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Abstract. In this paper we look at semi-infinite assignment problems. These
are situations where a finite set of agents of one type has to be assigned to an
infinite set of agents of another type. This has to be done 1n such a way that
the total profit arising from these assignments 1s as large as possible. An infi-
nite programming problem and its dual arise here, which we tackle with the
aid of finite approximations. We prove that there 1s no duality gap and we
show that the core of the corresponding game i1s nonempty. Finally, the exis-
tence of optimal assignments 1s discussed.
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I Introduction

Since finite assignment games were introduced in Shapley and Shubik [12],
much work related to these games has been developed. We point out the book
of Roth and Sotomayor (9] as an important monograph on two-sided match-
ing. Curiel [2| provides a thorough analysis of assignment games. In their
work, Shapley and Shubik proved that the core of an assignment game 1s the
non-empty set of solutions of the dual problem corresponding to the assign-
ment problem. In [11], Sasaki gives axiomatic characterizations of the core of
assignment games.

In this paper, we look at semi-infinite assignment problems where the
number of one of the two types of agents involved 1s finite and the other 1s
countable infinite and we prove that semi-infinite bounded assignment games
are balanced. Fragnelli et al. [3], Tys et al. [14] and Timmer et al. [15] have
studied some kinds of semi-infinite balanced games arising from different lin-

" This author acknowledges financial support from the Netherlands Organization for Scientific
Research (NWO) through project 613-304-059.
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ear programming situations, where one of the factors involved in the problem
1s countable infinite but the number of players 1s finite. Here we tackle semi-
infinite assignment games with the aid of some tools that are related to Tijs
113].

A more general problem 1s the transportation problem where demand for a
single good at several locations has to be met from several supply points. An
assignment problem 1s a transportation problem where all demands and sup-
plies equal one unit. In Kortanek and Yamasaki |6, 7| semi-infinite transpor-
tation problems are studied with a finite number of supply points and an infi-
nite number of demand locations. They assume that the total supply and the
total demand for the good are equal and finite. This implies that semi-infinite
assignment problems, as studied here with an infinite ‘total demand’, are not
covered by their analysis. Further, their focus 1s on programs while we include
a game-theoretic analysis.

This paper consists of four sections. In the next section we present the most
relevant definitions and results for the assignment problem with two finite sets
of agents. We extend these problems in section 3 to semi-infinite bounded
assignment problems where one of the sets of agents i1s countable infinite and
the set of values of matched pairs of agents 1s upper bounded. We show that
the corresponding primal and dual program have no duality gap and that
there exist optimal solutions to the dual program, which 1s equivalent to the
non-emptiness of the core of the corresponding game. In section 4 we 1ntro-
duce the critical number and the existence of optimal assignments 1s discussed.
Section 5 concludes.

2 Finite assignment problems

An assignment problem describes a situation in which there are two types of
agents, for example, sellers and buyers or firms and workers. Denote by M
and W respectively these two finite and disjoint sets of agents. Let m be the
number of agents in M, 1.e., m = |M|, and n = | W/|. Assume without loss of
generality that m < n. When agent i € M 1s matched to agent j € W then this
gives the couple a value of a; > 0. An assignment problem is thus described
by the triple (M, W, A) with A = |a;);_,, ;. - For ease of notation we denote
this assignment problem by .</. |

The maximal total value of paired agents, where each agent ie M 1is
coupled to at most one agent j € W and vice versa, can be determined by the
following integer program

MdX E E ;X

reMje W

S.1. Z Xy <l.5 torallije W

<d=ferallli e M

N
A

x;i€40,1}, forallieM,je W
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with value v,(.e7). The :;l*}SiEHmCI]l matrix X € {0, l}‘”' D =151 & M. e W

corresponds to the situation in which the agents i e M and j € W are matched
Il and only 1’ x; = 1. An assignment or matching is an injective function
n: M — W and such an assignment 1s optimal if > . @ixiiy = D .o ap Qin(i)
for all assignments 7’.

