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Chapter 1

Introduction

On Saturday morning, 18th March 2000, Iridium LLC, ”The World’s First Hand-

held Global Satellite Telephone and Paging Service Provider” shut down its operations.1

The USD 5bn project, launched in November 1998 by the consortium of, among others,

Motorola, Lockheed Martin, Sprint and Raytheon, turned out to be one of the biggest

financial disasters in the history of technically advanced communication projects. Irid-

ium was established to provide a telephone connection from each point on the globe,

including the peaks of Himalaya, Amazonian forests and African deserts. In order to

meet this objective Iridium placed 66 satellites on the orbit located 781 kilometers

above the Earth. Via a portable phone that transmitted a signal directly to/from one

of the satellites, the user was able to obtain a connection with any operating telephone

network. The Iridium analysts believed that this additional flexibility offered by their

new system would be highly appreciated by the target users and would compensate

them for relatively high costs (USD 3,000 for a telephone and up to USD 7 per call

per minute). The offer was initially directed to businesspeople, explorers, and wealthy

travelers. The market potential was estimated as high. However, by the end of 1999

the firm managed to get only 50 thousand out of 700 thousand planned subscribers.

The loss reported in the first quarter of 1999 alone amounted to USD 500m with mis-

erable revenue of USD 1.5m. The book value of the company’s debt already exceeded

USD 4.4bn. Eventually, the investment made by Iridium LLC appeared to be far from

what is in the finance textbooks meant by ’a value-creating project’.2

1The citation and the relevant data are based on the information available at the time at the

website www.iridium.com.
2Finally, the assets of Iridium LLC have been purchased by a newly established firm Iridium Satel-

lite LLC that continues to provide satellite telecommunication services (see also www.iridium.com).

1



2 CHAPTER 1. INTRODUCTION

1.1 NPV vs. Irreversibility and Uncertainty

What lesson for capital budgeting managers emerges from the Iridium case? Most

of the finance textbooks present the net present value (NPV) rule as a valid criterion for

evaluating capital investment projects. According to this rule, one needs to estimate

the present value of the expected stream of cash flow generated by a new factory or a

product line. Subsequently, the present value of the expenditures necessary to launch

the factory or the product line has to be deducted from the discounted cash inflow.

A positive difference (a positive net present value) implies that the project should be

undertaken. In other words, NPV analysis suggests that minimal present value of cash

inflows necessary for undertaking the project, V ∗, must be equal to

V ∗ = I, (1.1)

where I is the investment cost.

Of course, there are a lot of technical issues arising while calculating NPV of

an investment project. The problems associated with determining the probabilities

of particular scenarios, finding an appropriate discount rate or even with quantifying

inflation and exchange rate risk need to be resolved (cf. Schockley and Arnold, 2002).

However, the basic principle remains very simple: the sign of NPV determines whether

a given project should be undertaken or not.

As pointed out by Dixit and Pindyck (1996), the idea of NPV is based on one

of the following crucial and often overlooked assumptions:

• investment is either fully reversible (i.e. the invested money can be recovered if

the uncertain market conditions turn out to be unfavorable ex post), or

• a firm is facing a now-or-never decision.

In most real-life situations, however, none of the above conditions is met.

The Iridium project, which comprised of a network of 66 satellites with virtu-

ally no alternative use, was totally irreversible (NASA or any other organization was

not interested in acquiring the satellites after the bankruptcy was announced). More-

over, after the decision to stop the project, all the satellites ought to be destroyed at

an additional cost of USD 30-50m over the subsequent two years. Another aspect of

this particular investment is related to its timing. The decision to start the project

was obviously not a now-or-never choice; some flexibility to postpone the project ex-

isted, especially until more reliable estimates concerning highly uncertain demand were

available. And just the demand uncertainty constitutes the third distinct feature of

the project.
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1.2 Real Options and Investment under Uncertainty

The need of developing valuation models that are capable of capturing such fea-

tures of investment as irreversibility, uncertainty as well as timing flexibility has re-

sulted in a vast amount of literature on real options and investment under uncertainty.3

In his seminal paper Myers (1977) draws attention to the optimal exercise strategies of

real options as being the significant source of corporate value. Brennan and Schwartz

(1985) are one of the first to adopt the modern option pricing techniques (see Black

and Scholes, 1973, and Merton, 1973) to evaluate natural resource investments. The

price of the commodity is used as an underlying stochastic variable upon which the

value of the investment project is contingent. McDonald and Siegel (1986) derive the

optimal exercise rule for a perpetual investment option when both the value of the

project and the investment costs follow correlated geometric Brownian motions. The

authors show that for realistic values of model parameters it can be optimal to wait

with investing until the present value of the project exceeds the present cost of in-

vestment by a factor of 2. This reflects substantial value of waiting in the presence of

irreversibility and uncertainty. Majd and Pindyck (1987) contribute to the literature

by considering the effect of a time to build on the optimal exercise rule. The optimal

choice of the project’s capacity is analyzed by Pindyck (1988) and Dangl (1999). Dixit

(1989) analyzes the effects of uncertainty on the magnitude of hysteresis in the models

with entry and exit. Dixit and Pindyck (1996) present a detailed overview of this early

literature and constitute an excellent introduction to the techniques of dynamic pro-

gramming and contingent claims analysis, which are widely applicable in the area of

real options and investment under uncertainty. An introduction to real options, which

is closer in the spirit to the financial options theory, is presented by Trigeorgis (1996).

The 1990s brought a vast number of applications of the existing real op-

tions framework. They include, among others, managing R&D projects (Pennings,

1998), natural resources investment (Trigeorgis, 1990), real estate (Williams, 1993),

energy (Kulatilaka, 1993, and Pindyck, 1993), aerospace industry (Sick, 1999), bank-

ing (Panayi and Trigeorgis, 1998), technology adoption (Grenadier and Weiss, 1997),

merger policy (Mason and Weeds, 2002) and biotechnology sector (Ottoo, 1998, and

Woerner, 2001).4 Shackleton and Wojakowski (2001) analyze a finite-maturity real

3A reader being unfamiliar with this approach is referred to the Appendix where a standard real

option model is analyzed.
4For a variety of real options applications see the 1998 special issue of the Quarterly Review of

Economics and Finance, 38, entitled: ”Real Options: Developments and Applications” (ed. G.E.

Pinches). The collections of papers compiled by Grenadier (2000), Brennan and Trigeorgis (2000),
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option to switch among two streams of revenues when the switching is costless.

Some recent contributions relax the assumption concerning perfect information

about the project’s value and introduce learning effects. Thijssen et al. (2001) analyze

the optimal investment timing when the information about the project’s value is driven

by a Poisson process. Bernardo and Chowdhry (2002) analyze optimal option exercise

policy when the firm is learning about its capabilities by applying the filtering approach

of Liptser and Shiryayev (1978). Finally, Decamps et al. (2001) investigate the optimal

investment rule when the firm observes the value of the process (market index) which is

imperfectly correlated with unobservable demand process. In Chapter 2 we introduce

incomplete information and learning about the firm’s investment cost.

The empirical literature on real options is quite limited but growing, as the

project level data become more easily available. The classic contributions include Pad-

dock et al. (1988) who analyze the valuation of offshore petroleum leases, Quigg (1993)

investigating the behavior of real estate prices in Seattle, and Berger et al. (1996),

who on the basis of the differences between the firms’ market values and their dis-

counted cash flow (DCF) valuations try to estimate the value of the option to abandon

operations.

1.3 Imperfect Competition

The extensive process of deregulation taking place in the last decade, combined

with a wave of mergers and acquisitions, has resulted in an oligopolistic structure of

a large number of sectors. A shift towards such a structure takes place not only in

traditional regulated markets (telecommunications, energy, transportation) but also in

more competitive industries (fast-moving consumer goods, car manufacturing, pharma-

ceuticals). Imperfect competition in the firm’s product market requires that strategic

interactions with other firm(s) are taken into account. The gap between capital bud-

geting and strategic planning has already been recognized by Myers (1987) and has

been confirmed by Zingales (2000).

Real option models taking into account imperfect competition among the firms

are based on several contributions on timing games within the area of non-cooperative

game theory. The first model describing the optimal timing of entry has been presented

by Reinganum (1981). In this paper, the author derives the optimal strategies of the

leader and the follower and shows that the leader realizes a positive relative surplus.

and Schwartz and Trigeorgis (2001) are also of interest.
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This result is due to the assumption that firms use open-loop strategies, i.e. their

roles are predetermined. We use the same assumption in Chapter 5. The problem of

endogenous selection mechanism has been addressed by Fudenberg and Tirole (1985).

In their set-up, in which the firms play closed-loop strategies, the roles of the firms are

not predetermined and, as a consequence, the firms’ strategies are history-dependent

(time-consistent). Fudenberg and Tirole (1985) show that there is rent equalization of

the leader and the follower, which is the result of the preemption game played by the

firms. This framework is applied in Chapters 3 and 4.

The first model that combines these game-theoretical insights with the opti-

mal option exercise rule is Smets (1991). He analyzes the trade-off between the value

of waiting with constructing a production facility in an emerging economy and the

threat of being preempted by a competitor. Grenadier (1996) applies a version of this

model to analyze an increase in construction activity during market downturn. Huis-

man and Kort (1999) present an endogenous selection mechanism based on which the

roles of the leader and the follower are determined. Mason and Weeds (2003) extend

this framework and allow for positive externalities among the competitors. The latter

feature allows them for obtaining a negative relationship between uncertainty and the

leader’s investment threshold. Boyer et al. (2002) develop a general model of evolu-

tion of duopolists’ capacities, which nests, as its special cases, the new market model

and the model with firms already competing in the product market. Applications of

strategic real option games in the internet and aircraft manufacturing sectors have been

presented by Perotti and Rossetto (2000), and Shackleton et al. (2003), respectively.

Discrete time strategic real option models include Smit and Ankum (1993), Smit and

Trigeorgis (1998), and Kulatilaka and Perotti (1998).

Games of incomplete information constitute a fruitful avenue of contemporary

strategic real options research. Grenadier (1999) considers informational cascades in

a situation where multiple agents optimally exercise their options not only on the

basis of their private noisy signals but also taking into account the actions of the

others. Decamps and Mariotti (2000) and Thijssen et al. (2001) consider games in

which firms learn about the profitability of the market by observing their competitors.

Lambrecht (2000) analyzes optimal strategic investment in patents when the type of

the competitor is unknown and shows that it may be optimal to let patents ”sleep”

for some time before the commercialization phase takes place. Finally, Lambrecht and

Perraudin (2003), develop a model of a preemption game under incomplete information,

in which the payoff of the follower drops to zero after the investment of the leader.

Another class of real options contributions are the models of industry equi-
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librium. These models include Williams (1993), Leahy (1993), and Grenadier (2002)

with an all-equity financing assumption and Fries et al. (1997) with a debt and equity

financing assumption.

1.4 Debt Financing

There are two types of agency problems that result in a suboptimal investment

policy in the presence of debt financing. First, as shown by Jensen and Meckling (1976),

debt financing results in the owner-manager shifting towards more risky projects and,

as an effect, in the expropriation of the debtholders’ wealth. Another effect of debt

on the firm’s investment policy has been discussed by Myers (1977). It is shown that

since investment is associated with a wealth transfer from the equityholders to the

debtholders, some of the good investment opportunities (those whose NPV does not

fully compensate for the wealth transfer) will expire unexercised.

The impact of debt financing on investment has been analyzed in a dynamic

real options framework by a number of authors. Mello and Parsons (1992) analyze the

binary decision to abandon or resume a production process and estimate the agency

costs of debt. For reasonable parameter values they obtain that a suboptimal operating

policy lowers the value of the firm by more than 4% of the total debt value. The

magnitude of the agency costs has also been estimated by Mauer and Ott (2000), who

essentially develop a dynamic version of the model of Myers (1977). For some scenarios

they obtain that the agency cost of debt associated with underinvestment amount to

up to 3% of the debt value. Titman and Tsyplakov (2002) show in a dynamic model

with a continuous investment flow that an equity value-maximizing firm has a lower

investment rate than a firm maximizing the value of all its claims. A similar result

is obtained by Moyen (2002). Lambrecht (2001), and Khadem and Perraudin (2003)

build upon strategic models in the spirit of Brander and Lewis (1986), and Maksimovic

(1995), and perform a dynamic analysis of exit strategies where duopolists are financed

by equity and debt. Their theoretical results support the empirical evidence that ”the

fittest and the fattest” firms, i.e. those with the highest profitability and the highest

interest coverage, are more likely to remain in the market (cf. Zingales, 1999). However,

in equilibrium an exit of the less levered firm occurs with positive probability. Finally,

Fries et al. (1997) investigate the optimal capital structure in the industry equilibrium

taking into account market volatility and possibility of a free entry. A common feature

of all the above mentioned contributions assumed a single type of non-renegotiable

debt. As we show in Chapter 6, relaxing this assumption may lead to new interesting
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insights.

1.5 Outline of the Thesis

The thesis consists of the introduction, which is followed by five chapters. In

Chapters 2, 3, 4, and 5, the investment decisions of all-equity financed firms are ana-

lyzed. Consequently, all the investment decisions are made optimally as to maximize

the value of the firm. In Chapter 6, the impact of debt financing on investment is

considered.

In Chapter 2 we develop a non-strategic model in which the impact of a policy

change on investment behavior is analyzed. Withdrawal of the investment tax credit, or

a change in the preferential tax treatment of foreign investor constitute some examples

of the policy change that is of our interest. The policy change is modeled as an upward

jump in the effective investment cost (cf. Hassett and Metcalf, 1999, for a tax credit

interpretation) and is triggered by the value of the project reaching an upper barrier.

The firm has incomplete information concerning the trigger value of the process for

which the jump occurs and updates its beliefs according to Bayes’ rule. The uncertainty

concerning the moment of the change can be explicitly accounted for by changing the

variance parameter of the underlying probability distribution. The optimal investment

threshold maximizing the value of the firm is derived and non-monotonicity of this

threshold in trigger value uncertainty is shown.

Chapter 3 contains an analysis of a firm’s decision to replace an existing pro-

duction facility with a new, more cost-efficient one. Kulatilaka and Perotti (1998) find

that, in a two-period model, increased product market uncertainty could encourage

the firm to invest strategically in the new technology. We extend their framework to

a continuous-time model and show that, in contrast with the two-period model, more

uncertainty always increases the expected time to invest. Furthermore, it is shown

that under increased uncertainty the probability of the optimal production facility re-

placement within a given time period always decreases for time periods longer than the

time to reach the optimal Jorgensonian threshold calculated for the deterministic case.

For smaller time periods there are contrary effects so that the relationship between

uncertainty and the probability of investing is in this case humped (cf. Sarkar, 2000,

who first documents the non-monotonicity of the investment-uncertainty relationship

in a real options framework).

Chapter 4 considers the impact of investment cost asymmetry on the value of

the firm and optimal real option exercise strategies of firms under imperfect competi-
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tion (cf. Grenadier, 1996, for a limiting case with identical firms). Both firms have an

opportunity to invest in a project enhancing ceteris paribus the profit flow. We show

that three types of equilibria exist (which extends, e.g., Huisman, 2001, Ch. 8, who

obtains two types of equilibria in a new market model). Furthermore, we derive critical

levels of cost asymmetry separating the equilibrium regions. The presence of strategic

interactions leads to counterintuitive results. First, a marginal increase in the invest-

ment cost of the firm with the cost disadvantage can increase this firm’s own value.

Second, such a cost increase can result in a decrease in the value of the competitor.

Subsequently, we discuss the welfare implications of the optimal exercise strategies and

show that firms being identical can result in a socially less desirable outcome than if

one of the competitors has a significant investment cost disadvantage. Finally, we prove

that profit uncertainty always delays investment, even in the presence of a strategic

option of becoming the first investor.

Chapter 5 addresses the issue of the value of flexibility in quality choice (cf.

Pennings, 2002, for a model addressing similar issues but using a different model for-

mulation). Firms decide about quality of their products when they enter the market

upon incurring a sunk cost. Flexibility in quality choice induces ceteris paribus earlier

investment, and the value of flexible quality increases with demand uncertainty. We

find that the possibility of competitive entry more than doubles the relative value of

flexibility. We also show that flexible quality serves as an entry deterrent control, while

it can still be set at the optimal monopoly level. Furthermore, we extend the theory of

strategic real options, from which it is known that the follower’s investment timing is

irrelevant for the decision of the leader if the roles of the firms are predetermined. The

addition of a second control (quality) results in the leader’s investment timing being

influenced by the follower’s expected entry. Finally, we show that the follower can be

driven out of the market due to an ”aggressive” quality choice of the leader in high

states of demand.

Chapter 6 analyzes the firm’s optimal investment and liquidation policy in

the presence of debt financing and the equityholders’ option to renegotiate the debt.

We show that the presence of the renegotiation option (”soft debt”) exacerbates the

underinvestment problem described by Myers (1977). The detrimental impact of the

renegotiation option on the investment policy results from the fact that in the presence

of the renegotiation option the wealth transfer to the debtholders, which occurs upon

investment, is greater. This is due to a significant reduction in the probability of

strategic default occurring upon undertaking the investment project. Furthermore,

we find that the liquidation policy in the presence of debt differs from the optimal
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liquidation policy under all-equity financing. Even after removing the effects of the tax

shield by excluding taxes, it holds that the liquidation policy is affected by the second-

best investment policy, thus liquidation occurs inefficiently early. Also, the impact of

a growth opportunity on the optimal bankruptcy and renegotiation timing is analyzed

and it is shown that high shareholders’ bargaining power combined with the presence

of growth options can make strategic default more likely.

1.6 Appendix: Standard Real Options Model

In this section we present the standard investment model as described by McDon-

ald and Siegel (1986), and extensively analyzed by Dixit and Pindyck (1996). The

basic problem is to find the optimal timing of an irreversible investment, I, given that

the value of the investment project follows a geometric Brownian motion (GBM)

dV (t) = αV (t) dt + σV (t) dw (t) , (1.2)

where parameter α denotes the deterministic drift parameter, σ is the instantaneous

standard deviation, and dw is the increment of a Wiener process.

