. Hence, it is impossible to approximate

flat (constant) functions by using the original Sill’s approach.

Our second modification concerns the architecture of Sill networks for

classification problems. As we discussed in the introduction of this chapter,

if the predicted variable is discrete, then the output layer of neural networks

usually consists of a number of nodes corresponding to the number of class

categories `max. Sill (1998) applies a similar approach in the prediction of

a company’s bond rating, using his three-layer monotone networks. He uses

118 Chapter 4. Monotone neural networks

Algorithm 4.1 Training of Sill networks
Initialization:
Construction_set = Network construction data
Test_set = Test data
R= number of groups
hr= number of hyperplanes in group r
E∗val=∞

Training:
for i := 1 to 5 do
Train_set = Training data ⊂ Construction_set

Validation_set = Construction_set - Train_set
W0= R × hr × (k + 1) matrix of initial network’s parameters obtained
from the initialization procedure
W= minW Error(Train_set,W0,R,hr) (minimization by Quasi-Newton
line search)
Eval=Error(Validation_set,W)
if E∗val > Eval then
E∗val = Eval

W ∗ = W
Bmnet = SillNet(W ∗,R,hr)

end if
end for

Determine the generalization prediction accuracy of the final model by
applying Bmnet on Test_set

a set of networks represented by the same number of input nodes, groups

and hyperplanes, and one output corresponding to a particular bond rating

(i.e., class category); the only difference between the networks in the set are

the weights and the biases assigned to the connections. In this case, given

an input, the predicted class is given by the Sill network with the maximum

output among the networks in the set.

In our study, however, we take a slightly different approach. The main

difference is that we train only one network with one output as defined in

(4.13). Furthermore, we present to the network the original discrete labels

as targets without applying any transformation to them (e.g., making the

labels continuous within the range [0,1]). The idea is that each discrete label

` can be considered as the middle of an interval of size one. In other words,

4.3 Algorithms for building monotone neural networks 119

any value `′ that is |`′ − `| < 1/2 lies on the same interval and `′ = `; other-

wise, `′ 6= `. Hence, the network’s error for point xn is defined by

if |`
x
n −O

x
n | < 1/2 then

E
x
n = [2(`

x
n −O

x
n)]4

else if |`
x
n −O

x
n | ≥ `max then

E
x
n = `max

else

E
x
n = |`

x
n −O

x
n |.

end if

Then the total network’s error we try to minimize after one epoch is:

E =
N
∑

n=1

E
x
n . (4.15)

Note that in the first case when the network approximation O
x
n is within

the interval of `
x
n , i.e., we have correct classification, we still add a penalty

term. If O
x
n is close to the middle of the interval (`

x
n), then the penalty is

negligibly small due to the exponent of four. If O
x
n approaches, however, one

of the ends of the interval of the true label, then the penalty approaches one.

In this way, we enforce the network’s output to be close to the target label

and thus we stabilize the network’s training process. In the second case for

the error function when the difference between the true and predicted labels

is larger than or equal to the number of class categories `max, we add as a

penalty `max only. Thus, we prevent the network of overfitting outliers. In

the final case for the error function, we have a misclassified point within the

range of class categories and the penalty is the absolute difference between

the true and predicted labels.

Our network’s output representation has two advantages over Sill’s ori-

ginal approach: (i) a single network is trained, which speeds up the learning

process; (ii) it requires less storage and update (memory) capacity; if the

target has a large number of class categories, and if the network has many

groups and hyperplanes, then Sill’s original approach would be considerably

more expensive than our method.

Like we did for decision trees in Chapter 3, we extend the application

of Sill networks to regression problems. This is simply done by using the

standard MSE as a measure for the quality of the prediction.

120 Chapter 4. Monotone neural networks

We also modify the training algorithm of Sill networks, i.e., we apply

the Quasi-Newton method with line search to minimize the network’s error

instead of the gradient descent originally proposed by Sill. Note that from a

theoretical point of view neither the gradient descent nor the Quasi-Newton

optimization technique is suitable for the problem at hand as the functions

in (4.13) and (4.14) are non-differentiable. For this type of problems, the

simplex search method proposed by Nelder and Mead (1965) is more appro-

priate technique as it uses only function evaluations. However, in the prac-

tical applications presented in this thesis the Quasi-Newton method with

the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Hessian

matrix (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) ap-

pears to comparably perform to the simplex method but the former is much

faster. Therefore, we finally use the Quasi-Newton method in the training

algorithm to minimize the network’s error.

Finally, we apply a different initialization procedure to set the weights

and biases of the network. In his training algorithm, Sill uses the parameters

obtained from the linear model fitted to the whole data set, and add a small

random perturbation to them in order to initialize the parameters of the

hyperplanes in each group. Our initialization procedure is described below.

Initialization of the network’s parameters

In practice, the initial values for the network’s weights are usually taken

at random. Then, however, the network’s solutions may differ considerably

each time the network is trained. In contrast, appropriate weight initia-

lization may make it more robust and thus, improve the generalization ca-

pabilities of the network, and speed up the learning process. Therefore, in

this study we apply an initialization procedure for the network’s weights,

which is based on the training data. Our main objective is to ensure that

the training algorithm starts from a reasonable solution. To achieve such

a start, we first partition the set of input variable values into a number of

clusters (subsets) corresponding to the number of groups in the network.

Then, we find the parameters of the linear model that best fits to the data

belonging to each cluster. Finally, by adding a small random perturbation

to the linear parameters, we initialize the parameters (weights and biases)

for each hyperplane in each group.

More formally, we first apply the K-means clustering method (see Duda

4.3 Algorithms for building monotone neural networks 121

and Hart (1973) for details) on the explanatory variables to partition the data

into R clusters (subsets), where R corresponds to the number of groups in

the network. In this way, we obtain groups of objects with similar attribute

values. For each cluster r (r = 1,. . . , R) we find the parameters of the linear

model that best fits the data belonging to a particular cluster. To illustrate,

let us consider cluster r. The linear model obtained from this cluster has the

form:

fr(x) = βr · x + θr, (4.16)

where β is a k-dimensional vector of parameters, θ is a scalar, and x =

(x1, . . . , xk).

Now we can also consider the model in (4.16) as a hyperplane from the

network with parameters |βr| = wr = z2r and a bias term θr. Hence, the

initial parameters for each hyperplane j (j = 1, 2, . . . hr) in cluster r, are

obtained by

θ(r,j) = θr + τ

and

z(r,j) =
√

|βr|+ τ

where τ is a small random perturbation, such as 0.01N (0, 1).

Software. The implementation of our training algorithm of Sill networks

is done in MATLAB (see the MATLAB web-site in the bibliography). One

of the main strengths of MATLAB is its ability to handle large matrices,

and thus, to perform complex calculations extremely quickly. In addition,

the large number of built-in functions for numerical optimization allow us to

develop a fast and efficient algorithm for training Sill networks.

Simulation studies

In his case study on bond rating, Sill (1998) shows that his three-layer

monotone networks perform better than linear models and standard neu-

ral networks. To better demonstrate the approximation capabilities of Sill

networks, we now conduct two simulation studies with artificially generated

data, and the results are reported. We emphasize that our main objective is

122 Chapter 4. Monotone neural networks

to check the extent to which Sill networks can approximate a data generating

process with a given functional form, rather than to check the generalization

prediction accuracy of the networks on new data. Therefore, the functions

we use to generate the data in both studies are deterministic, i.e., the data

are noise-free. Because the input data for both experiments are the same,

we first describe their generating process.

Let x1 and x2 be vectors of equispaced N elements taking values on

[0,1]; the interelement spacing is δ. Then the input space is defined as the

Cartesian product of x1 and x2 on grid [0, 1]2, that is

{

(x1, x2)
}

=
{

0, δ, 2δ, . . . , 1
}2

.

In our experiments, we take δ = 0.1, i.e., the two-dimensional input space

consists of 121 points.

Experiment 1. As noted in Section 4.3.2, the MAX and MIN operators

in the architecture of Sill networks allow the networks to approximate mono-

tone concave and convex functions. In this experimental study, we illustrate

that Sill networks can also approximate monotone functions that are nei-

ther convex nor concave. Here, for (x1, x2) ∈ [0, 1]2 we define such type of

function by

f(x1, x2) = 1 + x1 +
1

2

(

x22 − x21
)

. (4.17)

It is obvious that f(x1, x2) is monotonically increasing in x1 and x2, but

it is neither convex nor concave; see Figure 4.6.

Now, we aim to build a model that produces a good approximation of

f . Given that the function is monotone, a natural solution is to apply

Sill networks. However, to better assess the performance, we compare Sill

networks to standard two-layer neural networks (in short, NNs).

Since f(x1, x2) is noise-free, we use D = (x1, x2, f(x1, x2))
121
n=1 both as

a training set and a test set for the application of Sill networks and NNs.

In this case, the standard MSE is going to be very small for both types of

networks, so it is difficult to compare them. Therefore, we use an additional

criterion, namely the average percentage error (AvrPE) defined as

AvrPE = 100
N
∑

n=1

|`
x
n −O

x
n |

`
x
n

.

4.3 Algorithms for building monotone neural networks 123

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
1

1.2

1.4

1.6

1.8

2

x1

x2

f

Figure 4.6: Graphical representation of the non-convex non-concave function in
(4.17)

Finally, we use various configurations for the architecture of both net-

work types. We repeat twenty times the application of the networks with

each configuration and different initial weights and biases, and average the

results. Tables 4.1 and 4.2 report the means and variances of the performance

measures estimated from the experiments.

For a better illustration of the approximation capabilities of both network

types, we provide graphical representations for their best solutions, in the

sense of lowest error rates and variances, obtained for a particular network

architecture; that is, for a Sill network with four groups and six hyperplanes

in each group, and a standard neural network with two hidden nodes; see

Figures 4.7–4.10.

The results clearly show that Sill networks outperform standard NNs.

First, Sill networks obtain better prediction accuracy with low MSE and

AvrPE. Furthermore, they produce solutions with less variability across dif-

ferent runs compared to standard NNs, as the variances of the errors show in

Tables 4.1 and 4.2. This implies that Sill networks lead to similar solutions

after each run as a result of our initialization procedure, whereas standard

124 Chapter 4. Monotone neural networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x1

Sill network
Original f(x1,x2)

Figure 4.7: Sill network approximation with four groups and six hyperplanes of a
non-convex non-concave function; MSE = 0.0002, AvrPE = 0.80% (plot against
x1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x2

Sill network
Original f(x1,x2)

Figure 4.8: Sill network approximation with four groups and six hyperplanes of a
non-convex non-concave function; MSE = 0.0002, AvrPE = 0.80% (plot against
x2)

4.3 Algorithms for building monotone neural networks 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

Neural network
Original f(x1,x2)

x1

Figure 4.9: Standard neural network approximation with two hidden neurons of a
non-convex non-concave function; MSE = 0.0014, AvrPE = 2.22% (plot against
x1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

Neural network
Original f(x1,x2)

x2

Figure 4.10: Standard neural network approximation with two hidden neurons of
a non-convex non-concave function; MSE = 0.0014, AvrPE = 2.22% (plot against
x2)

126 Chapter 4. Monotone neural networks

Table 4.1: Application of Sill networks to the non-convex non-concave function in
(4.17)

Sill network
(groups ×××× planes)

MSE var(MSE) AvrPE (%) var(AvrPE)

2 × 2 0.0008 5.3e-07 1.39 0.53
2 × 4 0.0006 4.7e-07 1.18 0.48
2 × 6 0.0005 4.6e-07 1.10 0.47
4 × 2 0.0003 1.1e-09 0.91 0.00
4 × 4 0.0003 1.9e-09 0.89 0.00
4 × 6 0.0002 3.2e-09 0.85 0.01
6 × 2 0.0009 6.6e-07 1.51 0.64
6 × 4 0.0008 6.4e-07 1.38 0.64
6 × 6 0.0003 2.0e-07 0.91 0.20

Table 4.2: Application of standard neural networks to the non-convex non-concave
function in (4.17)

NNs
(hidden nodes) MSE var(MSE) AvrPE (%) var(AvrPE)

2 0.0020 3.7e-06 2.04 2.03
4 0.0021 3.7e-06 2.02 2.30
6 0.0021 3.3e-06 2.08 2.08
8 0.0024 3.1e-06 2.38 1.77

NNs are more sensitive to the initial starting network’s parameters and thus

they lead to different outcomes. Finally, the results indicate that the various

architectures for each type of networks do not have a considerable effect on

the performance of the models built.

Experiment 2. Through the counter-example in Section 4.3.1, we showed

that two-layer monotone neural networks cannot approximate all monotone

functions with more than one input. Now we again apply Sill networks to

the function defined in (4.9), which has inputs x1 and x2–to illustrate the

approximation capabilities of three-layer monotone neural networks. The

function values are computed for ε = 0.3. To avoid division by zero in com-

puting the average percentage error in this experiment, we slightly modify

the original function, i.e., we add the constant one.

The results are reported in Table 4.3. Given the counter-example in

4.3 Algorithms for building monotone neural networks 127

Section 4.3.1, it is clear that two-layer monotone networks could not ap-

proximate f very well; therefore, we do not apply them in this simulation

study.

Table 4.3: Application of Sill networks to the monotone step function defined in
(4.9)

Sill network
(groups ×××× planes)

MSE var(MSE) AvrPE (%) var(AvrPE)

2 × 2 0.0333 8.5e-08 8.17 0.18
2 × 4 0.0334 1.1e-07 8.51 0.03
2 × 6 0.0333 9.2e-08 8.51 0.05
4 × 2 0.0022 1.4e-05 1.13 2.55
4 × 4 0.0003 1.5e-06 0.41 0.27
4 × 6 0.0004 1.5e-06 0.37 0.28
6 × 2 0.0012 5.1e-06 0.82 0.96
6 × 4 0.0006 2.8e-06 0.46 0.52
6 × 6 0.0001 2.9e-09 0.29 0.02

To better illustrate Sill network approximations of f , we plot the original

function values and the corresponding approximated values given by a Sill

network with six groups and six hyperplanes; see Figure 4.11.

The results indicate that Sill networks with sufficient number of groups

and hyperplanes can adequately approximate a monotone step function,

which cannot be approximated by two-layer neural networks. Table 4.3 shows

that networks with only two groups produce a poor approximation, whereas

networks with four or six groups lead to considerably better results. This

can be explained as follows. On the one hand, in the initialization step of our

training algorithm, we find a number of groups in the data corresponding to

the number of groups in the network, and for each of these groups we fit a

linear model; the parameters of the model with added small perturbations

are used to initialize the parameters (weights and biases) of each hyperplane

in the group. On the other hand, the monotone step function is defined by

four regions: two constant regions given by f=1 and f=2, and two conti-

nuous regions. Since the function value is monotone in the input variables,

the natural grouping with respect to the input data should represent the

different values of the true function. Hence, a Sill network with four or more

groups is expected to give a good approximation of the monotone step func-

tion. As the results, however, show Sill networks with four or six groups

128 Chapter 4. Monotone neural networks

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4
0.6

0.8

1
1

1.2

1.4

1.6

1.8

2

Sill network
Original f(x1,x2)

x1
x2

Figure 4.11: Sill network approximation of the monotone step function with six
groups and six hyperplanes; MSE = 0.0000045, AvrPE = 0.0683%

and only two hyperplanes in each group do not produce satisfactory results.

This is explained by the fact that the function values for the points in the

constant regions are also determined by the distribution of the points in the

input space, i.e., whether or not x1 ≥ x2. This condition means that more

hyperplanes are needed to capture the relationships between the dependent

and independent variables. Therefore, Sill networks with four or six groups

and four or six hyperplanes in each group lead to better approximations on

average (lower error rates).

In summary, the results from our second experiment clearly demonstrate

that three-layer Sill networks can approximate monotone functions to any de-

sired degree of accuracy, given sufficient number of groups and hyperplanes;

this observation validates the conclusion drawn by Sill (1998).

In general, the results from both experiments show that Sill networks

can approximate very well “difficult” functions with a moderate number of

groups and hyperplanes. However, we did not find any systematic rule or

4.3 Algorithms for building monotone neural networks 129

method to determine the number of groups and hyperplanes beforehand; this

remains a matter of trial and error.

4.3.3 Real case studies

In this section, we report the results from the application of Sill monotone

networks in the two case studies introduced in Section 2.5, namely bond

rating (a classification problem) and Moscow house pricing (a regression

problem).

Our main objective is to build monotone models based on the original

data and cleaned data obtained after applying the greedy algorithm for re-

labeling (Section 2.4), and to compare the models’ performance. The exper-

imental set-up is analogous to that used with monotone decision trees (see

Section 3.3.2).

We repeat the following experiment 20 times. The raw (non-monotone)

data set is randomly partitioned into a construction set with 75% of the

observations and a test set with 25% of the observations. The construction

set is randomly split into a training set with 50% of the observations, and

a validation set with 25% of the observations. The training set is used to

train a monotone network, whereas the validation set is used to compute the

network’s error. We train five monotone networks, and select the one with

the lowest error on the validation set. Finally, we compute the prediction

error of the model on the test set.

The same experiment is carried out with the cleaned (monotone) data.

The only difference is the way the error of the final model is computed: we

compute the prediction error on the basis of the same 25% of the observa-

tions from the raw data, which were used as the test set in the previous

experiment. Thus, the model is constructed from the cleaned data, whereas

the performance is measured on the original data.

Finally, in order to provide more general conclusions of the results, for

both case studies we use three Sill network topologies with different numbers

of groups and hyperplanes in each group; see Table 4.4.

A. Bond rating

The results from the experiments with the monotone and non-monotone

bond rating data are reported in Table 4.5.