Given an assignment problem .o/, the corresponding assignment game
(N,w) 1s a game with player set N =M u W. Let S < N be a coalition of
players. Then the worth w(.5) 1s defined to be the maximal value this coalition
can obtain by matching its members. Define M¢ =S~ M and Wg=Sn W.
If Mg= or Wg= & then w(S) =0 since no matchings can be made.
Otherwise, it Mg # & and Wg # (J then w(S) = v,(.e/5) where .oZg refers to
the assignment problcm (Ms, Ws, |aij;c p< icw.)- It 1s obvious that .o/y = .o/.

The vector (u,v), ue RY and ve R" | is called a feasible payoff for the
assignment problem r/ If there 1s an assignment n such that ) ., w +
\:;,___ w Ui = D :ca Qin(iy- In this case, we say ((u,v),n) is a feasible outcome
and 1t 1s stable 1t (u,v) 1s an element of the core C(w) of the corresponding
assignment game, where

Z Ui + Z v; = w(S),S < N,
| 1eEMy je Wi
C(w) = ¢ (u,0) e RY” x R
Z u; + Z vji = w(N)
e M je W

If (u.v)e C(w) 1s proposed as payofl to the players, then each coalition

S < N gets at least as much as 1t can obtain on its own since Z,E_m u; +
>_iew. = w(S). Thus no coalition has an incentive to break up with the

grand coalition N. The following lemma by Roth and Sotomayor (9] tells
something more about stable outcomes.

Lemma 2.1 (Roth and Sotomayor). Let ((u,v), ) be a stable outcome for .o/
Then

(a) ¥ +v; =ayif !)
(b) w; =0 and v; = 0 for a/f unassigned i and .

This result implies that at a stable outcome, the only utility transfers occur
between agents in M and W who are matched to each other. It also shows that
those players who remain unmatched 1in some optimal solution receive a zero
payoff.

In e.g. [1]| 1t 1s shown that if the integer condition x; € {0, 1} in the primal
problem P 1s replaced by x; > 0 for all ie M, je W, then all the optimal
solutions will still have x;; € {0, 1}. Related to this problem 1s the following
dual problem with value v,(.<7).

min E Ui+ E o

e M je W
s.t. u;+vij=>a;, ftorallieM,je W

ui,v; 20, forallieM,jeW
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Because the primal problem P has a solution, we know that also D must have
a solution and the fundamental duality theorem asserts that these programs
attain the same value.

By definition of w(S) it holds that if («, v) 1s an optimal solution of the dual
program then Y.\, w; + > .y v; = w(S) for any coalition S, which ensures
that this coalition cannot improve by splitting off from N when (u, v) 15 pro-
posed as payofl. The following theorem says that these conditions are exactly
the conditions that determine the core of an assignment game.

Theorem 2.2 (Shapley and Shubik). Let ./ be an assignment problem. Then the
core C(w) of the corresponding assignment game (N, w) is the nonempty set of
optimal solutions of D.

Moreover, if 7 1s an optimal assignment then ((u, v), ) 1s a stable outcome
for all core-elements (u, v). Vice versa, if ((u,v), ) 1s a stable outcome then =
1s an optimal assignment (see [9] for the proofs). So, we can concentrate on the
payoffs to the agents rather than on the underlying assignment.

Let .o = (M, W, A) be an assignment problem and let j € W. By B;(/. A)
we denote the set of agents in W\ {/} who are at least as good as ;j for agent
e M.

Bi(j,A) ={ke W |k #j,au = a;}.

The following proposition tells us that an agent j € W gets payofl zero in each
core-element if for each i € M there are at least m agents in W whom he finds
better than j.

Proposition 2.3. For each assignment problem </ = (M, W . .A) and for each
je W such that |Bi(j,A)| > m for all ie M it holds that v; =0 for all
(u,v) e C(w).

Proof. Let .«/ = (M, W, A) be an assignment problem and let j € W be such
that |B;(j.A)| > m for all ie M. Let n be an optimal assignment for P. If
jén(M)={n(i)|ie M} then v; = 0 by item (b) of lemma 2.1.

