Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

Making Virtual Communities Work:
Matching Their Functionalities

Aldo de Moor and Willem-Jan van den Heuvel

Infolab
Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands
ademoor/wjheuvel@kub.nl

Abstract. Virtual professional communities increasingly make use of standard
information tools, like mailers and groupware applications, to support their col-
laborative activities. However, the requirements of these communities and the
technologies in use change rapidly, so that requirements and available function-
alities continuously need to be recalibrated. Changing their mappings is not triv-
ial, because of the many dependencies between the business processes and tool
components. To increase the efficiency of the specification process, functionality
matching approaches need to be developed that are sensitive to the socio-technical
semantics of the community. In this way, the technical feasibility of a proposed
change can be more easily determined.

In this paper, we propose a concrete matching approach based on the RENISYS
method for legitimate user-driven system specification. The approach consists of
a series of matching process steps which are based on a functionality matching
meta-model. We illustrate how such an approach could be used in practice by
applying it to a proposed system change process in the case of an electronic jour-
naf.

1 Introduction

Virtual professional communities and their information systems are good examples
of complex socio-technical systems. There is significant pressure on these systems to
change, because of change drivers of many different kinds. Technological, economic,
political and many other factors contribute to a continuous need for evolution of the
requirements and supporting information technologies. However, change processes are
costly, and effects of changes are often unclear. Therefore, often considerable resis-
tance to change exists. To reduce this resistance, it must be clear to users what are
the consequences of a proposed change in the socio-technical system. An important
barrier is taken away if changes are legitimate, in the sense that they are both mean-
ingful and acceptable to the community. One approach increasing this legitimacy is
the RENISYS method [5]. Other effects of change, such as those on non-functional
constraints like quality and usability aspects, need to be taken into account as well.

! Published in: Proceedings of the Ninth International Conference on Conceptual Structures
(ICCS 2001), Stanford University, USA, July 30 - August 3, 2001. Lecture Notes in Computer
Science, N0.2120, Springer-Verlag, Berlin pp.260-274.

https://core.ac.uk/display/6546666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Yet another very important category of change aspects is ensuring a good match be-
tween functional requirements and the available IT resources. The question "do we still
have adequate technological support after implementing the proposed change?” needs
to be answered positively, especially since in virtual communities work processes are
complely or mostly enabled by information technologies. Otherwise, disruption of the
socio-technical infrastructure will interrupt the evolution of the community. Further-
more, when the technical complexity of specification changes can be reduced, then the
efficiency of the change process can be increased so that more attention can be paid
to other, non-functional aspects. This will lead to information systems that are better
tailored to the specific needs of the community.

In Sect. 2, we first give an overview of existing theory and practice concerning func-
tionality matching, and introduce a case to illustrate the ideas. In Sect. 3, we then intro-
duce a meta-model specifically developed for matching required and enabled function-
alities in virtual professional communities. This meta-model is based on the RENISYS
method. A concrete matching process, grounded in this meta-model is introduced in
Sect. 4. Some conclusions and directions for future research are given in Sect. 5.

2 Functionality Matching: Theory and Practice

In this section, we first define our view on functionality matching. After reviewing
related work, we introduce a case that is used to explain the ideas introduced in this
paper.

2.1 Theory: What is Functionality Matching?

Information systems for virtual professional communities are generally not constructed
from scratch. Instead, applications supporting collaboration are developed by experi-
menting with widely availablénformation tools which originally were often devel-
oped for other purposes [7]. We define an information tool as a unit of software that
completely or partially enables some information and communication processes. An
information processllows a single user to produce a nevilormation objectout of
already existing objects. An example is a researcher writing a review of a paper. The
focus of acommunication processvhich involves multiple communicating entities, is
on the transfer rather than on the production of information objects. Examples of infor-
mation tools range from mailers, list servers, and chat tools to numerous kinds of web
applications.

In order to understand the role that an information tool plays as part of the socio-
technical network information system, we need to look at bothfuhetionality that
the tool provides and itasability, which concerns the extent to which the functions
provided by the tool are understood and applied by its users to their particular tasks.
Together, these notions determine #féective functionality9], which we define as
that part of the available functionality used to support the activities of the community.
This needs to be known to assess the effect of changes in the information system.

