Optimal Enforcement Policies (Crackdowns) on an

Ilicit Drug Market

Peter M. Kort
Department of Econometrics and CentER, Tilburg University,
PO Box 90153, 5000LE Tilburg, The Netherlands.
Phone: +31 13 4662062, Fax: +31 13 4663280, E-mail: KORT@QKUB.NL

Gustav Feichtinger
Institute for Econometrics, OR and Systems Theory,

University of Technology, Vienna, Austria, Phone: + 43 1 58801 4428

Richard ¥. Hartl
Institute of Management, University of Vienna,

Vienna, Austria, Phone: + 43 1 29128 501

Josef L. Haunschmied
Institute for Econometrics, OR and Systems Theory,

University of Technology, Vienna, Austria, Phone: + 43 1 58801 4428



Optimal Enforcement Policies (Crackdowns) on an
[llicit Drug Market

Abstract

In this paper an optimal control model is presented to design enforcement
programs minimizing the social costs from both the market and crackdown. The
model is built around a dynamic equation proposed by Caulkins [1], in which the
development of the number of dealers in a particular illicit drug market depends
on market sales and police enforcement. By using the maximum principle we show
that, due to the positive feedback effect hypothesized by Kleiman [2], performing
an enforcement policy that leads to a collapse of the drug market is more likely
to be optimal when the sales volume depends on the number of dealers. In case
of a buyers’ market, which means that the total of sales completely depends on
the number of buyers, the optimal enforcement policy leads to a saddle point
equilibrium where the enforcement rate is fixed such that the number of dealers is

kept constant at a positive level.

KEYWORDS: markets for illicit drugs; optimal control; history-dependent equilibria,;
Skiba point.



1 Introduction

[licit drug markets impose considerable costs on society, as do drug control efforts. In
recent years problems devoted to drug policy have been increasingly studied in opera-
tions research and management science. In particular mathematical models have been
presented to support the tactical question of optimal use of resources for a crackdown

on a drug market.

In addition to source country control, interdiction, and high-level domestic enforcemen-
t, recent years have witnessed increasing attention to local drug enforcement [1,3], like

?

crackdowns. Kleiman [2] defines a crackdown as ”an intensive local enforcement effort

directed at a particular geographic target”.

According to Caulkins [4] crackdowns should be distinguished from the daily usual en-
forcement operations, which generally spread resources more or less uniformly. There
is no consensus on the efficacy of crackdowns (cf. the discussion in Caulkins [1,4]).
Mathematical models are formulated and analysed to describe how a drug market might

respond to law enforcement.

Recently, the question of determining the optimal rate of enforcement pressure on a
street-market for illicit drugs has been dealt with. In particular Baveja et al. [5] anal-
yse enforcement programs of finite duration that minimize the total costs of crackdown,
subject to the constraint that the market is eliminated at the end of the program. The
interesting analysis done by these authors is in the context of Caulkins’ model (Reference
1, see section 2). Their main result is that the simple strategy of using maximum avail-
able enforcement level until the market has collapsed is optimal in most instances (e.g.
in the sellers’ market). A drawback of the analysis in Baveja et al. [5] is that artificial

upper and lower boundaries are imposed upon the enforcement level. Since their optimal



policy turns out to be bang bang, these exogenous boundaries are very important for

the solution.

The purpose of the present paper is to extend the analysis of Baveja et al. [5] in various
directions. First, besides minimizing the costs of enforcement, we also include the current
disutility (social costs) caused by the drugs market. It seems reasonable to represent the
latter by the total number of dealers. Second, we consider an infinite planning period,

and, third, the enforcement level is non negative and not bounded from above.

The paper is organized as follows. In Section 2 the model is presented. Section 3
states the necessary and sufficient optimality conditions resulting in a two-dimensional
system of nonlinear differential equations. This system is studied more thoroughly in
the Appendix. In Section 4 we find interesting results on the qualitative behaviour of
optimal enforcement rates for three different scenarios. Finally, in Section 5 we draw

some conclusions and give hints for possible extensions.

2 The Model

Since the state equation for the number of dealers is invented by Caulkins [1], we briefly
sketch his framework. His core assumption is that the rate of change of dealers depends
on several market parameters as well as on the enforcement level of the police. These
assumptions are similar to those commonly made in microeconomics. The dealers behave
analogously to firms and the markets to industries. The drug markets are made up of a

large number of identical dealers, and free entry and exit ensures zero long-run profits.