If j = n(i*) for some i* € M then since |B;-(j, A)| = m and |[r(M\{i"})| =
m — | there existsa k € B;-(j, A)\n(M\{i*}). Since k 1s unassigned, < ¢ n(M ),
vy = 0 by lemma 2.1. Together with k € B;-(/, 4) this gives

Ui+ = Uj» + UV = Qj+} = Aj+j = Uj+» T U

where the last equality follows from z(i") = j and lemma 2.1. Thus v; < 0 and
because v; > 0 according to the dual problem D we conclude that v; = 0.

3 Semi-infinite bounded assignment problems

In this section we introduce semi-infinite bounded assignment problems
(MW A), where M ={1%2,. . 5} vaifinite: sefy W =ilNi= {142, .:.}, the
countable infinite set of natural numbers, and 0 < @;; < b for some b € IR, for
all i € M, j € W. The boundedness of the values a;; 1s not a real restriction. It
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1s clear that if the values «; would have no upper bound then the primal
problem

SUp Y > djjX;

ieMje W

s.t. z x;i <1, forall je W

... forall'ie M

1
A

xj€{0,1}, forallieM,je W

would have an infinite value, v,(.«/) = o0, and no optimal solutions. We
analyze the corresponding semi-infinite bounded assignment games by
means of finite approximation problems </, = (M, {1, . ... nt, A,) where A, =
ijlicvr o1 2 e and by means of the so-called hard-choice number of </, to be
introduced later.

We start by defining two types of agents in M. An agentie M 1s of type I
if this agent can choose one-by-one m best elements j € W with respect to the
largest reward a;;. We denote by M, the set of agents of type 1. The remaining
agents in M, = M\ M, are of type 2.

The choice set C; of an agent i of type 2 1s the set of all his chosen best
elements in W. Since this agent cannot choose m best elements (otherwise he
1s of type 1), we have 0 < |C;| < m. The choice set C; of an agent i e M,
consists of those m agents in W obtained in m steps by taking in each step that
agent j € W not yet chosen by him and which gives him the maximal value a;
over all non-chosen j € W. In case there are more agents j € W that give the
same maximal value a;; then we choose that agent ; with the smallest ranking
number. The following example illustrates these concepts.

Example 3.1. Let M = {1,2,3}, W = N and

'3 9.1 0 00 ]
el T T
i . 3 4 5 6
1 T [ T

Agent 1 € M attains his maximal value of 3 1f he 1s assigned to agent 1 € W,
The second largest value he can obtain 1s ¢;» = 2 and a3 = 1 1s the third
largest value he can get. This agent has no problems with choosing his three
best agents from W and therefore he is of type 1. His choice set thus equals
Ci= {12131

The largest value that agent 2 € M can attain 1s @»» = 1. However, there 1s
no second largest value because a», reaches the value 1 from below when n
goes to infinity. This agent can only choose one best agent from W and
therefore he 1s of type 2. His choice set equals (> = {2}.

Finally, agent 3 € M has an easy job, since for all j € W he gets the value
ay; = 1. All agents in W are best elements for him. We will choose those three
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agents with the smallest ranking number, thus C; = {1,2,3}. This agent 1s of
type 1. We conclude that M|, = {1,3} and M, = {2}.

We will now introduce the hard-choice number.

Definition 3.2. 7/e hard-choice number n*(./) is the smallest number in
N U {0} such that U:” JOHE {1y 2oy ()}

Lemma 3.3. For each semi-infinite bounded assignment problem .o/ =
(M, W, ,A) and for each ] >n"(</), je W, there is an agent n(j) > j.
n(j) e W, such that |Bi(j, A, y)| = m for allie M.