Technically speaking, the uncertainty in the model is described by a complete

filtered probability space
(
Ω,F , {Ft}t∈(0,∞),P

)
, where Ω is the state space, F is the σ-

algebra representing measurable events, and P is the actual probability measure. The

filtration is the augmented filtration generated by the Brownian motion and satisfies

the usual conditions.5 The deterministic riskless interest rate is r and the drift rate α

satisfies α < r so that finite valuations can be obtained. The firm is risk-neutral and

maximizes the value of the investment option, F (V ), by choosing the threshold value

of V at which the project is undertaken.

Since there are no intermediate payoffs to the holder of the investment option,

the Bellman equation in the continuation region (i.e. before exercising the option) can

be written as

rFdt = E [dF (V )] . (1.3)

Equation (1.3) means that for a risk-neutral firm, the expected rate of change in the

value of the investment opportunity over the time interval dt equals the riskless rate.

Applying Itô’s lemma to the RHS of (1.3), and dividing both sides of the equation by

dt results in the following ordinary differential equation (ODE):

5A filtration {Ft} satisfies the usual conditions if it is right continuous and F0 contains all the

P-null sets in F (see Karatzas and Shreve, 1991, p. 10).
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rF =
1

2
σ2V 2∂

2F

∂V 2
+ αV

∂F

∂V
. (1.4)

The general solution to (1.4) has the following form:

F (V ) = A1V
β
1 + A2V

β
2, (1.5)

where A1 and A1 are constants, and

β1,2 = −
α

σ2
+
1

2
±

√(
α

σ2
−
1

2

)2

+
2r

σ2
. (1.6)

Moreover, it holds that β1 > 1 and β2 < 0. In order to find the value of the investment

option, F (V ), and the optimal investment threshold, V m, the following boundary

conditions are applied to (1.5):

F (V m) = V m − I, (1.7)

F ′ (V m) = 1, (1.8)

F (0) = 0. (1.9)

Conditions (1.7) and (1.8) are called the value-matching and the smooth-pasting con-

ditions, respectively, and ensure continuity and differentiability of the value function

at the investment threshold. Condition (1.9) ensures that the investment option is

worthless at the absorbing barrier V = 0. Consequently, it implies that A2 = 0.

Substitution of (1.5) into (1.7)-(1.9) and some algebraic manipulation yield the

value of the optimal investment threshold:

V m =
β1

β1 − 1
I. (1.10)

Since β1 > 1, the optimal investment threshold is strictly larger than 1 (cf. NPV rule

given by (1.1)). This reflects the value of waiting associated with the uncertainty of

the project’s value and the irreversibility of the investment decision. The value of the

option to invest, F (V ), is given by

F (V ) = (V m − I)

(
V

V m

)β
1

, (1.11)

where V m−I is just a NPV of the project at the moment of undertaking the investment.

The second factor is a stochastic discount factor which reflects the present value of $1

received when the cash flow process hits the investment threshold V m.
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The value of the optimal investment threshold is positively related both to

the volatility of the project’s value as well as to its growth rate (the higher σ and α

are, the higher V must be reached for the project to be undertaken). F (V ) increases

with the volatility of the value of the project (β1 is a decreasing function of σ and F is

decreasing with β1) which results from the convex payoff of the investment opportunity.

Moreover, F is increasing with the growth rate, α, since the effective discount rate of

future cash flow decreases linearly with α.

Finally, the expected time to hit the investment threshold V m starting from

level V , denoted by Tm, equals6

E [Tm] =

{
− 1

α−
1

2
σ2
ln
(

V

Vm

)
for σ2 < 2α,

∞ for σ2 ≥ 2α.
(1.12)

Since the expected time to reach the investment threshold is infinite for a sufficiently

high volatility of process (1.2), another measures are often used to characterize invest-

ment timing. They include the probability of investing within a certain time horizon

(cf. Sarkar, 2000, and Chapters 3 and 6 of this thesis), and the median time to invest

(cf. Grenadier, 1996).

6For a derivation of the probability distribution of the first passage time see Harrison (1985) for a

formal exposition and Dixit (1993) for a heuristic approach.
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Chapter 2

Discrete Change in Investment Cost

2.1 Introduction

Corporate investment opportunities may be represented as a set of (real) options

to acquire productive assets. In the literature it is widely assumed that the present

values of cash flows generated by these assets are uncertain and that their evolution

can be described by a stochastic process. Consequently, identification of the optimal

exercise strategies for real options plays a crucial role in capital budgeting and in the

maximization of a firm’s value.

So far, the real options literature provides relatively little insight into the im-

pact of structural changes of the economic environment on the investment decisions of

a firm. The existing papers (see overview in Chapter 1) mainly consider continuous

changes in the value of relevant variables. Most of the time, this results in the as-

sumption that the entire uncertainty in the economy can be described by a geometric

Brownian motion process.

It is often more realistic to model an economic variable as a process that makes

infrequent but discrete jumps.1 In such cases use is made of a Poisson (jump) process.

An interesting application is provided by Hassett and Metcalf (1999), who analyze

the impact of an expected reduction in the investment tax credit. In their setting a

Poisson process describes the changes in the tax regime that affect the value of the

investment opportunity. Within such a framework the implicit assumption is made

that the firm has virtually no information about the mechanisms governing the shocks

in the economy.

1For instance, recent tax debates across Europe are a significant source of uncertainty associated

with discountinuous changes in the economic environment.

13
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When a change in the economic environment reflects a new policy implemented

by the authority, it may be more realistic to assume that the firm has some conjecture

about the expected moment of the change. Referring to the example of the investment

tax credit, the firm typically expects the reduction to be imposed when the economy is

booming and an active pro-investment policy is no longer needed or desired. Conversely,

applying the Poisson based methodology is equivalent to assuming that it is time itself

and not the state of economic environment that governs the change.

Moreover, the firm can to some extent assess the precision of its conjecture

concerning the moment of change, i.e. the variance of the estimate of the timing of

the future event. A Poisson based approach does not allow for including this type of

uncertainty in the analysis since it entails a single parameter characterizing the arrival

rate of the jump. Consequently, such a modelling approach lacks degrees of freedom

necessary for capturing both the expectation and the precision of this expectation.

In this chapter we propose a method to model the impact of a policy change

on the investment strategy of the firm that takes into account the type of information

possessed by the firm while making the investment decision. In our approach the

subjective expectation concerning the moment of the change as well as the level of

imprecision of such a conjecture serve as input parameters. We model the policy change

as being triggered by a sufficiently high realization of a stochastic process related to

the value of the investment opportunity. This, for instance, reflects the fact that - as

we already argued - a tax credit reduction is more likely to occur when the economy is

booming. Hence, the moment of the reduction depends on the state of the economy.

This is in contrast with the models based on the Poisson process where the probability

of the change is constant over time.2

There are other economic situations in which it is realistic to impose a certain

relationship between the occurrence of the shock and the state of the economy. A

foreign direct investment decision to purchase a privatized enterprise where the local

government may increase the offering price after the performance of the enterprise

improves, can also be perceived as an option with an embedded risk of an increase in

the strike price. A non-exclusive investment opportunity for which a competitive bid

can be expected can serve as another example.3

2Hassett and Metcalf (1999) try to correct this by letting the arrival rate depend on the output

price. But still it is then possible that an investment subsidy is reduced for low output prices, while

the subsidy was maintained under high output prices. This kind of inconsistency in the authority’s

behavior is no longer possible under our approach.
3See Smets (1991) and Cherian and Perotti (1999) for a discussion of the effects of strategic

interactions and political risk.
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We consider the possibility of an upward jump in the (net) investment cost.

This jump is caused, for instance, by the reduction of an investment tax credit. It

occurs at the moment that an underlying variable reaches a certain trigger. Here, the

underlying variable is the value of the investment project. The firm is not aware of

the exact value of the trigger but it knows the probability distribution underlying the

trigger. Taking into account consistent authority behavior, the firm knows that a jump

will not occur as long as the current value of the variable remains below the maximum

that this variable has attained in the past. When the underlying variable reaches a

new maximum and still the jump does not occur, the firm updates its conjecture about

the value of the barrier.

Consequently, our objective is to determine the optimal timing of an irre-

versible investment when the investment cost is subject to change and the firm has

incomplete information about the moment of the change. It is clear that the value

of the investment opportunity drops to zero at the moment that the investment cost

jumps to infinity. However, we mainly consider scenarios where the cost of investment

is still finite after the upward jump occurred. In this respect this work generalizes

Berrada (1999), Schwartz and Moon (2000), and Lambrecht and Perraudin (2003), in

which the value of the project drops to zero at the unknown point of time.4

Our main results are the following. An equation is derived that implicitly

determines the value of the project at which the firm is indifferent between investing and

refraining from the investment. This value is the optimal investment threshold and it is

shown that this threshold is decreasing with the hazard rate of the cost-increase trigger.

For the most frequently used density functions it holds that, for a given value of the

project, the hazard rate first increases and then decreases with trigger value uncertainty.

This leads to the conclusion that the investment threshold decreases with the trigger

value uncertainty when the uncertainty is low, while it increases with uncertainty for

high uncertainty levels. Hence, for a policy maker interested in accelerating investment,

an optimal (strictly positive) level of the trigger value uncertainty can be identified

which is the level corresponding to the minimal investment threshold. Furthermore, it is

shown that the uncertainty concerning the magnitude of the change delays investment.

This implies that an effective policy stimulating early investment should minimize the

investors’ uncertainty about the size of the expected change.

In Section 2.2 the model with the investment cost jump resulting from a policy

change is introduced. Section 2.3 provides the major results and Section 2.4 contains a

4However, the unknown trigger in Lambrecht and Perraudin (2003) is chosen endogenously by the

firm’s competitor.
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numerical analysis including some comparisons with Poisson based models. Section 2.5

extends the model to allow for a stochastic size of the jump in the cost. In Section 2.6

we present the implications of our model for the authority that considers an investment

tax credit policy change, and Section 2.7 concludes.

2.2 Framework of the Model

In this section we develop the model that allows for incorporating the impact of the

expected policy change on the firm’s investment strategy. The value of the investment

project follows a geometric Brownian motion

dV (t) = αV (t) dt + σV (t) dw (t) , (2.1)

where parameter α denotes the deterministic drift parameter, σ is the instantaneous

standard deviation, and dw is the increment of a Wiener process. The riskless rate is

r and it holds that α < r. The firm is assumed to be risk-neutral and it maximizes the

value of the investment option, F (V ). If the value of the investment project reaches

a critical level, a change in the value of a certain policy instrument is imposed and, as

a result, an effective increase in the investment cost occurs.5 This instrument can be

interpreted, among others, as a reduction in the investment tax credit, an increase in

the cost of capital via lending rates or an increase in the offering price for a privatized

enterprise. Allowing for a broader interpretation, an arrival of a competitive firm

offering a higher bid for a particular project belongs to the set of potential sources of

the investment cost shock as well.

We denote by V ∗ such a realization of the process for which the new policy is

imposed and the investment cost changes from Il to Ih, where Ih > Il. At this stage

we assume that Ih is deterministic. Later we consider Ih to be stochastic and discuss

implications of such an extension. The firm does not know the value of V ∗ but knows

only its cumulative density function, Ψ(V ∗). Ψ(·) is continuous and twice differentiable

everywhere in the interior of its domain. To provide a simple interpretation, we assume

that Ψ(·) is completely defined by its first two moments and is time-independent.

Consequently, if the investment cost has not increased by time τ , while V̂ is the highest

realization of the process so far, the cost will not increase at any u > τ as long as

5If, instead, a downward change in investment cost is considered, the same solution methodology

can be applied as in the remainder of the paper. Consequently, a unique realization of the underlying

process has to be found for which the marginal cost of waiting beyond the optimal investment threshold

equals the benefit of waiting associated with the expected decrease in the investment cost.
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V (t) ≤ V̂ for all t ≤ u. Hence, the probability of the jump in investment cost is a

function of V alone.

In order to restrict our analysis to the most interesting case, we impose the

following assumptions on the values of the variables used in the model:
V > V (0) (i)

V < β
1

β
1
−1

Il (ii)

1{V ∗<Vh}
(Vh − Ih)

(
V ∗

Vh

)β
1

< V ∗ − Il, (iii)

(2.2)

where V and V are the lower and the higher bound of the domain of Ψ(·), respectively.

V (0) denotes the initial value of the project, β
1
is given by

β
1
= −

α

σ2
+
1

2
+

√(
α

σ2
−
1

2

)2

+
2r

σ2
, (2.3)

and Vh (≡ β
1
Ih/ (β1

− 1)) is the unconditional optimal investment threshold corre-

sponding to the cost Ih.
6 Assumptions (i) and (ii) ensure that the problem is relevant,

i.e. that the policy change has not occurred yet and that there is a positive probability

that the change will take place before the optimal threshold corresponding to Il is

reached. Assumption (iii) states that ex post it is never optimal to wait with investing

until the upward change in cost occurs.

2.2.1 Value of the Investment Opportunity

Since the value of the project that triggers the increase in the investment cost is

not known beforehand, two scenarios are possible. In the first scenario the investment

occurs before the change in the investment cost, and in the second scenario the invest-

ment takes place after the upward change. Consequently, the value of the investment

opportunity reflecting the structure of the expected payoff, has the following form:

Fs(V, V̂ |I = Il) = ps(V̂ )E
[
(V (Ts)− Il) e

−rTs
]
+

+
(
1− ps(V̂ )

)
E
[
(V (Th)− Ih) e

−rTh
]
, (2.4)

where ps(V̂ ) is the conditional (on the highest realization of V , V̂ ) probability that the

investment cost will not increase before the investment is made optimally, and Ts and

Th denote the first passage time corresponding to the optimal investment threshold

61B denotes an indicator function of B such that 1B (x) =

{
1 x ∈ B

0 x /∈ B
.
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at the low and at the high cost, respectively. After rearranging and including these

expectations, we obtain the following maximization problem that allows for finding the

optimal investment threshold:

Fs(V, V̂ |I = Il) = max
Vs

[
(Vs − Il)

(
V

Vs

)β
1 1−Ψ(Vs)

1−Ψ(V̂ )
+

+(Vh − Ih)

(
V

Vh

)β
1

(
1−

1−Ψ(Vs)

1−Ψ(V̂ )

)]
. (2.5)

Vs is the optimal investment threshold in case the investment takes place before the

change in cost, and V̂ is the highest realization of the process so far. Hence, the ratio

(1−Ψ(Vs)) /(1 − Ψ(V̂ )) is the probability that the jump in the investment cost will

not occur by the moment V is equal to Vs, given that the shock has not occurred for

V smaller than V̂ . Equation (2.5) is therefore interpreted as follows: the value of the

investment opportunity is equal to the weighted average of the values of two investment

opportunities. They correspond to the investment cost Il and Ih, respectively, given

that the investment is made optimally (at Vs if the cost is still equal to Il and at Vh if

the upward change has already occurred).7

The value of the investment opportunity depends on the highest realization of

the process, V̂ . A higher V̂ (thus a one closer to Vs) implies a lower probability of the

cost-increase trigger falling into the interval (V̂ , Vs) and, as a consequence, a higher

probability of making the investment at the lower cost, Il. In order to calculate the

value of the investment opportunity, we first need to establish the value of Vs by solving

the maximization problem.

2.2.2 Optimal Investment Threshold

The optimal investment threshold, Vs, is determined by maximizing the value of

the investment opportunity or the RHS of the Equation (2.5).

7It is worth pointing out that for Ih →∞ the value of the investment opportunity boils down to:

Fs(V, V̂ |I = Il) = max
Vs

(Vs − Il)

(
V

Vs

)β
1−Ψ(Vs)

1−Ψ(V̂ )
, (2.6)

which directly corresponds to the result of Lambrecht and Perraudin (2003). In the other limiting

case, i.e. for Ih → Il, the value of investment opportunity converges to

Fs(V, V̂ |I = Il) = (Vl − Il)

(
V

Vl

)β

(2.7)

which is the formula obtained by McDonald and Siegel (1986).
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Proposition 2.1 Under the sufficient condition that

Vs
∂h (V )

∂V

∣∣∣∣
V=Vs

+ h(Vs) ≥ 0, (2.8)

the investment is made optimally at Vs which is the solution to the following equation:

h(Vs)V
2

s
+ (β

1
− 1)Vs − (Vsh(Vs) + β

1
)Il − h(Vs)

(β
1
− 1)β1−1

ββ

1

V
β
1
+1

s

I
β
1
−1

h

= 0, (2.9)

where h(x) = ψ(x)

1−Ψ(x)
denotes the hazard rate and ψ (x) ≡ ∂Ψ(x)

∂x
.8

Proof. See the Appendix.

A sufficient condition for (2.8) to hold is that the hazard rate has to be non-

decreasing in V .9 Condition (2.8) is satisfied for most of the common density functions

as, e.g., exponential, uniform and Pareto.10

2.3 Solution Characteristics

In this section we analyze how the optimal threshold is affected by changes in

the parameters characterizing the dynamics of the project value. In particular, we

determine the direction of the impact of the project value uncertainty and of the

changes in the investment costs under both policy regimes. Subsequently, we examine

how the uncertainty concerning the moment of imposing the change influences the

firm’s optimal investment rule.

2.3.1 Changing the Parameters of the Investment Opportu-

nity

We are interested in how potential changes in the characteristics of the investment

opportunity influence the optimal investment rule. For this purpose we formulate the

following proposition.

8In our case, the hazard rate has the following interpretation. The probability of the upward change

in the investment cost occurring during the nearest increment of the value of the project, dV , (given

that the cost-increase has not occurred by now) is equal to the appropriate hazard rate multiplied by

the size of the value increment, i.e. to h(V ; ·)dV .
9More precisely, the elasticity of the hazard rate with respect to the value of the process evaluated

at the optimal investment threshold has to be larger than or equal to −1.
10In fact, the hazard rate based on the Pareto function is decreasing at the order of 1/x and the

property (2.8) is still met.
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Proposition 2.2 The effects on the investment threshold level of the changes in

the different parameters are as follows:

dVs
dIl

> 0, (2.10)

dVs
dIh

< 0, (2.11)

dVs
dβ

1

< 0, (2.12)

∀Il, Ih satisfying 0 < Il < Ih, ∀β1 ∈ (1, r/α) if α > 0 and ∀β
1
∈ (1,∞) if α ≤ 0.