In the spirit of Becker [6] dealers rationally maximize their utility. Thus, it seems plau-
sible to assume that dealers enter the market as long as the profits they can obtain there

exceed their reservation wage; otherwise, dealers will leave the market.



In particular, Caulkins specifies the rate of change of dealers with respect to time in a

given market as follows:

- [ () -

where
N(t) = the number of dealers in the market
t = time!
Q(N) = oaNP = number of sales per unit time
a,f = demand parameters, where 8 € [0,1],a > 0 and «, § are constants
E(t) = enforcement effort associated with a crackdown at
time ¢
c1 = speed of adjustment (¢; > 0 and constant)
T = generalized profit per transaction (7 > 0 and constant)
wo = a dealer’s reservation wage (wo > 0 and constant)
v = parameter associated with per dealer cost of enforcement effort

(v € (0,1) and constant).

The first term on the righthand side of equation® (1) reflects that dealers like to en-
ter the illicit drugs market if his/her generalized profit (profit per sale net of pecuniary
and other costs? times the number of sales per unit time, divided by the number of deal-
ers) is large. Consequently, the change of the number of dealers on the market depends

positively on the generalized profit per dealer. The second term on the righthand side of

1For simplicity, in what follows we omit the time dependence in the variables, i.e. we write N for
N (1) ete.

?Caulkins ([4], p. 851) uses the term generalized profit instead of net profit because many of the
costs are nonmonetary. The generalized profit equals the sales price minus the dealer’s cost of doing
business, including the costs imposed by other market participants and conventional police enforcement,.
The cost associated with crackdowns are dealt with separately.



equation (1) captures the fact that entering this market is unattractive to dealers if the
crackdown enforcement pressure on this market, given by (E/N)?, is large. Here v is a
measure for the efficiency of the enforcement. For reasons of mathematical tractability
(i.e. satisfaction of the Legendre-Clebsch condition), it is assumed that the value of « lies
between zero and one. According to equation (1) the number of dealers increase in this
market when the difference between the generalized profits per dealer and the enforce-
ment pressure exceeds the dealers’ reservation wage. The reservation wage is what the
dealer could earn in alternative employment including dealing elsewhere. The constant

¢; measures how fast dealers enter or leave the market.

The dealers’ reservation wage is assumed to be constant and exogenous. This implies
that what happens in one market will not greatly affect the others [4]. This means that
1t is implicitly assumed that the fact that drug dealers often move to "green pastures”
during a crackdown does not influence the performance of other illicit drug markets

considerably?.

We study the scenario where ma > wp, so that for N sufficiently low, and in case of no

enforcement, the profit on this market is sufficiently large that dealers will enter.

Contrary to Caulkins [4], whose model is descriptive, our aim is to determine the optimal
rate of evolution of enforcement pressure. The objective is to minimize the discounted
flow of social costs. These costs arise from spending resources on enforcement and from
the disutility caused by the drugs market. If we represent the latter costs by the total

number of dealers, the objective is given by

3As remarked by Caulkins [4], a crackdown would fail if all participants in the target market would
move to a new location. But this outcome is very unlikely because there is generally no way for the
participants to coordinate their actions.
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r = discount rate (r > 0 and constant ).

For simplicity we assume a separable and linear cost function so that the objective

becomes
maximize {— /OO(E + pN)e'”dt} . (2)
0
where

p = a positive constant measuring the relative cost of the drugs market.

The disutility to society caused by the drugs market is quantified by pN in expression
(2). Hence disutility is proportional to N, and we assume that there is a linear transfor-

mation of disutility into money, so that N causes "social costs” of pN money units.

In case the total of sales is very dependent on the number of dealers, meaning that we
have a so called sellers’ market, it is clear that social costs should increase with V. But
this will also be the case when the total of sales is not very sensitive to the number
of dealers (buyers’ market). The reason is that then dealers have to fight harder for a
market share if there are more of them around. Hence, violence will increase with the

number of dealers, and this leads to more social costs.



Admittedly, the extent of disorder and violence are important determinants of social

costs and such elements are not fully captured by our linear expression. Future research

should address more elaborate expressions.