Usability is not a property of the tool itself, but rather of the tool in its context of
use. Therefore, usability has been defined as the evaluation of the extent to which users

Problem Submit
Domain Paper
v
Human Transfer
Network Document

Information
System [~~~ """ E:E _______ @ ________
Upload Monitor
File Change
FTP BSCW Mailer

Fig. 1. Functionality Specification Example: The Paper Submission Process

can translate their intentions into effective actions to access the functionality [8]. We
have decomposed this definition to focus on two aspects: (1) whaaaassa particu-

lar information tool in which capacity and (2) how tepresenthe user requirements,

the tool functionality and their linkages. To deal with the first aspect, some framework
is needed to model the functionality of tool types and the access rights of particular
users to particular instances of these tools. The second aspect requires some ontology
describing the key entities of the complete socio-technical system, in order for users to
propose and discuss about functionality specifications. In the RENISYS method, both
aspects are addressed bythierence frameworthat is used to represent specifications
that define the socio-technical system. The reference framework consispsatflem
domainontology modelling goals and activitieshaman networlontology represent-

ing the organizational structures in which these tasks are carried out, aridramation
systendomain ontology in which the technical functionality used by the virtual com-
munity for its work is defined. An example of the dependencies between elements from
these domains is shown in Fig. 1. The relationships between the particular elements of
the figure are explained in Sect. 2.3.

2.2 Related Theory and Approaches

To some extent, research into matching algorithms that compare the functionality of two
software components on the basis of some kind of component specification, has been
done in the areas of information retrieval [15], cooperating (or interoperable) informa-
tion systems ([13], [3]) and software reusability ([14], [12]). These solutions assume
that the functionality of components can be represented as a collection of signatures.

A component signature explicitly separates the definition of the services of the com-
ponent from the actual implementation. The services are defined as methods (functions)
with input parameters, input types and the output type. This separation is critical for in-
teroperability across programming languages, operating systems and even networks.
The Interface Definition Language (IDL) is a prominent example of a interface specifi-
cation language, that has been proposed by the Object Management Group (OMG) and
constitutes the foundation for their object request broker (middleware) architecture. IDL
specifications can be used to specify component attributes, parent classes, typed events,
methods (including input and output parameters and their data types), and exceptions.

In the following excerpt we give a simple example of an IDL specification:

module MyCommunity {
interface Administrator : Person {
attribute integer ID;
void registerNewMember (in short MemberID, in integer ID,
in String Community) raises (NotAuthorized);
void deregisterMember (in short MemberID, in integer ID,
in String Community) raises (NotAuthorized);}
} ¥ End MyCommunity

The excerpt specifies an interface d@ministrator component. This class in-
herits the characteristics and behavior from the parentBexson . Administrator
has an attributéD with integer as its datatype. Moreover, this class exhibits three
methods to other interested classegiisterNewMember |, deregisterMember
andNotAuthorized . The exceptiomNotAuthorized occurs whenever the person
that tries to invoke one of these methods is not authorized.

Most interface matching approaches now compare the methods, and pre and post-
conditions of a collection of interface specifications, that are stored in some kind of in-
terface repository, with a given specification. The solutions generally have some mech-
anism to deal with partial matches, and result in the best matching interface specifica-
tion(s).

Although these ideas are applicable for acquiring potentially reusable component
definitions for example from a component repository, they do not deal with the specific
functionality evolution characteristics of virtual professional communities. More partic-
ularly, such socio-technical systems require efficient mechanisms to deal with changes
to configurations of tools, requirements, and users. Besides that, current matching ap-
proaches only match functionality in the narrow sense, omitting the usability aspect.

In our view, mapping tool functionality to the requirements of virtual communities,
requires firstly a functionality specification language that adds more social-technical
system semantics to the rather low-level interface definitions, and secondly, a mapping
procedure that is based on a more sophisticated process that makes use of these seman-
tics.

This does not mean that component mapping is unnecessary. On the contrary, these
approaches are essentialdonstructthe support information tool components, e.g.,
mailing component, chat enabling components and registration components for com-
posing virtual community applications. However, they are not capable of dealing with
the more complex, and high level information tool requirement specifications speci-
fied by the (mostly non-technical) community members themselves. Questions like "do

we still have enabling components if we change the community structure?” can not
be answered with interface mapping approaches as the specification languages can not
capture the semantics.