Proof. Let o/ = (M, W.,A4) be a semi-infinite bounded assignment prob-
lem and let j > n*(.e/), j € W. Notice that j > n"(.«/) imphes ;j ¢ C; for all
ieM. If ieM;, then Bi(j,A)n{l,2,....,n* ()} o C; thus |Bi(j,A) N
{1,2,...,n*()}| = |Ci| = m and we define n;(j) =j. If i € M, then |C;| < m
and there are an infinite number of agents in W\{1.2,... . n"(.</)} strictly
better than /. So, for n sufhiciently large, say n;(j) > j, there are (at least) m
agentsin {1,2,....n;(/j)} better than ;. Take n(j) = max{n;(j)|ie M}. Then
|Bi(j,Apy)| = mforallie M.

Remark 3.4. From lemma 3.3 and from proposition 2.3 it follows that for all
J >n"(.o/) and for all optimal dual solutions (u,v) for </,. n > n(j), we have
b=,

The games corresponding to these semi-infinite bounded assignment prob-
lems are defined as follows. The player set N = M w W consists of an infinite
number of players. The value of coalition S. w(S§). equals 0 if S < M or
S W and w(S) = v,(./s), the value of the finite or infinite assignment
problem when restricted to coalition S, otherwise. Just as in the previous sec-
tion, the value w(N) = v,(.«/) of the grand coalition N can be determined by
the program P. The following problem 1s the dual if he integer condition n the
primal problem P is replaced by nonnegativity (see [10]).

inf E u; + E V;

e M 1e W

D: . . ;
s.t. uj+v,>a;, forallieM,jel

uj,v; >0, forallieM,je W.

Notice that both the primal and the dual program have an infinite number of
variables and an infinite number of restrictions. In general, o x oo-programs
show a gap between the optimal primal and dual value. There 1s a large liter-
ature on the existence or absence of so-called duality gaps in (semi-)infinite
programs. See e.g. the books by Glashoff and Gustafson (4| and Goberna and
Lopez [5]. Our goal 1s to prove that here the primal and the dual problem have
the same value and that there exist optimal solutions of the dual problem. We
achieve this result in some steps starting with a limit process in the finite space
R™ x IR" , where for the sake of brevity we will write n* instead of n*(.</) in a
subscript or a superscript.
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We take for each ne N with n > n*(.e/), a pair («",v") that 1s optimal
tor D(./,), the dual problem of .«/,. Then we remove all coordinates of v”
wnh ll]dt,\ ].;llgt,l‘ than n*(.«/) and obtain (u".s" (v")) e RM x R"", where

:R" — R" is the map defined by s" (v],..., Bland 2 v/ )= (r” ..... U )
Ior ;_1]] n> n*(A). Note that {(x",s" (v"))|ne {n*(4) + 1,n*(A4 }} 1S
a bounded set in the finite dimensional space R x R"" since .4 1S a bounded
matrix and («",v") 1s optimal for D(.<Z,).

1

u! <max{a;lieM,je{l,2,.... ntt <supla;|ie M, je N}
and similarly v/ < supia; |ie M, j e N}.

Without loss of generality, assume that lim, ., («”,s" (0")) exists (other-
wise take a subsequence) and denote this limit by (i, ¢) € R x R” . With the
aid of (u. ) we construct the vector (u,v) € R 50 IRW by taking v = u and
t = a,-(0). where a, : R — R" is the map defined by og(x). = (265505 Xk
0.0...)forall k e Nand x € IR*. So, ¢ is obtained from ¢ by adding an mhnm
numhu of zeros. Later we will see that (u,v) 1s a core-element of the corre-
sponding semi-infinite bounded assignment game but we start with showing
that (w. v) 1s feasible for the dual problem.

Lemma 3.5. Let o/ = (M, W . A) be a semi-infinite bounded assignment prob-
lem and let (u.v) be as defined above. Then (u,v) is a feasible solution for D.

Proof. By dehnition of (u,v) 1t holds that all 1its coordinates are nonnega-
tive. Furthermore, w; +0v; > a; for all ieM, je{l, 2, ..., n*(.o/)} since
u; + v = aj for all ieM, je{l,2,...,n*(Z)}. ForieM, j>n*(A4), we
know from remark 3.4 that hm ¢ = 0. Together with " + v/ > a;; for all

— J /

jetl,2,..., ni 1t follows by taking the limit for n — oo that u; + v; > a;;. So
(2. 1v) 15 a feasible solution of the dual problem.