Before analyzing the model, it may be useful to briefly review the key assumptions that

have been made:

Al

A2:

A3:

Ad:

A5:

Ab:

AT:

AS8:

A9:

Dealers are identical and interchangeable;
The number of dealers can be modeled as a continuous variable;
All drug sales yield the same generalized profit =;

Sales are a function only of the number of dealers N, and are not a function

of the enforcement pressure E directly. And, this function can be modeled as

Q(N) = aNP for 8 € [0,1];
All dealers experience a crackdown enforcement pressure of (E/N)7;

Outside the illicit drug market under consideration, dealers can earn a fixed reser-
vation wage wp, meaning that cracking down on one of many markets in a city

does not significantly influence dealing in the other markets;

Dealers enter the market if their generalized profit, net from the enforcement pres-

sure, exceeds the dealers’ reservation wage wo;

The disutility of an illicit drug market expressed in units of money linearly depends

on the number of dealers and equals pV;

The enforcement rate F is set such that the discounted flow of social costs of the
illicit drug market is minimized. These costs consist of the sum of enforcement

spendings, F, and the drug market’s disutility, p.V.



3 Qualitative analysis in the phase plane

Define the current value Hamiltonian

H=~FE = pN + Aey(maNP~' — EYN™ — wy), (3)

where ) is the costate variable representing the shadow price of the number of dealers?.

From (3) we derive the following necessary optimality condition:

E =arg max H,

which, due to the fact that v < 15, leads to

A=—N"/e;yE*". (4)

Furthermore, we have the following condition for the evolution of the costate variable

A=r)\—Hy = p+Ar—ara(f - 1)N‘8_2 — ey BN, (5)

The plan is to solve the model by performing a phase plane analysis in the (N, E)-plane.
Here we only state the main results. For a more thorough analysis the reader is referred

to the Appendix. We first observe that the N = 0 isocline immediately follows from (1):

E = (maNP' —w)'"'N (6)

“Note that concavity of H in N is not assured, so that sufficiency is hard to prove.
SNote that Hgg < 0, because v < 1 and A is negative.
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We conclude that on the N = 0 isocline E will be positive for N € (0, Nmax), where the

notation is borrowed from Caulkins [4]:

Ninax = (mar/wo) ), (7)

In the Appendix we show that, provided that v + 8 > 1, the maximum value of £ on

this isocline is reached for

e (2H271) (52)7 @

v Wo
(see Caulkins ([4], p. 857)).

Next, we derive a differential equation for E. To do so we first differentiate (4) w.r.t.

7¢”, which gives

LA [— NN+ (y~1)EE] (9)
Cl’)’E'Y_l '7 7 ¢

After substitution of (4) and (9) into (5) and some rearranging, we obtain

E= 7_1?'1“ [ANTIN 4 pery BN = vt el B~ NPT 4 iy BTN L(10)

Substitution of (1) into (10) finally gives

. E
B = == [pay BN —r - amaly + 6~ DNV — cuwey N7 (11)
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In the Appendix we show that F must always be positive in equilibrium, so that we only
need to consider the £ = 0 isocline for positive E. From equation (11) we can obtain

that this £ = 0 isocline can be expressed as:

1

=
E:N/[——’"—N—ff(wﬁ—l)Nﬁ-w@ " (12)
pery P P

In the Appendix we prove that for the E = 0 isocline it holds that E < 0 for N € (0, N4)
and £ > 0 for N € (N4, 00), where Ny satisfies

T To 41
—_ it — wy = 0. 13
clnyA p (y+B—-1)Ny " +wo=0 (13)

Concerning the status of the equilibrium the following proposition holds, from which the

proof can be found in the Appendix.

Proposition 1

An equilibrium point is

dE

¢ a saddle point, if in the equilibrium point it holds that %‘E—o > iV yeo

e unstable, if in the equilibrium point it holds that %E\",— seo < % Mo

4 The optimal enforcement policies

In this section we present optimal trajectories for different scenarios. We distinguish
between a pure sellers’ market (Subsection 4.1), a pure buyers’ market (Subsection 4.2)

and an intermediate case (Subsection 4.3).
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4.1 Optimal trajectories in case of a pure sellers’ market

An illicit drugs market is a pure sellers’ market if it holds that each dealer creates his
own demand. Here demand is abundant in the sense that if another dealer arrives, total
market sales will expand enough that none of the existing dealers lose sales. In the model

it means that the number of sales grow linearly with N so that = 1.