Thus, what is needed are approaches that can deal with the specific functionality
matching problems of virtual communities, so that changes in functionality can be an-
alyzed in their broader usage context.

2.3 Case: The Electronic Journal on Comparative Law

IWI, a Dutch organization stimulating new ways of distributing scientific information,
funded a project to create an Electronic Journal on Comparative Law (EJU8
project group included participants from various academic law institutes, university
libraries, and computer centers. The goal was to have all publishing activities, ranging
from paper submission to editing, peer review, and publication, being done completely
via the Web. The initial basic set of requirements defined by the project team members
gradually grew in scope and complexity. Furthermore, the set of simple information
tools over time included more advanced groupware applications.

One interesting observation from a functionality matching perspective concerns the
definition of the technological support for the paper submission process (Fig. 1). The
submission of papers was considered as a document transferring process, which con-
sisted of two required communication processes: first, an author has to upload a file,
then he sends an e-mail to the editor with the submission details. The technical commit-
tee responsible for the selection of the right tools proposed to enable the file uploading
process using a standard FTP tool. This tool enables basic file transfer. However, the
project coordinator then proposed to use a BSCW-server instead. This tool has been op-
timized for file distribution processes, as it enables advanced, userfriendly, and secure
file transfer. Furthermore, it can be used to send e-mails as well as monitor changes in
file updates and accesses. The effectgplacingthe FTP-server with a BSCW-server
are not clear. Both tools enable their own sets of information and communication (IC)
processes. Their effective functionality needs to be known before this change is techni-
cally feasible. The approach we introduce next is capable of dealing with such change
complexities.

3 A Functionality Matching Meta-Model

To develop an approach that can facilitate the functionality change process, we first need
to define a functionality matching meta-model. This metamodel can be used to model
the exact relations between tools, users, and the functionalities that are required and
enabled. We use this static model to define the actual functionality matotungssn
Sect. 4.

Before presenting the meta-model, we first operationalize the concept of effective
functionality by listing a number of axioms.

2 http:/law.kub.nl/ejcl

Effective Tool Functionality Axioms These axioms form the foundation of the func-
tionality matching meta-model. In any change process, their validity must be guaran-
teed.

— An information tool can enable one or more information and communication pro-
cesses.

Example: a mailer allows a user to compose a mail (information process) and send or receive
a mail (communication processes).

— Different information tools may have partialbverlappingfunctionality, i.e. each
enabling the same information or communication process, while also enabling dif-
ferent such processes at the same time.

Example: Both a mailer and a web browser allow one to send a mail. However, only with
a mailer can a user also organize sent and received messages, whereas sophisticated HTML
document access is just possible with a web browser.

— All network participants involved in a required information/communication process
must have at least ormabling information tooat their disposal.

Example: a participant may have a required communication process of sending a mail. Thus,
the participant must have access to, for instance, a mailer or a web browser.

The Meta-Model In the meta-model, we describe how in RENISYS the following
elements are specified: (1) the enabled functionality (which tools enable which IC-
processes), (2) the required functionality (which IC-processes are required), (3) the
enabling functionality (which required IC-processes can be enabled by the tools), (4)
functionality access (which users have access to which tool instances), and (5) function-
ality assignment (which users use which tool instances for what workflow mappings).
Fig. 2 shows the relations between the different entities necessary in the functionality
specification procedsThe semantics of this figure are explained in the remainder of
this section.

Enabled Functionality Any IC-process enabled by some information tool is called an
enabled IC-proces$uch a process is represented as a a state definition which conforms
to a specialization of the following type definition of the enable-relation:

[Type : [Enable : *x] — (Def) — [T : *x|—
(Inst) — [Info_Tool]
(0bj) — [IC_Proc]].

Example
The following state definition says that uploading a file is enabled by an FTP
tool:
[State : [Enable : #267]—
(Inst) — [FTP]
(0bj) — [Upload-File]].
O

% The diagram is a variant of NIAM-notation [6]. Bold arrows indicate subtype relations, the
predicates represent other relations. Only the entity types UserTodh IC_Process, and
Workflow_Mapping are basic concept types. The other entities distinguished in the functional-
ity specification process are roles that these types play. They are denoted by an asterix.