The next lemmas deal with the relations between the values of the finite
subproblems and the infinite problems.

Lemma 3.6. v,;(.</) < lim vy(.</,)

= U

Proof. For n > n*(./) and (u",v") optimal for D(.</,) we have Y " u" +
> v =v4(,). We construct (u,0) as we did before and so, > ", u; +

e il = llm vq(.e4,). Then, from lemma 3.5 vy(/) < Y7, u; + D iy U =

-..._-r_.’

lim vy (., ).

yi— U

Lemma 3.7. v,(.«/) = lim v,(./,)

n—s o

Proof. Clearly tor n > m we have v,(.e4,) < v,(.</) because each matching
M = )20 nt 1n the ﬁnilc problem 1s also feasible in the nfinite
problem. Furthermore, {v,(.<4,)|n > m} 1s an increasing sequence. So,
lim v,(.</,) exists and lim 1),,( /”) < vp(.).

fl— H— X

For the converse inequality, take ¢ > 0 and a matching n° : M — IN such

that > " @izeiy = v,(#) —e. Let ke N be such that {#n%(i)|ie M} c

U
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il s k}. Then for all n =k :v,(y) 2 Y ity Qine(iy = Up(H) —e. This
implies that lim v,(.e,) > v, (/).

n— ot

Now we formulate the main result in this section. which tells us that there
1s no duality gap and that there exists optimal solutions for D.

Theorem 3.8. Let .o/ = (M. W, A) be a semi-infinite bounded assignment prob-
lem. Then I‘P(.r:/) = Py( ) and there exist upffmu/ .s*n/mmn.s'ﬁu‘ D.

Proof. First, we prove that there is no duality gap using the fact that hnite
problems have no duality gap. From lemmas 3.6 and 3.7 follows,

rd(*c/) < hm Vd (L n) = lim [.p(*f'/n_) 3 rp(-f/)-

n— o — 0

Conversely, weak duality, v,(.o/) <v4(A4), holds. So v,(.o/)=v4(.) =
]irnn-—-'r r:f(":-'/n )

Second, we prove that (i, v) 1s optimal for D. From the proof of lemma 3.6
and from the first part of this proof ) ", i+ > ", 0; = lim, ., vy(./,) =
vs(.o/). Furthermore, by lemma 3.5, (u, ) 1s feasible for D. So, (u,v) 1s opti-
mal for D.

Since Llorca (8. page 34| shows that the core of the corresponding assign-
ment game is equivalent to the set of optimal solutions for D, 1t follows from
theorem 3.8 that all semi-infinite bounded assignment games have a nonempty
core.

4 The critical number and related concepts

In this section., we present the critical number of a semi-infinite bounded
assignment game. It turns out to be a key concept because, as we will show, 1t
1s related to the hard-choice number, introduced in section 3, and to the finite
approximation problems.

Definition 4.1. The critical number ¢(.«/) equals min{n € N |v,(.«/,) = v,(.«/)},
if there exists an n € N with v,(.2,) = v,(.). Otherwise, c¢(/) = 0.

First, we present some results for finite critical numbers. The next prop-
osition shows a relation between the hard-choice number and the critical
number.

Proposition 4.2. Let o/ = (M, W.A) be a semi-infinite bounded assignment
problem. Then c¢(.</) < oo if and only if P has optimal solutions, and
cl ) <'nt () ifel ) < 00,

Proof. Let .« = (M, W ,A) be a semi-infinite bounded assignment problem.
The first statement follows immediately from the definition of the critical
number.

To prove the second statement, let 7 be an optimal assignment for P. If
n(i) ¢ C; for some i € M,, then since the size of the set n(M,) 1s smaller than
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the size of C;, there 1s a j € C; such that j ¢ n(M,). If we redefine n(i) =
then the assignment 7 remains optimal for P and agent i restricts his choice
1O Cf'.