To perform a phase plane analysis in the (N, E)-plane, we first obtain from (6) that for

B =1 the N = 0 isocline is that straight line given by

E = (ma—wo)/"N. (14)

Concerning the E = 0 isocline we conclude from Section 3 that E < 0 for N € (0, Ny),
where N4 is defined by

Ny = (ra— wo)ary/r. (15)

It holds that E > 0 for N € (N4, 00). Furthermore, in the Appendix it is proved that
E(N]) — oo, and for N > Ny the E = 0 isocline is decreasing in the (N, E)-plane. The

phase diagram in case of a pure sellers’ market is depicted in Figure 1.
[Insert Figure 1 about here]

The equilibrium A in Figure 1 is unstable, which is confirmed by Proposition 1. This
unstable equilibrium can be a node or a focus (see, e.g., Reference 7, p. 105). If it is
a focus, then we know from the literature [8,9] that there exists an interval of N-values
that contains the unstable equilibrium, and on which two candidate trajectories occur.

One trajectory goes to the right and the other one goes to the left. The trajectory to
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the right lies on the N—axis, because the optimal trajectory is the one which is as far
away from the N = 0 isocline as possible (see Reference 7, Theorems 4.13, 4.14). From
Dechert [9] we know that a so called Skiba-point, S say, can be identified such that for
"large” initial numbers of drug dealers, N > S, the trajectory to the right is better, and
for small initial numbers of drug dealers, N < S, the trajectory to the left generates a
higher value of the objective.® These trajectories are called history dependent, since it
depends on the history, i.e. on N(0), which one is optimal. This situation is sketched in

Figure 1.

It can also happen that the unstable equilibrium is a node. This means that we still
have history dependent equilibria and the critical point (where to go to left or right) is
simply the unstable node A. Since this situation is simpler than the case of a focus, we

refrain from drawing a picture here.

To interpret the solution in Figure 1 it is convenient to write down the state equation

for the number of dealers for g =1 (cf. (1)):

N=q (m _ (-ff-)7 - wo) . (16)

The generalized profit of the individual dealer net from the enforcement pressure is
ra — (E/N)". Each individual dealer, who enters the market, obtains a profit of ra
from selling his drugs. This profit is independent from the total number of dealers that
is already active on this market. We conclude that each dealer creates his oWn demand,

which confirms that we have a sellers’ market here.

8The reason is that for fixed N, the (maximized) Hamiltonian and therefore also the value function
assumes its minimum value along the N = 0 isocline so that on the left boundary of the overlapping
interval the left trajectory is better, and on the right boundary the right trajectory is better; see also
Feichtinger and Hartl ([7], p. 117). The existence of a Skiba point in between follows from continuity.
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We further conclude that the total enforcement effort does not have a large effect on
the net profit of the individual dealer if N is large. The reason is that the burden of
enforcement is shared equally among the dealers, so that this burden is relatively low
for the individual dealer when there are a lot of colleagues around. Then, according to
(16), a large enforcement level does not prevent new dealers from entering the market

so that the effectiveness of resources invested in enforcement is low. This makes it un-

derstandable that in Figure 1 E =0 for N > §.

For N < § enforcement is effective enough so that it is optimal to invest resources in it.
In fact, enforcement remains positive until the market collapses, i.e. the total number of
dealers that operates on this market is zero in the end. This market collapse is a perfect
illustration of the "positive feedback” generated by the enforcement (see, e.g., Kleiman
[2]). As enforcement increases, some dealers who are particularly sensitive to enforcement
pressure exit the market. That increases the amount of enforcement per participant
among those who remain, which might encourage still more to leave. The departure of
this second group, even if total enforcement pressure remains the same, further increases
the ratio of enforcement to the size of the market. In this way crackdowns provide a

gain in efficiency which leads to a market collapse in this case.

4.2 Phase diagram in case of a pure buyers’ market

A buyers’ market is one in which sellers have little or no bargaining power. In the context
of a drug market, we must think of a fixed number of sales with dealers simply fight-
ing for market share; increasing the number of dealers would not increase the number of

sales, because there is already a surplus of dealers. This can be modeled by setting 8 = 0.

Let us first look at the N = 0 isocline for 8 = 0. From (6) we obtain that on the N =0

isocline E will be zero for N = Npax only (notice that here v 4+ f < 1 since S = 0 and
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v < 1). Straightforward derivations give %2 g < 0 for N € [0, Nmax), £| =0for

dN ' AN | =0
N = N, and & dN2 > 0 for N € [0, Nmax) (see also the Appendix).