Assignable_
User (*¥)

Assignable_
Tool (*)

applies to /is aplied to Assigned_

Enabled_
IC-Process (*)

Potentially_
Enabling_
matches with /is matched with\ _IC-Process (*)

Workflow_
Mapping
P

Required_
IC-Process (*)

... Uses ... to support .

includes /is part of

Fig. 2. A Functionality Matching Meta-Model

Required Functionality The RENISYS reference framework distinguishes three do-
mains, as mentioned before. Workflows from the problem domain are caitadkies

from the human networknteractionsand from the information system domadi@-
processesFunctionality requirements consist of information or communication (IC)
processes in their usage context. Requirements are represented by workflow mappings,
which relate a workflow from the problem domain, via one in the human network do-
main to a workflow in the information system domain. For example, a workflow map-
ping can say that a (problem domain) editorial process is a form of a (human network)
discussion process which is supported by an (information system) file sending process,
among others. Theequired IC-processhen is the IC-process part of the workflow
mapping, in this case theend fileprocess. The activity and interaction part of such a
mapping together identify the usage context in which the required IC-process operates.
A particular workflow mapping is represented as a state definition which conforms to a
specialization of the workflow mapping type definition. This definition is:

[Type : [Workflow_Mapping : *x] — (Def) — [Mapping : *x]—
(Part) — [Activity]
(Part) — [Interaction)]

(Part) — [IC_Proc]].

Example
[State : [Workflow_Mapping : #123]—
(Part) — [Submit_Paper]
(Part) — [Transfer_Document]
(Part) — [Comm Process]].

This workflow mapping specifies that ‘tlaper submissioprocess is aocu-

ment transfeprocess that is supported by soommmunicatiorprocess’. The

latter process is thus a required IC-process. Note that this process is defined as a
generic communication process, because the specifier does not either know, or
care, by which particular type of communication process the paper submission
process is to be supported. This means that many degrees of freedom are left
in the choice of the tools that are to support this particular workflow mapping.

Enabling Functionality For the required IC-process of each workflow mapping, a set

of potentially enabling IC-processesists. These are those IC-processes that are (1) en-
abled by some tool and (2) are a subtype of the required IC-process. This makes sense,
because the specifiers of a workflow mapping would define the required IC-process
to be generic if they are indifferent or do not know yet which particular enabling I1C-
process should satisfy it, as in the previous example. So, the more generic the required
IC-process, the more enabled IC-processes can match with it, thus the more potentially
enabling IC-processes for a particular workflow mapping there are. Out of this set of
potentially enabling IC-processes, at least enabling IC-procesmust be selected for

the workflow mapping to become operational.

Example
Assume the workflow mapping #123 defined earlier, and assume that the set of
enabled IC-processes equals
{[Send_Mail], [Receive Mail], [Send File|, [Edit_Textfile]}, of which all but
the edit-textfile process (which is an information process) are communication
processes. The set of potentially enabling IC-proceisses
{[Send Mail], [Receive Mail], [Send File]}, Since these are all subtypes of the
communicatiorprocess. Out of this set of potentially enabling processes, the
specifier selects theend maiprocess as the (actuallghabling IC-process

|

Functionality Access Each user haaccesgo a certain set ofool instancesrepre-
sented in the form of state definitions that conform to this type definition of the access-
relation:

[Type : [Access : x| — (Def) — [T : xx|—
(Poss) « [User]
(0bj) — [Info_Tool]].

Example
The following state definition (representing a state-of-affairs in the domain)
indicates that John has access to mailer #4 at the Infolab.

[State : [Access : #213]—
(Poss) <« [User : #John]
(0bj) — [Mailer : #4@Infolab]].

Some types of information tools ammplex in the sense that users can access
only part of the functionality of the tool. A typical example of such a complex informa-
tion tool is a web server that consists of many different pages, each enabling different
functionality.

The meaning of a complex information tool is the following:

[Type : [Complex_Info_Tool : *x] — (Def) — [Info_Tool : *x|—
(Part) — [Entity]].