130 Chapter 4. Monotone neural networks

Table 4.4: Three topologies of Sill networks for two case studies

Number of × Number of
groups hyperplanes

2 × 2
3 × 3
4 × 4

Table 4.5: Estimated mean and variance of prediction errors of Sill networks for
monotone and non-monotone bond rating data

Mean Variance
Sill network

(groups × planes) Monotone
data

Non-
monotone

data

Monotone
data

Non-
monotone

data
2 × 2 0.53 0.54 0.001 0.003
3 × 3 0.49 0.51 0.001 0.001
4 × 4 0.50 0.51 0.002 0.003

The results show that Sill networks trained on the monotone data tend to

be more accurate and stable than the networks trained on the non-monotone

data. Furthermore, for both cleaned and raw data sets, it is clear that net-

works with a large number of parameters perform better than networks with

fewer parameters. We can notice, however, that across various topologies the

networks trained on the non-monotone data have more fluctuating variances

compared with the networks trained on the monotone data. This finding

indicates that the prediction results obtained from the former networks are

more dependent on the topology than those obtained from the latter net-

works.

Next we test how significant the differences are, given that the test set is

the same in the experiments with monotone and non-monotone data, respec-

tively. We conduct paired t-tests of the null hypotheses that the networks

built from both data sets have the same prediction error against the one-sided

alternatives. Table 4.6 reports the p-values and the confidence intervals at

90% and 95%.

The results from the statistical tests show that for 2×2 and 3×3 networks,

the models derived from the monotone data have significantly smaller errors

than those derived from the non-monotone data. For 4 × 4 networks the

4.3 Algorithms for building monotone neural networks 131

Table 4.6: p-values of paired t-tests and one-sided confidence intervals for the
difference in error means in the bond rating case study with monotone and non-
monotone data

Confidence intervals Sill network
(groups × planes) p-value

95% 90%
2 × 2 3.0% [-1, -0.002) [-1, -0.005)
3 × 3 4.3% [-1, -0.001) [-1, -0.004)
4 × 4 16.5% [-1, 0.008) [-1, 0.004)

difference in the errors is statistically insignificant at 5% and 10% significance

levels.

Finally, we perform F-tests (with 19 degrees of freedom) to check the

significance of the differences in variances. As Table 4.5 suggests, we can

expect significant differences for the first type of Sill networks (2× 2). This

is confirmed by the p-value of the test, namely 4.4%. For 3 × 3 and 4 × 4

networks the differences are statistically insignificant: the p-values are 50%

and 20.1%, respectively.

B. Moscow house pricing

Similar to the bond rating case study, we use monotone and non-monotone

Moscow housing data, to build monotone models based on Sill networks.

The summary of the results is given in Table 4.7.

Table 4.7: Estimated mean and variance of prediction errors of Sill networks for
monotone and non-monotone Moscow housing data

Mean Variance
Sill network

(groups × planes) Monotone
data

Non-
monotone

data

Monotone
data

Non-
monotone

data
2 × 2 0.48 0.66 0.12 0.23
3 × 3 0.35 0.51 0.12 0.14
4 × 4 0.23 0.44 0.03 0.10

We again compute paired t-statistics to test the significance of the dif-

ference in the estimated error means; Table 4.8 reports the p-values and the

132 Chapter 4. Monotone neural networks

one-sided confidence intervals at 90% and 95%.

Table 4.8: p-values of paired t-tests and one-sided confidence intervals for the
difference in error means in the Moscow housing case study with monotone and
non-monotone data

Confidence intervals Sill network
(groups × planes) P-value

95% 90%
2 × 2 3.0% (-∞, -0.025) (-∞, -0.061)
3 × 3 2.3% (-∞, -0.029) (-∞, -0.059)
4 × 4 0.0% (-∞, -0.124) (-∞, -0.144)

The results clearly indicate that the Sill networks built on the monotone

data outperform the Sill networks built on the non-monotone data; the pre-

diction errors of the former are significantly smaller than the errors of the

latter.

We again conduct F-tests (with 19 degrees of freedom) for the significance

of the difference in variances. The p-values for 2× 2 and 3× 3 networks are

7.0% and 35.4%, respectively; the p-value of 0.8% for 4×4 shows significantly

different variances. Although the differences in the variances for the smaller

networks appear to be statistically insignificant at a significance level of 5%,

the results show the tendency of the Sill networks trained on the cleaned

data to have less variability compared with the Sill networks trained on the

raw data.

Discussion of results

Based on the results for the two case studies in this chapter, we draw the

following conclusions:

1. The prediction errors of the Sill networks trained on the cleaned data

are generally smaller than the prediction errors of the networks trained

on the raw data. This finding holds for networks with different topolo-

gies (types of architecture).

2. Across the runs with different data samples, monotone models (net-

works) derived from the monotone data tend to be more stable, i.e.,

their prediction accuracy varies less, compared with the monotone

models derived from the non-monotone data.

4.4 Conclusion 133

Although the results from both case studies indicate that larger networks

outperform smaller networks, the problem of setting the right number of

groups and hyperplanes in each group remains. On the one hand, as we

discussed for the bond rating data, networks with many weights and biases

lead to the better predictions but at the cost of increasing the variance.

On the other hand, large networks built on the cleaned and raw Moscow

housing data, respectively, produced more accurate and stable monotone

models. Hence, choosing the number of parameters is domain dependent.

However, it is clear that the monotone data lead to models superior to the

non-monotone data, irrespective of the problem at hand.

4.4 Conclusion

In this chapter, we discussed monotone neural networks as a method to build

monotone models for prediction tasks in data mining. At the beginning of the

chapter, we introduced the basic terms and concepts concerning neural net-

works. We presented the architecture and functionality of a standard neural

network, and described backpropagation as the most popular training algo-

rithm. Then, we reviewed previous studies on monotone neural networks,

and we discussed their main advantages and disadvantages. In the main part

of the chapter, we described two existing approaches for building monotone

networks. The first approach is developed by Kay and Ungar (2000); it is

based on networks with two layers and positive weights enforced on the con-

nections between the layers. Through a counter-example with two inputs,

we demonstrate that their type of network does not have universal approx-

imation capabilities; this disproves the proposition stated by the authors

that two-layer monotone networks can approximate any monotone function.

Next, we described the architecture and functionality of a three-layer mono-

tone network proposed by Sill (1998). He proves that his type of network

can approximate any monotone function to any degree of accuracy. There-

fore, we chose Sill’s approach to build monotone neural networks (models).

Given the objectives of our research, we modified the original architecture,

the initialization procedure and training algorithm of Sill networks. Next, we

reported the results from our simulation studies with artificially generated

data in order to demonstrate the approximation capabilities of Sill networks.

First we showed that they can approximate any monotone function includ-

ing functions that are neither convex nor concave. In the same study we

134 Chapter 4. Monotone neural networks

demonstrated that Sill networks outperform standard neural networks. This

finding supports the results reported by Sill (1998), and our first hypoth-

esis stated in the introduction of this thesis (Section 1.4), namely that for

monotone problems monotone models have superior predictive performance

to non-monotone models. Another simulation study was conducted to illus-

trate that Sill networks can find adequate approximations of the function

used in our counter-example. Finally, we used two case studies, namely

bond rating (a classification problem) and house pricing (a regression prob-

lem) to build monotone neural networks by using our extended version of

the Sill approach. We compared the performance of the Sill networks built

on both the cleaned (monotone) and the original (non-monotone) data. The

results confirm our second hypothesis, namely monotone models obtained

from monotone (transformed) data outperform monotone models obtained

from the original data.

Chapter 5

Partial monotonicity

The problems discussed so far in this thesis are based on the assumption

that the target function we try to predict is monotone in all explanatory

variables. In this chapter we consider partially monotone prediction prob-

lems, where the dependent variable depends monotonically on some of the

independent variables but not on all. Our main objective is to construct

models for such type of problems. We begin with a simple example of a par-

tially monotone problem, and then we present a formal definition of partial

monotonicity. Our main contribution presented in this chapter is a novel

method to construct prediction models, where monotone dependences with

respect to some of the input variables are preserved by virtue of construction.

The basic idea is to convolute Sill monotone networks (see Section 4.3.2) with

weight (kernel) functions to make predictions. By using simulation and two

new real case studies, we demonstrate the application of our method. We

compare the results with standard neural networks and partially monotone

linear models. Finally, we give general conclusions about the performance

of the models derived from the three methods. The work presented in this

chapter has been published in Velikova et al. (2006a, 2006b).

5.1 Introduction

Suppose that for the housing data in Table 2.1 we observe one more variable,

namely the number of floors in a house. Then, our data set is represented

by Table 5.1.

136 Chapter 5. Partial monotonicity

Table 5.1: Extended house pricing data

No
Number of

Area
Number of

Volume
Price

floors rooms (Euro)
1 2 90 2 210 121 000
2 1 86 2 255 130 500
3 3 125 3 320 119 750
4 2 210 4 405 165 200
5 1 174 3 373 190 000

As we noted in the introduction of Chapter 2, common sense suggests

that the house price has a monotone increasing dependence on the number

of rooms, the total house area and the volume. However, we suspect that

a monotone dependency on the number of floors does not necessarily hold;

for example, some expensive houses (such as villas) may have only one floor,

whereas cheaper houses may have three floors. In other words, the data in

Table 5.1 represent an example of a partially monotone problem where the

house price depends monotonically on some of the house characteristics but

not on all. The question is how to use the prior knowledge about monotone

relationships in data to build accurate or easy to interpret prediction models.

It is known that non-monotone functions can often be represented as com-

positions of monotone functions; for example, unimodal (non-cumulative)

probability distribution functions are monotone increasing on the left side of

the mode point, and monotone decreasing on the right side (Wang, 1994).

This implies that first we can construct a number of monotone models cor-

responding to the monotone regions in the non-monotone function; then we

can combine the local monotone models in order to obtain the global model.

Let us again consider the example in Table 5.1. We form three groups of

houses with respect to the three values for the number of floors, namely the

first group consists of the second and fifth house, the second group consists

of the first and fourth houses, and the third group is based only on the third

house. Within these three groups, the other house attributes have a mono-

tone relationship with the house price. We build separate monotone models

based only on the latter three attributes; for example, we use monotone neu-

ral networks. Finally, to predict the price of a new house, we simply use the

monotone model obtained from the group to which the house belongs based

on the number of floors.

5.1 Introduction 137

In the remainder of this section we first introduce some notation and

definitions, which are used in the discussion throughout the chapter.

Notation and definitions

For the partially monotone problems defined in the introduction of this thesis

(p. 20), we have X = Xm∪X nm with Xm =
∏m

i=1Xi and X nm =
∏k

i=m+1Xi

for 1 ≤ m < k.

Furthermore, we have a data set D = (xm,xnm, `
x
)N , where xm ∈ Xm,

xnm ∈ X nm, and N is the number of observations. A data point x ∈ D is

represented by x = (xm,xnm); the label of x is `
x
. We assume that D is

generated by the following process

`
x
= f(xm,xnm) + ε, (5.1)

where f is a monotone function in xm and ε is a random error. In regression

problems, ε has zero mean, whereas in classification problems ε is a small

probability that the assigned class is incorrect.

The partial monotonicity constraint of f on xm is defined by

∀x,x′ ∈ X : xnm = x′nm and xm ≥ x′m ⇒ f(x) ≥ f(x′). (5.2)

Henceforth, we call Xm the set of monotone variables and X nm the set of

non-monotone variables. By non-monotone we mean that it is not known a

priori a variable to be monotone. Although, we do not constrain the size of

the two sets, our main assumption for the problems considered in this chapter

is that we have only a small number of non-monotone variables, and a large

number of monotone variables. Thus, monotonicity plays an important role

in the data generating process, and needs to be preserved.

Our objective is to find a smooth approximation f̂ of f(xm,xnm), such

that f̂ is monotone in xm, i.e., f̂ is a partially monotone estimator. As

we discussed in the introduction of this thesis, in practice the true function

f(xm,xnm) is unknown, and therefore we use `
x

in (5.1) as a close proximity

of f(xm,xnm) to find f̂ .

A simple solution is to consider the class of partially monotone linear

functions of the form:

138 Chapter 5. Partial monotonicity

f̂ = a0 +
m
∑

i=1

aix
m
i +

k
∑

j=m+1

ajx
nm
j subject to ai ≥ 0, i = 1, . . . ,m. (5.3)

We expect that the estimate in (5.3) produces good fit for simple (e.g., lin-

ear) functions; however, it gives poor approximations for complex functions.

Therefore, it is necessary to consider more flexible models for estimating an

arbitrary partially monotone function.

Following the definition of partial monotonicity in (5.2), we can simply

estimate f based only on the values of the monotone variables xm for each

possible value of xnm. This approach can only be applied in very simple cases

such as the example in the beginning of this chapter. However, for large

data sets with multiple or continuous non-monotone variables, the approach

is impractical: there are too many values of xnm, and most of them are not

observed. To overcome this problem, instead of taking each separate value

of xnm, we cluster the observations into groups that are similar with respect

to the non-monotone variables. On each group we then build monotone

estimations based on the values of the monotone variables only. Finally,

we smooth out the resulting estimations by using weight functions (kernels)

based on xnm.

As we discussed in Chapter 4, feed-forward neural networks are powerful

computational tools that can approximate an arbitrary function to any de-

sired level of accuracy. Therefore, in this study, we consider the outputs of

monotone neural networks as monotone function estimations for each group.

In the literature, these local networks are often referred to as experts, and

hence the overall function representation as a mixture of experts (Jacobs

et al., 1991). In Section 5.3.1, we propose a mixture-of-networks model that

preserves partial monotonicity by virtue of construction; we prove that our

partially monotone model has universal function approximation capabilities.

Furthermore, our approach is based on the “divide-and-conquer” strategy:

the full data set is naturally divided into several subsets (groups) according

to knowledge of the problem, and on each subset, a separate network expert

is used to solve a particular sub-task. This strategy has several advantages.

First, a set of experts are used at the decision level to tackle a complex

prediction problem. This approach helps to focus on smaller objectives,

which are simpler and thus easier to achieve. In many practical situations

5.2 Related work 139

this aspect also leads to a more realistic representation of the data generating

process; for example, the distribution of people using their credit cards to

make purchases may be modeled by two groups (components): those who

are unlikely to use their credit cards and those who do so (Hand et al.,

2001). Another useful aspect of mixture-of-experts models is that they can

still be applied even if the specific parametric form for modeling the data

is uncertain. Finally, the use of a large number of parameters allows extra

flexibility and hence better accuracy of mixture models compared with single

models.

5.2 Related work

Although a number of recent studies discuss mixture-of-experts models for

prediction, they do not deal with incorporating partial monotonicity con-

straints (Jacobs et al., 1991; Jordan and Jacobs, 1994; Frosyniotis et al.,

2003; Suárez-Fariñas and Pedreira, 2003). From this perspective, our algo-

rithm for building partially monotone models, described in the next section,

can be considered as a new approach in the field.

An alternative solution based on a single neural-network approach is pro-

posed by William Armstrong, the developer of Adaptive Logic Networks dis-

cussed in Section 4.2. His type of networks is a combination of minimum

and maximum operators over linear functions. Due to their architecture,

it is easy to constrain the weights on the monotone variable(s) to be non-

negative, and thus to obtain a partially monotone model. Armstrong claims

that his type of networks has universal function approximation capabilities,

without providing a formal proof for that. In Appendix B we give such a

proof.

5.3 Algorithm for partial monotonicity

5.3.1 Description

The working scheme of our algorithm is as follows. First we find a number

of natural groups in the data with respect to the set of non-monotone vari-

ables. Next, for each group we apply a Sill network (see Section 4.3.2) to

obtain a monotone function estimation based on the set of monotone vari-

140 Chapter 5. Partial monotonicity

ables. Finally, we convolute these monotone estimations with suitable weight

functions (kernels) based on the set of non-monotone variables to obtain the

overall model.

More formally, in the first step of our approach, we partition the input

space with respect to xnm into a number of disjoint subsets (clusters) by

using the so-called agglomerative (merging) type of hierarchical clustering

with complete-linkage distance (see Appendix C for more details). The ap-

propriate number of clusters is determined automatically in the following

way. We first cut off the hierarchy obtained from the clustering procedure

at several levels (from two to ten). Then for each of the partitioning out-

comes we compute the “silhouette value” as a measure for the goodness of

clustering (ranged from −1 for bad to +1 for good) (Rousseeuw, 1987). The

outcome with the maximal silhouette value determines the final number of

clusters. An additional improvement in the clustering procedure is adding

weights α > 0 to the variables in the standard Euclidean distance measure

we use. In this way, we take into account the significance of each variable on

the dissimilarities between the points and the formation of the clusters, re-

spectively. The outline of our clustering procedure is given in Algorithm 5.1.

Algorithm 5.1 Data clustering: Cluster(D,α)

dist(D,α) = N ×N dissimilarity matrix containing the Euclidean
distances, weighted by α, between the points in D

hCl = a hierarchical cluster tree based on dist(D,α) and
the complete-linkage distance

svmax = −1
for c = 2 to 10 do

[D1, . . . , Dc, x̄
nm
1 , . . . , x̄nmc] = disjoint clusters (subsets of D) with

their centroids obtained after
cutting off hCl into c clusters

svc= silhouette value obtained for c clusters
if svmax < svc then
svmax = svc
[D1, . . . , DC , x̄

nm
1 , . . . , x̄nmC] = [D1, . . . , Dc, x̄

nm
1 , . . . , x̄nmc]

end if
end for
return [D1, . . . , DC , x̄

nm
1 , . . . , x̄nmC]

5.3 Algorithm for partial monotonicity 141

As a result of this partitioning of the original data D, we obtain a number

C of subsets D1, . . . , DC ; the number of points in the subsets is not neces-

sarily the same. There is no restriction on the minimal number of points in

a subset. For each Dc, c = 1, 2, . . . , C, which contains more than one point,

the value of the non-monotone variable is fixed to the cluster mean x̄nmc .