For i € M> there 1s no optimal matching = with n(i/) ¢ C; since any such a
matching can be improved using a different value of n(i). We conclude that
there exists an optimal matching = for P that 1s also optimal for P(.<Z,.), the
primal problem of .«,.. Thus ¢(.&/) < n*(./).

As the next example shows, an optimal assignment can use agents j € W
for which j > n*(.<7).

Example 4.3. Let M = {1,2,3}, W =N, and

(3 2 1 0 0 0 sl
R IEEEEE
I BT N S S 1
We have seen in example 3.1 that C, _{ Bk Gy S 425 Gl d51
M, =1{1,3} and M, = {2}. Also, n*(/ v,(o/) =5 and each my, with

k = 3. defined by m(1)= 1, TI;\(‘)) =) JIA( ) — A 1S Optlmdl For k > 3 we
have optimal mdu.hmgs with 7. (3) ¢ (5, but the assignment 73 1s optimal and
uses only elements in 4,.. So, ¢(.&/) = n* (/) = 3.

In the theorem below we characterize the structure of the sets of optimal
primal and dual solutions when the critical number 1s finite. Recall that P(.</,)
and D(.«/,) are the primal and dual problem of the finite assignment problem
L R (1,7 % ) CR nt, A,), respectively.

Theorem 4.4. Let o/ = (M., W, A) be a semi-infinite bounded assignment prob-
lem. If c(.o/) < o0 then

(1) an assignment 7 is optimal for P if and only if it is optimal for P(.</,) for
somen>n(.o/),
(1) for each pair (u,v) that is optimal for D, v; =0 for j > n"(.</).
(1) a pair (u.v) is optimal for D if and only if (u,s"(v)) is optimal for D(.</,)
foralln > n*(.</).

Proof. Let .o/ = (M. W, ,A) be a semi-infinite bounded assignment problem
with ¢(./) < 0.

(1) First, let n > n* (/) > ¢(.«/) and let 7 be an optimal assignment for
P(.o4,). Then Y ", ajxiy = vy(,) = v,(/) and & is also optimal for P. Sec-
ond, let m be an ‘optimal assignment for P and let n > n*(.«/) be such that

(’t!) i [ n}. Then = is feasible for P(.o,) and ) ., @izi) = vp(F) =
Up (). D0y T 1S optmml for P(.sf;).
(1 ) Let (u,v) be optimal for D. According to theorem 3.8

v, () = vg(A)

Z Uj + Z D

e M je W

|
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vV
7
s
7

1eM =1
n'
/ / /
> min Zui ZlH”f > ajj, Uj, v; 20
ieM J=I
= Ip( L) = Vg( Ay ) = fp( /)

where the last equality follows from n*(.«/) > ¢(.</). Thus

Z U + Z Vi = Z Uj + i U;
j=1

ie M je W ie M
or, equivalently, » ~ .., v; = 0. Because (u,v) is optimal for D, v; > 0 for all
J. We conclude that v; = 0 for all j > n* (7).

(1) Let (u,v) be optimal for D. By part (n) v; =0 for j > n*(.«/). This
means that (w,s"(v)) 1s oplimdl for D(.«Z,) for n > n*(.«/). Conversely.
let (u,s"(v)) be optimal for D(.«/,) where n > n (/) and v; = 0 tor 7 >n..If
7 1s an optimal assignment for P(.«/,) then = 1s also optimal for P since
V() = (). Hence, v,( ) = Y700 Qintiy = Doiog Ui + Dojiy U = Doioy Ui +
>~ vy and so (u,v) is optimal for D.

In case c¢(.«/) = oo, there are no optimal solutions for P, we construct
an auxihiary problem # = (M, {1,..., n*(.o/)+ |M,|}, H) corresponding to
</. With the help of # we can find ¢-optimal assignments for .«/. that 1s.
assignments n such that ) ._. a;;;) = v,(o/) —e. The matrix H is defined
by H = |A,- T| where for each ie M, we have a column t;¢' in T with
ti = supiajj | j e N\C;}, the largest value outside player i’s choice set. The
vector ¢’ is the ith unit vector in IR” defined by ¢, =1 if k =i and ¢, =0
otherwise. We 1llustrate these concepts in the next example.