Example
This definition of a complex information tool indicates that user John only has
access to the home page of the BCFOR-web server:

[State : [Access : #215]—
(Poss) <« [User : #John]
(Obj) — [Web_Server : #BCFOR] — (Part) — [Web_Page : #home.html]].

O

Functionality Assignment For each workflow mapping, it should be determined for

all users in the community whether the workflow mapping applies to them. If so, out of
the tools accessible to a particular user, one or more should be selected. This selected
tool is to support him in the required IC-process that is part of the workflow mapping.

Users are in the set @fssignable users subset of all community members, for a
workflow mapping if he or she is permitted to be involved in it. Such permissions can
in principle be calculated from the action norms that define the workflow behaviour of
users (see [5]), however, for simplicity, we allow users to be assigned to a workflow
mapping manually here.

An information tool is in the set ofssignable tool$or a workflow mapping if it
enables the enabling IC-process, i.e., the particular IC-process type chosen to match
with the required IC-process. Thus, assignable tools forséred mailrequired IC-
process of the previous example could be, for instance, mailers and BSCW, since both
tools offer some form of mail-sending functionality.

The actual assignment of the tool that is to support a particular assignable user in a
specific workflow mapping is not automated in our approach. The main reason is that
the choice of which tool to use for a work process depends on many circumstances
beyond functionality matching, such as the non-functional requirements mentioned in
the introduction. For example, the users themselves could be intensively involved in this
assignment process, since they can best assess their own requirements and preferences.

The functionality assignment is represented by a so-callggbortrelation. This
definition assigns some assignable user and an assignable tool to the workflow mapping.
This user is referred to as thasigned usethe tool is called thassigned toolThe type
definition of the support-relation is:

[Type : [Support : *x] — (Def) — [T : *x|—
(Poss) « [User]
(Inst) — [Info_Tool]
(0bj) — [Workflow_Mapping]].

Example
The requirement that user John is to use (possibly among other tools) BSCW
server #3 to enable him to submit papers is represented by:

[State : [Support : #167]—
(Poss) < [User : #John]
(Inst) — [BSCW : #3]
(0bj) — [Workflow_Mapping : #123]].

Often, it may be necessary to specify that a particular required IC-process is to be
supported by a particular type of tool, without knowing yet who are its users. For exam-
ple, a team leader wants all of his staff to use the same tool for a particular workflow.
The representation of suchrequired implementatiors:

[Type : [Req-Impl : #x] — (Def) — [Entity : *x|—
(Inst) — [Info_Tool]
(0bj) — [Workflow_Mapping]].

Example
The following state definition concisely represents that all users should be able
to access the BSCW-server for submitting papers:

[State : [Req_Impl : #165]—
(Inst) — [Web_Server : #BSCW]
(0bj) — [Workflow_Mapping : #123]].

4 The Functionality Matching Process

In the previous section, we introduced the static meta-model in which the matching re-
lations between requirements (i.e. workflow mappings), tools, and users were specified.
Next, we use this model to construct a process that can be used to assess the effects of
changes in the system specifications on the match between required and enabled func-
tionalities. We briefly introduce the matching steps in Sect. 4.1, and we illustrate the
process using material from the case described earlier in Sect. 2.3.

4.1 Matching Process Steps

The matching process consists of 5 stages: (1) creating a base of system specifications,
(2) proposing some change to the specifications, (3) formulating a set of functionality
matching criteria, (4) calculating the match, and (5) interpreting the results.

1. Define System Specificationsvirtual professional communities are continuously
changing socio-technical systems. At a time t=0, before the change is proposed, we
assume that the current system specifications are properly matched with respect to the
required and enabled functionalities.