Furthermore, an estimate f̂(xm) of f is obtained based only on the values

of the monotone variable xm for the points belonging to Dc. This is done

by using Sill networks, which guarantees that the function approximation is

monotone within each subset.

If a cluster with only one point is created (i.e., an outlier with respect

to the values of the non-monotone variables is detected), then the cluster

mean takes the values of the non-monotone variable for that point, and the

function approximation is simply the label of the point. The reasoning for

not ignoring the one-point clusters is as follows. Suppose we want to predict

the label `
z

of a new point z, which is closer to a one-point cluster than to

the other clusters (meaning that the values of the non-monotone variables

are similar). Now if z also has values of the monotone variables that are

similar to those of the point in the cluster, then the predicted label is also

expected to be close to the label of the point. However if the values of

the monotone variables are dissimilar, then z can be considered as a point

without an analog in the data (i.e., outlier) but its label can still be predicted

by using the function estimations from all the clusters as described below.

In the next step, we define for each subset Dc, c = 1, 2, . . . , C,

ψc(x
nm) =

1

e‖α(xnm−x̄
nm
c)‖

, (5.4)

where ‖·‖ is the Euclidean distance norm weighted by α, xnm ∈ D are the

values of the non-monotone variables, and x̄nmc is the mean (centroid) value

of the non-monotone variables for the points falling in cluster c. By definition

ψc > 0 and it determines the distance of a point xnm to the mean x̄nmc of

cluster c.

By normalizing ψc with

ϕc(x
nm) =

ψc(x
nm)

∑C

c′=1 ψc′(x
nm)

, (5.5)

we obtain a function ϕc > 0, for which

142 Chapter 5. Partial monotonicity

C
∑

c=1

ϕc(x
nm) = 1.

Hence, ϕc can be considered as a weight function or kernel in Nadaraya-

Watson form (Nadaraya, 1964; Watson, 1964).

Finally, we convolute ϕc with the corresponding monotone approxima-

tions f̂c(x
m) for all clusters by

f̂(xm,xnm) =
C
∑

c=1

ϕc(x
nm) · f̂c(xm) (5.6)

to obtain the final estimate of f . Note that f̂(xm,xnm) is monotone in xm,

and a weighted sum of monotone functions is monotone. So, f̂(xm,xnm) is

guaranteed to be a partially monotone estimator by construction.

The outline for the algorithm for partial monotonicity is given in Algo-

rithm 5.2.

Algorithm 5.2 Building partially monotone models and prediction
Construction_set = Construction data
Test_set = Test data
xm = set of monotone variables from Construction_set

xnm = set of non-monotone variables from Construction_set

xmTset = set of monotone variables from Test_set

xnmTset = set of non-monotone variables from Test_set

α = positive weight coefficients
[D1, . . . , DC , x̄

nm
1 , . . . , x̄nmC] = Cluster(Construction_set(xnm),α)

for all xTset ∈ Test_set do
for c = 1 to C do
MonNetc(x

m) = Sill network trained on Dc(x
m, `

x
)

f̂c(x
m
Tset) = output of MonNetc(x

m
Tset)

ψc(x
nm
Tset) = 1/e‖α(xnm

Tset−x̄
nm
c)‖

ϕc(x
nm
Tset) = ψc(x

nm
Tset)/

∑C

c′=1 ψc′(x
nm
Tset)

end for

f̂(xmTset,x
nm
Tset) =

∑C

c=1 ϕc(x
nm
Tset) · f̂c(xmTset)

end for

5.3 Algorithm for partial monotonicity 143

In the following theorem we show that our partially monotone estimator

has universal approximation capabilities.

Theorem 5.3.1. Let X = Xm ∪ X nm be a closed bounded domain of k

inputs, with closed subsets Xm =
∏m

i=1Xi and X nm =
∏k

i=m+1Xi for 1 ≤
m < k. Furthermore, we have x = (xm,xnm) with xm ∈ Xm, and xnm ∈
X nm. Let f(xm,xnm) be a continuous bounded function mapping X to <+,

which is monotone in xm. Then, for any ε > 0 there exists a partially

monotone estimator f̂(xm,xnm) in the form of (5.6) such that
∣

∣f(xm,xnm)−
f̂(xm,xnm)

∣

∣ < ε, for any x ∈ X .

Proof. Let ε > 0 and let Φ bound the magnitude of f on X . By definition f is

uniformly continuous on X nm, so there exists δ > 0 such that for any points

x,x′ ∈ X with ‖xnm − x′nm‖ < δ, we have
∣

∣f(xm,xnm)−f(xm,x′nm)
∣

∣ < ε/4.

We now define an equispaced grid S of points on X nm such that the

spacing between grid points along each dimension is δ/
√
k −m.

Next for any grid point s ∈ S with value snm we construct a Sill net-

work approximation f̂s(x
m) based on the values of the monotone variables

only, such that
∣

∣f(xm, snm) − f̂s(x
m)
∣

∣ < ε/2. The existence of such an ap-

proximation is guaranteed by the universal approximation capabilities of Sill

networks (see Theorem 4.3.1, p. 116).

Now we consider any point x = (xm,xnm), x ∈ X . Let ϕs(x
nm) be a

function in the form of (5.5), which measures the distance between xnm and

the grid point s. We take α = (α, . . . , α). Hence,

ψs(x
nm) =

1

eα‖xnm−s‖

and

ϕs(x
nm) =

ψs(x
nm)

∑

s′∈S ψs′(xnm)
.

Next, as an approximation of f(xm,xnm), we take

f̂(xm,xnm) =
∑

s∈S

ϕs(x
nm)f̂s(x

m).

We will show that
∣

∣f(xm,xnm)− f̂(xm,xnm)
∣

∣ < ε.

144 Chapter 5. Partial monotonicity

First, by the triangle inequality, we have

∣

∣

∣

∣

∣

f(xm,xnm)−f̂(xm,xnm)
∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f(xm,xnm)−
∑

s∈S

ϕs(x
nm)f(xm,xnm)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

s∈S

ϕs(x
nm)f(xm,xnm)−

∑

s∈S

ϕs(x
nm)f(xm, snm)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

s∈S

ϕs(x
nm)f(xm, snm)−

∑

s∈S

ϕs(x
nm)f̂s(x

m)

∣

∣

∣

∣

∣

.

(5.7)

Next we consider the three absolute-value terms on the right-hand side

of the inequality in (5.7). For the first term, we have

∣

∣

∣

∣

∣

f(xm,xnm)−
∑

s∈S

ϕs(x
nm)f(xm,xnm)

∣

∣

∣

∣

∣

= f(xm,xnm)

(

1−
∑

s∈S

ϕs(x
nm)

)

= 0.

and for the third term,

∣

∣

∣

∣

∣

∑

s∈S

ϕs(x
nm)f(xm, snm)−

∑

s∈S

ϕs(x
nm)f̂s(x

m)

∣

∣

∣

∣

∣

=

∑

s∈S

ϕs(x
nm)

∣

∣

∣

∣

∣

f(xm, snm)− f̂s(x
m)

∣

∣

∣

∣

∣

<
∑

s∈S

ϕs(x
nm)

ε

2
=
ε

2
.

5.3 Algorithm for partial monotonicity 145

For the second term in (5.7), we have

∣

∣

∣

∣

∣

∑

s∈S

ϕs(x
nm)f(xm,xnm)−

∑

s∈S

ϕs(x
nm)f(xm, snm)

∣

∣

∣

∣

∣

=

∑

s∈S

ϕs(x
nm)

∣

∣

∣

∣

f(xm,xnm)− f(xm, snm)

∣

∣

∣

∣

=

∑

q∈S
‖xnm−qnm‖<δ

ϕq(x
nm)

∣

∣

∣

∣

f(xm,xnm)− f(xm,qnm)

∣

∣

∣

∣

+
∑

t∈S
‖xnm−tnm‖≥δ

ϕt(x
nm)

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

.

(5.8)

Now we consider separately the last two parts in (5.8). By the definition

of the grid for the first part, we have

∑

q∈S
‖xnm−qnm‖<δ

ϕq(x
nm)

∣

∣

∣

∣

f(xm,xnm)−f(xm,qnm)
∣

∣

∣

∣

<
∑

q∈S
‖xnm−qnm‖<δ

ϕq(x
nm)

ε

4
<
ε

4
.

For the second part we reason as follows. First note that for any two grid

points s,p ∈ S we have

ϕs(x
nm) =

ψs(x
nm)

∑

s′∈S ψs′(xnm)
≤ ψs(x

nm)

ψp(xnm)
= e−α

(

‖xnm−snm‖−‖xnm−pnm‖
)

.

By the definition of the grid, there always exists a grid point p with

‖xnm − pnm‖ ≤ δ/2. Then for any grid point t with ‖xnm − tnm‖ ≥ δ, we

have

(

‖xnm − tnm‖ − ‖xnm − pnm‖
)

≥ δ/2.

146 Chapter 5. Partial monotonicity

Hence,

∑

t∈S
‖xnm−tnm‖≥δ

ϕt(x
nm)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

∣

≤

∑

t∈S
‖xnm−tnm‖≥δ

ψt(x
nm)

ψp(xnm)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

∣

=

∑

t∈S
‖xnm−tnm‖≥δ

e−α
(

‖xnm−tnm‖−‖xnm−pnm‖
)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

∣

.

Furthermore, for any term in the last sum, we have

e−α
(

‖xnm−tnm‖−‖xnm−pnm‖
)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

∣

≤

e−α
(

‖xnm−tnm‖−‖xnm−pnm‖
)

Φ ≤ e−α
δ
2 Φ

<

(

α
δ

2

)−1

Φ.

Now we take α = 8Φ(N − 1)/δε, where N is the number of grid points.

Then,

∑

t∈S
‖xnm−tnm‖≥δ

ϕt(x
nm)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, tnm)

∣

∣

∣

∣

∣

<

∑

t∈S
‖xnm−tnm‖≥δ

(

8Φ(N − 1)

δε

δ

2

)−1

Φ =
∑

t∈S
‖xnm−tnm‖≥δ

ε

4(N − 1)
≤ ε

4
.

5.3 Algorithm for partial monotonicity 147

So, we finally obtain

∑

s∈S

ϕs(x
nm)

∣

∣

∣

∣

∣

f(xm,xnm)− f(xm, snm)

∣

∣

∣

∣

∣

<
ε

4
+
ε

4
=
ε

2
.

Hence,
∣

∣

∣

∣

∣

f(xm,xnm)− f̂(xm,xnm)

∣

∣

∣

∣

∣

< 0 +
ε

2
+
ε

2
= ε.

5.3.2 Simulation studies

In this section, we present the results of our simulation studies designed to

test the effectiveness of our approach for partially monotone problems. We

generate an artificial data set D based on a set of independent variables and

a continuous dependent variable computed by applying a function that is

monotone only on a subset of the independent variables. Based on D thus

generated we build a model for predicting the dependent variable. Since the

problem is partially monotone, we apply our approach for partial monotonic-

ity. For practical reasons, we slightly modify the approach.

First we need to determine a priori the weights α measuring the im-

pact of each non-monotone variable on the response variable. To do so, we

take the absolute value of the respective coefficients for each non-monotone

variable obtained from the linear model fitted to the whole data set D =

(xm,xnm, `
x
)N , and we normalize them to sum up to one. Thus we use the

information provided by the data to obtain more appropriate values of α.

More formally, based on D we fit a linear model

`
x
= a0 +

m
∑

i=1

aix
m
i +

k
∑

j=m+1

ajx
nm
j .

Next, we compute

α = (αm+1, . . . , αk), (5.9)

where

αj =
|aj|

∑k

m+1 |aj|
for j = m+ 1, . . . , k.

148 Chapter 5. Partial monotonicity

Second, we simplify the function ψ measuring the distance between xnm

and x̄nmc , c = 1, 2, . . . , C, by

ψc(x
nm) =

1

‖α (xnm − x̄nmc)‖+ µ
.

where µ is a small positive number.

To obtain a sound assessment of the performance of our approach, we

use as benchmark methods for comparison standard neural networks with

weight decay and partially monotone linear models in the form of (5.3). The

standard neural networks consist of an input layer, one hidden layer and one

continuous output. In the hidden layer the activation function is sigmoid,

whereas in the output it is linear. In addition, weight decay (see Section 4.1)

is used as a regularization method to prevent the networks from overfitting.

This is done by adding to the mean-squared error the term λ
∑

ij w
2
ij to

penalize large weights, where λ is the weight decay parameter.

Given that our target function is continuous, the comparison between

our approach and the benchmark methods is based on the mean-squared

error (MSE) as a measure for the quality of estimation. In addition, as

the data generating process (true function f(x)) is known, we use the bias-

variance decomposition of MSE to gain more insight into the performance

of the methods used in the simulation studies. Recall from the introduction

of this thesis (p. 21) that the prediction error (MSE or misclassification

error) can be decomposed into three components: squared bias, variance,

and irreducible error (variance of the noise term ε). Since the last component

is independent of the model constructed and does not affect the comparisons,

we omit it from the computations of the MSE. Thus, in our simulations for

each estimator f̂MD
(x) based on method MD applied on a data set D, MSE

is computed by

MSE = Bias2 + Variance,

where

Bias2 = (f(x)− ED[f̂MD
(x)])2,

and

Variance = ED[(f̂MD
(x)− ED[f̂MD

(x)])2].

5.3 Algorithm for partial monotonicity 149

Furthermore, to improve our performance analysis, we conduct the expe-

riments with our approach for partial monotonicity and neural networks with

weight decay by using several factors, each with three values; see Table 5.2.

Table 5.2: Factors with their values in simulation experiments on partially mono-
tone problems

Approach for partial monotonicity Neural networks with weight decay
Levels (values) Levels (values) Factors
1 2 3

Factors
1 2 3

1 # points in data 50 150 250 1 # points in data 50 150 250
2 Noise level (2

εσ) 0.01 0.5 2 2 Noise level (2
εσ) 0.01 0.5 2

3 # groups in Sill net 2 3 4 3 # hidden neurons 3 9 15
4 # planes in Sill net 2 3 4 4 Weight decay (λ) 0.000001 0.00001 0.0001

All possible combinations of four three-value factors require 81 (34) ex-

periments with each method. To reduce the effort and experimental cost

in the simulations, we use the so-called fractional factorial design, where a

smaller number of combinations of factor values are taken to carry out the

experiments (Wu and Hamada, 2000). This is done in a systematic way by

combining each value of each factor only once with each level of the other

factors. In our case the fractional design requires only nine runs (trials) with

each method (Wu and Hamada, 2000); see Table 5.3. For example, for trial

#1 with the algorithm for partial monotonicity, all four factors are at their

first levels, i.e, we generate data sets with 50 data points and noise level

σ2ε = 0.01, and apply Sill networks with two groups and two hyperplanes.

For each run we generate a collection of 100 data samples. For com-

putational convenience the values of the independent variables in each set

are fixed, whereas the value of the dependent variable varies across different

data samples. The approach for partial monotonicity, neural networks with

weight decay and partially monotone linear models are applied on the same

collections of data samples.

From the experiments with each method we obtain nine estimates of the

two measures (squared bias and variance) of the models. Next, these results

are used to compute the expected value E(Θijkl) of each measure Θ for all

possible combinations of factor values (i, j, k, l), where i, j, k and l range

from one to three. As described by Wu and Hamada (2000), this can be

done by fitting the exponential model

150 Chapter 5. Partial monotonicity

Table 5.3: Fractional factorial design for four factors with three levels

Factors Runs
(trials) 1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3

4 2 1 2 3
5 2 2 3 1
6 2 3 1 2

7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

E(Θijkl) = exp
(

µ+ (µ1i − µ) + (µ2j − µ) + (µ3k − µ) + (µ4l − µ)
)

, (5.10)

where µ is the total mean computed over all nine estimates, µ1
i , µ

2
j , µ

3
k

and µ4l are the means for each factor value; the exponential fit guarantees

that the estimated E(Θijkl) is positive. For example, for the combination

of factor values (50 data points, σ2
ε = 0.5, four groups, three planes), i.e.,

(i = 1, j = 2, k = 3, l = 2) the approach for partial monotonicity has not

been run. To estimate E(Θ1232), we substitute the estimated means µ̂1
1, µ̂

2
2,

µ̂33 and µ̂42 in (5.10).

Next, we compute MSE by summing up the corresponding estimates of

the squared bias and variance for all possible combinations of factor values.

Finally, as there are two factors (number of data points and noise level)

that are the same in the experiments, we want to compare the performance

of the methods for all combinations of values (i, j) (in total nine) of these two

factors. For this purpose, within each (i, j), out of all nine value combinations

we take the minimum estimated value with the corresponding variance of

MSE over the other two factors.

To draw more general conclusions from our simulation study, we conduct

two types of experiments described below.

Experiment 1. First, two vectors of N values, xm and xnm, are gener-

ated independently from each other. The values of vector xm are drawn

5.3 Algorithm for partial monotonicity 151

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f

IJKLMN
= xsinf

2
π

(a) Monotone function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

f

()xsinf π22 +=

(b) Non-monotone function

Figure 5.1: Functions used to generate the data in Experiment 1 for partially
monotone problems

from the uniform distribution on [0,1]. The vector xnm is a composition

of two sub-vectors each of size N/2 points drawn from two normal (Gaus-

sian) distributions: N (0.02, 0.05) and N (0.08, 0.05). Finally, we compute

the values of a third vector `
x

by applying a monotone function on xm and

a non-monotone function on xnm plus a random perturbation ε ∼ N (0, σ2):

`
x
= 3 + sin

(

π

2
xm
)

(

2 + sin(2πxnm)
)

+ ε. (5.11)

The monotone and non-monotone functions are depicted in Figure 5.1.