N_

Next, consider the E =0 isocline. According to (12) it looks as follows when 8 = 0:

E:N/[ YO Club ) LCTMEMICTY Rt (17)
pe1y P P

It is easy to see that on this isocline it holds that £ > 0 when N > 0. If, while taking
into account that § = 0, we put the part between brackets in (11) equal to zero, then
we can obtain from this equation that

N3 2~

T2 —7)

dE
dN

E=0,E>0

After some algebra it turns out that & <0

, > 0for N € (0, N)and 4

dN E=0,E> lE-o >0

for N € (N, c0), where N is given by

e s+ 2]

After substitution of N = Npay (cf. (7)) into (17) we get that for £ > 0:

V= Cl(l -7)
2r

dE
dN

— max . 19
E=0,N=Nmax [cl(l - 7)wd g p (19)

~r(ra)? 27ra} NY-3 g2

From (19) we obtain that & dN beo > 0 for N = Npax, and thus that Npax < N which

implies that dE| > 0 for N € (0, Nuax), if

2 2
2l (20)

2ciw3 +rra
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The phase diagram for 8 = 0 and under condition (20) is depicted in Figure 2. According

to Proposition 1 equilibrium A corresponds to a saddle point.
(Insert Figure 2 about here.)

To interpret this solution it again helps to write down the state equation for the number

of dealers that holds in this case (cf. (1)):
- T ENT
N = C1 (]—V- — ('N) - ’wo) . (21)

Here the profit net from the enforcement pressure of the individual dealer is ma/N —
(E/N)7. Total revenue from drug sales is fixed on this market and equals r. Since all
dealers are identical, each of them gets an equal share of this revenue. Of course this

share is low if the total number of dealers is large.

Contrary to the pure sellers’ market case, here it is optimal to have positive enforcement
for N large, despite of the fact that the burden of enforcement for the individual dealer
is then low. The reason is that here it is possible to reduce the number of dealers for N
large. This is because on a buyers’ market with a large number of dealers the revenue
per dealer is very low, and this negatively affects the change in the number of dealers
per unit of time. Since 4 < 1, the revenue per dealer is decreased more by a large N
than the burden of the crackdown felt by the individual dealer. So, here enforcement
pressure is relatively successful at driving away dealers, because a buyers’ market with a
large number of dealers is relatively unappealing to the dealers, which is due to the low

revenue per dealer.
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From Figure 2 we obtain that a market collapse will not occur. This is because when the
number of dealers decreases the revenue per dealer increases more than the enforcement
pressure felt by an individual dealer (remember that v < 1). Therefore, a market collapse
requires an enormous amount of enforcement effort, since, due to the high revenue per
dealer, it is very attractive for dealers to enter this market if N is low. This revenue
effect more than offsets the positive feedback effect of the crackdown which played such a
crucial role in the solution of the sellers’ market. To obtain this result the assumption of
7 being less than one apparently is crucial. This is confirmed by Caulkins [4] where it is
shown for v > 1 that a buyers’ market can collapse while enforcement effort is still finite.
However, Caulkins also found that enforcement effort required to collapse a market is

decreasing in § (see Reference [4], Figure 3).

4.3 Phase diagram in the intermediate case

Here we study the case where the market is neither a sellers’ market nor a buyers’ mar-
ket. In order to be able to say something about the E = 0 isocline we assume that
enforcement is reasonably efficient, i.e. « is close to 1. If we further assume that j is
sufficiently large such that 2y 4+ 8 > 2, we know from the Appendix that the £ = 0

isocline decreases in the (NN, E)-plane.

From Section 3 we get that for f < 1 and 2y + 8 > 2 the N = 0 isocline reaches the
highest value for £ when N = Nuin (see eqn. (8)). Furthermore, we know that on the
N = 0 isocline E will be zero for N = 0 and for N = Ngax (see eqn. (6)), and FE is

positive for N € (0, Nmax). Information about first and second order derivatives can be

found in the Appendix.

We conclude that the following inequality is a sufficient (but not necessary!) condition

for the E = 0 isocline to intersect the N = 0 isocline twice:
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E(Nuin) [p=0 < E(Nmin)|5r—g » (22)

which, by using (6), (8), (12) and doing some calculations, can be rewritten into

L[ qwe  \EEE_(r \FT (L= B
Nmin B ((’7'*',3_1)71"(1) < (pclry) (7_}_[6_1) * (23)

If (23) does not hold it is still possible that the isoclines intersect twice, but it can also
happen that there is only one intersection (hairline case!) or no intersection at all. Here,
we restrict ourselves to the case where (23) holds so that we are sure of the existence of

two equilibria. The phase diagram is depicted in Figure 3.
(Insert Figure 3 about here.)