Example 4.5. Let M = {1,2,3}, W = N and

F 2 (MR ) TR § P §
2 4 )
o DUl e T B
2 43 a4 15
_O 2 lj l_—1 lg IE i

Then C|2{123}.. C‘!—{[} C;:{E} A[ {I} 1[1~{2.3} and

n*(.o/) = 3. The feasible matching = with (1) = 3, #(2) = 1, n(3) = 2 has the
property ;rz( ) € C; for each i € M. But this assignment 1s not optimal since
S Qigi) =4 < 6 =v,(/). In this example ¢(.«/) = o0, no optimal assign-
ment exists. Using the auxiliary problem .# with

I Gk (|
1l g I R - SO (V)
002712702

results in v,(#) = 6 and the matching n’, with zn’(1) =1, n'(2) = n (n > 3),
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n'(3) =2, is an ;-optimal assignment for .o/, that is, >, . Gin(i) =
V() — 1/n.

Theorem 4.6. Let .o/ = (M, W, A) be a semi-infinite bounded assignment prob-
lem with ¢(.</) = o and let # be the corresponding auxiliary problem. Then

(1) vp() = v,(F)

(1) For each nt that is optimal for P(. %) and each ¢ > 0 there is a matching n*
optimal for P such that n“(i) = n(i) for all i € M\ and n°(i) € {n* (/) + 1,
n*(.f) + 2,...} such that ajze(iy = t; — €/m, for i € M.

Proof. To prove (1) and (1) 1t 1s sufficient to show that v,(.#) > v,(.</) and
vp(H) 2 v,(H) —eforall e > 0.

First we show that v,(#) > v,(.</). Let = be a feasible matching for P.
Construct a feasible assignment n* for P(.# ) as follows. Letie M. If n(i) € C;
then n* (i) = n(i). It n(i) ¢ C; and i € M, then we can choose a partner 7~ (i) =
J" e C; because C; 1s large enough. (See the proof of proposition 4.2.) If
n(i) ¢ C; and i € M, then define n*(i/) =", where ;" corresponds to column
tie' 1n T. Thus for all i e M we have hz.(;y = ain(iy, S0, Up(H) = v, (A ).

Second, we show that v,(.«/) > v,(#’) — ¢ for all £ > 0. Let ¢ > 0 and let
n be feasible for P(.# ). We will construct a matching n° that 1s feasible for
P(.o/) as follows. Take one-by-one elements i € M. Note that n(i) ¢ {1,2,....
n*(.o/)}\C; since otherwise player /i can improve by choosing ¢;. It n(i) ¢ T
then define =n°(i) = n(i). If =n(i) e T then take j* > n*(.e/) such that a;. >
ti—e¢/m and j* # n(i’) for all i’ # i and define #n%(i) = j*. This can be done
such that all 7 € M are matched to m different elements in W. Then

E i) E Aine() T E ime(h)

|

e M ie M:nt(i) e C, e M:n¢(i) ¢ C,
s E /?mm E (Ir' _E/’”)
1e M:n(i) e (, ieM:n(i)e T
= E hf'fr{f} — &,
e M

where the last inequality holds because |{ie M |n(i)e T}| <m. Thus
() = 0p(0) e,

5 Concluding remarks

In this paper we analysed semi-infinite assignment problems from a game-
theoretic viewpoint. We started by showing that semi-infinite assignment
problems have no duality gap and that there always exists an optimal solution
tor the dual problem. Consequently, the corresponding semi-infinite assign-
ment games have a nonempty core, that is, they are balanced. Further, 1if there
does not exist an optimal solution for the primal problem then an auxihary
assignment problem .# can be used to derive e-optimal assignments which are
close to the optimum.



N. Llorca et al.

Future directions for research include extending these results to infinite

assignment problems, where the two sets of agents are infinite, and to infinite
transportation problems, which are generalizations of assignment problems.
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