Proof. See the Appendix.

Consequently, the optimal threshold (ceteris paribus) increases with the initial

investment cost and decreases with the magnitude of the potential cost-increase as well

as in the parameter β
1
. The latter implies that the threshold increases with uncertainty

of the value of the project and decreases with the wedge between interest rate and the

project’s growth rate.

2.3.2 Impact of Policy Change

The optimal investment rule depends not only on the characteristics of the project

itself but also on the firm’s conjecture about the probability distribution underlying

the expected policy change. The parameters of this distribution can be influenced by

actions of the authority. For instance, an information campaign about the expected

changes in the investment tax credit leads to a reduction of the variance (often to

zero) of the distribution underlying the value triggering the change. Therefore, it

is important to know how changes in the uncertainty related to the project value

triggering the jump in the investment cost influence the firm’s optimal investment

rule. Knowing that the firms are going to act optimally, the authority can implement

a desired policy, which is, for instance, accelerating the investment expenditure, by

changing the level of the firms’ uncertainty about the tax strategy. We come back to

this point in Section 2.6, where policy implications for the authority are considered.

Hazard Rate

The hazard rate of the arrival of the cost-increase trigger is one of the basic inputs

for calculating the optimal investment threshold. Although it is exogenous to the firm,

it may well be controlled by another party such as the authority. Here, we determine
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the impact of its change on the firm’s investment rule. Later, we discuss some of the

policy implications of the obtained result.

From (2.9) the following result can be obtained.

Proposition 2.3 The optimal investment threshold is decreasing with the corre-

sponding hazard rate, i.e. the following inequality holds:

dVs
dh (V )

∣∣∣∣
V=Vs

< 0. (2.13)

Proof. See the Appendix.

This result implies that an increasing incremental probability of the jump leads

to an earlier optimal exercise. The intuition is quite simple: an increasing probability

of a partial deterioration of the investment opportunity after a small appreciation in

the project value reduces the value of waiting.

Furthermore, (2.13) implies that for any parameter of the density function

underlying the jump, θ, the following condition holds:

∀θ ∈ {a, b} sgn
∂h (V )

∂θ

∣∣∣∣
V=Vs

= −sgn
dVs
dθ

. (2.14)

Using (2.14) we can establish how the investment threshold is affected by changes in

the parameters of the distribution function underlying the occurrence of the jump.

Trigger Value Uncertainty

Now the aim is to analyze how the optimal investment threshold is affected by

uncertainty related to the value of the cost-increase trigger. To do so, due to (2.14),

we only need to establish the sign of the relationship between the hazard rate and the

uncertainty related to the value of the trigger. We measure the trigger-value uncertainty

by applying a mean-preserving spread (see Rotschild and Stiglitz, 1970)

If the cost-increase trigger, V ∗, is known with certainty, the investment is made

optimally at an infinitesimal instant before V ∗ is reached. At this point, the hazard

rate is zero (there is no risk that the cost increases before this trigger is reached). As

the uncertainty marginally increases, the hazard rate is affected by: 1) the value of

the density function underlying the trigger, denoted by ψ(V ∗), and 2) a change in the

value of the survival function, 1−Ψ(V ∗). It can be shown that, for the most frequently

used density functions, such as normal, uniform, exponential and Pareto, the value of

the hazard rate, for any V ∈ [V (0) , E [V ∗]), first increases and then decreases with
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the mean-preserving spread. An example for the normal density function is shown in

Figure 2.1.11
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Figure 2.1: The relationship between the hazard rate and standard deviation of a normal

density function N (150, ω2). Hazard rates are plotted for V = 100, 120 and 140.

We conclude that, for each degree of the trigger value uncertainty, there exists

such a value of V < E [V ∗], say Ṽ , that for V ∈ [V (0) , Ṽ ) the hazard rate increases,

and for V ∈ (Ṽ , E [V ∗]) decreases, with this uncertainty. This form of the relation-

ship between the hazard rate and the uncertainty implies (via Proposition 2.3) that

Vs decreases with the uncertainty if it falls into the interval [V (0) , Ṽ ) and increases

otherwise. Consequently, in order to determine the sign of the effect of uncertainty on

Vs, we need to establish the relative position of Vs with respect to Ṽ .

We denote the standard deviation of the density function underlying the cost-

increase trigger by ω. Since the expression for Vs is already known (see (2.9)), all we

have to calculate is Ṽ as a function of ω, such that, for each pair (V, ω), the following

condition holds:12

∂h (V )

∂ω

∣∣∣∣
V=˜V

= 0. (2.15)

11
Although the concepts of the mean-preserving spread and increased standard deviation are, in

general, not equivalent, they may be treated as such for the types of density functions referred to in

this chapter.

12
Although ˜V (ω) cannot be written explicitly in a general form, its values corresponding to a given

density function may be easily found numerically.
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For the most frequently used density functions it can be shown that Ṽ decreases with

uncertainty. Consequently, for a relatively low degree of uncertainty, it holds that

Vs < Ṽ (< E [V ∗]). Since for V < Ṽ the hazard rate increases in ω, Vs falls when

the uncertainty rises. After the uncertainty reaches a critical level, say ωe, at which

Vs = Ṽ , the hazard rate at Vs decreases with ω and the optimal threshold begins

to increase. This implies that optimal investment threshold attains its minimum for

ω = ωe. Now, we are able to formulate the following proposition.

Proposition 2.4 Consider the following unrestrictive conditions

lim
ω→∞

ψ(V, ·) = 0, ∀V and

ψ(V, ·) is unimodal.
(2.16)

Then, there exists a non-monotonic relationship between the optimal investment thresh-

old and the trigger value uncertainty. At a low degree of uncertainty, the marginal in-

crease in uncertainty leads to an earlier optimal investment. The reverse is true for a

high degree of uncertainty. There exists a unique ωe, such that Vs(ω
e) = Ṽ (ωe), which

separates the areas of low and high uncertainty levels.

Proof. Proposition 2.4 directly follows from the analysis performed so far.

The interpretation of the proposition is relatively simple. At low levels of uncer-

tainty concerning the policy change the firm responds to an increase of this uncertainty

by investing earlier (i.e. at a lower V ). This is because the chance of earlier imple-

mentation of the policy change increases. However, when this uncertainty becomes

sufficiently high, the firm is more willing to ignore the information about the expected

change since the quality of this information has deteriorated too much. The marginal

impacts of a higher probability of an early change and of the increased ”noisiness” of

the firm’s conjecture offset exactly at the level of uncertainty equal to ωe.

Figures 2.2 and 2.3 show the relationship between the uncertainty, ω, and the

optimal investment threshold. From Figure 2.2 it can be seen that the optimal invest-

ment threshold is first decreasing and then increasing with the uncertainty concerning

the value of the trigger. The minimum is always reached when Vs(ω) intersects Ṽ (ω).

The hazard rate increases with ω in the area located to the south-west from Ṽ (ω)

and decreases in the north-eastern region. The opposite holds for Vs. Moreover, the

optimal threshold is higher if the expected change in the investment cost is smaller (cf.

Proposition 2.2).

From Figure 2.3 it can be noticed that the point, Ṽ , at which the derivative

of the hazard rate is equal to zero decreases when the trigger uncertainty increases.
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Figure 2.2: The relationship between the uncertainty, ω, and the optimal investment thresh-

old, Vs, for different magnitudes of the high investment cost (Ih = 120, 150 and 200). The

values are calculated for a normal density function with mean 150. The original investment

cost, Il equals 100. An intersection of Vs and Ṽ corresponds to the minimal investment

threshold, Vs(ω
e). The parameters of the underlying process are: α = 0, r = 0.025 and

σ = 0.1.

As long as Vs < Ṽ , the optimal threshold also decreases (cf. the location of V L

s
).

When the standard deviation is equal to ωe, Vs equals Ṽ . After a further increase in

the uncertainty, Ṽ continues to decrease and Vs starts to increase (cf. V H

s
). For a

sufficiently high degree of uncertainty Vs tends to the unconditional threshold, denoted

by Vl (≡ β
1
Il/ (β1

− 1)) .13

2.4 Comparative Statics

In this section we provide a numerical illustration of the results of our model. In

Table 2.1 the relationship between the uncertainty about the timing of the jump in the

investment cost and the optimal investment threshold is shown for different levels of

the after-shock investment cost. The results are grouped in three panels corresponding

to the different combinations of the rate of growth and volatility of the project’s value.

13The necessary and sufficient condition for lim
ω→∞

Vs = Vl is lim
ω→∞

h(Vs, ·) = 0.
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Figure 2.3: The relationship between V and the derivative of the hazard rate with respect

to the trigger value uncertainty. The optimal investment thresholds, V Min

s
, V H

s
, and V L

s
,

correspond to uncertainty levels equal to, higher that, and lower than, respectively, the level

of uncertainty triggering the earliest investment. Vl is the optimal investment threshold in

the absence of the expected policy change.

The results indicate a clear non-monotonic dependence of the optimal invest-

ment threshold on the uncertainty related to the occurrence of the shock. For example,

consider the case where α = 0.02 and σ = 0.1. When the firm’s conjecture about the

expected occurrence of the shock is relatively precise (ω = 5), the possibility of dou-

bling the effective investment cost results in the expected timing of undertaking the

project being equal to 4.91 years.14 When the uncertainty concerning the occurrence of

the jump becomes moderately higher (ω = 25), the firms is expected to invest within

2.78 years. Finally, when the firm’s conjecture about the moment of the shock is highly

imprecise (ω = 100), the expected time to invest equals 9.67 years. If the project is

about to deteriorate completely after the shock in the economy, the expected timing

of investment shortens significantly, especially if the uncertainty concerning the occur-

rence of the shock is high. For ω = 5 it is equal to 4.13 years, and for ω = 25 it is

14The result is obtained by substituting appropriate values into (1.12), i.e.

−

1

0.02−
1

2
0.01

ln
140

150.71
≈ 4.91.



26 CHAPTER 2. DISCRETE CHANGE IN INVESTMENT COST

optimal to invest immediately. In the case corresponding to a very high imprecision of

the conjecture (ω = 100) the expected time to invest equals 3.80 years.

E [V ∗] = 160 Vs

Ih ω 100 50 25 10 5

110 186.48 177.91 169.62 162.32 159.57

125 176.96 166.88 158.90 153.95 154.10

150 169.02 158.64 151.65 149.62 151.99

200 161.85 151.68 145.98 146.76 150.71

500 152.76 143.32 139.64 143.93 149.47

∞ 148.22 NOW NOW 142.74 148.94

Vl = 200 α = 0.02 σ = 0.1 r = 0.05

110 153.41 150.18 147.36 147.40 150.42

125 149.08 144.74 142.11 144.45 149.04

150 145.39 140.59 138.53 142.69 148.25

200 142.21 NOW NOW 141.45 147.69

500 NOW NOW NOW 140.35 147.20

∞ NOW NOW NOW 140.11 147.10

Vl = 158.77 α = 0.01 σ = 0.1 r = 0.05

110 302.09 281.54 271.10 302.07 302.07

125 270.82 248.50 236.21 230.52 201.37

150 246.79 223.99 210.45 203.01 201.22

200 225.19 202.79 188.74 179.47 176.70

500 194.54 174.42 162.24 155.32 154.80

∞ 160.54 145.73 140.46 144.60 149.97

Vl = 371.85 α = 0.02 σ = 0.3 r = 0.05

Table 2.1: The optimal investment thresholds calculated for three different combinations of

the rate of growth and volatility of the project’s value. NOW means that investment takes

place immediately. The results are presented for the following parameter values: investment

cost before the jump Il = 100, investment cost after the jump ranging from 110 to infinity,

standard deviation of the probability distribution underlying the policy change, ω, ranging

from 5 to 100. The initial value of the process equals V (0) = 140.

The direction of the impact of change in the growth rate and/or volatility of

the project’s value is consistent with the conclusions in the existing real options liter-
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ature: the change in both parameters results in an increase in the optimal investment

threshold.

In Table 2.2 we show the values corresponding to the investment opportunity

and probabilities that the investment is made before the increase in the investment

cost (provided that the cost still equals Il at V (0)). It can be seen that a higher

magnitude of the change in the investment cost results in i) deteriorating the value

of the investment opportunity, and ii) an increased probability of investing before the

shock occurs (which is a direct consequence of the lower optimal threshold).

E [V ∗] = 160 F (V ) , P (Vs < V
∗|V ∗ > V (0))

Ih ω 100 50 25 10 5

110 61.54 66.65 70.58 71.24 66.00

0.68 0.55 0.44 0.42 0.53

125 55.82 57.11 56.94 53.25 48.66

0.75 0.68 0.66 0.74 0.88

150 50.93 50.01 48.28 46.28 45.27

0.80 0.78 0.80 0.87 0.95

200 46.69 44.70 42.93 43.01 43.92

0.85 0.86 0.90 0.93 0.97

500 42.16 40.51 40.00 40.86 42.98

0.91 0.96 1.00 0.97 0.98

∞ 40.62 40.00 40.00 40.30 42.66

0.94 1.00 1.00 0.98 0.97

Vl = 200 α = 0.02 σ = 0.1 r = 0.05

Table 2.2: The values of the investment opportunity and probabilities of investing at Il for

the following parameter values: investment cost before the jump Il = 100, investment cost

after the jump ranging from 110 to infinity, standard deviation of the probability distribution

underlying the policy change ranging from 5 to 100. The initial value of the process equals

V (0) = V̂ = 140.

An interesting observation can be made upon analyzing the relationship be-

tween the trigger-value uncertainty and the value of the investment opportunity. The

non-monotonicity of this relationship results from the interaction of two opposite ef-

fects. First, increasing the variance, ω, implies lower quality of the firm’s information

about the moment of the policy change. This factor affects the value of the investment
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opportunity negatively. On the other hand, higher uncertainty makes the probability

of survival on the interval [V (0) , Vs] become higher. This enhances the value of the

investment opportunity.15 It appears that in situations where the magnitude of the

change in the investment cost is small, the value of the project is the highest for a

moderate precision of the conjecture about the timing of the change. Conversely, if the

investment opportunity is to deteriorate completely upon the occurrence of the shock,

the value of the project is most likely to be equal to its static NPV, i.e. the value of

the project minus investment cost, for a moderate precision of the conjecture.

To provide some intuition of how the results of our model correspond to the

outcome of Poisson based models, in which the whole information about the shock is

aggregated in a single arrival parameter, we present some comparative statics compar-

ing both approaches in Table 2.3.16

Vl = 200.00 Ih = 150

λ E [V ∗] VP
1

λ
ω (λ) Vs (ω (λ))

0.01 627.44 191.64 100 1031.90 196.61

0.05 188.98 172.25 20 56.91 166.49

0.10 162.66 161.11 10 24.42 152.51

0.25 148.66 148.48 4 8.92 142.49

0.33 146.51 145.47 3 6.66 140.98

0.50 144.26 141.67 2 4.33 NOW

α = 0.02 σ = 0.1 r = 0.05

Table 2.3: The optimal investment thresholds based on the model with the policy change

triggered by trigger V ∗, Vs (ω (λ)), compared with the outcomes of the Poisson based model,

VP , with the arrival rate λ ranging from 0.01 to 0.50 where the initial value of the process

equals V (0) = 140 and the investment cost before the jump Il = 100. ω (λ) is a geometric

average of an upward and downward deviation from E [V ∗] , that are associated with the

expected first passage time
1

λ
.
17

15The positive impact on the value of the investment opportunity results from the fact that condi-

tional on V
∗
> V (0) the cumulative density function of V ∗ is decreasing in ω for sufficiently large ω.

This is equivalent, by definition, to the increase of the value of the conditional survival function.
16In order to calculate the optimal thresholds based on the Poisson arrivals, we apply a similar

methodology as Dixit and Pindyck (1996), pp. 305-306.

17Consequently, ω (λ) is defined as ω (λ) ≡ E

√
(E [V ∗]− V sd

−) (V sd+ −E [V ∗]), where V
sd+

(V sd
−) is the upward (downward) deviation from E [V ∗] such that the expected first-passage time

of reaching V
sd+ (E [V ∗]) when the process originates at E [V ∗] (V sd

−) equals
1

λ
.
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In Table 2.3 E [V ∗] is selected in such a way that its expected first passage time

is equal to the expected time of a Poisson jump of a given arrival rate. Moreover, the

level of uncertainty concerning the cost-increase trigger corresponds to the standard

deviation of the trigger implied by the Poisson process. It appears that the slope of the

relationship between the cost-increase trigger uncertainty and the optimal investment

threshold is higher when our model is used than in the Poisson based approach. In

other words, the resulting investment thresholds will be more responsive to the changes

in ω. Consequently, for high levels of cost-increase trigger uncertainty, the optimal

investment threshold under our approach will be higher than for Poisson based models

(a cost increase trigger combined with very noisy information will not have a substantial

effect on the firm’s investment behavior). Conversely, if the prediction of the policy

change is more reliable, the firm will invest more carefully (therefore earlier).

Finally, in Table 2.4 we show the outcomes of the Poisson based model in which

the arrival rate is positively related to the value of the project.

Vl = 200.00 λV ar|V=VPV ar
= λ λV ar|V=V0

= λ

λ E [V ∗] VP d VPV ar d VPV ar

0.01 627.44 191.64 5.195× 10−5 192.52 7.143× 10−5 190.20

0.05 188.98 172.75 2.875× 10−4 173.71 3.511× 10−4 170.69

0.10 162.66 161.11 6.160× 10−4 162.49 7.143× 10−4 160.33

0.25 148.66 148.48 1.675× 10−3 149.24 1.178× 10−3 148.53

0.33 146.51 145.47 2.284× 10−3 145.96 2.357× 10−3 145.64

0.50 144.26 141.67 3.520× 10−3 142.07 3.571× 10−3 141.95

α = 0.02 σ = 0.1 r = 0.05

Table 2.4: The optimal investment threshold, VP , and VPV ar, calculated according to the

Poisson based model with a constant and a variable arrival rate λ = V d, respectively. The

initial value of the process equals V (0) = 140, the investment cost before the jump Il = 100,

and the investment cost after the jump Ih = 150. Parameter d corresponding to the variable

arrival rate is a solution to λ = VPV ard in column 4 and λ = V0d in column 6, while the

relevant λ is presented in column 1.