Due to Proposition 1 we can conclude that A is a saddle point, while B is unstable.
Here a Skiba point Ng exists such that for N(0) > Ng the equilibrium A will be reached,

while for N(0) < Ng we will have a market collapse in the long run.

Figure 3 is drawn for the case where the unstable equilibrium B is a focus, but, like in
Figure 1, it could also be a node. Then for N > B it is optimal to converge to A, while
for N < B it is optimal to approach the origin. We conclude that in both cases (i.e.
node or focus) the equilibrium A is history dependent, because it depends on the history,
i.e. N(0), whether A or the origin will be reached in the long run. This solution is really
intermediate in the sense that it has the possibility of market collapse from the sellers’
market solution and the occurrence of the stable equilibrium from the buyers’ market

solution.
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Figure 3 relates to the (descriptive) analysis of the dynamic equation (1) by Caulkins [4],
in which he considered E to be constant. Nevertheless some of his interpretations carry
over to our solution of Figure 3, in which F is not kept constant but optimally determined
instead. As argued by Caulkins [4], if there were very few dealers each would attract
considerable enforcement pressure. So it would be unprofitable to deal, and dealers
would exit. Suppose, on the other hand, that there were an extremely large number
of dealers. Then none would suffer terribly from enforcement, but there would not be
enough customers to go around. Again dealers would exit. There may be intermediate
values of N, however, that are large enough to dilute enforcement pressure but small
enough for each dealer to make a reasonable number of sales. In that range, dealers’
return would exceed the reservation wage, so more dealers would enter. Apparently,
making enforcement pressure so large that the market would collapse in the end is too

expensive for being optimal.

5 Concluding Remarks

In this paper we dealt with the question how police should design the rate at which to

crackdown on a market for illicit drugs in order to minimize the social cost over time.

Drug dealers are modeled analogously to profit seeking firms. Considering the number of
dealers on the market as state variable its rate of change is assumed to be proportional to
the difference between the generalized profits, taken net from the enforcement pressure,
available to one dealer and his/her reservation wage. Dealers enter the market as soon as
the profit from drug sales minus the threat of being caught from enforcement exceeds the
wage the dealer could earn in alternative employment. This nonlinear state equation has
been extensively studied by Caulkins [1,4] and Baveja et al. [10]. Different to Baveja et
al. [5] we assume a moderate crackdown efficiency level, guaranteeing that a sufficiency

condition of the maximum principle (the Legendre-Clebsch condition) is satisfied.
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Solutions were obtained for three different scenarios: a sellers’ market, a buyers’ market
and the intermediate case. For a sellers’ market it is optimal to have positive enforce-
ment if the size of the market is sufficiently small. Due to the increasing efficiency of
enforcement with decreasing market size, which is denoted by Kleiman [2] as the positive
feedback effect, this leads eventually to a market collapse. For a buyers’ market, howev-
er, this increasing efficiency effect is more than offset by the fact that sales per dealer are
large in case the number of dealers is low. Therefore optimal enforcement effort leads to
a stable equilibrium with a positive number of dealers rather than to a market collapse.
Here, it is important to remark that this outcome results from the assumption that the
crackdown efficiency level is moderate. For the intermediate scenario we have a market
collapse in case the initial size of the market is sufficiently small. For higher initial sizes

the number of dealers converges to a stable saddle point equilibrium.

In order to be explicit about the limitations of the applicability of our results, it is here
important to remark that in our analysis it holds that the characteristics of a market
cannot change over time, e.g. once being a sellers’ market implies being a sellers’ mar-
ket forever. However, a market may be closer to being a sellers’ market or a buyers’
market at certain points in time. For instance, at its deception or decay a market may

be similar to a sellers’ market while it may be a buyers’ market once saturation is reached.

The enforcement rate was determined such that social costs over time were minimized.
In order to keep the mathematics tractable we chose to employ a linear function 5 + p .
Larger values of p mean that society assigns a larger disutility to illicit drug markets.
For our results a larger value of p has the implication that in the sellers’ market the
unstable equilibrium moves to the right, implying that for larger initial market sizes it

will be optimal to let collapse the market. For the buyers’ market a larger p leads to a
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stable equilibrium with less dealers and more enforcement, which is to be expected when
the disutility of the drugs market is larger. In the intermediate case both of the above
results carry over: the unstable equilibrium moves to the right while the stable equilib-
riumn moves to the left. The first implication means that for more initial values of the
number of dealers a market collapse is optimal. The movement of the stable equilibrium
implies that, if the number of dealers is sufficiently large initially, it is optimal to finally
end up in a stable equilibrium where the number of dealers is lower and the enforcement

rate is larger.