Hence, we can consider x = (xm, xnm) as a data point, xm and xnm as

the independent variables and `
x

as the dependent variable in a data set

D = (xm, xnm, `
x
) of N points.

On the artificial data thus generated, we apply the approach for partial

monotonicity (PartMon), neural networks with weight decay (NNet) and

partially monotone linear models (PMonLin). The results are summarized

in Table 5.4.

We draw the following conclusions from these results:

• Given the universal approximation capabilities of standard neural net-

works, it is not surprising that they achieve closer approximations (i.e.,

lower squared bias) than our approach for partial monotonicity and

partially linear monotone models.

152 Chapter 5. Partial monotonicity

Table 5.4: Minimum MSE obtained by the three methods in Experiment 1 with
partially monotone problems

50 points 150 points 250 points
Method

0.012 =εσ 0.52 =εσ 22 =εσ 0.012 =εσ 0.52 =εσ 22 =εσ 0.012 =εσ 0.52 =εσ 22 =εσ

SQUARED BIAS
PartMon 0.0672 0.0764 0.1090 0.0241 0.0275 0.0392 0.0352 0.0401 0.0572
NNet 0.0065 0.0102 0.0171 0.0047 0.0074 0.0124 0.0042 0.0066 0.0111
PMonLin 0.1324 0.1326 0.1331 0.0952 0.0953 0.0957 0.1170 0.1172 0.1176

VARIANCE
PartMon 0.0035 0.0604 0.2199 0.0024 0.0403 0.1466 0.0008 0.0141 0.0513
NNet 0.0087 0.1473 0.6510 0.0024 0.0404 0.1783 0.0016 0.0278 0.1228
PMonLin 0.0006 0.0245 0.0918 0.0002 0.0102 0.0381 0.0001 0.0053 0.0197

MINIMUM MSE
PartMon 0.0707 0.1368 0.3289 0.0265 0.0677 0.1858 0.0361 0.0542 0.1085
NNet 0.0152 0.1575 0.6680 0.0071 0.0477 0.1907 0.0059 0.0344 0.1339
PMonLin 0.1330 0.1571 0.2249 0.0954 0.1055 0.1337 0.1171 0.1224 0.1373

• However, the flexible nature of neural networks and the random initia-

lization of the network weights lead to higher variances across different

runs compared with the other two approaches–especially for small or

noisy data sets.

• The flexibility of the mixture modeling employed by our approach for

partial monotonicity gives considerably smaller squared bias than the

partially linear monotone models across data sets with different number

of points and noise levels; however, this leads to higher variances of the

models.

• Standard neural networks give considerably smaller MSE than the two

partially monotone models, for data sets with small noise level (σ2
ε =

0.01). For larger data sets (N = 150 or N = 250) and moderate noise

level (σ2ε = 0.5), neural networks produce only slightly lower MSE that

our approach for partial monotonicity.

• For very noisy data sets with a small number of points (N < 250),

the minimum MSE is achieved by the partially monotone linear mod-

els. This indicates that the other two flexible models overfit the data

(by fitting the noise inherent in it). However, for very noisy data sets

(σ2ε = 2) with more data points, the lowest MSE is obtained by our

approach for partial monotonicity, which indicates that the true re-

lationship between the dependent and independent variables can be

5.3 Algorithm for partial monotonicity 153

Table 5.5: Architectures of Sill networks and standard neural networks for which
the minimum MSE is obtained by the models in Experiment 1 with partially
monotone problems

Approach for partial monotonicity
(groups × planes)

Neural networks with weight decay
(hidden nodes−weight decay)

Number of points Number of points Noise level
50 150 250

Noise level
50 150 250

0.012 =εσ 3 × 2 3 × 2 3 × 2 0.012 =εσ 9−0.000001 9−0.000001 9−0.000001

0.52 =εσ 3 × 4 3 × 4 3 × 4 0.52 =εσ 3−0.000001 3−0.000001 3−0.000001

22 =εσ 3 × 4 3 × 4 3 × 4 22 =εσ 3−0.000001 3−0.000001 3−0.000001

captured in case of a sufficient number of points.

• Standard neural networks perform remarkably bad on small and very

noisy data sets. For data sets with N = 50, the minimum MSE is

almost twice as big as that obtained by our method and it is three times

bigger than that obtained by the partially monotone linear models.

The explanation is that standard neural networks do not use any prior

knowledge about the partial monotonicity of the true function.

Besides the accuracy, we also study the architectures of Sill and standard

networks with the minimum MSE; see Table 5.5.

The results show that for all data sets our approach for partial mono-

tonicity reaches the minimum MSE with Sill networks with three groups;

for noisier data, however, it requires more hyperplanes to find a close ap-

proximation. In contrast, standard neural networks with nine hidden nodes

lead to the minimum MSE for data sets with small noise levels, whereas for

noisier data three hidden nodes suffice.

Finally, we checked the number of clusters found by our approach for

partial monotonicity in each run. Given that the non-monotone variable

has been generated by two normal distributions, we expect the approach to

find these two distributions. It turned out that our approach indeed detects

two clusters in all runs with data sets with 50 and 250 points–irrespective

of the noise level. Note that the noise level indirectly affects the clustering

procedure through the computation of the weights α in (5.9). For data sets

with 150 points, the approach detects ten clusters with respect to the non-

monotone variable. A possible explanation could be that once generated,

154 Chapter 5. Partial monotonicity

the non-monotone variable is fixed for a data set with a certain number

of points; so, it is very likely that the clustering procedure applied in our

approach tends to find the same number of clusters across the runs.

Experiment 2. For our second experiment we first generate five vectors

of N points as follows:

• x1, x2, x3 are drawn from the uniform distribution on [0,1],

• x4 is a composition of two sub-vectors each with N/2 points drawn

from the two Gaussian distributions N (0.02, 0.05) and N (0.08, 0.05),

and

• x5 is drawn from N (0.5, 0.1).

Next, with ε ∼ N (0, σ2) we generate a vector `
x

by

`
x
= 3 + sin

(

π

2
x1x2x3

)

(

2 + sin(2πx4x5)
)

+ ε, (5.12)

Hence, xm = (x1, x2, x3) and xnm = (x4, x5); D = (xm, xnm, `
x
) is a data

set of N points.

Analogously to Experiment 1, we apply three methods: (i) our approach

for partial monotonicity, (ii) standard neural networks with weight decay,

and (iii) partially monotone linear models. We compare again the three

methods by using the same factors with their levels in Table 5.2, and the

design in Table 5.3. A summary of the results is given in Table 5.6.

The following conclusions can be drawn:

• Neural networks lead to more accurate models in terms of MSE for

data sets with low noise compared with the partially monotone mod-

els. Their variances and thus MSE, however, increase considerably

for noisier data; although the weight decay is used as a regularization

method, overfitting occurs–a common problem in the application of

neural networks. The incorporation of monotonicity constraints in the

partially monotone models helps to overcome this overfitting problem–

capturing the true relationships in the target function.

• For considerably noisy data, especially with fewer data observations,

partially monotone linear models tend to give smaller MSE: despite

5.3 Algorithm for partial monotonicity 155

Table 5.6: Minimum MSE obtained by the three methods in Experiment 2 with
partially monotone problems

50 points 150 points 250 points
Method

0.012 =εσ 0.52 =εσ 22 =εσ 0.012 =εσ 0.52 =εσ 22 =εσ 0.012 =εσ 0.52 =εσ 22 =εσ

SQUARED BIAS
PartMon 0.0288 0.0705 0.1290 0.0164 0.0400 0.0731 0.0106 0.0260 0.0476
NNet 0.0094 0.0113 0.0236 0.0037 0.0103 0.0214 0.0036 0.0100 0.0209
PMonLin 0.1282 0.1293 0.1301 0.0841 0.0846 0.0853 0.0799 0.0804 0.0811

VARIANCE
PartMon 0.0249 0.1369 0.4641 0.0071 0.0389 0.1320 0.0045 0.0249 0.0845
NNet 0.0093 0.2207 1.0666 0.0059 0.0858 0.4149 0.0033 0.0480 0.2320
PMonLin 0.0013 0.0572 0.2378 0.0004 0.0187 0.0771 0.0003 0.0114 0.0468

MINIMUM MSE
PartMon 0.0537 0.2074 0.5931 0.0235 0.0789 0.2051 0.0151 0.0509 0.1321
NNet 0.0187 0.2320 1.0902 0.0096 0.0961 0.4363 0.0069 0.0580 0.2529
PMonLin 0.1295 0.1865 0.3679 0.0845 0.1033 0.1624 0.0802 0.0918 0.1279

their higher bias, they have much smaller variance across different runs

compared with the more flexible counterpart methods.

• Our approach for partial monotonicity leads to models that are more

accurate and with low variance for data sets with a moderate noise

level and a larger number of data points.

The architectures of Sill and standard neural networks with minimum

MSE are reported in Table 5.7. On one hand, Sill networks with three groups

and three hyperplanes achieve the best performance–irrespective of the noise

level and the size of the data sets. On the other hand, the architectures of

standard neural networks vary considerably over different types of data sets.

So, our approach dependents less on the network’s architecture; standard

neural networks are more sensitive to the noise level, the size of the data,

and the number of independent variables.

Finally, we again check the number of clusters detected in our approach

across the runs; see Table 5.8. In contrast to Experiment 1, for the dif-

ferent types of data sets within the 100 data samples, our approach now

finds different numbers of clusters. Because we now have two non-monotone

variables drawn from different distributions, the noise level and the size of

the data set would affect the clustering procedure for determining the right

number of data subsets. Given our data generating procedure, we expect

that our approach finds two clusters; their centroids are vectors containing

156 Chapter 5. Partial monotonicity

Table 5.7: Architectures of Sill networks and standard neural networks for which
the minimum MSE is obtained by the models in Experiment 2 with partially
monotone problems

Approach for partial monotonicity
(groups × planes)

Neural networks with weight decay
(hidden nodes−weight decay)

Number of points Number of points Noise level
50 150 250

Noise level
50 150 250

0.012 =εσ 3 × 3 3 × 3 3 × 3 0.012 =εσ 3−0.000001 9−0.000001 9−0.000001

0.52 =εσ 3 × 3 3 × 3 3 × 3 0.52 =εσ 15−0.00001 15−0.00001 15−0.00001
22 =εσ 3 × 3 3 × 3 3 × 3 22 =εσ 3−0.00001 3−0.00001 3−0.00001

Table 5.8: Number of clusters found by the approach for partial monotonicity at
each run

 Number of points
 50 150 250

Noise level Number of clusters – Percentage from 100 runs
2 - 68 % 2 - 89 % 2 - 74 %
7 - 1 % 4 - 1 % 3 - 18 %
8 - 3 % 5 - 1 % 5 - 1 %
9 - 9 % 8 - 5 % 7 - 5 %

10 - 19 % 10 - 4 % 9 - 1 %

0.012 =εσ

 10 - 1 %
2 - 55 % 2 - 54 % 2 - 59 %
4 - 1 % 4 - 7 % 3 - 21 %
5 - 1 % 5 - 6 % 4 - 1 %
7 - 2 % 6 - 4 % 5 - 6 %
8 - 1 % 7 - 4 % 6 - 4 %
9 - 11 % 8 - 2 % 7 - 4 %

10 - 29 % 9 - 9 % 8 - 1 %
 10 - 14 % 9 - 1 %

0.52 =εσ

 10 - 3 %
2 - 68 % 2 - 44 % 2 - 71 %
7 - 1 % 4 - 5 % 3 - 13 %
9 - 9 % 5 - 7 % 4 - 5 %

10 - 22 % 6 - 1 % 5 - 1 %
 7 - 8 % 6 - 4 %
 8 - 8 % 7 - 2 %
 9 - 18 % 9 - 3 %

22 =εσ

 10 - 9 % 10 - 1 %

two values corresponding to the means used to generate the non-monotone

variables. The results show that for all types of data sets, our approach

indeed detects two clusters most; the percentage of two clusters detected is

5.3 Algorithm for partial monotonicity 157

above 50%, except for noisy data with 150 observations. Not surpisingly,

our approach can better find the right number of (two) clusters for less noisy

data sets, irrespective of the number of observations. Of course, larger data

sets provide more information; indeed, our results show that our approach

tends to detect the correct number of clusters: in more than 80% of the runs,

it finds two or at most three clusters for data sets with 250 observations with

different noise levels.

The results from both simulation studies indicate that there is no method

that is superior in all the cases. Depending on the size of and the noise

inherent in the data set, any of the three methods can achieve the best per-

formance. In practice, of course, the data generating process is unknown, so

we cannot determine beforehand which is the most appropriate method to

model the data. However, we expect that in real cases our approach for par-

tial monotonicity and standard neural networks would outperform partially

monotone linear models as the former are more flexible. Furthermore, due to

the monotonicity constraints our approach would lead to more stable models

than the models derived from the unconstrained standard neural networks.

The results from the following case studies confirm our expectations.

5.3.3 Real case studies

In this section we present the results for our approach in two real case stud-

ies, namely abalone age prediction (classification problem) and Den Bosch

house pricing (regression problem). We apply the approach for partial mono-

tonicity with the modifications made for the simulation studies, and we again

compare it with standard neural networks with weight decay and partially

monotone linear models.

A. Abalone age prediction

The abalone shellfish data set is publicly available at the UCI Repository of

machine learning databases (Newman et al., 1998). It has been used as a

benchmark to which various machine learning techniques have been applied

(Waugh, 1995; Clark et al., 1996; Abdelbar, 1998). The data were origi-

nally collected by an agency in the Australian state of Tasmania for ongoing

research purposes (Nash et al., 1994). The objective is to predict the age

of abalone shellfish from eight physical measurements. Determining the age

of abalone in the laboratory needs much time and labor because it requires

158 Chapter 5. Partial monotonicity

Table 5.9: Definition of the variables for the abalone data

Symbol Definition
SEX Male, Female, and Infant
LENGTH Longest shell measurement (mm)
DIAMETER Perpendicular to length (mm)
HEIGHT With meat in shell (mm)
WHOLE WEIGHT Whole abalone (grams)
SHUCKED WEIGHT Weight of meat (grams)
VISCERA WEIGHT Gut weight after bleeding (grams)
SHELL WEIGHT After being dried (grams)

cutting the shell through the cone, staining it, and counting the number of

rings through a microscope. Therefore, faster prediction can be done based

on physical measurements that are easily obtained, namely the eight mea-

surements (attributes) in Table 5.9. We transformed the nominal-valued sex

attribute into continuous-valued by assigning the values of 0.1 for infant, 0.2

for male, and 0.3 for female. We also apply a simple transformation on the

attributes Whole weight and Shucked weight to guarantee that all

inputs are in the range [0, 1].

The dependent variable is the number of rings (age is easily computed

by adding 1.5 to the number of rings); it has 28 values in the data set,

ranging from 1 to 29 (28 is missing). Thus, these data can be treated as a

regression or a classification problem. In earlier studies, the response variable

has been discretized into three classes (age-groups): 1-8, 9-10, 11 or more.

Here we adopt the same transformation procedure, and consider the abalone

age prediction as a classification problem.

The original data consist of 4 177 observations (no missing attribute

values). In our study, we take a random sample of 292 observations, which

is 7% of the full data set. The stratified sample is taken such that infants,

males, and females, as well as the three classes are represented in the same

proportions as in the full data.

In these sampled data, we expect that the age of abalone depends mono-

tonically on some of the measurements, but not on all. For example, if we

consider the sex attribute, the discrimination between males and females

is not expected to be monotone with age. Furthermore, with the abalone

maturity, the abalone age may not necessarily have monotone relationships

with some of the other physical measurements. To check for which attributes

5.3 Algorithm for partial monotonicity 159

Table 5.10: Degree of monotonicity of the abalone data

Removed variable(s) Comparable pairs DgrMon
SEX 33708 0.9057
SEX, WHOLE WEIGHT 33715 0.9057
SEX, SHUCKED WEIGHT 34683 0.9069
SEX, WHOLE WEIGHT, SHUCKED WEIGHT 34789 0.9070

monotonicity with age holds, we conduct a test. This is done by using a mea-

sure for the degree of monotonicity (DgrMon) of data, namely the fraction

of monotone pairs of all comparable pairs in the data. Although the values

assigned to the attribute Sex are numeric they do not imply any ordering; so

does not make sense to use this attribute in the test for monotone relation-

ships. Therefore, the measure for the degree of monotonicity is computed for

the original data without the attribute Sex and for the data sets obtained

after removing Sex and one or more of the other variables.

Table 5.10 shows that the removal of Sex, Whole weight and Shucked

weight leads to a higher number of monotone pairs in the increased num-

ber of comparable pairs; the individual removal of the other attributes, not

shown in the table, leads to a decrease in the degree of monotonicity com-

pared with the original data (DgrMon ≤ 0.9052). These results indicate

that we can consider the abalone data as a partially monotone classification

problem where Sex, Whole weight and Shucked weight are the non-

monotone variables, whereas the other attributes are the monotone variables.