Table 2.4 illustrates the impact on the optimal investment threshold of intro-

ducing a variable arrival rate. The arrival rate increases with the value of the project.

For the first set of solutions (columns 4-5) the variable λ (V ) equals λ in column 1 ex-

actly at the level of V triggering the investment, i.e. λ (VPV ar) = λ. Analogously, the

second set of solutions (columns 5-6) correspond to such a normalization upon which
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the variable rate λ (V ) equals to a constant λ in column 1 at V (0). Despite the fact

that the variable λ has been normalized in two extreme ways, the differences in out-

comes are relatively small. Therefore, we conclude that introducing a variable arrival

rate in the Poisson-based model does not significantly alter the firm’s investment rule.

2.5 Extension: Stochastic Jump Size

In this section we relax the assumption that the magnitude of the change in the

investment cost is known beforehand. The firm is assumed to know only the density

function of the size of the jump. Consequently, the random variable Ih is distributed

according to the cumulative density function Φ(Ih) with a support
[
Ih, Ih

]
and Ih > 0.

Moreover, we impose a condition(∫
Ih

Ih

I
1−β

1

h
dΦ(Ih)

) 1

1−β1

≥ Il (2.17)

that ensures that the firm prefers incurring the cost Il to spending the stochastic

amount Ih.
18

Like in the deterministic case, the value of the investment opportunity, Fs,

reflects the structure of the expected payoffs maximized with respect to the optimal

investment threshold, Vs. For stochastic Ih, the value of the investment opportunity

becomes (cf. (2.5)):

Fs(V, V̂ |I = Il) = max
Vs

[
(Vs − Il)

(
V

Vs

)β
1 1−Ψ(Vs)

1−Ψ(V̂ )
+

+

∫
Ih

Ih

(Vh − Ih)

(
V

Vh

)β
1

(
1−

1−Ψ(Vs)

1−Ψ(V̂ )

)
dΦ(Ih)

]
. (2.18)

Equation (2.18) can be interpreted analogously to (2.5), where the second component

is the expected value of the option to invest after the upward change in the investment

cost occurs. We prove that the following proposition holds.

Proposition 2.5 In case of a stochastic size of the jump in the investment cost, the

optimal investment rule can be determined by replacing the deterministic counterpart

Ih by

I∗
h
=

(∫
Ih

Ih

I
1−β

1

h
dΦ(Ih)

) 1

1−β1

(2.19)

18The LHS of (2.17) has a natural interpretation presented in the remainder of the section.
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in expression (2.9) for the optimal threshold.

Proof. See the Appendix.

Formula (2.19) can be interpreted as a certainty equivalent of the high in-

vestment cost. In other words, the investment policy of the firms is identical in the

following two cases: i) investment cost Ih is stochastic and distributed according to

Φ (Ih) , and ii) Ih is deterministic and equal to I
∗

h
. This allows for a relatively simple

analysis of the impact on the optimal investment timing of the uncertainty concerning

the magnitude of the jump.

The impact of the uncertainty concerning the magnitude of the jump can be

analyzed by applying Jensen’s inequality. It holds that

∫
Ih

Ih

I
1−β

1

h
dΦ(Ih) >

(∫
Ih

Ih

IhdΦ(Ih)

)1−β
1

, (2.20)

since the function f(x) = xa, a < 0, is convex for all x > 0. From (2.20) it is easily

obtained that

I∗
h
<

∫
Ih

Ih

IhdΦ(Ih) . (2.21)

Since, by (2.11), ∂Vs

∂Ih
< 0, the threshold is higher in the case of a stochastic jump.

This result can be explained in the following way. The value of the investment

opportunity is a convex function of the new investment cost, Ih (cf. (2.4)). Therefore,

the gains from below average realizations of the jump are assigned a larger weight by the

firm than the symmetric losses resulting from above-average realizations. Consequently,

the firm is going to wait longer if the realizations are random than in the case when

all of them are equal to the average.

Compared to the basic model where investment cost is constant, the threat of

an upward change in the investment cost reduces the optimal investment threshold.

Now, we can see that the uncertainty in the size of the jump mitigates this reduction of

the threshold value. Again, it holds that increased uncertainty raises the option value

of waiting.

Apart from the overall difference between the uncertain and deterministic out-

come, we are interested in the marginal impact of uncertainty on the optimal investment

strategy. In other words, we aim at establishing how the investment threshold behaves

for different degrees of uncertainty concerning the size of the jump. Therefore, we com-

pare the investment triggers corresponding to a relatively small and a high degree of

uncertainty. For this purpose, we use the concept of mean preserving spread (Rotschild
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and Stiglitz, 1970). In this setting, the effect of increasing uncertainty is examined by

replacing the original random variable Ih (’low uncertainty’ case) by a new random

variable Ih + ξ (’high uncertainty’ case), where E[ξ] = 0 and σξ ∈ (0,∞). By applying

Jensen’s inequality it can be proved that the expected value of a convex function (in

our case f(Ih) = I
1−β

1

h
) increases as its argument undergoes a mean preserving spread

(cf. Hartman, 1976). Consequently, an increase in the uncertainty leads to a higher

expected value of I
1−β

1

h
which corresponds to a lower I∗

h
. This observation results in

the following corollary.

Corollary 2.1 Increasing the uncertainty concerning the magnitude of the jump

of the investment cost (in a mean-preserving spread sense) leads to a higher optimal

investment threshold and is equivalent to decreasing the expected magnitude of the jump.

The impact on the optimal investment rule of uncertainty related to the mag-

nitude of the change in the cost is monotonic. Furthermore, (2.11) implies that a lower

potential increase in the investment cost is associated with a higher optimal invest-

ment threshold. In Table 2.5 we present the numerical results illustrating the impact

of the uncertainty related to the magnitude of the change on the optimal investment

threshold.

V ∗ = 160 Vs

Ih Ih ω 100 50 25 10 5

150 150 169.02 158.64 151.65 149.62 151.99

125 175 169.34 158.96 151.92 149.76 152.06

100 200 170.39 160.02 152.83 150.26 152.29

50 250 177.29 167.25 159.23 154.18 154.21

25 275 192.81 186.54 179.08 171.64 168.60

Vl = 200 α = 0.02 σ = 0.1 r = 0.05

Table 2.5: The impact of the uncertainty concerning the magnitude of the change in the

investment cost on the optimal investment threshold, where investment cost before the jump

Il = 100.

The numerical results in Table 2.5 illustrate that a higher degree of uncertainty

associated with the magnitude of the potential cost-increase results in a later invest-

ment (the first row of Table 2.5 corresponds to the third row of Table 2.1). Therefore,

in the investment credit example, increasing this type of uncertainty has the same

effect on the investment as the reduction of the magnitude of the change.
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2.6 Implications for the Investment Credit Tax Pol-

icy Change

In our setting, the way in which the policy change is implemented by the authority

can be expressed as a triple
{

Ih

Il
, V ∗, ω

}
. Consequently, as a result of the policy change,

the investment cost is subject to increase by a proportion Ih

Il
. The increase is triggered

by the project’s value reaching the level V ∗ and ω corresponds to the precision of

the firm’s conjecture concerning the moment of change. To simplify the example we

assume that the ratio Ih

Il
is predetermined by the current amount of the tax credit (and

is a priori common knowledge). The variables V ∗ and ω are the authority’s decision

variables.

As we already know, in case of a single firm whose investment opportunity

satisfies (2.2), a decrease in a deterministic V ∗ results in a lower optimal threshold.

Consequently, a reduction in the trigger value is going to accelerate this firm’s invest-

ment. However, in case of multiple heterogenous firms, due to the fact that a reduction

of V ∗ makes condition (2.2, iii) tighter, lowering the trigger has two opposite effects.

First, as in the single-firm case, it leads to an earlier investment for those firms for

which Assumption (iii) (cf. (2.2)) is still satisfied. On the other hand, it results in

the other firms waiting longer and investing at a high cost (i.e. those firms for which

Assumption (iii) does not hold any longer). Hence, if the firms are sufficiently het-

erogeneous, reducing V ∗ does not yield the desired effect of accelerating aggregate

investment.

Therefore, the authority may prefer to resort to another instrument, such as

ω. From Proposition 2.4 it can be concluded that there exists a U-shaped relationship

between ω and the optimal threshold, Vs. Since Vs reaches a minimum for a certain

(strictly positive) degree of uncertainty, ωe, the optimal strategy of the authority in-

terested in accelerating the investment is to generate sufficiently (but not excessively)

imprecise information about the conditions triggering the change. In purely analyti-

cal terms, this corresponds to setting the standard deviation of the density function

associated with the conjecture about the policy change trigger, Ψ (V ∗), to ωe.

Since finding the true value of ωe can be difficult in practice, we briefly discuss

the impact on the investment behavior of misspecifying the optimal ω. A small devi-

ation from ωe results in a small relative delay in investment. Consequently, it is still

desirable for the authority to create informational noise. However, if the misspecifica-

tion of ωe is large, it can happen that the resulting optimal investment threshold, Vs, is
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higher than the threshold corresponding to the case where V ∗ is known to the firm. In

this case the authority is better off by revealing the value of V ∗ to the investing firm. It

is possible to find a critical level of ω, defined as ω, above which the optimal threshold

is greater than the one corresponding to the known V ∗. According to Proposition 2.1,

ω satisfies the following equation19

0 = h(V ∗;ω, ·) (V ∗)2 + (β
1
− 1)V ∗ − (V ∗h(V ∗;ω, ·) + β

1
)Il − (2.22)

−h(V ∗;ω, ·)
(β

1
− 1)β1−1

ββ
1

(V ∗)β1+1

I
β
1
−1

h

.

If it is assumed that increasing the uncertainty by the authority is equivalent

to applying a mean preserving spread, the change in the optimal investment threshold

at ω is discontinuous. Since the mean preserving spread implies that a policy change

occurs at V ∗ = E [V ∗] , imposing a level of uncertainty ω > ω results in the investment

being made after the change in the cost occurs, i.e. at Vh (� Vs). Therefore, increasing

ω beyond ω leads to a considerable delay of the investment.

We conclude that the level of uncertainty concerning the value of the policy

change trigger can be characterized in the following way:

ω ∈


[0, ω)\ωe : feasible (suboptimal) level of uncertainty,

ωe : optimal level of uncertainty,

[ω,∞) : excess uncertainty resulting in an investment delay.

The threat of the policy change accelerates investment most significantly if the degree

of uncertainty concerning the moment of the change is equal to ωe. Therefore, from

the point of view of the authority, this is the optimal level of the trigger value uncer-

tainty. Revealing the value of V ∗ by the authority (ω = 0) makes the firm invest an

instant before V ∗ is reached. Excessive uncertainty (above ω) implies that information

concerning the policy change is too unreliable to trigger investment before V ∗ is hit.

As an effect, the optimal investment threshold exceeds the threshold corresponding to

the known V ∗. Consequently, there exists a set of feasible, though suboptimal, levels

of uncertainty ω ∈ [0, ω)\ωe for which the optimal investment threshold is lower than

V ∗. For this set the threat of change remains high enough to trigger early investment.

The implications related to uncertainty in the magnitude of the policy change

are straightforward, thus not requiring additional analysis. As shown in Section 2.5,

an increase in the uncertainty concerning the magnitude of the change leads to a delay

19Equation (2.22) is also satisfied for ω = 0, since the optimal threshold in the deterministic case is

equal to V
∗.
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of the moment of investment. Consequently, ensuring that the magnitude of the policy

change is known beforehand to potential investors lies in the interest of the authority

interested in accelerating investment.

2.7 Conclusions

In this chapter we consider an investment opportunity of a firm, where the in-

vestment cost is irreversible and subject to an increase resulting from a policy change.

The value of the cost-increase trigger is unknown to the firm but the firm knows the

underlying density function instead. This corresponds to a situation where the firm

has some information concerning the authority’s future policy and this information

is incomplete. Moreover, it is taken into account that a policy change mainly occurs

under certain economic conditions.

We show that the threat of a policy change resulting in a higher investment

cost leads to a reduction in the option value of waiting. Consequently, the firm in-

vests earlier than in the case of a constant investment cost. The optimal investment

threshold decreases with the magnitude of the change in investment cost and increases

with market volatility (the latter result also holds for the Dixit and Pindyck, 1996,

framework). One of our main results is that the impact of trigger value uncertainty on

the optimal investment threshold is non-monotonic. If the uncertainty is sufficiently

low, then the investment threshold is negatively related to the trigger value uncer-

tainty. However, a rise in the uncertainty beyond a certain critical point reverses this

relationship and leads to an increase of the optimal investment threshold.

Moreover, we extend the analysis by considering the case where the magnitude

of the change is stochastic. This additional source of uncertainty results in a delay of

investment. Increasing the uncertainty concerning the magnitude of the change leads

to an outcome that is closer to the unconditional optimal threshold.

We apply our results to determine the optimal design of a change in the au-

thority’s policy, where the authority’s aim is to accelerate investment undertaken by

the firm. There exists a certain (strictly positive) level of the uncertainty concerning

the policy change trigger that is associated with the earliest investment. Hence, a pol-

icy maker interested in accelerating investment should aim at achieving that particular

level of uncertainty. In addition, in order to stimulate the firm to invest early, the au-

thority should make sure that the magnitude of the policy change is known beforehand

to potential investors.
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2.8 Appendix

Proof of Proposition 2.1. The implicit solution for the optimal investment thresh-

old is found by calculating the first order condition of (2.5). By differentiating (2.5)

with respect to Vs, and equalizing to zero, we obtain:

V β
1

V
β
1
+1

s

(Vs − β1Vs + β1Il)
1−Ψ(Vs)

1−Ψ(V̂ )
− (Vs − Il)

(
V

Vs

)β
1

(
ψ (Vs)

1−Ψ(V̂ )

)

+(Vh − Ih)

(
V

Vh

)β
1 ψ (Vs)

1−Ψ(V̂ )
= 0. (2.23)

Further simplification yields:

1

V
β
1
+1

s

(Vs − β1Vs + β1Il) (1−Ψ(Vs))− (Vs − Il)

(
1

Vs

)β
1

ψ (Vs)

+(Vh − Ih)

(
1

Vh

)β
1

ψ (Vs) = 0,

thus

− (β1 − 1)Vs + β1Il − h (Vs) (Vs − Il)Vs + (Vh − Ih)V
β
1
+1

s

(
1

Vh

)β
1

h (Vs) = 0.

Since Vh =
β
1

β
1
−1
Ih (after the jump the McDonald-Siegel problem is left), this is equal

to

−h (Vs)V
2

s − (β1 − 1)Vs + (h (Vs)Vs + β1) Il + V
β
1
+1

s h (Vs)
Ih

β1 − 1

(
β1 − 1

β1Ih

)β
1

= 0,

which in a straightforward way leads to (2.9).

In order to prove that (2.9) is the expression for the maximal value of the

project, we calculate the second order condition, which is equal to the following deriva-

tive:

∂

∂Vs

(
−h(Vs)V

2

s − (β1 − 1)Vs + (Vsh(Vs) + β1)Il + h(Vs)
(β1 − 1)

β
1
−1

β
β
1

1

V
β
1
+1

s

I
β
1
−1

h

)
.

After differentiating, we obtain an expression for the second order condition of (2.5):

∂2Fs
∂V 2

s

= − (h′ (Vs)Vs + h (Vs))

(
Vs − Il −

Vs
β1

(
β1 − 1

β1

Vs
Ih

)β
1
−1
)

−h (Vs)Vs

(
1−

(
β1 − 1

β1

Vs
Ih

)β
1
−1
)

− (β1 − 1). (2.24)
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The sign of the second component is negative since

1−

(
β1 − 1

β1

Vs
Ih

)β
1
−1

> 1−

(
β1 − 1

β1

Vh
Ih

)β
1
−1

= 0. (2.25)

The sign of the first component can be determined by noting that the lower bound

of Vs, denoted by Vs, is a solution to the following equation (cf. (2.2, iii)):

Vs − Il = (Vh − Ih)

(
Vs

Vh

)β
1

. (2.26)

For Vs = Vs the second factor in the first component of (2.24) is equal to zero and for

Vs > Vs it is positive. Therefore the whole expression is negative if (2.8) holds.

Proof of Proposition 2.2. Let us define the LHS of (2.9) as a function:

H(Vs, Il, Ih, β1) (2.27)

= h(Vs)V
2

s + (β1 − 1)Vs − (Vsh(Vs) + β1)Il − h(Vs)
(β1 − 1)

β
1
−1

β
β
1

1

V
β
1
+1

s

I
β
1
−1

h

.

Differentiating (2.27) with respect to Il, Ih and β1, respectively, yields:

∂H

∂Il
= −(Vsh(Vs) + β1) < 0,

∂H

∂Ih
= (β1 − 1)h(Vs)

(β1 − 1)
β
1
−1

β
β
1

1

V
β
1
+1

s

I
β
1

H

> 0, (2.28)

∂H

∂β1
= Vs − Il − h(Vs)

(β1 − 1)
β
1
−1

β
β
1

1

V
β
1
+1

s

I
β
1
−1

h

ln

(
β1 − 1

β1

Vs
Ih

)
> 0,

∀Il, Ih satisfying 0 < Il < Ih, ∀β1 ∈ (1, r/α) if α > 0 and ∀β1 ∈ (1,∞) if α ≤ 0.

Furthermore, differentiating (2.27) with respect to Vs gives:

∂H

∂Vs
= (h′(Vs)Vs + h(Vs))

(
Vs − Il − (Vh − Ih)

(
Vs
Vh

)β
1

)
+ (2.29)

+h(Vs)Vs

(
1−

(
β1 − 1

β1

Vs
Ih

)β
1
−1
)
+ (β1 − 1).

From the proof of Proposition 2.1 (cf. (2.26)) it is known that under condition (2.8)
∂H
∂Vs

is positive. Finally, by observing that

dVs
dz

= −
∂H
∂z
∂H
∂Vs

, (2.30)

where z is an arbitrary parameter of our interest, we know that

sgn
dVs
dz

= −sgn
∂H

∂z
, (2.31)
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which completes the proof.