Low enforcement expenditures are restricted by budget constraints. It is not too hard to
see what happens if our model is enlarged by a given enforcement budget. Formally, the
remaining budget is introduced as second state variable of the optimal control model,
the given budget being its initial value. Then the corresponding costate variable of the
budget measures the scarcity of the available budget. A static sensitivity analysis for
such an enlarged model (see [7], Section 5.1) yields that the long run steady state of N
increases with this scarcity, while F decreases with increasing scarcity. Such a result

makes economic sense.

Concerning future research several interesting extensions can be considered. First, as
already observed by Caulkins [4] some crackdowns explicitly seek to arrest users. There-
fore total sales on the market should also decrease with the enforcement rate, rather

than that they only increase with the number of dealers as it is modeled now.

Second, in reality social cost of a drugs market is more than proportionally increasing
with the size. Therefore our linear objective should be made convex in the number of

dealers.
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Third, it is interesting to find out how the optimal enforcement policy looks like in case
enforcement is that efficient that v > 1. Within the present model formulation this
assumption would lead to a chattering control policy which is uninterpretable in its ab-
solute form. This can be circumvented by introducing the enforcement rate as a second
state variable in the model and imposing convex adjustment costs on the rate of change
of enforcement. It is well known that a model created like this can generate stable limit

cycles (see, e.g., Reference [11]).

A fourth extension would be the explicit inclusion of the number of addicts as a second
state variable. Dealers and addicts are in a symbiotic relation, and some interesting
results might be expected. One problem would be how to allocate a budget between
crackdown and therapy. Clearly, then the number of addicts would appear as a third

term in the objective functional.
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Appendix. Mathematical Analysis of the Dynamic
System

First we derive under what condition an equilibrium corresponds to a saddle point. Then

we study the N = 0 isocline and E = 0 isocline thoroughly.

A.1 Condition for existence of a saddle point.

The determinant of the Jacobian of the dynamic system ((1),(11)) evaluated at the

equilibrium equals:

2

detJ = 1L [ray(1— B)ETINPT=2 {pyN + (v + B)E} +

g (A1)
(1- B)raN?= {~LN — ra(l — BN} + ZyETN-1]

From (A.1) we obtain that this determinant contains positive and negative terms. Hence,
it depends on the specific location of an equilibrium in the (N, E)-plane whether it is a

saddle point or not.

Notice that at a steady state E = 0 can never hold. The reason is that E = 0 implies
that A = 0 (see eqn. (4)), and at a steady state A = 0 cannot hold, because A = 0 in
turn implies that A = p, due to (5). Therefore, £ must always be positive in equilibrium.

According to (11) this implies that

pery BTN —r ey + B — NP2 — cuwgyN™' = 0.° (A.2)

Substitution of this expression into (A.1), as well as using that N = 0 in an equilibrium

(cf. (1)), leads to
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2

det J = ZETT08 (1 B)ralNA {(y — 1)pN + (v + f — 2B} +

= (A.3)
+yEYN™(E + pN)].
From equation (1) we obtain that
dE _ (B—1)maE"TINF=2 L yEN! (A4)
dN N=0 i
Furthermore, from (A.2) it can be obtained that
dB|  _aBNE+ pyN) = rall = f)(y+ - RETIN
AN | 520,550 pyY(1 =) S

Now, we are ready to prove Proposition 1, which is started here once more.

Proposition 1.

An equilibrium point is
o a saddle point, if in the equilibrium point it holds that 42 o> e N0

e unstable, if in the equilibrium point it holds that g_EN o < % o’

Proof
From (A.4) and (A.5) we obtain

i N=0 %11'\% B=0 m [WaNﬁ_lE1_7N7_2 {(B—-1)(y—1pN+
+(B-1)(v+B-2)E} +
—YEN~2{-p(y = 1)N + E 4 pyN}],

which can be rewritten into
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Bl Flo= ST N7 - D{G - DN+ (46 -DE) 4, o
—yEYN™(E + pN)].
Substitution of (A.3) into (A.6) gives
dbk dE B N
— — —| =—s——4detJ. AT
dN|jo Nz pci? */ (A7)
From (A.7) we obtain that
dk dE
— saddlepoint = detJ < 0= —= > == , (A.8)
dN E=0 dN N=0
dE
— unstable = detJ > 0= ——| < ;Z—E— : (A.9)
dN E=0 N N=0

Q.e.d.