Therefore, we apply our approach for partial monotonicity. Analogously

to the simulation studies, we also use standard neural networks with weight

decay and partially monotone linear models as benchmark methods for com-

parison. To obtain a sound assessment of the generalization capabilities of

the model obtained, we randomly split the original data into a training data

set with 219 observations (75%) and a test data set with 73 observations

(25%). The former is used to build a model, whereas the latter is used to

test the model performance measured by the misclassification error. The

random partitioning of the data is repeated 20 times. We use nine com-

binations of parameters for the Sill networks (groups - 2, 3, 4; planes - 2,

3, 4) and standard neural networks (hidden nodes - 3, 6, 9; weight decay -

0.000001, 0.00001, 0.0001) to get better insight into the performance of the

models. At each of the twenty runs, we select the model that gives the min-

160 Chapter 5. Partial monotonicity

Table 5.11: Estimated prediction errors of our approach for partial monotonicity
(PartMon), standard neural networks with weight decay (NNets), and partially
monotone linear models (PMonLin) for abalone data

Minimum error Method
Min Mean Max Variance

PartMon 0.27 0.31 0.36 0.000
NNet 0.25 0.32 0.37 0.002
PMonLin 0.30 0.35 0.38 0.000

imum misclassification error out of the nine parameter combinations with

each method. Table 5.11 reports the minimal, mean, and maximal value

and the variance of the estimated error across the runs.

The results show that our approach tends to be more accurate on average

than standard neural networks and partially monotone linear models. Fur-

thermore, both types of partially monotone models exhibit smaller variances

upon repeated sampling than their unconstrained counterpart.

To check the significance of our results, we performed statistical tests.

Since the test set in the experiments with the three methods is the same,

we conduct three paired t-tests to test the null hypothesis that the models

derived from one method have the same error as the models derived from the

other methods against the one-sided alternatives. Their p-values are reported

in Table 5.12. They show that the differences in errors obtained from our

approach and standard neural networks are statistically insignificant at 5%

and 10% significance level. Furthermore, the flexible nature of our approach

and standard neural networks leads to models that can better capture the

true relationships in the data. Hence these models have significantly smaller

errors than the partially monotone linear models.

Table 5.11 suggests that the differences between the variances of the

partially monotone models and standard neural networks are significant,

which is also confirmed by the p-values of the two F-tests with 19 degrees

of freedom, namely 0.2% and 0.1%; the difference between the variances of

the models derived from our approach and from partially monotone linear

models is statistically insignificant (p-value is 42.1%).

We also compare the architectures of the networks for which the minimum

MSEs are obtained by the algorithm for partial monotonicity and standard

neural networks. In two (out of twenty) runs, the minimum error in our

5.3 Algorithm for partial monotonicity 161

Table 5.12: p-values of paired t-tests and one-sided confidence intervals for the
difference in error means in the abalone case study

Confidence intervals
Indicator p-value

95% 90%
Minimum error (PartMon–NNet) 12.8% [-1, 0.005) [-1, 0.001)
Minimum error (PartMon–PMonLin) 0.0% [-1, -0.024) [-1, -0.027)
Minimum error (NNet–PMonLin) 0.2% [-1, -0.011) [-1, -0.014)

approach is achieved for Sill networks with four groups and four hyperplanes

in each group. Also, six times, Sill networks with twelve first-layer nodes led

to minimum MSE. In the other twelve runs the minimum is obtained for Sill

networks with at most nine nodes in the first hidden layer. For the standard

networks, the minimum MSE is obtained ten times with three hidden nodes,

six times with six hidden nodes, and four times with nine hidden nodes.

These results show that in majority of cases the best prediction accuracy is

produced by networks with similar architectures in both algorithms.

Another interesting observation is the variance of the error across different

Sill and standard network architectures within a run; see Table 5.13.

Table 5.13: Variance across different network architectures within a run for the
abalone data

Variance within a run Method Min Mean Max
PartMon 0.0013 0.0032 0.0054
NNet 0.0003 0.0083 0.0496

The results show that our approach produces models with a lower vari-

ance on average across various network architectures compared with standard

neural networks with weight decay. In fact, in two out of the twenty runs,

standard neural networks with three and six hidden nodes produced models

with 100% misclassification rate. This result implies that the models derived

from the neural networks have high variability and thus higher dependence

on the network architecture.

162 Chapter 5. Partial monotonicity

B. Den Bosch house pricing

The data used in the second case study consist of 119 observations on houses

in the Dutch city of Den Bosch. Eleven independent variables describe the

characteristics of a house; see Table 5.14. The dependent variable is the

house price; for computational convenience it was transformed by taking its

logarithm.

Table 5.14: Definition of the variables for the Den Bosch housing data

Symbol Definition
DISTR Type of district, 4 categories ranked from bad to good
AREA Total house area including garden
RM Number of bedrooms
TYPE House type, 6 categories, ranked from flat to villa
VOL Volume of the house
GARD Type of garden, 4 categories ranked from bad to good
GARG 1-no garage, 2-normal garage, 3-large garage
FLOORS Number of floors
YEAR Year of building
X-DIST Horizontal map location
Y-DIST Vertical map location

This data set has been used in previous studies (Daniels and Kamp,

1999; Potharst and Feelders, 2002), which deal with incorporating total

monotonicity constraints in data mining algorithms. Therefore, in those

studies, year, x-dist and y-dist were dropped from the data as variables,

because monotone relationships with the house price do not hold. Further-

more, we suspect that the monotonicity dependency on floors does not

hold; for example, some expensive houses (such as villas) may have only one

floor, whereas cheaper houses may have three floors. Therefore, we conduct

the same test as in the abalone case study to check for which variables in

the housing data the monotonicity assumption holds; see Table 5.15.

Considering first the individual removal of the four variables, we see that

the degree of monotonicity increases most after leaving out y-dist and year.

Therefore, in the next step these two variables are removed from the data,

which leads to an additional increase in the number of monotone pairs. Fi-

nally, it is obvious that the maximum degree of monotonicity (namely 0.9659)

is achieved after leaving out the four variables, which shows that their de-

pendency with the house price is not necessarily monotone. As a result

5.3 Algorithm for partial monotonicity 163

Table 5.15: Degree of monotonicity of the Den Bosch housing data

Removed variable(s) Comparable pairs DgrMon
- (original data) 314 0.9140
FLOORS 331 0.9184
X-DIST 412 0.9199
Y-DIST 634 0.9495
YEAR 1073 0.9553
Y-DIST,YEAR 1534 0.9615
FLOORS,Y-DIST,YEAR 1620 0.9630
X-DIST,Y-DIST,YEAR 2217 0.9648
FLOORS,X-DIST,Y-DIST,YEAR 2345 0.9659

floors, x-dist, y-dist and year are considered to be non-monotone vari-

ables, whereas the other are monotone.

Using this knowledge about the (non)-monotone relationships in the

housing data, we apply our approach for partial monotonicity. Analogously

to the experiment with the abalone data, we randomly split the original

housing data into training data of 89 observations (75%) and test data of

30 observations (25%). The random partition of the data is repeated 20

times. The performance of the models is measured by computing the mean-

squared error (MSE). We use again nine combinations of parameters for Sill

networks (groups - 2, 3, 4; planes - 2, 3, 4) and standard neural networks

(hidden nodes - 5, 13, 20; weight decay - 0.000001, 0.00001, 0.0001). Note

that in this case study the standard neural networks have more hidden nodes

compared to that used in the abalone case study: the housing data contain

more independent variables. At each of the twenty runs, we select the model

that obtains the minimum MSE out of the nine parameter combinations with

each method. Table 5.16 reports the minimal, mean and maximal value and

the variance of the estimated MSE across the runs.

The results show that, in general, the models generated by our approach

are more accurate than those models generated by standard neural networks

and partially monotone linear models. Furthermore, the variation in the

minimum MSE across runs is considerably smaller for our approach than for

the benchmark methods, as are the differences between the maximum and

minimum value of MSE in Table 5.16.

We again conduct three paired t-tests to check the significance of the

differences in the errors. The p-values obtained from the tests and the con-

164 Chapter 5. Partial monotonicity

Table 5.16: Estimated prediction errors of the approach for partial monotonicity
(PartMon), standard neural networks with weight decay (NNets), and partially
monotone linear models (PMonLin) for Den Bosch housing data

Minimum MSE Method
Min Mean Max Variance

PartMon 0.011 0.016 0.038 0.0000
NNet 0.012 0.020 0.059 0.0001
PMonLin 0.016 0.022 0.053 0.0001

Table 5.17: p-values of paired t-tests and one-sided confidence intervals for the
difference in error means in the Den Bosch house pricing case study

Confidence intervals
Indicator P-value 95% 90%
Minimum MSE (PartMon–NNet) 0.5% (-∞, -0.002) (-∞, -0.002)
Minimum MSE (PartMon–PMonLin) 0.0% (-∞, -0.004) (-∞, -0.005)
Minimum MSE (NNet–PMonLin) 5.1% (-∞, 0.000) (-∞, -0.000)

fidence intervals at 95% and 90% are reported in Table 5.17. The results

show that our approach leads to models with significantly smaller errors

than the errors of the models derived from the standard neural networks

and partially monotone linear models. The error difference between stan-

dard neural networks and partially monotone linear models is not significant

at 5% significance level.

In addition F-tests for the differences between the variances of the models

are performed. The p-values of 1.0% and 3.3% obtained from the tests show

that our approach has significantly lower variances than standard neural

networks and partially monotone linear models, respectively. These results

indicate that the models derived from our approach are more stable upon

repeated sampling. The differences between the variances of the standard

neural networks and partially monotone linear model is insignificant: p-value

is 29.8%.

Other results, not reported in Tables 5.16 and 5.17, concern the archi-

tectures of the networks for which the minimum MSEs are obtained by the

algorithm for partial monotonicity and standard neural networks. In five

5.3 Algorithm for partial monotonicity 165

Table 5.18: Variance across different network architectures within a run for the
Den Bosch housing data

Variance within a run Method Min Mean Max
PartMon 0.00000 0.00003 0.00018
NNet 0.00008 0.00120 0.00503

(out of twenty) runs, the minimum error in our approach is achieved for Sill

networks with four groups and four hyperplanes in each group. Also, six

times, Sill networks with twelve first-layer nodes led to minimum MSE. In

the other nine runs the minimum is obtained for Sill networks with at most

nine nodes in the first hidden layer. For the standard networks, the minimum

MSE is obtained twelve times with twenty hidden nodes, and seven times

with thirteen hidden nodes. In other words, only one time a standard neu-

ral network with five hidden nodes produced the best prediction accuracy.

These results clearly demonstrate important advantages of our algorithm

compared with standard neural networks: (i) our divide-and-conquer ap-

proach employs smaller networks that can be trained on smaller subsets of

data, and (ii) thus, the execution time and the computational effort can be

considerably reduced.

The variances of MSE across different Sill and standard network archi-

tectures within a run are reported in Table 5.18.

The results clearly show that our approach has considerably lower vari-

ances across various network architectures compared with standard neural

networks. This clearly indicates that our models are more stable and less

dependent on the network architecture.

Discussion of results

We can draw the following conclusions about the performance of the three

methods on real data:

1. Our approach has comparable performance to standard neural net-

works. However, due to the preservation of monotonicity in the former,

our models have (i) a significantly smaller variance upon repeated sam-

pling, and (ii) less variability over different network architectures for a

166 Chapter 5. Partial monotonicity

fixed data sample. Hence, our models would be a preferable building

tool in partially monotone prediction problems.

2. The flexible nature of our approach leads to models that are signifi-

cantly more accurate than the simple partially monotone linear models.

The variances of both types of models are comparable.

Furthermore, for data sets with a larger number of independent variables,

our approach has an important advantage over standard neural networks–

namely, our divide-and-conquer strategy employs smaller networks on sub-

sets of data, and thus the good performance of our models is obtained faster

and with less computational efforts.

5.4 Conclusion

In this chapter we considered prediction problems with partial monotonic-

ity, i.e., the response variable depends monotonically on some but not on all

predictor variables. We derived an approach for partially monotone models,

which are a convolution of weight functions (kernels) based on non-monotone

variables and Sill (monotone) networks built only on the monotone variables.

Simulation with artificial data and real case studies showed that the overall

performance of our approach is better than standard neural networks and

partially monotone linear models. First our models outperform the par-

tially monotone linear models in terms of accuracy. Compared to standard

neural networks our approach achieves comparable accuracy but significantly

smaller variance upon repeated sampling. Hence, the incorporation of partial

monotonicity constraints leads not only to models that agree with the deci-

sion maker’s expertise but also to more stable models. This result supports

our third hypothesis stated in the introduction of this thesis (Section 1.4)

that for partially monotone problems partially monotone models have supe-

rior predictive performance to non-monotone models.

Chapter 6

Conclusions and future research

6.1 Conclusions

The field of data mining has emerged from the need for efficient and effective

manipulation of large amounts of data; it turns these data into novel valu-

able knowledge for decision-making. This knowledge discovery is a complex

process involving several steps; the successful implementation of any data

mining system depends on the successful outcome of each step. By “success”,

we mean that the results (models) obtained from a data mining process are

accurate, comprehensible, and easy to understand by the end user; more-

over, they comply with business policies and the expert knowledge encoded

in the domain. In practice large data sets are available, but often the models

derived purely from standard data mining methods do not have the desired

properties, i.e., they contradict the underlying domain knowledge.

To overcome this problem, it is crucial to integrate domain (expert)

knowledge into a data mining process. This integration can guide and fa-

cilitate the knowledge discovery process by restricting the search space of

possible outcomes, thus obtaining not only valid but also faster decisions.

This is especially important in prediction problems–one of the main data

mining tasks ubiquitous in practice–where the objective is to make accurate

and plausible future predictions about a certain attribute of analyzed objects

in a domain. This prediction is based on a set of other attributes describ-

ing the objects. Within the class of prediction problems, we distinguished

two subclasses: (i) classification problems where the dependent variable is

discrete, and (ii) regression problems where the dependent variable is con-

tinuous.

168 Chapter 6. Conclusions and future research

In this thesis, our main objective is to study the incorporation of mono-

tonicity constraints as a special class of domain knowledge, into data mining

models for both types of prediction problems. The monotonicity constraint

simply states that the increase in an input must not lead to a decrease in

the output, all other inputs being equal.

With respect to monotonicity, we defined two types of prediction prob-

lems: monotone and partially monotone problems. In monotone prediction

problems, we assume that the dependent variable is generated by a function

monotone in all independent variables. In partially monotone prediction

problems, the assumption is slightly weaker, namely the generating function

is monotone on some of the independent variables but not on all. Chapters

2, 3, and 4 deal with monotone problems; Chapter 5 deals with partially

monotone problems.

Our research has solid theoretical foundations. It also develops practical

computational methods applicable to a wide range of domains. To validate

and demonstrate the performance of our methods, we used a number of

simulation and real case studies. In some of these studies, we used traditional

data mining approaches as benchmark methods resulting in a more reliable

assessment of our results.

Research questions and answers

We decomposed our main objective of incorporating monotonicity constraints

in data mining for prediction, into two more specific goals corresponding to

the two steps in the data mining process–data preprocessing and modeling–

where monotonicity can be enforced:

Research objective - 1 Preprocessing (transforming) data such that they obey

monotonicity constraints before using the data to build monotone de-

cision models.

Research objective - 2 Enforcing monotonicity in data mining models based

on decision trees and neural networks for prediction tasks.

From these two research objectives, we derived a number of research

questions. Below we summarize the answers provided by this thesis. Related

to Research objective - 1 we have:

• How can we measure the degree of monotonicity of a data set?

6.1 Conclusions 169

Before starting the modeling of the data, the analyst must be sure

that the data are suitable for the problem at hand. For monotone

prediction problems, this means that the data exhibit monotonicity

properties. To check this property, we proposed a novel procedure for

testing the degree of monotonicity of the real data in Section 2.3. The

procedure is based on two measures for monotonicity: the fraction of

monotone pairs and the number of monotone points in the data. These

measures are computed from the real data and from benchmark data

obtained by taking the same set of independent variables as in the real

data set and adding a random permutation of the original labels. In

addition, we developed a statistical test to check the significance of the

difference between both the observed and the benchmark measures–a

significant difference indicates that the data exhibit monotone relation-

ships; otherwise, the data are considered non-monotone. Compared

with previous testing approaches, the main advantages of our proce-

dure are that it does not depend on the data generating process and

does not require any pre-modeling of the data.

• How can we transform a data set from non-monotone into monotone?

The transformation of non-monotone into monotone data guarantees

that the data are consistent, comply with human expertise and domain

knowledge, and thus, they are a reliable source for data analysis. To

obtain monotone data we proposed a greedy algorithm for relabeling,

described in Section 2.4. It assumes that only a few data observations

are inconsistent; by appropriately changing their labels (the so-called

relabeling process), we can obtain monotone data. Although the al-

gorithm does not provide a unique solution, it guarantees that after

a small number of steps the data are monotone. A comparison with

a network flow algorithm shows that our number of label changes is

the same or very close to the minimum possible number of points that

need to be relabeled to get monotone data. Furthermore, compared

with previous approaches dealing with monotone data transformation,

the main advantage of our approach is that it preserves the majority of

the original labels, so the modified data remain close to the real data.

With respect to Research objective - 2, our answers to the research ques-

tions are as follows.

170 Chapter 6. Conclusions and future research

• How can we build monotone models?

To build monotone models, we used decision trees and neural net-

works as standard modeling techniques for data mining. For the pur-

poses of our research, we did not develop new approaches but modified

and extended two existing methods such that (i) their implementa-

tion is improved and (ii) they can be applied to both classification

and regression problems. In Section 3.3, we described a tree-based ap-

proach proposed by Feelders (2000), which has a similar construction

scheme to the standard CART method for building decision trees. The

only difference is that our method checks whether the trees derived

are monotone. In Chapter 4, we discussed the construction of mono-

tone models based on neural networks. Through a counter-example

in two dimensions we showed that two-layer neural networks cannot

adequately approximate any function with more than one input. Sill

(1998) proves that three-layer monotone networks with combinations

of minimum and maximum operators over linear functions do have uni-

versal function approximation capabilities. Therefore, we extended his

approach to build monotone models in our study.