Example A set of enabled-functionality state definitions declares that FTP enables
the upload file-process; BSCW enables the upload file, send e-mail and monitor change-
process; mailers enable the send e-mail process. To model the required functionality,
two workflow mapping definitions WM1 and WM2 represent that the submit paper-
process is a transfer document-process which is enabled by the upload file-process
(WM1) and the send e-mail-process(WM2), respectively. For WM1, the only poten-
tially enabling IC-process is the upload file-process (enabled by FTP and BSCW), for
WM2 the only potentially enabling IC-process is send e-mail (enabled by BSCW and
mailers). These are also selected as the enabling IC-processes for the workflow map-
pings. The selection process is trivial in this case, since there is only one potentially
enabling IC-process here. In other cases, however, there may be more options to choose
from, if there are deeper IC-process type hierarchies. Two functionality access defini-
tions declare that John has access to mailer #4 and FTP-server #EJCL, three other def-
initions say that Mary has access to mailer #22, FTP-server #£JCL and BSCW-server
#EJCL. Finally, to assign the functionality, two support definitions declare that John is
supported in WM1 by FTP-server #£JCL and in WM2 by mailer #4. Two other defini-
tions say that Mary is supported in WM1 by FTP-server #£2JCL and in WM2 by mailer
#22.

These definitions are represented in the Péiomnceptual graph workbench. To
illustrate, one of these definitions is given here:

[State: [Support:#300] -
<- (Poss) <- [User:#John]
-> (Inst) -> [FTP:#EJCL]
-> (Obj) -> [Workflow_Mapping:#WM1]].

2. Propose Specification ChangeAt t=1, some specification change is proposed by
one of the users. Such a change concerns the creation, modification or deletion of one
or more specification knowledge definitions like the ones presented above. Note that
the legitimacy of the user being involved in such a change process is guaranteed in
the RENISYS method by performing the proper calculations on the set of applicable
composition norms (see [5]). These norm calculations say which users may, must, or
may not be involved in these knowledge definition change processes. For instance, there
may be a norm that says that all system administrators must be involved in the creation

4 http://www.cs.adelaide.edu.au/users/peirce

of new access-definitions. A change proposal can be in any part of the socio-technical
system.

Example Instead of using FTP to upload files in the paper submission process, the
project coordinator proposes to use BSCW. This means that the support for workflow
mapping WML1 needs to be changed.

3. Formulate Matching Criteria Many different kind of functionality matches are
conceivableMatching criteria(or constraints) need to be specified on which the match

is to be performed. Such criteria are expressed in terms of the elements of the meta-
model. For instance, one criterion could be that when upgrading a tool by installing a
new version (i.e., changing its enabled functionality), all existing workflow mappings
that the old version supports must still be supported after the change. Once formulated,
each criterion needs to be expressed in one or mmakehing criteria graphsThese
graphs are the CG-queries necessary for retrieving the knowledge definitions that satisfy
the matching criteria.

Example The change process concerns the replacing of tool instances in support-
definitions (i.e., definitions that say which users use what tool instances to enable a
particular workflow mapping). The matching criteria are (1) all tool instances of FTP
in support-definitions of WM1 need to be replaced by tool instances of BSCW. Before
this can be done, however, (2) all users that are part of the support definitions selected
in (1) need to have an access-relation to at least one instance of the BSCW-tool. In this
way, their requirements continue to be enabled. The accompanying matching criteria
graphs are:

(1) [State: [Support] -

(Inst) -> [FTP]

(Obj) -> [Workflow_Mapping: #WM1]]
(2) [State: [Access] -

(Poss) <- [User:#x]

(Obj) -> [BSCW]|

4. Calculate the Match Using the functionality specifications of step 1 and the match-
ing criteria graphs of step 3, the actual match is calculated. In general, such a match
can be calculated by projecting the matching criteria graphs on the knowledge base of
functionality specification graphs.

Example Matching criteria graph (1) is first projected on the specification knowl-
edge base. Using the specialisations function of the Peirce workbench, the following
result is returned:

> (Specialisations) -> [[State: [Support] -
-> (Inst) -> [FTP]
-> (Obj) -> [Workflow_Mapping:#WM1]]]?
[State: [User: #Mary]->(Poss)->[Support: #302]-
(Inst)->[FTP: #EJCL]
(Obj)->[Workflow_Mapping: #WM1],].
[State: [User: #John]->(Poss)->[Support: #300]-

(Inst)->[FTP: #EJCL]
(Obj)->[Workflow_Mapping: #WM1],].
true
>

This means that two users, Mary and John, currently make use of an FTP server.

Next, the matching criteria graph (2) is projected in similar fashion on the knowl-
edge base, with *x replaced by #Mary and #John, respectively. Only for Mary, a spe-
cialization is returned. This means that she already has access to the BSCW tool, but
John not yet.