A.2 A closer look at the N = 0 isocline.

To find maximum or minimum values of E on the N = 0 isocline, we differentiate (6)

w.r.t. N:
df _ [(v+B8-1) g-1 A-1 51
i {———7——7raN — wp <7raN - wo) L (A.10)

Hence, dE/dN will be zero for N = Npayx (due to the fact that v < 1) and, provided
that v + 8 > 1, for N = Nin.

Comparing (7) and (8) we get that Nmax = Nmin for 8 = 1. Notice also that via (A.1)

we know that det J is positive for f = 1, so that we have unstability in this case. For
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B < 1 we have that Nyin < Npax.

From (A.10) it is easy to obtain that

dE/dN > 0 for N € (0, Nun), (A.1la)

dE/dN < 0for N € (Noin, Nmax)- (A.11b)

To obtain some more information about the shape of the N = 0 isocline, we also calculate

the second order derivative:

PE _ _ (ranot — )t L2 DmaN T [ 4= 1)
dN?

raNP~Y —wof| (A.12)
v 7

We conclude that on the interval (0, Nmax) the second order derivative changes sign for

that N, say N, that satisfies

o 1 ((+B-Dma\TE_ 1
M= pra-f) ( Ywg B mNnﬁ“' (A.13)

Notice that NV is only positive when v+ > 1. If 8 = 1, then N = Nuin = Nuax. For
B < 1 it holds that Ny, < N < Npay. From (A.12) we further derive that

W<OfOI‘NE (O,N), <A14)
d? A
= >0 for N € (V, Nmax)- (A.15)

dN?
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A.3 A closer look at the £ = 0 isocline

Consider the denominator of (12). If v+ > 1 it holds that the denominator is negative

for N | 0. For N = Npax the denominator equals

1

B (E)ﬁﬂl—ﬂ)—lﬂm,

pcry \Wo

which is positive. Hence, by continuity it follows that for an N € (0, Nmax), say Ny, it

must hold that this denominator equals zero, so that N4 satisfies

LN =By + = 1)NE L = 0. (A.16)
Y v

We conclude that on the E = 0 isocline it holds that E < 0 for N € (0, N4) and E > 0
for N € (N4, 00). Since £ < 0 makes no economic sense we do not need to consider the
part of this isocline where N € (0,N4) any further. Furthermore, it can be concluded

that

1\}1111-{71,1 E(Ny) o 00. (A.17)

Also, from (8) and (12) we obtain that

1
Ty P 28
BN |50 = (22) ™7 NZT > 0. (A18)

Hence, we can conclude that Ny, > Ny.

Next, we determine the derivative of the E = 0 isocline in the (N, E)-plane. To do so we

put the part between brackets in (11) equal to zero and obtain from this equation that
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dE _
N (A.19)
{__ r__ N1y §7+ﬁ—12('y+ﬁ~2)7raNﬁ+q—3 4 wa yv-2| F2-v

pey (1) 27(1-7) o ‘

After noticing that

Y+~ +8~2)=v(y~1)+(27+8-2)(B-1),

we see that we can rewrite (A.19) into

dE rN (2y+8-2)(1-p) 1 _ N1—2E2—

— = | = — 7aNP — raNP! 4w —A.20

dN c(l—7) (1 —=7) ’ p )
From (7) we obtain that, since B € (0,1], we have

raNP' > w, for N € [0, Nmax)s (A.21)

so that from (A.21) we can conclude that for N € (N4, Nmax) it holds that

dE

W b <0 (AQZ)

if

27+ >2 (A.23)
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Figure 1: Candidates for an optimum in case of pure sellers’ market (8 = 1) : v =

0.6;¢=0.05;p =2.0;r = 0.05; wg = 10.0; 7 * a = 11.0;

Figure 2: Candidates for an optimum in case of pure buyer’s market (4 = 0) and (44):

7¥=0.6;¢=0.05;p=4.0;7=0.05wo = L.O;mxa = 1.1;

Figure 3: Candidates for an optimum under the conditions 2y + § > 2 and (47):
B=09~v=06c=005p=20r=005w = 100;7+a = 11.0;
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