Proof of Proposition 2.3. By differentiating (2.27) with respect to the hazard

rate, while taking into account that Vh =
β
1

β
1
−1
Ih, we obtain:

∂H

∂h
= Vs

(
Vs − Il − (Vh − Ih)

(
Vs
Vh

)β
1

)
> 0. (2.32)

The inequality holds since both factors are positive (cf. (2.26)). Since ∂H
∂Vs

is also

positive, we directly obtain the sign of (2.13).

Proof of Proposition 2.5. Equation (2.19) requires the optimal investment

threshold with a deterministic size of the jump to be equal to the threshold with a

jump with a stochastic size distributed according to Φ(Ih). Since the maximization

problem with a stochastic size of the jump can be expressed as follows:

Fs(V, V̂ |I = Il) = max
Vs

[
(Vs − Il)

(
V

Vs

)β
1 1−Ψ(Vs)

1−Ψ(V̂ )
+ (2.33)

+

(
1−

1−Ψ(Vs)

1−Ψ(V̂ )

)
(β1 − 1)

β
1
−1V β

1

β
β
1

1

∫ Ih

Ih

I
1−β

1

h dΦ(Ih)

]
,

the expression for the optimal investment threshold is a slight modification of (2.9):

h(Vs)V
2

s + (β1 − 1)Vs − (Vsh(Vs) + β1)Il − (2.34)

−V β
1
+1

s h(Vs)
(β1 − 1)

β
1
−1

β
β
1

1

∫ Ih

Ih

I
1−β

1

h dΦ(Ih) = 0.

Comparing (2.34) with (2.9) allows for observing that the threshold values are equal

if:

h(Vs)
(β1 − 1)

β
1
−1

β
β
1

1

V
β
1
+1

s

I
∗β

1
−1

h

=

∫ Ih

Ih

h(Vs)
(β1 − 1)

β
1
−1

β
β
1

1

V
β
1
+1

s

I
β
1
−1

h

dΦ(Ih) . (2.35)

A simple algebraic manipulation yields:

I
∗1−β

1

h =

∫ Ih

Ih

I
1−β

1

h dΦ(Ih) . (2.36)

which is equivalent to (2.19).



Chapter 3

Demand Uncertainty in a Cournot

Model

3.1 Introduction

In this chapter we consider a continuous-time model in which a firm makes a de-

cision to replace a production facility with a new, cost-efficient one. The firm operates

in an uncertain economic environment under imperfect competition. The model fol-

lowsSmets (1991) and Grenadier (1996) in assuming that i) there are two identical

firms competing in the product market, and ii) the value of the firm depends on the

value of a stochastic process but is otherwise time independent. The payoff functions

are derived from the firm’s reaction curves in the oligopolistic market. We determine

the optimal replacement strategies, calculate the expected replacement timing and

determine the probabilities of making optimal replacement within given time intervals.

Under either perfect competition or a monopolistic market structure, the mod-

ern theory of investment under uncertainty (cf. Section 1.6 of this thesis and Dixit and

Pindyck, 1996, Ch. 5) predicts that the firm will wait longer with investing if uncer-

tainty is higher. This is due to the fact that investment is irreversible and the firm has

an option to postpone it until some uncertainty is resolved. However, if (i) more than

one firm holds the investment opportunity, and (ii) the firm’s investment decision di-

rectly influences payoffs of its competitor(s), opposite effects of increasing uncertainty

with respect to the investment timing can arise. First, increasing uncertainty enhances

the value of the option to wait. Second, the value of an early strategic investment

(made in order to achieve the first mover advantage) can significantly increase as well.

Huisman and Kort (1999) show that in a continuous-time duopoly model with profit

39
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uncertainty (cf. Smets, 1991, and Grenadier, 1996) the effect of a change in the value

of the option to wait on the optimal investment threshold is always stronger than the

impact of strategic interactions.1 This implies a negative relationship between uncer-

tainty of the firm’s profit flow and investment. On the contrary, Kulatilaka and Perotti

(1998) find that product market uncertainty may, in some cases, stimulate investment.2

The latter authors consider a two-period setting in which (one of the) duopolistic firms

can invest in a cost-reducing technology. The payoff from investment is convex in the

size of the demand since an increase of demand has a more-than-proportional effect on

the realized duopolistic profits (firms are responding to higher demand by increasing

both output and price). Taking into account Jensen’s inequality, Kulatilaka and Perotti

(1998) conclude that higher volatility of the product market can accelerate investment.

The aim of this chapter is to determine the effects of product market uncer-

tainty on investment in a continuous-time setting. To do so, we begin the analysis by

describing the equilibrium strategies that occur in the resulting real option game in the

model with product market uncertainty. We show that, contrary to the models based

on profit uncertainty, the type of equilibrium depends on the investment cost: if this

cost is sufficiently low (high), a preemptive (simultaneous) equilibrium occurs.3 Fur-

thermore, we prove that the minimal demand level triggering the investment increases

with uncertainty for both firms. This result holds both for the case in which the invest-

ment is associated with replacing an existing asset and for the case in which the firms

have to decide when to start up production. Moreover, we show that, in expectation,

product market uncertainty delays investment. We thus can conclude that the result

of Kulatilaka and Perotti (1998) does not carry over to a continuous-time setting. Fi-

nally, we analyze the probability of asset replacement within a given time interval. It

turns out that the replacement probability decreases with uncertainty for time inter-

vals longer than the time to reach the optimal Jorgensonian threshold calculated for

the deterministic case.4 For shorter intervals there are two opposite effects which leads

1In fact, the option effect and strategic the effect may work in the same direction. Boyer et al.

(2002) show that an increase in uncertainty can result in a the equilibrium in which firms opt for a

late simultaneous investment instead of an earlier sequential entry.
2Profit uncertainty is associated with the profit function following a geometric Brownian motion,

whereas product market uncertainty relates to random shifts in the demand curve.
3This implies that the type of equilibrium can easily be affected by e.g. the authority. The rule

imposed by Germany’s telecom regulator enabling six companies which acquired the third generation

mobile-phone licenses to share the costs of building a new infrastructure, may serve as an example of

such an action. See The Economist, 9th June 2001
4At such a threshold the flow revenues are equal to the flow costs associated with investment.
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to a humped relationship between uncertainty and the probability of replacement (cf.

Sarkar, 2000).

The model is presented in Section 3.2, while the value functions and replace-

ment thresholds are derived in Section 3.3. Section 3.4 contains a description of the

equilibria and in Section 3.5 the effect of uncertainty on replacement thresholds is

determined. In Section 3.6 the decision to start production in a new market is ana-

lyzed. Section 3.7 examines how uncertainty influences replacement timing and the

probability of investment within a given time interval. Section 3.8 concludes.

3.2 Framework of the Model

Consider a risk-neutral firm that has an investment opportunity to replace its

existing production facility with a technologically superior one. The firm operates in a

duopoly, in which, in line with basic microeconomic theory, the following inverse linear

demand function holds:

p (t) = A (t)−Q (t) . (3.1)

For each t ∈ [0,∞), p (t) is the price of a non-durable good/service offered by the firm

and can be interpreted as the instantaneous cash flow per unit sold, A (t) is a measure

of the size of the demand, and Q (t) is the total amount of the good supplied to the

market. Parameter A (t) follows a geometric Brownian motion

dA (t) = αA (t) dt+ σA (t) dw (t) , (3.2)

where α is the instantaneous drift parameter, σ is the instantaneous standard deviation,

dt is the time increment, and dw (t) is the standard Wiener increment.5

The other firm operating in the market is identical to the first, both are profit-

maximizers and compete in quantities (à la Cournot).6 The initial constant marginal

cost of supplying a unit of the good is K and setting up the new production facility

reduces this cost from K to k. In order to start using the new facility, Firm i, i ∈

{1, 2}, has to incur an irreversible cost I. Simple algebraic manipulation results in the

5Such a formulation implies that demand is driven by consumers’ tastes (a varying maximal val-

uation) and by replication of consumers (a varying mass of consumers). Models with multiplicative

profit uncertainty, such as Huisman (2001), Ch. 7-9, and Boyer et al. (2002), are equivalent, under

zero marginal cost assumption, to demand driven by the changes in consumers’ tastes.
6Quantity competition yields the same output as a two-stage game in which the capacities are

chosen first and, subsequently, the firms are competing in prices (see Tirole, 1988, p. 216).
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following instantaneous profits, πij, of Firm i (the other firm is denoted by j, j �= i)7

π00 =
1

9
(A−K)2 , (3.3)

π10 =
1

9
(A+K − 2k)2 , (3.4)

π01 =
1

9
(A− 2K + k)2 , and (3.5)

π11 =
1

9
(A− k)2 . (3.6)

Superscript 1 (0) in πij indicates which firm replaced (did not replace) its production

facility, where i indicates the own firm and j the competitor. It is seen immediately

that

π10 > π11 > π00 > π01. (3.7)

The profit of the only firm which replaced the production facility is higher than in the

profit of a firm in a situation where two firms made the replacement. In turn, the latter

profit exceeds the profit of symmetric firms operating the existing facility, which is still

higher than the profit of the only firm which did not replace its production asset.

Admittedly, the chosen model formulation is one out of many possibilities. We

choose this specification in order to be able to make comparisons with the results of the

two-period model of Kulatilaka and Perotti (1998). This chapter can be seen therefore

as a first fully dynamic investigation of the impact of product market uncertainty on

investment timing. Extensions can include multiplicative rather than additive demand

uncertainty, variable marginal costs, and Bertrand competition.

We summarize the problem by describing the strategy space of the firms. Define

a simple strategy of Firm i (i ∈ {1, 2}) as a tuple of real-value functions (Gi (·) , pi (·)) :

[0,∞) × Ω → [0, 1] × [0, 1] , such that for all ω ∈ Ω it holds that (cf. Thijssen et al.,

2002, and Boyer et al., 2002):

(i) Gi (·;ω) is non-decreasing and right-continuous with left limits,

(ii) pi (·;ω) is right differentiable and right-continuous with left limits,

(iii) if pi (t;ω) = 0 and t = inf{u|pi (u;ω) > 0}, then the right derivative of pi (t;ω)

is positive.

Now the strategy space for Firm i is given by the set Si = {(Gi (·) , pi (·)) |Gi (·)

satisfies (i), and pi (·) satisfies (ii) and (iii)}. The strategy space of the game is then

7We assume that K � A (0), so that the probability weighted discount factor associated with the

event {A (t) < 2K − k} is negligible. Waiving this assumption would not significantly contribute to

our results and would be done at the expense of explicit analytical formulae for the optimal investment

thresholds (cf. Dixit and Pindyck, 1996, p. 191).
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S = S1 × S2. To determine the firms’ optimal policies we use the subgame perfect

equilibrium concept, while the firms’ strategies are assumed to satisfy intertemporal

consistency and α-consistency conditions (for the definitions see Fudenberg and Tirole,

1985, p. 393, and Thijssen et al., 2002, p. 9, respectively).8

3.3 Value Functions and Replacement Thresholds

In this section we establish the value of the firms and their optimal replacement

thresholds. There are three possibilities concerning the timing of Firm i’s investment

relatively to the decision of the competitor (Firm j). First, Firm i may invest before

Firm j does and, therefore, become the leader. Alternatively, Firm j may invest sooner

and Firm i becomes the follower. Finally, the firms may invest simultaneously.

The standard approach used to solve dynamic games is to analyze the problem

backwards in time. Consequently, we begin with the optimal strategy of the follower.

Then, the decision of the leader is analyzed. Finally, we discuss the case of joint

investment.

3.3.1 Follower

Consider the case of the firm that replaces as second (follower). Since the other firm

(leader) has already replaced its production facility, the follower’s replacement decision

is not affected by strategic interactions (the follower chooses its optimal threshold as

if the roles of the firms are preassigned). From (3.5) and (3.6) it is obtained that after

replacing the asset by the leader, the value of the follower at the moment of making

the investment by the leader, t, equals

V F (t) = E

[∫
T
F

t

1

9
(A (s)− 2K + k)2 e−r(s−t)ds

]
(3.8)

+E

[
e−r(T

F
−t)

(∫
∞

TF

1

9
(A (s)− k)2 e−r(s−T

F )ds− I

)]
,

where T F is the random stopping time associated with replacing the production facility

by the follower. The first row of (3.8) is the expected discounted cash flow received until

replacement. At T F the follower makes the replacement and from now on produces

against a lower marginal cost k. The expected discounted cash flow after replacement

is captured by the second row of (3.8).

8Our notation differs from Thijssen et al. (2002), where our function pi is denoted by αi.
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Let us consider the optimal replacement strategy of the follower. In investment

problems of this type (cf. Section 1.6) a threshold value of A exists at which the firm is

indifferent between investing and refraining from investment. Consequently, the value

of the firm is maximized when replacement of the production facility takes place as soon

as A exceeds this threshold value. Using standard dynamic programming methodology

we arrive at the following Bellman equation

rV F =
1

2
σ2A2

∂2V F

∂A2
+ αA

∂V F

∂A
+ π01. (3.9)

Solving the differential equation (3.9) and excluding the existence of speculative bubbles

gives

V (A) = CAβ
1︸ ︷︷ ︸

Value of flexibility

+
1

9

(
A2

.
−
2 (2K − k)A

δ
+
(2K − k)2

r

)
︸ ︷︷ ︸

PV of expected cash flow

, (3.10)

where C is a constant, β1 is the positive root of the equation (cf. Section 1.6):

1

2
σ2β (β − 1) + αβ − r = 0, (3.11)

and

. ≡ r − 2α− σ2, (3.12)

δ ≡ r − α. (3.13)

From (3.10) it can be seen that there are two components contributing to the value of

the firm. The first component corresponds to the value of the flexibility to replace the

production facility. The remainder of the RHS of (3.10) reflects the present value of the

expected cash flow given that the firm produces with the existing technology forever.

Convexity of the value of the firm in A implies that a finite valuation is obtained only

if the condition r − 2α− σ2 > 0 is satisfied.9

9In order to assess how restrictive the condition r − 2α − σ2 > 0 is, we calculate the maximum

feasible growth rate of demand using the parameters of Dixit and Pindyck (1996), Ch. 6, and of a

representative US Standard and Poor’s 500 firm (as reported in Morellec, 2001). By applying Itô’s

lemma one can show that the volatility of the process proportional to the square of the original

process equals two times the volatility of the original process. Hence, since the cash flow of the firm is

proportional to A2, its instantaneous volatility equals twice the volatility of A. This implies that, for

the parameter set of Dixit and Pindyck (r = 4% and σ = 20%), the standard deviation of the demand

can be estimated at the 10% level (0.20/2), whereas for the representative S&P 500 firm (r = 6% and

σ = 25%), it equals 12.5%. Then, finite valuations are ensured for values of parameter α ranging from

minus infinity to

(
0.04− (0.1)

2
)
/2 = 1.5%, and approx. 2.2%, respectively.
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To derive the optimal replacement threshold we apply the value-matching and

smooth-pasting conditions to (3.10) and the value of the firm after the replacement net

of the investment cost.10 This leads to

CAβ
1 =

1

9

(
4 (K − k)A

δ
−
4K (K − k)

r

)
− I, (3.14)

β1CA
β
1
−1 =

4

9

K − k

δ
. (3.15)

From (3.14) and (3.15) we obtain the optimal replacement threshold of the follower:

AF =
β1

β1 − 1

I + 4K
9r
(K − k)

4

9
(K − k)

δ. (3.16)

The optimal time of replacement made by the follower is denoted by

T F ≡ inf
(
t|A (t) ≥ AF

)
. (3.17)

Note that the optimal threshold (3.16) is increasing with uncertainty (via β1) and in

the wedge δ.11 The value of the follower (at the moment at which the leader invests)

can now be calculated by substituting C, as derived from (3.14) and (3.15), into (3.10).

Such a substitution yields

V F (A) =




1

9

(
A2

�
− 2(2K−k)A

δ
+ (2K−k)2

r

)
+
(

1

9

(
4(K−k)AF

δ
− 4K(K−k)

r

)
− I

) (
A
AF

)β1 if A ≤ AF ,

1

9

(
A2

�
− 2kA

δ
+ k2

r

)
− I if A > AF .

(3.18)

3.3.2 Leader

Having established the optimal replacement rule of the follower, we are ready to

determine the payoff of the firm that invests as the leader. The value function of the

10The value matching condition equalizes the value of the firm before the replacement (including

the replacement option), as in (3.10), and the value after the replacement net of the associated sunk

cost. Upon observing that the value after the replacement corresponds to the expected cash flow from

new assets in place and equals

1

9

(
A2



−

2kA

δ
+

k2

r

)
,

condition (3.14) is obtained. Condition (3.15) is obtained by taking the derivatives of (3.14) with

respect to A.
11Increasing the wedge δ also has an indirect effect because it positively affects β1, but that effect

is dominated by the direct effect on AF .
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leader, evaluated at the moment of investing, t, is

V L (t) = E

[∫
TF

t

1

9
(A (s) +K − 2k)2 e−r(s−t)ds− I +

∫
∞

TF

1

9
(A (s)− k)2 e−r(s−t)ds

]
.

(3.19)

The first two components of (3.19) correspond to the present value of the leader’s

profits realized until the moment of the follower’s investment, net of the leader’s sunk

cost. The second integral corresponds to the discounted perpetual stream of profits

obtained after the investment of the follower.

Analogous to expression (3.18) of the follower problem, we can express the

value of Firm i as the leader at the moment of its investment in the following way:

V L (A) =




1

9

(
A2

�
+ 2(K−2k)A

δ
+ (K−2k)

2

r

)
− I

−1

9

(
2(K−k)AF

δ
+ (K−2k)

2
−k2

r

) (
A

AF

)β1 if A ≤ AF ,

1

9

(
A2

�
− 2kA

δ
+ k2

r

)
− I if A > AF .

(3.20)

The first row of (3.20) corresponds to the net present value of the leader profits without

the follower ever making the investment. The second row reflects the present value of

future profits lost due to the follower’s investment. This loss is caused by the fact that

after the follower has invested, the follower can produce in a cheaper way, which makes

it a stronger competitor for a leader. The last row represents the net present value of

profits in a situation where it is optimal for the follower to invest immediately.