5. Interpret the Matching Results Based on the criteria of step 3, the matching results
of step 4 can be interpreted in different ways. Differentirses of actiocan be taken
to deal with functionality mismatches. For example, if one criterion says that no users
should have access to a particular type of tool, then nothing needs to be done if no results
are returned in step 4, whereas otherwise one or more functionality specifications may
need to be redefined.

Example Since for John no access-relation has been returned, there first must be
a specification process that gives him access to the BSCW-tool. To do so, an e-mail
could automatically be sent to the system administrator. After access has been granted
by means of an access-definition, the now superfluous definitions that described the
FTP-support for the upload-file process can be removed.

4.2 Discussion

The functionality matching meta-model was based on the semantics introduced in the
RENISYS specification method, which was explained in detail in [5]. In the literature,
such a meta-model plus approach for supporting virtual communities in the specifi-
cation of their network information systems was lacking at the time. Extensions are
needed in various directions to realize a practical methodology. For example, we now
assume that semantic mismatches between the required and the enabled functionality
specification have already been resolved. In reality, much middleware consists of func-
tionality components, such as information services, that are much more complex than
the heavily simplified information and communication processes described in this pa-
per. Furthermore, forimplementation purposes links to low-level technical functionality
specifications need to be established.

Another required extension is to expand the functionality matching metamodel with
roles. In the current approach, users (e.g. John and Mary) are directly coupled to infor-
mation tools. However, roles are an important construct for functionality specification
to become more efficient. Roles can be loosely defined as collection of information and
communication processes that can be performed kactor. An actor role, such as an
editor, can be played by various users at the same time. In our view, this concept en-
hances the matching process by limiting the necessity to determine for each individual
user its workflow mappings and tool assignments.

Another limitation of the current approach is that only a few dependencies between
specifications have been modelled so far. For example, besides the basic assignment

dependencies, there are many others conceivable. One issue concerns the relations be-
tween client and server tools: installing a BSCW server also means that users need to
have a BSCW client (i.e. Web browser). This dependency has not been modelled yet.

We do not claim that from a theoretical perspective, this RENISYS-based approach
is the only or even the best possible one. However, we do claim that the issues raised and
elements of the functionality matching approach introduced are relevant in all matching
approaches.

Once implemented and sufficiently extended, we also think that the functionality
matching approach could become a true application, in the sense of [4]. Such an ap-
plication should aid in the solution of actual problems, and be more than just a tool.
Generic CG tools already exist and can be used to provide the basic functionality of
the application. An important application area of our approach could be in developing
testbeds [2], such as envisioned in the PORT project [1], in which many members of
the CG-community are involved and which aims to develop a testbed methodology:
“...The testbed methodology in a collaboratory research program prowitisad ob-
servational contexin which to study the needs of collaborators (in remote interaction
with instruments, colleagues, and data) and to develop technology in response to those
needs, for testing in that context. In testbeds, those collaborating must be able to moni-
tor themselves in the process of examining how a proposed technology might augment
their work.”. We feel that our approach, including its meta-model, could help to pro-
vide such a virtual observational context. One tool we are currently experimenting with
is WebKE®. This tool seems to be well suited to construct such testbed applications,
since it combines relatively advanced graph operations with a user-friendly, web-based
interface. In this way, for example pulldown-lists can be easily generated with options
for users to choose from, i.e. the list values are derived from graph operations on the
knowledge base.

5 Conclusions

In this paper, we introduced a concrete functionality matching approach that aims to
support virtual professional communities in order to achieve a more adequate evolution
of their network information systems. The approach is based on a meta-model contain-
ing a detailed high-level, socio-technical semantics of the relations between require-
ments in the form of information and communication processes, users, and information
tools. The approach was illustrated by a real-world case: an electronic law journal.