• How can we build partially monotone models?

For partially monotone problems, we need to build models that pre-

serve the monotone relationships between the dependent and indepen-

dent variables. In the literature, these problems have not been ex-

tensively considered. In Chapter 5 we therefore proposed a novel ap-

proach for building partially monotone models. The approach is based

on the mixture modeling framework, where Sill (monotone) networks

are convoluted with weight (kernel) functions. We showed that the

estimator obtained from our approach has universal function appro-

ximation capabilities. Furthermore, simulation studies (with artificial

data) and case studies (with real data) show that due to its flexibility

our approach outperforms partially monotone linear models in terms

of accuracy. Our approach performs comparably to standard neural

networks, but the former has less variance and thus produces more

stable models.

As an alternative approach for building partially monotone models,

we considered three-layer neural networks with combinations of mi-

nimum and maximum operators over linear functions (Appendix A).

6.1 Conclusions 171

The weights on the connections to the monotone variables are con-

strained to be non-negative. We also prove that this type of network

can arbitrary well approximate any partially monotone function.

Finally, we defined the following three hypotheses:

Hypothesis - 1 For monotone problems, monotone models have superior pre-

dictive performance to non-monotone models.

This hypothesis has been supported by previous studies dealing with

monotonicity. For example, Feelders (2000) and Potharst and Feelders (2002)

show that for monotone classification problems with real data, monotone

trees have comparable accuracy but much smaller size than non-monotone

trees. Therefore, the former are easier to interpret by the human decision-

makers. Our experiments with regression trees in Chapter 3 also support this

finding, which makes the conclusions more sound. Furthermore, Sill (1998)

shows that his type of three-layer monotone networks outperform standard

neural networks in terms of accuracy and stability on real data for classifica-

tion problems. To provide generalization of this finding, we apply both types

of networks on artificially generated monotone data for regression problems.

Our results again confirm the hypothesis that the monotone networks lead

to models with better prediction accuracy and smaller variances compared

with the models derived from the non-monotone standard networks.

Hypothesis - 2 For monotone problems, monotone models derived from mo-

notone data (i.e., data obtained after the transformation) outperform

monotone models derived from the original data, i.e., the former are

more accurate and their variance on new data is lower.

To test this hypothesis we used the monotone models built through de-

cision trees in Chapter 3 and neural networks in Chapter 4. We conducted

two real case studies representing a classification problem (bond rating) and

a regression problem (house pricing). We derived monotone models from

both the monotone (cleaned) data and the original data; we compared the

models’ performance. The results confirmed our hypothesis in the following

sense: (i) monotone models derived from the cleaned data have significantly

better accuracy than those derived from the original data, and (ii) upon re-

peated sampling the variances of the former tends to be lower that those of

the latter. In other words, resolving the inconsistencies in data beforehand

leads to more accurate, stable, and reliable models.

172 Chapter 6. Conclusions and future research

Hypothesis - 3 For partially monotone problems, partially monotone models

have superior predictive performance to non-monotone models.

In simulation and real case studies, we used two types of partially mono-

tone models–models derived from the approach for partial monotonicity and

partially monotone linear models, which were compared with unconstrained

standard neural networks. The results showed that our approach has com-

parable predictive accuracy to standard neural networks. However, due to

the preservation of monotonicity in the former, our models have (i) a signifi-

cantly smaller variance upon repeated sampling, and (ii) less variability over

different network architectures for a fixed data sample. Hence, our models

would be a preferable building tool in partially monotone prediction prob-

lems. In comparison with partially monotone linear models, unconstrained

neural networks with their flexible nature lead to models with smaller errors

on average but higher variances upon repeated sampling.

6.2 Future research

Although our research study provides answers to the main research questions

posed in this thesis, there are a number of directions for future work in both

theoretical and practical terms:

• Benchmark monotonicity measures : We considered two indicators to

measure the degree of monotonicity of benchmark data: the expected

value of the fraction of monotone pairs and the expected value of the

number of monotone points. We derived an analytical expression for

the first measure, whereas we empirically computed the second measure

from generated benchmark data. Hence, the theoretical derivation of

the latter remains an open research question.

• Monotone models : In this research we used decision trees and neural

networks to build monotone models. It would be interesting to extend

our study on derivation of monotone models by using other modeling

techniques; examples are Bayesian networks, graphical models, deci-

sion rules, which have been successfully applied to various knowledge

representation problems.

• Sill (monotone) networks : Additional simulation studies may give more

insight into the problem of determining the appropriate number of

6.2 Future research 173

groups and hyperplanes depending on the task at hand; for example,

in which cases does increasing the number of groups work better than

increasing the number of hyperplanes? Another issue is the effect of

interchanging the minimum and maximum operators in the hidden lay-

ers: how does it affect the performance of the models derived?

• Test for partial monotonicity : In totally monotone problems the mono-

tonicity dependency between the response and predictor variables is

explicitly defined. In partially monotone problems this dependency is

more difficult to establish, due to the effect of non-monotone variables.

Therefore the test for partial monotonicity we used in Chapter 5 is

rather empirical, and thus is highly dependent on the data. In some

cases, the results for the non-monotone relationships might be doubt-

ful. Then, an alternative empirical strategy is to apply parallel mo-

deling, namely partially monotone approaches on the whole data set,

and monotone approaches on the subset of monotone variables only.

The results can then be compared, and the analyst can decide which

type of technique is more suitable for modeling the data. Of course, a

better solution develops a theoretical test that leads to more reliable

conclusions regarding the degree of (partial) monotonicity of the data

at hand.

• Algorithm for partial monotonicity : The appropriate partitioning of

data in the initial step of our algorithm plays a crucial role in the

building of accurate models. Applying different clustering techniques–

such as fuzzy clustering and Expectation-Maximization algorithm–may

improve the performance of our partially monotone models. Further-

more, in our current algorithm we use the non-monotone variables to

define clusters only. An advanced strategy is to consider these vari-

ables as “genuine” predictors in a data mining modeling technique

(e.g., standard neural networks). Thus the effects of monotone and

non-monotone variables can be combined to obtain better predictive

performance of the models derived.

• Partially monotone neural networks : Although we proved the univer-

sal function approximation capabilities of partially monotone neural

networks, it would be interesting to determine their performance on

artificial and real data. Similarly to Sill networks and standard neu-

174 Chapter 6. Conclusions and future research

ral networks, we expect that setting the parameter values in partially

monotone neural networks may be problematic in practice. Further-

more, a comparison with our approach for partial monotonicity can be

useful to demonstrate the strengths and weaknesses of both approaches

when solving partially monotone problems.

To conclude, this thesis clearly demonstrates that the incorporation of

monotonicity constraints as domain knowledge into a data mining process

can be beneficial for both research and practice. The results from our study

are based on solid theoretical foundations and the development of compu-

tational methods. They show that enforcing monotonicity can considerably

improve the knowledge discovery process by deriving more accurate, stable

and plausible decision models. Our research also suggests several directions

for future investigation on the problem for building monotone prediction

models in data mining.

Appendix A

Network flow algorithm for

making data monotone

We describe a polynomial-time network flow algorithm to make data mono-

tone as an alternative of the greedy algorithm for relabeling (Section 2.4).

The former guarantees finding the minimum number of points that need to

be deleted. In Proposition 2.4.1 we showed that this number is equal to the

minimum number of points that need to be relabeled to obtain monotone

data.

The application of the network flow algorithm is compared with the

greedy algorithm for relabeling for the two real case studies presented in

Section 2.5. The results show that both algorithms find the same number

of points that need to be deleted or relabeled to make the data monotone.

Although the greedy algorithm does not guarantee finding the minimum

number of label changes (see the example in Figure 2.4 on p. 56), we conjec-

ture that in practice the greedy algorithm makes a number of label changes

that is very close to the minimum.

A.1 Description

Our primal problem is how to make data monotone by removing as few points

as possible. Instead we can solve the dual problem of finding the maximum

number of points that participate in monotone relationships only. In graph

theory, this problem is equivalent to the problem of finding the maximum

number of non-adjacent vertices in an inconsistency graph, i.e., the graph

176 Appendix A. Network flow algorithm

representing the non-monotone relationships in a data set (Rademaker et al.,

2006). In order to discuss this problem we first introduce some concepts and

definitions about graphs.

A graph consists of vertices (points), representing entities, and edges

(links) connecting different vertices and representing relationships between

these vertices. If the edges have a direction, then the graph is called directed

or digraph; otherwise, the graph is undirected.

For the purpose of our study, we consider a special type of graphs that

represents the partial order among entities, namely a comparability graph.

Our description of comparability graphs follows that of Möhring (1985).

A partial order is a digraph P = (V,R) with the vertex set V , and

the edge set R that is a strict order relation on V , i.e., a transitive and

asymmetric binary relation. Transitivity means that for any edges ab ∈ R,

and bc ∈ R there is an edge ac ∈ R. Asymmetry means that R ∩ R−1 = ∅,
where R−1 = {ba | ab ∈ R} is the inverse relation of R.

Let G(P) = (V,E) be an undirected graph assigned to P , where E = R∪
R−1, i.e., two vertices are adjacent (connected) in G if they are comparable

in P . Then, G(P) is a comparability graph of P .

Furthermore, for any graph, a subset of its vertices is an independent set

if no two vertices in the subset are adjacent. The independence number of

a graph is the cardinality (size) of the maximum independent set. Finding

the independence number of arbitrary graphs is known to be NP-complete

problem (Garey and Johnson, 1979). However, this number can be deter-

mined in polynomial time for comparability graphs due to their associated

transitive orientation and underlying structure.

The problem of finding the independence number in a comparability

graph is related to the problem of finding the maximum monotone data

subset because of the binary nature of monotone relationships. All the

points (observations) that participate in non-monotone relationships are rep-

resented by vertices in a graph, whereas the non-monotone relationships

themselves are represented by edges. Thus, we obtain the so-called inconsis-

tency graph. Note that for any non-monotone relationships represented by

the edges ab and bc, with a < b < c, there is a non-monotone relationship

represented by edge ac. Hence, an inconsistency graph is transitive. Further-

more, recall from the introduction of Chapter 2 that every (non)-monotone

relationship is comparable. So, an inconsistency graph is a comparability

graph. In Theorem 1.25, Möhring (1985) shows that the independence num-

A.1 Description 177

ber of a comparability graph equals the minimum flow value in a flow network

that can be obtained by a simple transformation of the graph. Hence, our

problem is finally reduced to finding this value.

A flow network–as defined by Swamy and Thulasiraman (1981)–is a con-

nected directed graph that has no self-loops, and satisfies the following con-

ditions:

1. There is only one vertex with no incoming edges; this vertex is called

the source and is denoted by s.

2. There is only one vertex with no outgoing edges; this vertex is called

the sink and is denoted by t.

3. Each directed edge e = ab in the network is associated with a non-

negative real number called capacity or weight of the edge; it is denoted

by c(e). If there is no edge e directed between a and b, then we define

c(e) = 0.

Hence, if we give directions on the edges from smaller to larger elements

in a comparability graph, and then connect a source to all minimal elements,

and a sink to all maximal elements, we obtain a flow network structure.

A flow f in a flow network is an assignment of a nonnegative real number

f(e) = f(ab) to each edge e = ab such that the following three conditions

are satisfied:

1. Capacity constraint: f(e) ≤ c(e) for every edge e in the network.

2. Skew symmetry: f(ab) = −f(ba).

3. Flow conservation:
∑

b f(ab)−
∑

b f(ba) = 0 for all a 6= s, t.

The value of a flow f, denoted by fval, is defined as

fval =
∑

b

f(sb) =
∑

b

f(bt).

A flow f∗ in a flow network is said to be maximum (minimum) if there is

no flow f in the network such that fval > f∗val (fval < f∗val). Hence, one of the

most typical network flow problems encountered in practice is the maximum

flow problem. An example is finding the maximum amount of oil that can

178 Appendix A. Network flow algorithm

be pumped between an origin node and a destination node in an oil pipeline.

More formally, for a flow network N = (V ′, E ′), a maximum flow problem is

defined as

maximize fval

subject to
∑

b

f(ab)−
∑

b

f(ba) = 0, ∀a 6= s, t

0 ≤ f(e) ≤ c(e), e ∈ E ′,

(A.1)

The minimization analogue of the maximum flow problem is the minimum

flow problem formally defined as

minimize fval

subject to
∑

b

f(ab)−
∑

b

f(ba) = 0, ∀a 6= s, t

lc(e) ≤ f(e) ≤ uc(e), e ∈ E ′,

(A.2)

where lc(e) and uc(e) are the lower and upper bounds for the flow through

edge e.

In the next section, we discuss how to use a minimum network flow

algorithm to transform non-monotone into monotone data.

A minimum network flow algorithm for making data monotone

Let D =
(

xn, `
x
n

)N

n=1
denote the original data set, and let Q(D) denote

the set of all non-monotone points in D. As we have already noted, the

points in Q(D) induce a partial order P , since the non-monotone relations

are transitive and asymmetric. Hence, we construct an inconsistency graph

G(P) = (Q(D), E) of P with the vertex set Q(D) and the edge set E =

{xixj | (xi,xj) is a non-monotone pair}, for i 6= j and 1 ≤ i, j ≤ N . Next–as

described by Möhring (1985)–we transform the inconsistency graph to a flow

network NP = (V ′, E ′) with E ′ = {xixj | xi ≤ xj and `
x
i > `

x
j}. To G(P)

we add a source node s, a sink node t, edges sx for all minimal vertices x, and

edges xt for all maximal vertices x. These edges and all edges xixj ∈ E ′ are
assigned lower capacities of zero and upper capacities of +∞. Furthermore,

except for the source and the sink, all the vertices are assigned weights of one

A.1 Description 179

4
1x

5
1x

7
1x

4
2x

5
2x

1

s t
7
2x

6
1x 6

2x

2
1x 2

2x

1
1x 1

2x

1

1

1

0

0

0 1

1

0

0

0

0

3
1x 3

2x
1 0

0

0

0

0

0

Figure A.1: Flow network based on the non-monotone data in Figure 2.4

corresponding to one point in the data. Since the network flow algorithms

deal with capacities on the edges (not on the vertices), we replace each vertex

x ∈ NP by an edge x1x2 such that all incoming edges of x have x1 as their

end point, and all outgoing edges of x have x2 as their starting point; the

edge x1x2 is assigned lower capacity of one and a upper capacity of +∞.

To illustrate this flow network construction, we consider the data depicted

in Figure 2.4 (p. 56). The set of lines E connecting the points indicate the

non-monotone relationships; they constitute an inconsistency graph G(P) =

(Q(D), E) of the partial order P on Q(D). We have the set of non-monotone

points Q(D) = {x1,x2,x3,x4,x5,x6,x7} because all the points participate

in non-monotone relationships. Figure A.1 depicts the flow network NP

associated with G(P). Each of the seven points is represented by an edge

with a lower capacity of one and a upper capacity of +∞. The connections

to the source and the sink, and the edges representing the non-monotone

relationships are assigned lower capacities of zero and upper capacities of

+∞.

Now the question is what is the minimum cardinality set of points that

need to be removed from Q(D) to make D monotone? Alternatively, what

is the maximum cardinality set of points that are in monotone relation-

ships only, i.e., the maximum independent set M , M ⊂ Q(D) in G(P)?

This problem can be solved by finding the minimum flow value fmin
val in NP .

Furthermore, by the min-flow max-cut theorem (Ford and Fulkerson, 1962;

Lawler, 1976) fmin
val equals the maximum capacity of an s, t-cut (or maximum

cut) in NP , i.e.,

180 Appendix A. Network flow algorithm

fmin
val = max

S,T

∑

ab∈E′

a∈S,b∈T

lc(ab)−
∑

ab∈E′

a∈T,b∈S

uc(ab)

,

where S, T is an s, t-cut of NP = (V ′, E ′), i.e., V ′ = S ∪T , S ∩T = ∅, s ∈ S,

t ∈ T , and where lc(ab) and uc(ab) denote the lower and upper capacity of

edge ab ∈ E ′.
Once the maximum cut is found, we can use it to derive the maximum

independent set as shown by Möhring (1985). This is the set of vertices

{x ∈ Q(D) | x1b ∈ E ′,x1 ∈ S, b ∈ T}. Finally, the set complement to the

maximum independent set is the set of points that need to be deleted (rela-

beled) to get monotone data.

For the network flow in Figure A.1, we find fmin
val = 4, i.e., the cardinality

(independence number) of the maximum independent set M is 4. This set

is obtained by the S, T -cut, where S = {s,x4
1,x

5
1,x

6
1,x

7
1}, T = V ′\S, and

M = {x4,x5,x6,x7}. Hence, we find that the set of points that need to be

removed (or relabeled) to make D monotone is Q(D)\M = {x1,x2,x3}.

A.2 Implementation

The algorithmic complexity of finding a minimum flow and the associated

maximum independent set in a flow network NP = (V ′, E ′) based on a

comparability graph G(P) = (V,E) is O(|V ′|3) = O(|V |3), where |·| denotes

the size of the set (Even, 1979). For our problem V = Q(D).

Now we discuss the implementation of the minimum flow problem for

making data monotone, and its application to the two real case studies pre-

sented in Section 2.5. As we mentioned in the previous section, the minimum

flow problem is a minimization analogue of the maximum flow problem; the

latter is one of the most typical network flow problems encountered in prac-

tice, for which numerous efficient algorithms have been developed. In our

study we use implementations by Prof. Dr. S. Iglin (National Technical

University KhPI, Kharkiv, Ukraine) in MATLAB; the programs are freely

available on the MATLAB Central web-site cited in the bibliography. We

modified the original program to solve the minimum flow problem.