3.3.3 Simultaneous Investment

It is possible that the firms decide to invest simultaneously. The value function of

both firms investing optimally at the joint investment threshold, calculated at t ≤ T S,

is

V S (t) = E

[∫
TS

t

1

9
(A (s)−K)2 e−r(s−t)ds− Ie−r(T

S
−t)

]
(3.21)

+E

[∫
∞

TS

1

9
(A (s)− k)2 e−r(s−t)ds

]
,

where

T S ≡ inf
(
t|A (t) ≥ AS

)
(3.22)

and

AS =
β1

β1 − 1

I + 1

9

K2
−k2

r

2

9
(K − k)

δ. (3.23)
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Expression (3.21) can be interpreted analogous to (3.8) and (3.19). Consequently, the

value of Firm i when the investment is made simultaneously equals

V S (A) =




1

9

(
A2

�
− 2KA

δ
+ K2

r

)
+
(

1

9

(
2(K−k)AS

δ
− K2

−k2

r

)
− I

) (
A

AS

)β
1

if A ≤ AS,

1

9

(
A2

�
− 2kA

δ
+ k2

r

)
− I if A > AS.

(3.24)

The last row equals the value of the firm when the simultaneous investment is made

immediately. In such a case, the value of the firm is denoted by V J (A).

3.4 Equilibria

Since both firms are ex ante identical, it is natural to consider symmetric re-

placement strategies and assume the firms’ roles being endogenous, i.e. that it is not

determined beforehand which firm will be the first to replace. There are two types

of equilibria that can occur under this choice of strategies. We start by presenting

the preemptive equilibrium, which is followed by a description of the simultaneous

equilibrium.

3.4.1 Preemptive Equilibrium

The first type of equilibrium is a preemptive equilibrium where Firm i is the leader

and Firm j is the follower. Let us define AP to be the root of

ξ (A) ≡ V L (A)− V F (A) . (3.25)

on the interval
(
0, AF

)
. In the Appendix we prove that the root exists, it is unique,

ξ (A) < 0 for A < AP , and ξ (A) > 0 for A ∈
(
AP , AF

)
. Assume for the moment

that A (0) < AP . Since on the interval
(
AP , AF

)
the payoff of the leader is higher

than the payoff of the follower, each firm will have an incentive to be the leader at the

moment that A (t) ∈
(
AP , AF

)
. In the search for an equilibrium we reason backwards

in terms of the values of A (note that equation (3.2) does not imply that A increases

monotonically over time). Consider a value of A such that A ∈
(
AP , AF

)
. Then it

holds that the leader’s payoff is higher than the payoff of the follower. This implies

that (without loss of generality) Firm i has an incentive to be the first investor there.

Firm j anticipates this and would invest at A− ε. Repeating this reasoning we reach

an equilibrium in which Firm i invests at AP and Firm j waits with replacement until

demand equals AF . Note that if both firms invest at AP with probability one, they end
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up with the low payoff V J(AP ). At A = AP simultaneous replacement is not profitable

because demand is insufficient.

K AP AF

A

0

V
L

−

V
F ,
V
S

−

VF
,V

J

−

VF

VL−VF

VS−VF

VJ−VF

Figure 3.1: The values of the leader, V L
, optimal simultaneous replacement, V S

, and early

simultaneous replacement, V J
, relative to the value function of the follower, V F

, for a set of

parameter values resulting in a preemptive replacement at AP
(leader) and AF

(follower).

Figure 3.1 depicts the payoffs (relative to the follower payoff) associated with

the preemptive equilibrium. Since the firms are identical it is not clear beforehand

which of them will be the leader. In order to formalize the analysis of how the roles

of the firms are determined, we adopt the approach of Thijssen et al. (2002). This

approach extends the perfect equilibrium concept of Fudenberg and Tirole (1985) to

stochastic games. As in Fudenberg and Tirole (1985), the firms use mixed strategies

in which the expected payoff is equal to the payoff of the follower (recall that the firms

are risk-neutral). It is argued there (see also Torvund, 1999) that in continuous-time

preemption games a closed-loop strategy of Firm i consists of a collection of simple

strategies (Gi (·) , pi (·)). Gi (t) is the probability that Firm i has invested by time t

given that Firm j has not invested. The function pi (t) is the measure of the intensity

of atoms in the interval [t, t + dt] . It can be interpreted as the probability of playing

the first row and the first column (for Firm 1 and Firm 2, respectively) in the following

2×2 game: {{replace, replace}, {replace, don’t replace}, {don’t replace, replace}, {don’t

replace, don’t replace}}. Playing this game costs no time and the game is repeated until

at least one firm invests.
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In case A ∈
(
AP , AF

)
, the value of pi (pj) is determined as follows. Since pi

(pj) is the probability that Firm i (j) replaces its asset, Firm i sets pi such that

Vi = max
pi

[
pi (1− pj)V

L + (1− pi) pjV
F + pipjV

J + (1− pi) (1− pj)Vi
]
. (3.26)

Since Firm i replaces its asset with probability pi and Firm j with probability pj, the

probability that Firm i obtains the leader role is pi (1− pj). Similarly, with probability

(1− pi) pj Firm i is the follower, pipj is the joint investment probability, and with prob-

ability (1− pi) (1− pj) nothing happens and the game is repeated. After writing down

the first-order conditions for Firm i and Firm j, and imposing symmetric strategies,

we obtain that

p = pi = pj =
V L − V F

V L − V J
. (3.27)

It holds that the equilibrium strategy of Firm i equals

p (t) =



0 if A (t) < AP ,
V L(A(t))−V F (A(t))
V L(A(t))−V J (A(t))

if A (t) ∈
[
AP , AF

]
,

1 if A (t) > AF ,

(3.28)

and

G (t) =



0 if A (t) < AP ,

V L(A(t))−V J (A(t))
V L(A(t))−2V J (A(t))+V F (A(t))

if A (t) ∈
[
AP , AF

)
.

1 if A (t) ≥ AF

(3.29)

After substituting p = pi = pj in (3.26), the value of Firm i can be expressed as

Vi =
p (1− p)V L + p(1− p)V F + p2V J

2p− p2
= V F . (3.30)

Consequently, for A (t) ∈
[
AP , AF

]
, the probability that one of the firms invests at

time t equals

Pr (one firm has invested|t) =
2− 2p (t)

2− p (t)
, (3.31)

while the firms invest simultaneously with probability

Pr (two firms have invested|t) =
p (t)

2− p (t)
. (3.32)

If A (0) < AP , the leader payoff curve lies below the follower curve which implies that

it is optimal for both firms to refrain from investment. At A = AP , the leader and the

follower values are equal. This implies that (3.28) and (3.31) yield the probability of

being the leader (or follower) equal to 1
2
. The probability of simultaneous investment
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at A = AP is therefore equal to zero. The leader invests at the moment that A = AP ,

which is the smallest solution of V L (A) = V F (A), and the follower waits until AF is

reached.

If the stochastic process starts at A (0) ≥ AP , at least one of the firms invests

immediately. The probability of an immediate joint investment leading to the low

payoff V J (A (0)) is p(0)
2−p(0)

(cf. (3.32)). In this case, according to (3.28), p (0) > 0 since

the payoff of the leader exceeds the payoff of the follower. This makes the probability

of investing jointly, and ending up with a low payoff of V J (A (0)), become positive.

In order to be able to translate the derived mixed strategies into applicable

decision rules (since ”real-world decision makers do not flip coins”), we refer to the

approach of Harsanyi (1973). He has shown that a mixed-strategy equilibrium of a

complete information game, such as the one analyzed in this paper, can be interpreted

as the limit of a pure-strategy equilibrium of a slightly perturbed game of incomplete

information (see also Tirole, 1988).12 Consequently, instead of assuming that firms play

mixed strategies in the described above 2 × 2 game, one can assume that the actual

payoff resulting from becoming the leader equals V L (A (t)) + ε, and ε is distributed

according to a density function ϕ (ε) with a bounded support [ε, ε], ε < 0 < ε.13 The

firm observes its own realization of ε but not the one of its competitor. Now, it can

be shown that a symmetric Bayesian equilibrium in pure strategies exists. There is a

critical value of ε = ε∗ such that the optimal strategy for Firm i is to invest if and only

if εi > ε
∗. Consequently, the firms do not have to invoke randomizing devices in the

implementation of optimal actions.

3.4.2 Simultaneous Equilibrium

The other type of outcome that can occur in the analyzed real option game is

the simultaneous replacement equilibrium. In such a case, the firms replace their

production facilities at the same point in time defined by T S ≡ inf
(
t|A (t) ≥ AS

)
. A

graphical illustration of the simultaneous equilibrium is depicted in Figure 3.2. From

this figure it can be concluded that no firm has an incentive to deviate from this

equilibrium since the payoff of this strategy exceeds all other payoffs.14

12For sufficient conditions on the payoff functions and information structure when such an interpre-

tation is possible, see Milgrom and Weber (1986).
13Here, the uncertainty about the value of parameter ε is just a reduced form representation of

uncertainty about the value of (the one of) the firm-specific primitive parameters of the model.
14Of course, the payoffs resulting from the preemptive equilibrium in Section 3.4.1 may be lower

than those associated with the optimal joint replacement. However, the occurrence of the preemptive



3.4. EQUILIBRIA 51
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Figure 3.2: The values of the leader, V L
, optimal simultaneous replacement, V S

, and early

simultaneous replacement, V J
, relative to the value function of the follower, V F , for a set of

parameter values resulting in the optimality of a simultaneous replacement at AS.

The occurrence of a particular type of equilibrium is determined by the relative

payoffs. The preemptive equilibrium occurs when

∃A ∈ (
AP , AF

)
such that V L (A) > V S (A) , (3.33)

i.e. when for some A it is more profitable to become the leader than to replace pro-

duction facilities simultaneously. Otherwise, simultaneous replacement is the Pareto-

dominant equilibrium. In the latter case, the strategy of Firm i can be formalized

as

p (t) =

{
0 if A (t) < AS,

1 if A (t) ≥ AS,
(3.34)

and

G (t) =

{
0 if A (t) < AS,

1 if A (t) ≥ AS.
(3.35)

equilibrium, as in Section 3.4.1, is due to the fact that values of A exist that the corresponding leader

payoff exceeds the value from the joint replacement strategy. It is the lack of coordination among the

firms (with possible transfer of excess value) that leads to ex post Pareto-inefficient outcomes. In the

case of the simultaneous equilibrium the payoff of the leader never exceeds the payoff from optimal

joint replacement and therefore the preemptive equilibrium, while still existent, is Pareto-dominated

(see Fudenberg and Tirole, 1985)
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The following proposition implies that firms replace their production facilities simul-

taneously if the investment cost is sufficiently high.

Proposition 3.1 A unique I∗ exists such that ∀I > I∗ simultaneous replacement is

the Pareto-dominant equilibrium.

Proof. See the Appendix.

This proposition constitutes an important result with respect to the compar-

ison between the real option exercise game with profit uncertainty and the situation

where the firms face product market uncertainty. In the first case the occurrence of

either of the equilibria does not depend on the irreversible cost associated with the

investment decision (see Huisman and Kort, 1999). This results from the fact that the

optimal threshold under profit uncertainty is proportional to the investment cost I.

This proportionality is a consequence of the multiplicative way in which uncertainty

enters the profit function. Conversely, introducing market uncertainty in a Cournot

model results in the optimal threshold being no longer proportional to I. This is the

reason why the resulting equilibrium regions depend on the sunk cost.15

3.5 Uncertainty and Asset Replacement Thresholds

Since the firms’ decisions to replace production assets are irreversible (sunk cost

I cannot be recovered) and they have the flexibility in timing the replacement, they

replace their production assets later than a simple NPV rule would indicate. In a

non-strategic framework, there exists an option value of waiting for better (but never

complete) information which is taken into account before committing the corporate

resources. As uncertainty about the demand grows, the firm is going to wait with

replacement for a higher level of demand, as the classical real option theory suggests.

However, it also has to take into account the interactions in the product market, that

may substantially reduce the value of the timing flexibility. Kulatilaka and Perotti

(1998) obtained in a two-period model that these interactions may in fact result in

a negative relationship between the required level of demand at which resources are

committed and uncertainty. In this section, we examine how uncertainty influences the

level of demand triggering investment in the continuous-time model.

15In general, the investment cost affects the boundaries of the equilibrium regions. Therefore, the

lack of such a relationship in a profit uncertainty model is rather a coincidence than a rule.
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First, we investigate the impact of volatility on the optimal asset replacement

thresholds of the follower and of optimal simultaneous replacement. In these cases the

optimal threshold, Aopt, can be expressed as

Aopt =
β1

β1 − 1
f(I,K, k, r, α). (3.36)

It is straightforward to derive that

∂Aopt

∂ (σ2)
= − 1

(β1 − 1)2
f(I,K, k, r, α)

∂β1
∂ (σ2)

> 0, (3.37)

so that the optimal replacement thresholds of the follower and of optimal simultaneous

replacement increase in uncertainty. In the case of the follower’s decision, the competi-

tor has already replaced its asset. Hence, what is left to do for the remaining firm is

to choose the optimal replacement timing. Since the opponent has already taken its

decision, strategic interactions do not play a role here. So, as in standard real options

theory, also here the threshold goes up with uncertainty, which reflects the value of

waiting argument. In determining the optimal simultaneous replacement timing strate-

gic interactions do not play a role either. Therefore, analogous to the follower’s case,

the value of waiting argument also prevails here.

The impact of volatility on the production facility replacement threshold of the

leader requires an additional analysis. Let us set the marginal cost k to zero to simplify

the notation.16 The replacement threshold of the leader equals max
(
A (0) , AP

)
, where

AP is the smallest root of ξ (A) = 0. To determine the effect of market uncertainty

on AP , we calculate the derivative of ξ (A) with respect to σ. The change of (3.25)

resulting from a marginal increase in σ2 can be decomposed as follows

dξ (A)

d (σ2)
=


 ∂ξ (A)

∂β1︸ ︷︷ ︸
”Waiting” effect

+
∂ξ (A)

∂AF

dAF

dβ1︸ ︷︷ ︸
Strategic effect


 ∂β1
∂ (σ2)

. (3.38)

The derivative ∂ξ(A)

∂β
1

∂β
1

∂(σ2)
directly measures the influence of uncertainty on ξ (A), thus

on the net benefit of being the leader. The product ∂ξ(A)

∂AF
dAF

dβ1

∂β1

∂(σ2)
reflects the impact on

the net benefit of being the leader of the fact that the follower replacement threshold

increases with uncertainty.

16An additional motivation for this simplification is provided by the fact that for, e.g., the majority

of intangible/information products the marginal cost of a unit of good or service is negligible (cf.

Shapiro and Varian, 1998).



54 CHAPTER 3. DEMAND UNCERTAINTY IN A COURNOT MODEL

It can be shown that

∂ξ (A)

∂β1

∂β1
∂ (σ2)

< 0, (3.39)

∂ξ (A)

∂AF

dAF

dβ1

∂β1
∂ (σ2)

> 0. (3.40)

At first sight, the joint impact of both effects is ambiguous. (3.39) represents the simple

value of waiting argument: if uncertainty is large, it is more valuable to wait for new

information before replacing the existing production facility (cf. Dixit and Pindyck,

1996). As we have just seen, this also holds for the follower. The implication for the

leader of the follower replacing later is that the leader has a cost advantage for a longer

time. This makes an earlier replacement of the leader potentially more beneficial. This

effect is captured by (3.40), which can thus be interpreted as an increment in the

strategic value of becoming the leader vs. the follower resulting from the delay in the

follower’s implementation of the superior technology. Obviously, the latter effect is not

present in monopolistic/perfectly competitive markets, where the impact of uncertainty

is unambiguous.

It is possible to show that the direct effect captured by (3.39) dominates,

irrespective of the values of the input parameters.

Proposition 3.2 When uncertainty in the product market increases, the threshold

value of the demand at which the leader replaces its production facility increases too.

Proof. See the Appendix.

From Proposition 3.2 it can be concluded that the leader threshold responds

to volatility in a qualitatively similar way as a non-strategic threshold, i.e. it increases

with uncertainty. The reason for this result is the following. First, in our model we

introduced the possibility of postponing the replacement of the production facility. In-

creased uncertainty raises the profitability of replacement (because the follower replaces

later) but the value of the option to wait rises even more. Second, uncertainty could be

beneficial for earlier replacement because of the convex shape of the net gain function,

resulting in a power option-like type of payoff (cf. Kulatilaka and Perotti, 1998). Then,

while performing a mean preserving spread, downside losses are more than compen-

sated by upside gains. However, unlike the two-period framework of Kulatilaka and

Perotti (1998), in our continuous-time model the net gain function is always linear

in the stochastic variable A. If the leader invests, the profit flow π00 is replaced by

the profit flow π10, and it is clear from (3.3) and (3.4) that π10 − π00 is linear. The
same holds for the follower investment (π11 − π01 linear) and simultaneous investment
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(linearity of π11 − π00). To see whether the convexity argument could also work here,
in Section 3.6 we consider the decision to start production. In this case the firms are

not active initially and can start up production only upon investing. Consequently, the

net gain flows for the leader, and the follower, being equal to π10 and π01, respectively,

are convex in A.

3.6 Decision to Start Production

Consider two firms having the possibility to start production in a new market

where there is no incumbent. The new market assumption implies, in contrast with

Sections 3.3-3.4, that the firms can only start realizing profits after incurring a sunk

cost I. It still holds that demand follows the stochastic process (3.2). With little loss

of generality the marginal cost of a unit of output after starting production is set to

k = 0.

First, we calculate the value of the demand parameter for which it is optimal

for the follower to start production. After, by now, familiar steps it is obtained that

AFN = 3

√
β1

β1 − 2
I.. (3.41)

Given that for positive . it holds that β1 > 2, it can be shown that

∂AFN

∂ (σ2)
> 0. (3.42)

The optimal follower threshold (3.41) exists only for σ2 < r − 2α. For a relatively

high degree of uncertainty, i.e. for σ2 ≥ r − 2α (which corresponds to β1 ∈ (1, 2]), the
follower will never start production since for such levels of uncertainty the value of the

option to invest always exceeds the net present value of investment. In the limiting

case, the optimal follower threshold (3.41) is equal to

AFN ≡ lim
σ2↑r−2α

AFN = 3
√
(3r − 4α) I (3.43)

(for a derivation see the Appendix). Equation (3.43) corresponds to the maximal value

of AFN provided that it is finite. In case information about the uncertainty level is

imperfect, the investment problem is solved by first calculating the uncertainty implied

by the threshold AFN . Subsequently, the decision maker can decide whether the true

level of uncertainty is more likely to lie below or above the implied value. In the latter

case, he should refrain from entering the market.
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Now, let t to be the moment at which the leader starts producing in the new

market. The value of the follower at t is equal to

V FN (A) =




(
1

9
(AFN)

2

�
− I

)(
A

AFN

)β1 if A ≤ AFN ,

1

9

A2

�
− I if A > AFN ,

(3.44)

The value of the leader at t can be expressed as

V LN (A) =




1

4

A2

�
− I

− 5

36

(AFN)
2

�

(
A

AFN

)β1 if A ≤ AFN ,

1

9

A2

�
− I if A > AFN .