The functionality matching approach proposed here bridges two theoretical worlds.
Itis on the one hand related to work on component interface matching, which currently
dominates middleware research. A major drawback of existing approaches is that they
are defined at a very low level and do not contain any semantics of the evolution of
the socio-technical system of virtual professional communities. On the other hand, our
approach makes use of the power of conceptual graph theory, notably the availability
of graph generalization hierarchies for efficient specification representation and easy

5 Proposal for Workshop on the Semantic Web for ICCS 2001, PORT-mailing list, 24 December
2000
8 http://www.webkb.org

calculation of graph matches by means of basic projection operations. Of course, the
proposed approach is only a very simple one. The mostimportant contribution currently
is that the approach (1) makes explicit use of a functionality matching meta-model to
describe high level socio-technical semantics; it recognizes that different communities
(2) may apply different matching criteria, so that they can define their own, customized
constraints on the evolution of their socio-technical system and (3) interpret the results
in their own way by taking potentially different courses of action in case of violation
of matching constraints. This tailored approach to defining the implementation of net-
work information systems does justice to the unique and volatile nature of many virtual
communities.

References

1. M.A. Keeler, C. Kloesel and L. Searle. PORT: A Testbed Paradigm for Knowledge Process-
ing in the Humanitiesin: Lecture Notes in Artificial Intelligengevol. 1257, Springer-Verlag,
pp. 100-113, 1997.

2. J. Lederberg and K. Uncapher. Towards a National Collaboratory: [NSF] Report of an Invi-
tational WorkshopRockefeller University, New York City, 13P15, March 1989

3. W.J. van den Heuvel, M.P. Papazoglou and M. Jeusfeld. "Connecting Business Objects to
Legacy Systems”, Proceedings of the CAISE Conference, Springer, 1999.

4. M. Chein, D. Genest. CG Applications: Where are We 7 Years after the First ICCS? In
Proceedings of the Eighth International Conference on Conceptual Structures, ICCS2000,
Darmstadt, Germany, August 14-18, 20Q000, pages 127-139.

5. A. De Moor. Composition norm dynamics calculation with conceptual graphBrdceed-
ings of the Eighth International Conference on Conceptual Structures, ICCS2000, Darm-
stadt, Germany, August 14-18, 20@000, pages 525-539.

6. O. de Troyer, R. Meersman, and P. Verlinden. RIDL on the CRIS case: A workbench for
NIAM. In T.W. Olle, A.A. Verrijn-Stuart, and L.. Bhabuta, editoilSpmputerized Assistance
During the Information Systems Life Cyclgages 375-459. Elsevier Science Publishers,
B.V., 1988.

7. T.A. Finholt and G.M. Olson. From laboratories to collaboratories: A new organizational
form for scientific collaborationPsychological Scien¢c@&(1):28-36, 1997.

8. B.R. Gaines, L.J. C. Lee, and M.L.G. Shaw. Modeling the human factors of scholarly com-
munities supported through the Internet and the World Wide Webrnal of the American
Society for Information Sciencé8(11):987-1003, 1997.

9. N.C. Goodwin. Functionality and usabilitCommunications of the ACN80(3):229-233,
1987.

10. E. Bertino. “Integration of Heterogenuous data repositories by using object-oriented views”,
ACM Transactions on Database Systems, Vol. 17(3):385-422, 1992.

11. S. Chen. Retrieval of Reusable Components in a Deductive, Object-Oriented Environment.
PhD thesis, RWTH Aachen, Information Systems Institute, 1993.

12. Scott Henninger. An Evolutionary Approach to Constructing Effective Software Reuse
Repositories”, ACM Transactions on Software Engineering and Methodology”, vol. 6, nr. 2,
pp. 111-140, 1997.

13. L. Kalichenko. Workflow Reuse and Semantic Interoperability IssWésklfow Manage-
ment Systems and Interoperabilify, Dogag, L. Kalichenko, M.T.Ozsu and A. Seth, NATO
ASI Series, Springer, 1998.

14. G. Spanoudakis and P. Constantopoulos. Similarity for Analogical Software Reuse: A Con-
ceptual Modelling Approach, in: Proceedings of the 5th International Conference on Ad-
vanced Information Systems Engineering, (CAISE '93), (eds) Rolland C., Cauvet C., LNCS
685, Springer -Verlag, 1993

15. Am.M. Zaremski and J.M. Wing. Specification Matching of Software Components. ACM
Transactions on Software Engineering and Methodology, \Vol. 6, No. 4, pp. 333-369, Oct.

1997.