First (as described in the previous section) for a given data set, we build

a flow network NP based on the partial order P and inconsistency graph

A.2 Implementation 181

G(P) of the non-monotone relationships in the data. The lower capacities

of the edges representing data points are ones; otherwise, they are zero. The

upper capacities on all the edges are +∞. Next we try to find the minimum

flow in NP by solving a network programming problem as defined in (A.2).

We applied our minimum flow algorithm to the bond rating and Moscow

housing data to make the data sets monotone. The algorithm yielded the

same numbers of points that need to be deleted (relabeled) as the greedy

algorithm for relabeling, namely 28 for the bond rating data, and 54 for the

Moscow housing data. Furthermore, we compared the sets of points found

by both algorithms. It turned out that 79% of the points are the same for

the bond rating data and 67% for the Moscow housing data. These are

mostly the points relabeled at the beginning of the greedy algorithm, i.e.,

the points whose relabeling resolves most inconsistencies. This means that

both algorithms correctly detect the “outliers”, i.e., the points that violate

the monotonicity constraint most.

We also tested our minimum flow algorithm on the artificial example

depicted in Figure A.1. The algorithm found the correct maximum indepen-

dent set and its complement set of points that need to be deleted (relabeled)

to make the data monotone.

Remark. The results from the experiments with the greedy algorithm

for relabeling and the minimum flow algorithm show that the problem of

minimizing the number of label changes has several optimal solutions. Thus,

we can use a second criterion for optimization such as the sum of the ab-

solute values of all changes. The problem with both criteria can be solved,

for example, by using Mixed Integer Linear Programming (Schrijver, 1998).

However, there is no guarantee of finding the solution in polynomial time.

182 Appendix A. Network flow algorithm

Appendix B

Universal approximation

theorems for three-layer neural

networks

We will prove that three-layer neural networks with a combination of mini-

mum and maximum operators over linear functions have universal function

approximation capabilities. We show this property for two types of network:

(i) without any constraints on the weights, and (ii) with monotonicity con-

straints on some of the weights. For fully constrained monotone networks,

the proof was given by Sill (1998).

B.1 Unconstrained neural networks

A general proof for the universal function approximation capabilities of

unconstrained three-layer neural networks has been communicated to us

through e-mail by William Armstrong, the developer of Adaptive Logic Net-

works discussed in Section 4.2. We use his ideas about the representation

of linear functions to build another constructive proof. We also follow the

grid representation scheme used in the proof for the universal approximation

capabilities of monotone networks given by Sill (1998).

Suppose we have a three-layer neural network with the architecture pre-

sented in Figure B.1. Note that the weights between the input and the first

hidden layer are unconstrained. Let O
x

denote the output of the network

for an input x.

184 Appendix B. Universal approximation by three-layer nets

1 x1 xk …

M I N M I N M I N

M A X

O U T P U T

2nd hidden layer

1st hidden layer
(linear units)

Input layer

I N P U T V E C T O R B I A S

Figure B.1: An architecture of three-layer neural network with MIN and MAX
operators.

Theorem B.1.1. Let X denote a closed bounded domain of k inputs (dimen-

sions) and f be a continuous bounded function mapping X to <+. Then, for

any ε > 0 there exists a function O
x

that can be implemented by a three-layer

network such that |f(x)−O
x
| < ε, for any x ∈ X .

Proof. Let ε > 0. Define an equispaced grid of points on X such that the

spacing between grid points along each dimension is δ, δ > 0, and it is taken

such that for any grid point s and for any x with ‖x− s‖∞ < δ, we have

|f(x) − f(s)| < ε. Here ‖·‖∞ denotes the max-norm distance between two

points; for k inputs, this distance is defined by

‖x− x′‖∞ = max
i
|xi − x′i| , i = 1, 2, . . . , k.

Corresponding to each grid point s, we assign a group consisting of 2k + 1

hyperplanes: one hyperplane is the constant output hs = f(s). In addition,

along each dimension d we place two hyperplanes:

h+s (xd) =
2

δ
f(s) (xd − sd + δ) and h−s (xd) =

2

δ
f(s) (sd − xd + δ) .

B.1 Unconstrained neural networks 185

Furthermore, we denote

f = min
s
f(s) and f = max

s
f(s), (B.1)

where s are the grid points close to x, i.e., ‖x− s‖∞ < δ. The number of

these points is at most 2k.

We will show that

f ≤ O
x
≤ f. (B.2)

First we prove the left-hand side of the inequality in (B.2). It is clear

that for any point x, x ∈ X , there always exists at least one grid point q

such that ‖x− q‖∞ ≤ δ/2. Then, by the definition of the hyperplanes the

group’s output (minimum over the hyperplanes) for q at x is f(q). Hence,

the final network’s output O
x

(maximum over all the groups’ outputs) at x

is ≥ f(q) ≥ f .

Next we proceed with the proof of the right-hand side of the inequality

in (B.2). We consider two sets of grid points and we show that their group’s

outputs are ≤ f .

First for any grid point s with ‖x− s‖∞ < δ, the group’s output for s at

x lies in the range (0, f(s)], and therefore it is ≤ f .

Now we take a grid point t with ‖x− t‖∞ ≥ δ. In other words, there

is at least one dimension d for which |xd − td| ≥ δ. If xd − td ≥ δ, then

h−t (xd) ≤ 0; if td − xd ≥ δ, then h+t (xd) ≤ 0. Since at each group we

compute the minimum over all the hyperplanes, the group associated with t

would produce an output at x that is ≤ 0 < f .

Since the group’s outputs at x for all grid points are ≤ f , it follows that

O
x
≤ f .

Finally, by the construction of the grid, for all points s, ‖x− s‖∞ < δ,

we have |f(x)− f(s)| < ε. Thus, |f(x)− f | < ε and |f(x)− f | < ε. Hence,

we have |f(x)−O
x
| < ε, which completes the proof.

Remark. The theorem can be generalized to mappings g : X → <.

First note that any function g can be represented as g = f − C, where f is

a positive function and C is a constant. Next, given Theorem B.1.1 for any

ε > 0 we can always find a Sill network’s approximation f̂ of f such that

|f − f̂ | < ε. Finally, we apply ĝ = f̂ − C to obtain the approximation ĝ of

g. The proof is straightforward.

186 Appendix B. Universal approximation by three-layer nets

B.2 Partially monotone neural networks

Now we show that the type of three-layer neural networks presented in Figu-

re B.1 with weights constrained to be non-negative on some of the inputs can

arbitrarily well approximate any partially monotone function. Note that the

network’s output O
x

is guaranteed to be partially monotone by construction.

Our proof is based on a function that is monotone in one of the inputs, but

it is trivial to generalize the results to multiple monotone inputs.

Theorem B.2.1. Let X denote a closed bounded domain of k inputs (di-

mensions) and f be a continuous bounded function mapping X to <+ that

is monotonically increasing in xk. Then, for any ε > 0 there exists a par-

tially monotone function O
x

that can be implemented by a three-layer net-

work with weights on the kth input constrained to be non-negative, such that

|f(x)−O
x
| < ε, for any x ∈ X .

Proof. The proof follows the same line of reasoning as the proof of The-

orem B.1.1. The difference is that now to each grid point s, along the

monotone dimension k, we place only one hyperplane:

h+s (xk) =
2

δ
f(s) (xk − sk + δ) .

Thus, at any grid point we have 2k hyperplanes in total. We again show

that

f ≤ O
x
≤ f,

for f and f defined in (B.1).

The left-hand side of the inequality is proved analogously to the uncon-

strained case. For the right-hand side, we now consider three sets of grid

points and we show that their group’s outputs are ≤ f .

First, for any grid point s with ‖x− s‖∞ < δ, the group’s output (mini-

mum over the hyperplanes) at x lies in the range (0, f(s)], so it is ≤ f .

Next, we take any grid point q with qk − xk ≥ δ or |xd − qd| ≥ δ, for

at least one non-monotone dimension d, d = 1, 2, . . . , k − 1. Then, by the

definition of the group hyperplanes, the group’s output for q at x is ≤ 0 < f .

Finally, we consider any grid point t with xk − tk ≥ δ and |xd − td| < δ,

for d = 1, 2, . . . , k−1. Then, by the definition of the hyperplanes, the group’s

output for t at x lies in the range (0, f(t)]. Note that there always exists

at least one grid point s with ‖x− s‖∞ < δ such that tk < sk and td = sd,

B.2 Partially monotone neural networks 187

for d = 1, 2, . . . , k − 1. Then by monotonicity of f on the kth dimension, we

have f(t) ≤ f(s) ≤ f .

Since the group’s outputs at x for all grid points are ≤ f , it follows

that O
x
≤ f . Following the same line of reasoning as in the proof for the

unconstrained networks, we can show that |f(x)−O
x
| < ε.

Remark. The proof is analogous if f is monotonically decreasing in one

or more inputs. Then, along the monotone dimension(s) we take h− instead

of h+.

188 Appendix B. Universal approximation by three-layer nets

Appendix C

Agglomerative hierarchical

clustering

As we discussed in the introduction of this thesis, the objective of clustering

is to partition the data into groups of similar objects (points). Three main

clustering types are distinguished in the literature: partition-based cluste-

ring, hierarchical clustering, and probabilistic model-based clustering (Jain

and Dubes, 1988; Hand et al., 2001). Here, we discuss the basic nature of

hierarchical clustering, which is applied in our approach for partial mono-

tonicity (see Section 5.3). For more details on clustering and its types, the

reader is referred to the aforementioned publications.

Hierarchical clustering builds a cluster hierarchy with tree-like nature,

also known as a dendrogram. Every cluster node contains child clusters;

sibling clusters partition the points covered by their common parent. Such

an approach allows exploring data on different levels of granularity. Hierar-

chical clustering methods are categorized into agglomerative (bottom-up)

and divisive (top-down). An agglomerative clustering starts with one-point

(singleton) clusters, and recursively merges two or more most appropriate

clusters based on a distance measure. A divisive clustering starts with one

cluster of all data points, and recursively splits the most appropriate clus-

ter. The process continues until a stopping criterion (usually, the requested

number C of clusters) is achieved. Agglomerative clustering is the more

important and widely used of the two. Therefore, we have used it in our

approach, and describe it briefly below.

Suppose, we have a data set D =
(

xn, `
x
n

)N

n=1
and a function dist(ci, cj)

measuring the distance between the two clusters ci and cj. Then, the agglo-

190 Appendix C. Agglomerative hierarchical clustering

merative hierarchical clustering algorithm described by (Hand et al., 2001)

is as follows.

for n = 1 to N do

cn = {xn}
end for

while there is more than one cluster left do

(cs, ct) = mini,j dist(ci, cj)

cs = cs ∪ ct
remove cluster ct

end while

The distance function dist(ci, cj) can be computed in different ways:

• Single linkage defines the distance between two clusters as the distance

between the two closest points, one from each cluster;

distsl(ci, cj) = min
x
i,xj

{

d(xi,xj)| xi ∈ ci,xj ∈ cj
}

,

where d(xi,xj) is the distance (usually Euclidean) between objects xi

and xj.

• Complete linkage defines the distance between two clusters as the dis-

tance between the two furthest away points, one from each cluster;

distcl(ci, cj) = max
x
i,xj

{

d(xi,xj)| xi ∈ ci,xj ∈ cj
}

.

• Average linkage defines the distance between two clusters as the ave-

rage of all the distances between pairs of points, one from each cluster;

distal(ci, cj) = average
x
i,xj

{

d(xi,xj)| xi ∈ ci,xj ∈ cj
}

.

To illustrate agglomerative clustering, we use a simple example. Figu-

re C.1(a) represents five objects in a two-dimensional input space. In the first

step, the clustering algorithm creates five clusters corresponding to the five

objects. Next, it merges the singletons x3 and x4 into one cluster, because

these are the closest clusters. In the third step, the distance between the

191

x O x P

x Q
x R

x S

(a)

x T x U x V x W x X

2 clusters

5 clusters

1 cluster

(b)

Figure C.1: An example of agglomerative clustering: (a) five objects in a two-
dimensional input space and (b) hierarchical clustering tree (dendrogram) built on
the five objects

singletons x1 and x2 is the smallest, so they are merged. Then, x5 is merged

with the (x3,x4) cluster. In the fifth step, (x1,x2) and (x3,x4,x5) are merged

into one final cluster. The resulting hierarchical clustering tree is depicted

in Figure C.1(b).

After the hierarchical clustering tree is built, we can cut off the hierar-

chy at different levels to obtain different cluster numbers as shown in Figu-

re C.1(b). Usually we try to determine the number of clusters that best

represents the natural grouping in the data. This can be done by using

the so-called silhouette value proposed by Rousseeuw (1987). The silhouette

value s(xn) for each object xn, n = 1, . . . , N , is a measure of how similar

that object is to objects in its own cluster compared with objects in other

clusters:

s(xn) =
b(xn, c)− a(xn)

max(a(xn), b(xn, c))

where a(xn) is the average distance from the object xn to the other objects

in its cluster, and b(xn, c) is the average distance from the object xn to the

objects in another cluster c closest to xn.

The silhouette value ranges from −1 to +1. If it is close to 1, the point is

assigned to a very appropriate cluster. If the silhouette value is about zero,

the point could be assign to another, closest cluster; the point lies equally

far away from both clusters. If the silhouette value is close to −1, the point

is “badly clustered”. The overall silhouette value of the clustering outcome

192 Appendix C. Agglomerative hierarchical clustering

is simply the average over the silhouette values for all points in the data set.

Hence, we can cut off the hierarchy at different levels corresponding to

the number of clusters we want to obtain; for each of the clustering outcomes

we compute the overall silhouette value. The number of clusters with the

maximum overall average silhouette value is taken as the optimal partitioning

of the data.

Samenvatting

Het vakgebied data mining is ontstaan uit de behoefte aan de extractie van

waardevolle en nieuwe kennis uit grote gegevensverzamelingen ter onderste-

uning van het nemen van beslissingen. Het is hierbij van groot belang dat de

verkregen modellen nauwkeurig en begrijpelijk voor de eindgebruiker zijn;

tevens dienen ze in overeenstemming te zijn met bedrijfsbeleid en de ken-

nis van deskundigen in het toepassingsgebied. Dit is vooral van belang bij

voorspelproblemen–een in de praktijk veel voorkomende data mining taak–

waarbij het doel is nauwkeurige en plausibele voorspellingen te doen van een

bepaalde variabele in het toepassingsgebied.

In de praktijk zijn vaak wel grote gegevensverzamelingen beschikbaar,

maar de modellen die hieruit met standaard data mining technieken wor-

den afgeleid zijn vaak niet in overeenstemming met de kennis van domein-

deskundigen of restricties die vanuit toepassingsoogpunt aan het model wor-

den opgelegd. Om dit probleem op te lossen is het van groot belang data

mining algoritmen zodanig aan te passen dat dergelijke domeinkennis kan

worden gecombineerd met de beschikbare data.

In veel toepassingsgebieden is kennis voorhanden over de richting van

de samenhang tussen variabelen. We kunnen deze kennis uitdrukken mid-

dels een monotonierestrictie: hoe groter de waarde van een onafhankelijke

variabele is, des te groter de waarde van de afhankelijke variabele, veronder-

steld dat de overige relevante variabelen gelijk blijven. Het is bijvoorbeeld

redelijk te veronderstellen dat de vraagprijs van een huis toeneemt met de

oppervlakte en het aantal kamers.

In dit proefschrift worden data mining algoritmen ontwikkeld die mod-

ellen opleveren die aan deze monotonierestricties voldoen zonder vergaande

beperkingen op te leggen aan de relatie tussen de afhankelijke variabele en de

onafhankelijke variabelen. We beschouwen hierbij zowel volledig monotone

als gedeeltelijk monotone voorspelproblemen. Bij volledig monotone voor-

194 Samenvatting

spelproblemen wordt een stijgend verband verondersteld tussen de afhanke-

lijke variabele en iedere onafhankelijke variabele; bij gedeeltelijk monotone

problemen is dit slechts het geval voor een deel van de onafhankelijke vari-

abelen.

Alhoewel er reeds verscheidene studies bestaan over het gebruik van

monotonierestricties in data mining algoritmen, draagt dit proefschrift op

een aantal manieren bij aan dit gebied.

Ten eerste presenteren we in paragraaf 2.3 een eenvoudige manier om te

toetsen of een gegevensverzameling door een monotoon proces is gegenereerd.

Deze toets kan worden gebruikt om te bepalen of het al dan niet verantwo-

ord is monotonierestricties aan het model op te leggen. De toets is niet-

parametrisch, en is derhalve van toepassing op gegevensverzamelingen met

zeer uiteenlopende eigenschappen.

De tweede bijdrage is een gretig algoritme voor het monotoon maken van

gegevens; dit algoritme wordt beschreven in paragraaf 2.4. Het monotoon

maken van gegevens zorgt ervoor dat ze consistent en in overeenstemming

met de kennis van domeindeskundigen zijn. Tevens kan het algoritme worden

gebruikt als voorbewerkingsstap voor data mining algoritmen die een mono-

tone gegevensverzameling vereisen. De gegevensverzameling wordt mono-

toon gemaakt door de waarde van de afhankelijke variabele voor zo min mo-

gelijk observaties aan te passen, teneinde de geobserveerde gegevens zo min

mogelijk te vertekenen. De hypothese is dat de monotone gegevensverzamel-

ing betere (nauwkeurigere en stabielere) monotone modellen oplevert dan de

oorspronkelijke gegevensverzameling. Om na te gaan of dit waar is, bouwen

we monotone modellen voor classificatie- en regressieproblemen met behulp

van beslisbomen en neurale netwerken (hoofdstuk 3 en 4). Hiertoe hebben

we bestaande algoritmen voor het construeren van monotone beslisbomen en

monotone neurale netwerken verbeterd; dit is onze derde bijdrage.