(3.45)

From (3.44) and (3.45) it is obtained that indeed the leader and follower values are

convex in A. The threshold of the leader, being the preemption point, is the smallest

solution of the following equation

V LN (A)− V FN (A) =
1

4

A2

.
− I − I

(
9

4

β1
β1 − 2

− 1
)(

A

AFN

)β1

= 0. (3.46)

The impact of uncertainty on the threshold of the leader is not straightforward. Similar

as in the model with the firms initially competing in the product market, there are

two effects: the effect of the waiting option and of the strategic option. Let us denote

V LN (A)− V FN (A) by ξN (A) . We have

dξN (A)

d (σ2)
= (3.47)

∂ξ (A)

∂ (σ2)
+
∂ξ (A)

∂AFN

dAFN

d (σ2)︸ ︷︷ ︸
Discount rate effect

+

(
∂ξ (A)

∂β1
+
∂ξ (A)

∂AFN

dAFN

dβ1

)
∂β1
∂ (σ2)︸ ︷︷ ︸

Direct uncertainty effect

.

Uncertainty affects the magnitude of each of the mentioned effects via parameter β1,

as in Section 3.5, and via the effective discount rate, .. The latter contribution results

from the convexity of the profit function, i.e. its proportionality to the square of the

underlying stochastic variable A (see (3.45)).

After substituting the functional forms of V LN (A) and V FN (A) into ξN (A)

and calculating the derivative explicitly, the following result is obtained.

Proposition 3.5 The threshold value of the demand at which the leader starts

production increases with uncertainty.

Proof. See the Appendix.
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Analogous to the follower case, there exists a critical level of uncertainty, σ2 =

r − 2α, above which it is optimal for the leader never to invest. In the limit, where
σ2 → r− 2α, the leader threshold is the smaller root of the equation (for the proof see
the Appendix) ((

A

AFN

)2

− 1
)
I − A2

2 (3r − 4α) ln
(
A

AFN

)
= 0. (3.48)

The conclusion is that also in the case of a new market, uncertainty raises the

threshold levels of market demand at which it is optimal for firms to invest. Moreover,

the resulting convexity of the payoff functions not only raises the threshold of the firms

but also results in a subset of parameters for which no replacement is optimal.

3.7 Uncertainty and Replacement Timing

Until now we analyzed the impact of uncertainty and strategic interactions on the

optimal replacement threshold of the firm. Although threshold values and timing have

a lot to do with each other, it cannot be concluded in general that the relation between

the two is monotonic (cf. Sarkar, 2000). After having determined the dependency of

threshold values on uncertainty in Section 3.5 and 3.6, in this section we investigate the

relationship between uncertainty, expected timing of replacement and the probability

with which the threshold is reached within a time interval of a given length.

First, let us observe that the expectation of the first passage time equals

E [T ∗] =
1

α− 1

2
σ2
ln
A∗ (σ2)

A
, (3.49)

where A∗ (σ2) denotes the optimal replacement threshold as a function of uncertainty.

We note that expectation (3.49) tends to infinity for σ2 → 2α and does not exist for

σ2 ≥ 2α.17 For σ2 < 2α it holds that

∂E [T ∗]

∂ (σ2)
=

1

2
(
α− 1

2
σ2
)2 ln A∗ (σ2)

A
+

1

α− 1

2
σ2

dA∗

d(σ2)

A∗ (σ2)
> 0. (3.50)

The expected timing of replacement increases with uncertainty due to two effects. First,

for any given threshold, the associated expected first passage time is increasing with

17Increasing σ2 beyond 2α implies that the probabilities of surviving without reaching the threshold

before a given time do not fall sufficiently fast for longer hitting times. Since the expectation is the

sum of the product of the first passage times and their probabilities, an insufficient decay in the

survival probabilities (without reaching the threshold) results in the divergence of the expectation.
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uncertainty (cf. the first component of the RHS of (3.50)). Second, for a fixed level of

uncertainty, an increase in the optimal investment threshold leads to an increase in the

expected time to reach (cf. second component of RHS of (3.50)). Based on (3.50) it

can be concluded that whenever the threshold goes up due to more uncertainty, it also

holds that the expected time to replace the production facility increases.

An alternative approach to measure the impact of uncertainty on the timing

of replacement is to look at the probability with which the threshold is reached within

a time interval of a given length, say τ . Contrary to the expected first passage time,

this approach does not impose any restrictions on the values of σ. The probabilities

of optimal asset replacement within a given interval are particularly useful when this

interval coincides with a budgeting period.18

After substituting y = ln A∗

A
in the formula (8.11) in Harrison (1985) and

rearranging, we obtain

P (T < τ ) = Φ

(
− ln A∗

A
+
(
α− 1

2
σ2
)
τ

σ
√
τ

)
(3.51)

+

(
A∗

A

) 2α

σ
2
−1

Φ

(
− ln A∗

A
− (
α− 1

2
σ2
)
τ

σ
√
τ

)
,

where T denotes the time to reach the threshold and Φ is the standard normal cu-

mulative density function. As already pointed out by Sarkar (2000), the derivative
∂P (T<τ)

∂σ
does not have an unambiguous sign and it can thus be shown that, in general,

uncertainty can affect the probability of reaching the threshold within a given time in

both directions.

First, we illustrate the relationship between the first passage time, volatility

and related probabilities for the follower threshold since this threshold is unaffected by

strategic considerations. Subsequently, we present results of simulations related to the

threshold of the leader. In this part we use the model of Sections 3.3-3.4. The results

for the decision to start production are qualitatively similar and are not reported.19

From Figure 3.3 it can be concluded that the form of the relationship between

the uncertainty and the probability of reaching the threshold depends on the length of

the time interval. For sufficiently long time intervals, the probability of reaching the

threshold decreases with volatility. Intuitively, this can be explained by the fact that

18For a discussion of the capital budgeting process at the corporate level see Kaplan and Atkinson

(1998), Ch. 14 and Bower (1986), Ch. 1-3.
19In this case a restriction on σ has to be imposed in order to ensure the positive sign of � (cf.

(3.12)).
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Figure 3.3: The cumulative probability of reaching the optimal follower replacement

threshold as a function of demand uncertainty for a set of parameter values: A = 4,

r = 0.05, α = 0.015, K = 3, k = 0 and I = 60.
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old as a function of time horizon for the set of parameter values: A = 4, r = 0.05, α =

0.015, K = 3, k = 0 and I = 60.
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the probability mass of the first passage time density function moves to the right (cf.

(3.50)) and longer times of reaching the demand level triggering replacement become

more likely. Moreover, the trigger itself is increasing with σ.

For low values of τ the probability of reaching the replacement threshold first

increases and then decreases. For σ = 0 the probability of reaching the threshold

within a certain time interval is zero when the optimal replacement time lies outside

this interval. Increasing σ results in a spread of the probability mass, so that the

probability of reaching the demand threshold becomes positive for a strictly positive

σ. A larger spread is initially equivalent to a higher probability of hitting the optimal

replacement threshold. However, when volatility continues to rise, at a certain moment

the effect of the probability mass shifting to the right starts to dominate the effect of

the spread. As a consequence, the cumulative probability of reaching the threshold

becomes smaller again.

Figure 3.4 indicates that the probability of reaching the follower threshold

always increases with the time interval, which is of course trivial. The relevant obser-

vation is that this relationship is more pronounced for low levels of market uncertainty.

This results from the fact that in the absence of uncertainty the optimal investment

trigger is reached at a specified point in time with probability 1 and the corresponding

cumulative density function is a heaviside step function. Increasing volatility spreads

the probability mass around the point corresponding to the deterministic case. This

leads to an increased cumulative chance of reaching the trigger at points in time situ-

ated to the left of this specified point in time, while the reverse is true for the point

situated to the right. This influences the shape of the cumulative distribution function

whose slope decreases with uncertainty.

Figure 3.5 allows for a closer inspection of the relationship between the timing

of asset replacement and uncertainty. It can be concluded that, irrespective from the

length of the time interval, there exists a level of uncertainty beyond which a further

increase in uncertainty always reduces the probability of the optimal asset replacement.

The relationship between this level and the length of the time interval is inverse, i.e. the

longer the time interval, the lower level of uncertainty for which a further uncertainty

increase reduces the probability of the optimal replacement. For example, using the

parameters from Figure 3.5 we can conclude that for τ = 5 this critical value of

uncertainty, σ, is 0.234, for τ = 10 it is only 0.118, whereas for τ = 20 increased

uncertainty always reduces the cumulative probability of optimal investment.

Figure 3.6 indicates that the probability of the optimal replacement increases

in uncertainty for a sufficiently short time interval and decreases for a sufficiently long
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Figure 3.5: The derivative with respect to market uncertainty of the cumulative probability

of reaching the optimal follower threshold as a function of uncertainty for the set of parameter

values: A = 4, r = 0.05, α = 0.015, K = 3, k = 0 and I = 60.
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Figure 3.6: The derivative with respect to market uncertainty of the cumulative probability

of reaching the optimal follower threshold as a function of time horizon for the set of parameter

values: A = 4, r = 0.05, α = 0.015, K = 3, k = 0 and I = 60.
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horizon. Moreover, the derivative of the probability of reaching the optimal threshold

changes its sign only once. Finally, Figure 3.6 allows for the conclusion that the length

of time interval beyond which uncertainty negatively affects the probability of optimal

replacement is, again, negatively related to the uncertainty level. For σ = 0.1 the

interval length which separates the areas of a positive and a negative relationship

equals 11.46 years, for σ = 0.2 it equals 5.87 years, while for σ = 0.3 it drops to 4.06

years.

Despite the presence of strategic effects, the probability of asset replacement

of the leader within a given time interval responds to changes in uncertainty and the

length of the interval in a similar way as the corresponding probabilities of the follower.

For low σ’s the probability of investing increases more rapidly with the length of the

time interval than for high σ’s. Moreover, for high τ ’s the probability of replacing the

existing asset is always decreasing with uncertainty, while for low τ ’s the probability

behaves in a non-monotonic way.

The relationship between uncertainty, first passage time and probabilities of

reaching the leader threshold is illustrated in Table 3.1 below.

σ τ = 1 τ = 2 τ = 5 τ = 10 τ = 15 τ = 20

0.05 0.06 2.39 24.11 54.32 71.17 80.97

0.10 0.61 5.93 26.79 47.94 59.70 67.24

0.20 0.62 5.14 21.00 36.47 45.10 50.72

0.30 0.46 3.97 16.50 28.66 35.31 39.55

0.40 0.39 3.30 13.57 23.22 28.29 31.39

0.50 0.36 2.93 11.55 19.23 23.02 25.21

Table 3.1: The cumulative probability (in percentages) of reaching the optimal leader replace-

ment threshold as a function of demand uncertainty for the set parameter values: A = 2,

r = 0.05 , α = 0.015, k = 0, K = 3 and I = 60.

The relationship between the investment probability of the leader and uncer-

tainty is analogous to the corresponding relationship of the follower. The probability

that the leader replaces its production facility within a given time interval decreases

with uncertainty when the length of this interval is sufficiently large. In a situation

where the relevant interval is sufficiently short, there are two contradictory effects. On

the one hand, the investment probability increases because higher volatility enhances



3.7. UNCERTAINTY AND REPLACEMENT TIMING 63

the chance of reaching a particular threshold early. On the other hand, this probabil-

ity eventually declines with uncertainty because then the effect of the probability mass

shifting to the right begins to dominate.

Now, we formulate the following proposition, which extends Sarkar (2000) by

defining the time interval lengths separating a monotonic and non-monotonic relation-

ship between uncertainty and the investment probability .

Proposition 3.4 Define

τ ∗ ≡ 1

α
ln
A∗

A
, α > 0, (3.52)

as the point in time at which the replacement threshold A∗ is reached in the determin-

istic case. Then it holds that for τ < τ ∗ the probability of reaching the investment

threshold A∗ before τ increases with uncertainty at a relatively low level of uncertainty

and decreases for a relatively high level, whereas for τ > τ ∗ the probability of reaching

the optimal threshold before τ always decreases with uncertainty.

Proof. See the Appendix.

On the basis of Proposition 3.4 it may be concluded that the replacement hori-

zon being equal to the optimal timing of replacement in the deterministic case separates

the regions of monotonic and non-monotonic relationship between uncertainty and the

probability of replacement. In Table 3.1, the parameters are chosen in such a way that

the optimal timing of replacement in the deterministic case equals τ ∗ = 9.36. Therefore

the investment-uncertainty relationship in columns 2-4 is non-monotonic, while it is

negative in columns 5-7.

In order to determine τ ∗ for the leader, we need to determine its replacement

timing in the deterministic case. It holds that the optimal investment timing of the

leader in the model without uncertainty is equal to the rent equalization point in the

preemption game of Fudenberg and Tirole (1985). In the case of the follower, τ ∗ is equal

to the point of time at which the incremental flow from operations, π11 − π01, reaches
the flow associated with the replacement cost, Ir. Hence, τ ∗ corresponds to the optimal

Jorgensonian trigger, which equalizes the flow costs and revenues of the project. The

optimal simultaneous replacement closely resembles the case of the follower trigger.

The only difference is that now, the incremental profit flow equals π11 − π00.
Finally, we would like to point out that our analysis also extends to the sit-

uation where α ≤ 0. In such a case and without uncertainty the firms would face

now-or-never decisions. Therefore, it holds that τ ∗ ∈ {0,∞}, so that the relationship
between the investment probability within a given time interval and uncertainty will
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be either non-monotonic or decreasing for all time horizons. This implies that in ma-

ture industries (i.e. those with non-positive growth rate), the probability of launching

existing positive NPV projects always decreases with uncertainty. As far as initially

negative NPV projects are concerned, the probability of their optimal execution is

initially increasing with uncertainty. When uncertainty becomes sufficiently high, the

replacement probability starts to fall.

3.8 Conclusions

The purpose of this chapter is to analyze the firm’s decision to replace an existing

production facility with a technologically superior one. In order to capture the effect

of strategic interactions among the firms operating in an imperfectly competitive and

uncertain environment we model the product market as a Cournot duopoly with a

stochastic demand parameter. Such a formulation results in the payoff functions being

convex in the stochastic demand parameter.

We determine the types of equilibria of the real option game played by the

firms. We show that it is optimal for the firms to replace their production facilities

sequentially when the associated cost is relatively low and simultaneously otherwise.

Furthermore, we find that the direct effect of uncertainty (related to the waiting

option) on the replacement threshold of the leader is always larger than the indirect

effect (strategic option) resulting from the delay in the follower decision to replace its

production facility. Consequently, irrespective from the type of equilibrium, increasing

uncertainty always raises the level of demand triggering the optimal replacement. This

result also holds in case of the decision to start production rather than to replace the

existing asset.

Moreover, it can be concluded that the expected timing of replacement in-

creases with uncertainty. This result supports the view that uncertainty delays the

implementation of the new technology, even in the presence of strategic interactions

combined with a convex profit function. Moreover, it shows that the result of Ku-

latilaka and Perotti (1998) that uncertainty can stimulate investment due to strategic

interactions does not carry over from a two period model to a continuous time setting.

We also determine the probability of replacing the production facility within a

certain time interval. Here, the point in time at which replacement is made optimally

in the deterministic case plays a crucial role. For an interval that contains this point in

time, the probability of optimal replacement within this time interval decreases with

uncertainty. However, if this time interval is that short that the optimal replacement
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time in the deterministic case lies outside this interval, then the replacement probability

goes up with uncertainty when uncertainty is low while it goes down otherwise.

Finally, we would like to discuss the limitations of our approach. In order to

ensure analytical tractability and to make our results comparable to Kulatilaka and

Perotti (1998), we used a linear demand specification and parallel shifts in demand.

Such a model specification allowed us to show that in a continuous-time framework the

convexity of payoff functions does not result in investment occurring at lower states

of demand when uncertainty is higher, as it does in a two-period model. Our setting

enabled us to show that uncertainty enhancing convex payoffs and therefore stimulating

investment in a two-period case does not accelerate strategic replacement when there

is flexibility in timing the replacement. Of course, our predictions do not automatically

carry over to other forms of product market uncertainty. In other words, we do not

formally define the classes of demand functions for which the analysis holds. With

respect to robustness of our results, it is also important to relax other assumptions like

constant marginal costs and Cournot competition.

3.9 Appendix

Proof of existence and uniqueness of AP . The outline of the proof follows

Grenadier (1996). First, we establish the existence of a root of ξ (A) on the interval

(0, AF ). Evaluating ξ (A) at A = 0 gives

ξ (0) = −I + (K − 2k)2
9r

− (2K − k)2
9r

(3.53)

= −I − K
2 − k2
3r

< 0.

Similarly, evaluating ξ (A) at A = AF yields ξ
(
AF
)
= 0. Finally, calculating the left

limit of the first-order derivative of ξ (A) for A→ AF gives

lim
A↑AF

ξ′ (A) = − 4 (β
1
− 1) (K − k)3

3δ [9Ir + 4K (K − k)] < 0. (3.54)

The signs of ξ (A) at the ends of interval (0, AF ) and the sign of (3.54) implies that

ξ (A) has at least one root in the relevant interval.

The uniqueness is proved by showing strict concavity of ξ (A) over interval
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(0, AF ). It holds that

ξ′′ (A) =

−β1 (β1 − 1)
A2

[(
3β

1

2 (β
1
− 1) − 1

)
9I +

β
1

β
1
− 1

6K (K − k)
r

− 3 (K2 − k2)
r

](
A

AF

)β
1

< 0. (3.55)

The last inequality results from the fact that the sign of the sum of the two last

components of the expression in the square brackets is positive for β
1
→ ∞ and the

sum is decreasing with β
1
. Consequently, the root is unique.