De vierde bijdrage, beschreven in hoofdstuk 5, is een methode en bi-

jbehorend algoritme voor het bouwen van gedeeltelijk monotone modellen.

De methode is gebaseerd op de convolutie van monotone neurale netwerken

gebouwd met de variabelen die een monotoon verband hebben met de afhanke-

lijke variabele en gewichtsfuncties die zijn geconstrueerd op de overige vari-

abelen. Voorzover wij kunnen nagaan is dit de eerste methode die gebruik

maakt van de mengsel-van-netwerken aanpak voor problemen met gedeel-

telijke monotonie. We bewijzen dat onze gedeeltelijk monotone modellen

universele benaderingseigenschappen bezitten. Met behulp van simulatie-

195

experimenten en experimenten met empirische gegevensverzamelingen tonen

we aan dat de modellen die ons algoritme oplevert beter voorspellen dan

gedeeltelijk monotone lineaire modellen. We laten zien dat deze verbetering

vooral wordt bereikt door vermindering van de variantie in vergelijking met

standaard neurale netwerken.

Onze laatste bijdrage is een bewijs, gepresenteerd in Appendix B, van de

universele benaderingseigenschappen van drie-laags neurale netwerken met

een combinatie van minimum- en maximumoperatoren over lineaire functies.

We tonen deze eigenschap aan voor twee typen netwerken: (i) netwerken

zonder enige restrictie op de gewichten, en (ii) netwerken met monotoniere-

stricties op een deel van de gewichten. Laatstgenoemde is een alternatieve

methode voor het bouwen van gedeeltelijk monotone modellen.

De resultaten van dit proefschrift laten zien dat het afdwingen van mono-

tonierestricties in data mining kan leiden tot stabielere modellen die beter

voorspellen, en beter aansluiten bij de kennis van domeindeskundigen.

196 Samenvatting

Bibliography

Abdelbar, A. M. (1998). Achieving superior generalisation with a high order

neural network. Neural Computing & Applications, 7 (2), 141–146.

Archer, N. P. and Wang, S. (1993a). Application of the backpropagation

neural network algorithm with monotonicity constraints for two-group

classification problems. Decision Sciences, 24 (1), 60–75.

Archer, N. P. and Wang, S. (1993b). Learning bias in neural networks and

an approach to controlling its effect in monotonic classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15 (9),

962–966.

Armstrong, W. W. (1974). Dendronic Decisions Limited. (http://www.

dendronic.com/main.htm)

Armstrong, W. W. and Thomas, M. M. (1997). Adaptive logic networks. In

Handbook of Neural Computation (Vol. 10, pages C1.8:1–14). Oxford

University Press.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.

(1955). An empirical distribution function for sampling with incom-

plete information. Annals of Mathematical Statistics, 26 (4), 641–647.

Ben-David, A. (1995). Monotonicity maintenance in information-theoretic

machine learning algorithms. Machine Learning, 19 (1), 29–43.

Ben-David, A., Sterling, L., and Pao, Y.-H. (1989). Learning and classifica-

tion of monotonic ordinal concepts. Computational Intelligence, 5 (1),

45–49.

Berry, M. J. A. and Linoff, G. (1997). Data mining techniques for marketing,

sales and customer support. New York: John Wiley & Sons.

198 BIBLIOGRAPHY

Bioch, J. C. and Popova, V. (2002). Monotone decision trees and noisy data

(ERIM Internal Report No. 206). Erasmus University Rotterdam.

Bishop, C. (1997). Neural networks for pattern recognition. Oxford Univer-

sity Press.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classi-

fication and regression trees. Belmont, Calif.: Wadsworth International

Group.

Broyden, C. G. (1970). The convergence of a class of double-rank mini-

mization algorithms. Journal of the Institute of Mathematics and Its

Applications, 6, 76–90.

Cao-Van, K. and De Baets, B. (2003). Growing decision trees in an ordinal

setting. International Journal of Intelligent Systems, 18, 733–750.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer,

C., and Wirth, R. (2000). CRISP-DM 1.0 Process and User Guide.

CRISP-DM Consortium. (http://www.crisp-dm.org)

Clark, D., Schreter, Z., and Adams, A. (1996). A quantitative comparison of

Dystal and backpropagation. In Proceedings of the seventh Australian

Conference Neural Networks, Canberra, Australia (p. 132–137).

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal func-

tion. Mathematics of Control, Signals, and Systems, 2, 303–314.

Daniels, H. A. M. and Kamp, B. (1999). Application of MLP networks

to bond rating and house pricing. Neural Computing & Applications,

8 (3), 226–234.

Daniels, H. A. M. and Velikova, M. V. (2003). Derivation of monotone

decision models from non-monotone data (Center Discussion Paper

Nos. 2003–30). Tilburg University.

Daniels, H. A. M. and Velikova, M. V. (2006). Derivation of monotone

decision models from noisy data. IEEE Transactions on Systems, Man

and Cybernetics, Part C, 36 (5), 705–710.

Duda, R. O. and Hart, P. E. (1973). Pattern classification and scene analysis.

New York: John Wiley & Sons.

BIBLIOGRAPHY 199

Even, S. (1979). Graph algorithms. London: Pitman.

Feelders, A. (2000). Prior knowledge in economic applications of data mining.

In Principles of Data Mining and Knowledge Discovery, Lecture Notes

in Artificial Intelligence (Vol. 1910, p. 395–400). Springer.

Feelders, A. (2002). Statistical concepts. In M. Berthold and D. Hand

(Eds.), Intelligent data analysis: an introduction (pages 15–66). Berlin:

Springer-Verlag.

Feelders, A., Daniels, H. A. M., and Holsheimer, M. (2000). Methodological

and practical aspects of data mining. Information & Management,

37 (5), 271–281.

Feelders, A. and Pardoel, M. (2003). Pruning for monotone classification

trees. Lecture Notes in Computer Science, 2810, 1–12.

Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., and

Samorodnitsky, R. (2002). Monotonicity testing over general poset

domains. In Proceedings of the thirty-fourth annual ACM Symposium

on Theory of Computing, Montreal, Quebec, Canada (pages 474–483).

ACM Press.

Fletcher, R. (1970). A new approach to variable metric algorithms. Computer

Journal, 13, 317–322.

Ford, L. R. and Fulkerson, D. R. (1962). Flows in networks. Princeton, NJ:

Princeton University Press.

Friedman, J. H. and Tukey, J. W. (1974). A projection pursuit algorithm for

exploratory data analysis. IEEE Transactions on Computers, C-23 (9),

881–889.

Frosyniotis, D., Stafylopatis, A., and Likas, A. (2003). A divide-and-conquer

method for multi-net classifiers. Pattern Analysis & Applications, 6 (1),

32–40.

Galliers, R. (1992). Information systems research: issues, methods and

practical guidelines. Oxford: Blackwell Scientific Publications.

200 BIBLIOGRAPHY

Gamarnik, D. (1998). Efficient learning of monotone concepts via quadratic

optimization. In Proceedings of the eleventh Annual Conference on

Computational Learning Theory, Madison, Wisconsin, United States

(pages 134–143). ACM Press.

Garey, M. and Johnson, D. (1979). Computers and intractability: a guide to

the theory of NP-completeness. New York: Freeman.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and

the bias/variance dilemma. Neural Computation, 4 (1), 1–58.

Giudici, P. (2003). Applied data mining: statistical methods for business and

industry. Chichester: John Wiley & Sons.

Goldfarb, D. (1970). A family of variable metric updates derived by varia-

tional means. Mathematics of Computing, 24, 23–26.

Goldreich, O., Goldwasser, S., Lehman, E., and Ron, D. (1998). Testing

monotonicity. In Proceedings of the thirty-ninth Annual Symposium on

Foundations of Computer Science, Palo Alto, California, USA (pages

426–435). IEEE Computer Society.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo methods.

London: Methuen.

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of data mining.

Cambridge: MIT Press.

Harrison, O. and Rubinfeld, D. (1978). Hedonic prices and the demand for

clean air. Journal of Environmental Economics and Management, 53,

81–102.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The elements of

statistical learning: data mining, inference, and prediction. New York:

Springer-Verlag.

Hellerstein, J. (1989). A statistical approach to diagnosing intermittent

performance-problems using monotone relationships. In Proceedings of

the 1989 ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computer Systems, Oakland, California, United

States (pages 20–28). ACM Press.

BIBLIOGRAPHY 201

Huber, P. J. (1985). Projection pursuit. The Annals of Statistics, 13 (2),

435–475.

Insightful Miner 3.0 User’s Guide. (2003). Seattle: Insightful Corporation.

(http://www.insightful.com/support/iminer30/uguide.pdf)

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991).

Adaptive mixture of local experts. Neural Computation, 3, 79–87.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for data clustering. New

Jersey: Prentice Hall.

Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-

Verlag.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts

and the EM algorithm. Neural Computation, 6, 181-214.

Karpf, J. (1991). Inductive modeling in law: example based expert sys-

tems in administrative law. In Proceedings of the third International

Conference on Artificial Intelligence and Law, Oxford, England (pages

297–306). ACM Press.

Kay, H. and Ungar, L. H. (2000). Estimating monotonic functions and their

bounds. American Institute of Chemical Engineers (AIChE) Journal,

46 (12), 2426–2434.

Kleijnen, J. P. C. (2004). Design and analysis of Monte Carlo experiments.

In J. Gentle, W. Haerdle, and Y. Mori (Eds.), Handbook of computa-

tional statistics; Volume I: concepts and fundamentals (pages 497–516).

Berlin: Springer.

Kohavi, R. and Wolpert, D. H. (1996). Bias plus variance decomposition for

zero-one loss functions. In Proceedings of the thirteenth International

Conference on Machine Learning, Bari, Italy (p. 275-283). Morgan

Kaufmann.

Lawler, E. L. (1976). Combinatorial optimization: networks and matroids.

New York: Holt, Rinehart and Winston.

202 BIBLIOGRAPHY

Lee, J. W. T., Yeung, D. S., and Wang, X. (2003). Monotonic decision tree

for ordinal classification. IEEE International Conference on Systems,

Man and Cybernetics, 3, 2623–2628.

Lory, P. and Gietl, D. (2000). Neural networks for two-group classification

problems with monotonicity hints. In Classification and Information

Processing at the Turn of the Millennium (pages 113–118). Springer-

Verlag.

Makino, K., Suda, T., Ono, H., and Ibaraki, T. (1999). Data analysis

by positive decision trees. IEICE Transactions on Information and

Systems, E82-D(1), 76–88.

MATLAB Central. http://www.mathworks.com/matlabcentral/.

MATLAB Software. http://www.mathworks.com/products/matlab/.

MIT Technology Review. (2001). Ten emerging technologies that will change

the world. Annual Innovation Issue, 104 (1), Jan./Feb.

Möhring, R. H. (1985). Algorithmic aspects of comparability graphs and

interval graphs. In Graphs and Order (pages 41–101). Dordrecht: D.

Reidel Publishing Company.

Moshkovich, H. M., Mechitov, A. I., and Olson, D. L. (2002). Rule induction

in data mining: effect of ordinal dependencies. Expert Systems with

Applications, 22 (4), 303–311.

Mukarjee, H. and Stern, S. (1994). Feasible nonparametric estimation of

multiargument monotone functions. Journal of the American Statisti-

cal Association, 89 (425), 77–80.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability &

Its Applications, 9 (1), 141–142.

Nash, W. J., Sellers, T. L., Talbot, S. R., and Cawthorn, W. B., A. J.

anf Ford. (1994). The Population Biology of Abalone (Haliotis species)

in Tasmania. 1. Blacklip Abalone (H. rubra) from the North Coast and

the islands of Bass Strait (Technical Report No. 48). Sea Fisheries

Division, Marine Research Laboratories-Taroona, Department of Pri-

mary Industry and Fisheries, Tasmania, Australia.

BIBLIOGRAPHY 203

Nelder, J. A. and Mead, R. (1965). A simplex method for function mini-

mization. Computer Journal, 7, 308–313.

Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI

Repository of Machine Learning Databases. University of California,

Irvine, Dept. of Information and Computer Sciences. (http://www.

ics.uci.edu/~mlearn/MLRepository.html)

Obesity Education Initiative. (1998). Clinical guidelines on the identification,

evaluation, and treatment of overweight and obesity in adults (NIH

Report No. 98-4083). National Institutes of Health, National Heart,

Lung, and Blood Institute.

Pidd, M. (1996). Tools for thinking: modeling in management science.

Chichester: John Wiley & Sons.

Popova, V. (2004). Knowledge discovery and monotonicity. PhD thesis,

Erasmus University Rotterdam, Rotterdam, The Netherlands.

Potharst, R. (1999). Classification using decision trees and neural nets. PhD

thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands.

Potharst, R. and Bioch, J. C. (2000). Decision trees for ordinal classification.

Intelligent Data Analysis, 4 (2), 97–111.

Potharst, R. and Feelders, A. (2002). Classification trees for problems with

monotonicity constraints. SIGKDD Explorations Newsletter, 4 (1), 1–

10.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1),

81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Los Altos,

CA: Morgan Kaufmann.

Quinlan, J. R. (2005). C5: Data Mining Tool. (http://www.rulequest.

com/see5-info.html, visited in September 2005)

Rademaker, M., De Baets, B., and De Meyer, H. (2006). Data sets for

supervised ranking: to clean or not to clean. In Proceedings of the

fifteenth Annual Machine Learning Conference of Belgium and The

Netherlands: Benelearn 2006, Ghent, Belgium (p. 139–146).

204 BIBLIOGRAPHY

Raskhodnikova, S. (1999). Monotonicity testing. Master thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA.

Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order restricted

statistical inference. Chicester: John Wiley & Sons.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpreta-

tion and validation of cluster analysis. Journal of Computational and

Applied Mathematics, 20, 53–65.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

internal representations by error propagation. In Parallel distributed

processing: explorations in the microstructures of cognition (Vol. 1,

pages 318–362). MIT Press.

S-PLUS Software. http://www.insightful.com/products/splus/

default.asp.

Sarfraz, M., Al-Mulhem, M., and Ashraf, F. (1997). Preserving monotonic

shape of the data by using piecewise rational cubic functions. Com-

puters and Graphics, 21, 5–14.

Schell, M. J. and Singh, B. (1997). The reduced monotonic regression

method. Journal of the American Statistical Association, 92 (437), 128–

135.

Schrijver, A. (1998). Theory of linear and integer programming. Chichester:

John Wiley & Sons.

Shanno, D. F. (1970). Conditioning of Quasi-Newton methods for function

minimization. Mathematics of Computing, 24, 647–656.

Shannon, C. E. (1948). A mathematical theory of communication. Bell

System Technical Journal, 27, 379–423, 623–656.

Siem, A. Y. D., De Klerk, E., and Den Hertog, D. (2005). Discrete least-

norm approximation by nonnegative (trigonometric) polynomials and

rational functions (Center Discussion Paper Nos. 2005–73). Tilburg

University.

Sill, J. (1998). Monotonic networks. In Advances in Neural Information

Processing Systems (NIPS) (Vol. 10, pages 661–667). MIT Press.

BIBLIOGRAPHY 205

Sill, J. and Abu-Mostafa, Y. S. (1997). Monotonicity hints. In Advances

in Neural Information Processing Systems (NIPS) (Vol. 9, pages 634–

640). MIT Press.

Strobl, R., Salanti, G., and Ulm, K. (2003). Extension of CART using

multiple splits under order restrictions (SFB 386 Discussion Paper No.

364). LMU München.

Suárez-Fariñas, M. and Pedreira, C. E. (2003). Mixture of experts and local-

global neural networks. In Proceedings of the eleventh European Sympo-

sium on Artificial Neural Networks, Bruges, Belgium (pages 331–336).

Brussels: D-Facto.

Swamy, M. N. S. and Thulasiraman, K. (1981). Graphs, networks, and

algorithms. New York: John Wiley & Sons.

Tuy, H. (2000). Monotonic optimization: problems and solution approaches.

SIAM Journal on Optimization, 11 (2), 464–494.

Velikova, M. V. and Daniels, H. A. M. (2004). Decision trees for monotone

price models. Computational Management Science, 1 (3–4), 231–244.

Velikova, M. V., Daniels, H. A. M., and Feelders, A. (2006a). Mixtures of

monotone networks for prediction. International Journal of Computa-

tional Intelligence, 3 (3), 204–214.

Velikova, M. V., Daniels, H. A. M., and Feelders, A. (2006b). Solving

partially monotone problems with neural networks. In Proceedings of

the twelfth International Conference on Computer Science, Vienna,

Austria (pages 82–87). Turkey: World Enformatika Society.

Vogel, D. R. and Wetherbe, J. C. (1984). MIS Research: a profile of leading

journals and universities. Data Base, 16 (1), 3–14.

Wang, S. (1994). A neural network method of density estimation for univari-

ate unimodal data. Neural Computing & Applications, 2 (3), 160–167.

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian

Journal of Statistics, Series A, 26 (4), 359–372.

Waugh, S. (1995). Extending and benchmarking cascade-correlation. PhD

thesis, University of Tasmania, Tasmania, Australia.

206 BIBLIOGRAPHY

Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, analysis,

and parameter design optimization (Wiley Series in Probability and

Statistics ed.). New York: John Wiley & Sons.