Proof of Proposition 3.1. First, let us define

ζ (A) ≡ V S (A)− V L (A) . (3.56)

Here, we assume k = 0. After substituting (3.20) and (3.24) into (3.56) we get20

ζ (A) = −4
9

KA

δ
+ I +

 1

β
1
−1

(
I + K2

9r

)
(AS)β1

+

1

2

β1

β
1
−1

(
I + 4K2

9r

)
+ K2

9r

(AF )β1

Aβ1 (3.57)

for A ≤ AF . From (3.33) it follows that if on the interval [AP , AF ] the minimum of ζ (A)
is smaller than zero, a preemptive equilibrium occurs. Otherwise, the firms replace their

production facilities simultaneously.21 The existence of a negative minimum of ζ (A)

depends on the value of the input parameters. The minimum of ζ (A) occurs for

A∗∗ =

 4

9β1

K

r−α

(
ASAF

)β1
1

β
1
−1

(
I + K2

9r

)
(AF )β1 +

(
1

2

β
1

β
1
−1

(
I + 4K2

9r

)
+ K2

9r

)
(AS)β1


1

β1−1

. (3.58)

It is sufficient to show that

dζ (A)

dI

∣∣∣∣
A=A∗∗

=
∂ζ (A)

∂I
+
∂ζ (A)

∂A

∣∣∣∣
A=A∗∗

dA∗∗

dI
> 0. (3.59)

Using the fact that
∂ζ (A)

∂A

∣∣∣∣
A=A∗∗

= 0, (3.60)

and differentiating (3.57), we obtain that

dζ (A)

dI
= 1−

(
A

AS

)β
1

− β
1

1

2
I + K2

3r

I + 4

9

K2

r

(
A

AF

)β
1

. (3.61)

20The proof for general k goes along the same lines and is skipped for the sake of brevity.
21Strictly speaking, the preemptive equilibrium still exists in this case but is Pareto-dominated by

the simultaneous replacement equilibrium (cf. Fudenberg and Tirole, 1985).
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Subsequently, we substitute for A in (3.61) the expression (3.58) for A∗∗. Complexity of

the resulting expression yields the necessity to use a numerical procedure. A geometric

grid search indicates that dζ(At)

dI

∣∣∣
A=A∗∗

is positive for β
1
∈ [1, r

α
), and α ∈ (0,∞) , β

1
∈

[1,∞), and α ∈ (−∞, 0], and for other parameters falling into intervals: r ∈ (α,∞) ,
K ∈ (0,∞) and I ∈

(
4

9

K2

r
,∞
)
.22

Proof of Proposition 3.2. Differentiating (3.25) (for A ≤ AF ) yields

dξ (A)

dβ
1

=

(
β1

β1−1

(
3

2
I + 2

3

K2

r

)
− K2

3r
− I
)
ln
(
AF

A

)
− 1

β1−1

(
1

2
I + 1

3

K2

r

)
(
AF

A

)β1 . (3.62)

Since the threshold of the leader is equal to AP , and AP is the smallest root of the

concave function ξ (A) , we know that

∂ξ (A)

∂A

∣∣∣∣
A=AP

> 0. (3.63)

Consequently, by differentiating (3.25) totally, we conclude that it is sufficient to show

that
dξ (A)

dβ
1

∣∣∣∣
A=AP

> 0 (3.64)

to conclude that the replacement threshold of the leader is increasing with uncertainty

(decreasing with β
1
). Moreover, upon analyzing (3.62) we know that dξ(A)

dβ
1

changes its

sign only once and the corresponding realization of A to the zero value of the derivative

is

A∗ = AF e
−

1

2
I+

1

3

K
2

r

β1( 12 I+1

3

K2

r )+K2

3r
+I . (3.65)

Therefore
dξ (A)

dβ
1

> 0 iff A < A∗. (3.66)

Consequently, ξ (A∗) > 0 would imply that A∗ > AP and dξ(A)

dβ1

∣∣∣
A=AP

> 0. In order to

prove that ξ (A∗) > 0, we plug (3.65) into (3.25) to obtain

ξ (A∗) =
β
1

β
1
− 1
(
3

2
I +

2

3

K2

r

)
e
−

1

2
I+

1

3

K
2

r

β1( 12 I+1

3

K2

r )+K2

3r
+I − K2

3r
− I

−
(

β
1

β
1
− 1
(
3

2
I +

2

3

K2

r

)
− K2

3r
− I
)
e
−β1

1

2
I+

1

3

K
2

r

β1( 12 I+1

3

K2

r )+K2

3r
+I . (3.67)

22The domain of I results from the fact that for this range of values of K, thresholds AF and AS

are decreasing in K, which constitutes the economically relevant case.
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An analytical proof is again not possible but numerically it can be shown that ξ (A∗)

is positive for β
1
∈ [1, r

α
), and α ∈ (0,∞) , β

1
∈ [1,∞), and α ∈ (−∞, 0], and for other

parameters falling into intervals: r ∈ (α,∞) , K ∈ (0,∞) and I ∈
(
4

9

K2

r
,∞
)
.

Proof of Proposition 3.3. We rewrite the derivative (3.47) as

dξN (A)

d (σ2)
=
1

4

A2

.2
−

5

4
I

β
1
− 2
(
A

AFN

)β1
(3.68)

×
[
∂β

1

∂ (σ2)
+

(
β
1
+
8

5

)(
β
1

2.
+ ln

(
A

AFN

)
∂β

1

∂ (σ2)

)]
.

Denote the smallest solution of ξN (A) = 0 by APN . Since APN cannot be explicitly

derived, we proceed as follows. First, we consider a particular point A > APN . Second,

we show that dξ
N
(A)

d(σ2)
is negative for all A ∈ (A,A), where A is a realization of A such

that A < APN . Let us define

A ≡ 2

√
β
1

β
1
− 2I.. (3.69)

First, we show that ξN
(
A
)
> 0, which would imply that A > APN . After substituting

(3.69) into (3.46) we obtain that

ξN
(
A, β

1

)
=

2I

β
1
− 2

(
1−
(
5

8
β
1
+ 1

)(
2

3

)β1)
=

2I

β
1
− 2φ (β1) . (3.70)

Since β
1
> 2 (recall that for β

1
≤ 2 no firm is willing to enter), we know that 2I

β1−2
is

always positive. Therefore we are interested only in the sign of φ (β
1
) . For β

1
↓ 2 we

obtain that

lim
β
1
↓2

φ (β
1
) = 0. (3.71)

Then we establish that

∂φ (β
1
)

∂β
1

= −
(
2

3

)β1 (5
8
+

(
5

8
β
1
+ 1

)
ln

(
2

3

))
> 0 (3.72)

for β
1
∈ (2,∞). This implies that ξN (A) is positive so that A > APN . We proceed

with proving that expression (3.68) changes signs twice, i.e. it is positive for A ∈
(0, A) ∪

(
A,AFN

)
, where A is some realization of A such that A > A, and negative

otherwise. First, we express (3.68) as

dξN (A)

d (σ2)
= A2

[
KAβ1−2 + LAβ1−2 ln

(
A

AFN

)
+M

]
, (3.73)
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where

K = −
5

4
I

β
1
− 2
(
AFN

)−β
1

(
∂β

1

∂ (σ2)
+
β
1

(
β
1
+ 8

5

)
2.

)
, (3.74)

L = −
5

4
I

β
1
− 2
(
AFN

)−β1 (β
1
+
8

5

)
∂β

1

∂ (σ2)
> 0, and (3.75)

M =
1

4.2
> 0. (3.76)

From (3.73)-(3.76) it can be derived that23

lim
A↓0

KAβ1−2 + LAβ1−2 ln

(
A

AFN

)
+M = M, and (3.77)

lim
A→∞

KAβ1−2 + LAβ1−2 ln

(
A

AFN

)
+M = ∞. (3.78)

Moreover

∂

∂A

(
KAβ

1
−2 + LAβ

1
−2 ln

(
A

AFN

)
+M

)
= Aβ

1
−3

(
(β

1
− 2)K + (β

1
− 2)L ln

(
A

AFN

)
+ L

)
,

which implies that there exists only one extremum of dξ
N
(A)

d(σ2)
that is different from zero.

This result, combined with (3.77) and (3.78), implies that dξ
N
(A)

d(σ2)
is negative at most

in only one interval. Substituting A into (3.68) yields

dξN (A)

d (σ2)

∣∣∣∣
A=A

=
2I

(β
1
− 2) . −

5

4
I

β
1
− 2
(
2

3

)β1

(3.79)

×
[
∂β

1

∂ (σ2)
+

(
β
1
+
8

5

)(
β
1

2.
+ ln

(
2

3

)
∂β

1

∂ (σ2)

)]
Numerically it can be shown that ∂ξ

N
(A)

∂(σ2)

∣∣∣
A=A

is negative for β
1
∈ [1, r

α
), and α ∈ (0,∞) ,

β
1
∈ [1,∞), and α ∈ (−∞, 0], α ∈ R, r ∈ (α,∞) and I ∈ (0,∞). Therefore the only

remaining part of the proof is to show that A < APN for any vector of input parameters.

Since the explicit analytical forms of A and APN do not exist, we use a numerical

procedure. Using a grid search technique (for the domains of input parameters as in

the proofs of Propositions 3.1 and 3.2), we calculate the differences APN − A and it

turns out that they are always positive. Given that dξ
N
(A)

d(σ2)

∣∣∣
A∈(A,A]

< 0, APN ∈ (A,A)
and ξN

(
A
)
> 0, we conclude that dAPN

d(σ2)
> 0, i.e. the investment threshold of the leader

increases with uncertainty.

23The result (3.77) has been derived using l’Hôpital’s rule.
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Proof of Proposition 3.4. First, we show that τ ∗ is the time to reach the

replacement threshold A∗ in the deterministic case. After observing that x = αt is the

solution to dx = αdt with initial condition x (0) = 0, and substituting x∗ = ln A∗

A
, we

obtain that

ln
A∗

A
= ατ ∗, (3.80)

so τ ∗ in (3.52) is the time to reach the threshold A∗. Now, we consider the density

function ϕ (τ ;µ (σ) , σ2) being the density function of the first passage time for a ge-

ometric Brownian motion, which has a mean µ (σ) and variance σ2. For the moment

we assume that µ = τ ∗ irrespective from σ. Then, raising the variance σ2 is equivalent

to performing a mean preserving spread. Consequently, in such a case

∂

∂σ

(∫
τ

0

ϕ (s) ds

)
(τ − τ ∗) ≤ 0, (3.81)

with equality holding iff τ = τ ∗. The expectation of the first passage time, E [τ ],

associated with hitting the replacement threshold A∗, is increasing with σ (cf. (3.50))

and A∗ is increasing with σ, too. For τ > τ ∗, an increase in uncertainty not only

reduces the probability mass to the left of τ via the mean preserving spread but also

because of the mean itself moving to the right. Therefore the effect of uncertainty on

the probability of the replacement decision is unambiguous in this region and negative.

For σ → ∞ the probability of investing before τ decreases to zero. The latter conclusion

is true since from (3.51) it is obtained that

lim
σ→∞

P (T < τ) = lim
σ→∞

Φ

(
− ln A∗

A
+
(
α− 1

2
σ2
)
τ

σ
√
τ

)

+ lim
σ→∞

[
Φ

(
− ln A∗

A
− (α− 1

2
σ2
)
τ

σ
√
τ

)(
A∗

A

) 2α

σ2
−1
]

= lim
σ→∞

[
Φ

(
− ln A∗

A
− (α− 1

2
σ2
)
τ

σ
√
τ

)(
A

A∗

)]
. (3.82)

Hence, if

lim
σ→∞

A∗ =∞ (3.83)

it holds that

lim
σ→∞

P (T < τ ) = 0. (3.84)

We will show later that (3.84) holds for all relevant thresholds.

For τ < τ ∗, the two effects work in opposite directions. As in the previous

case, the mean E [τ ] is increasing with uncertainty. Without a change in the volatility,
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an increase in the mean would then decrease the probability of replacing the existing

production facility. However, increasing uncertainty results in a greater probability

mass being present in the left tail of ϕ (τ). Therefore, the total effect of increasing

uncertainty is ambiguous in this region. However, we are able to conclude that the

probability of investing at a given τ behaves in a certain non-monotonic way. For

σ = 0, there is no probability mass on the interval [0, τ ∗), since the investment takes

place at τ < τ ∗ with probability 1. Therefore an increase in uncertainty initially leads

to an increased probability of investment. For relatively large σ the effect of moving

the mean of the distribution to the right starts to dominate and the probability of asset

replacement falls. For σ → ∞ the probability of replacing the existing asset before a

given time τ decreases to zero.

Finally, we show that all the thresholds increase with uncertainty monotoni-

cally and unboundedly. We already know (from Sections 3.5 and 3.6) that the optimal

replacement thresholds increase with uncertainty monotonically. So now we only have

to prove that the thresholds grow in uncertainty unboundedly. For the thresholds of

the follower and in case of simultaneous replacement it is easy to observe that β
1

β
1
−1

tends to infinity when σ → ∞.24 The replacement threshold of the leader requires
slightly more attention.25 We already know that the leader replaces its asset as soon as

the stochastic variable reaches the smallest root of the following equation (cf. (3.25))

0 =
2

3

KA

δ
− K

2

3r
− I −

(
2

3

KAF

δ
− K2

3r
− I
)(

A

AF

)β
1

. (3.85)

After substituting (3.16) into (3.85) and rearranging, we obtain that

0 =

1−
(

4

9
KA

β
1

β
1
−1

(
I + 4K2

9r

)
2I

)β1−1

+

(
K2

3r
+ I
)
Aβ1−1

2

3

K

δ

(
β1

β1−1

I+
4K2

9r

4

9
KA

δ

)β
1


×2KA
3δ

− K2

3r
− I. (3.86)

It holds that

lim
β1↓1

1−
(

4

9
KA

β1

β1−1

(
I + 4K2

9r

)
δ

)β
1
−1

+

(
K2

3r
+ I
)
Aβ1−1

2K

3δ

(
β1

β1−1

I+
4K2

9r

4

9
KA

δ

)β1
 = 0. (3.87)

24
For a new market model a similar conclusion can be drawn after the substitution of parameters

in the original geometric Brownian motion.

25
The unboundedness of the leader threshold in the new market entry can be proven in a similar

way as in the presented case of asset replacement.
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Since

lim
β1↓1

∂

∂β1

1−
(

4

9
KA

β
1

β1−1

(
I + 4K2

9r

)
δ

)β
1
−1

+

(
K2

3r
+ I
)
Aβ1−1

2K

3δ

(
β
1

β1−1

I+
4K2

9r

4

9
KA

δ

)β
1

 > 0, (3.88)

the LHS of (3.87) approaches zero from above. To shorten the notation we rewrite

(3.86) into

0 =M (A)A−N. (3.89)

Now, we are looking for the solution of (3.89). From (3.88) it can be seen that m (A)

is tending to zero from above ∀A ∈ R
++ when uncertainty is increasing. Consequently,

any solution (so the smallest one as well) of (3.89) is tending to infinity. This is

equivalent to

lim
β1↓1

AP =∞, (3.90)

which completes the proof.

Limiting value of the optimal follower threshold to start production. We

are interested in the following limit

lim
σ2→r−2α

3

√
β1

β1 − 2
I.

= 3

√
I lim
σ2→r−2α

β1
β1 − 2

.. (3.91)

Furthermore, we have

lim
σ2→r−2α

β1
β1 − 2

.

= lim
σ2→r−2α

(
1

2
− α

σ2
+
√(

α

σ2
− 1

2

)2
+ 2r

σ2

)
(r − 2α− σ2)

−3

2
− α

σ2
+
√(

α

σ2
− 1

2

)2
+ 2r

σ2

= 2 (r − 2α) lim
σ2→r−2α

r − 2α− σ2

−3

2
σ2 − α +

√(
α− σ2

2

)2
+ 2rσ2

.
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Applying l’Hôpital’s rule yields

2 (r − 2α) lim
σ2→r−2α

−1
−3

2
+

−α+
1

2
σ2+2r

2

√(
α−

σ2

2

)
2

+2rσ2

= 2 (r − 2α) −1
−3

2
+

−α+
1

2
(r−2α)+2r

2

√
(α− 1

2
(r−2α))

2

+2r(r−2α)

=
−4 (r − 2α)

√(
α− 1

2
(r − 2α))2 + 2r (r − 2α)

−3
√(
α− 1

2
(r − 2α))2 + 2r (r − 2α)− α + 1

2
(r − 2α) + 2r

=
−4 (r − 2α) ∣∣2α− 3

2
r
∣∣

−3 ∣∣2α− 3

2
r
∣∣− α + 1

2
(r − 2α) + 2r .

Since 2α < r, this is equal to

4 (r − 2α) (2α− 3

2
r
)

3
(
2α− 3

2
r
)− α + 1

2
(r − 2α) + 2r

=
4 (r − 2α) (2α− 3

2
r
)

−2 (r − 2α)
= 3r − 4α. (3.92)

Substituting (3.92) into (3.91) yields the desired result.

Limiting value of the optimal leader threshold to start production. To

obtain the leader’s limiting threshold, we are interested in the form of function ξN

when σ2 tends to r − 2α. For any A ∈ (0, AFN) we have (cf. (3.44), (3.45) and
ξN = V LN − V FN )

lim
σ2→r−2α

[
1

4

A2

r − 2α− σ2 − I −
(
1

4

(
AFN

)2
r − 2α− σ2 − I

)(
A

AFN

)β
1

]
(3.93)

= lim
σ2→r−2α

1
4

A2

r − 2α− σ2 − I −
(
1

4

9 (3r − 4α) I
r − 2α− σ2 − I

)(
A

3
√
(3r − 4α) I

)β1

 ,
by using the limit of (3.41). Consequently, we rearrange (3.93) to get26

lim
σ2→r−2α

1
4

A2

r − 2α− σ2 − I + A2

9 (3r − 4α) −
1

4

9 (3r − 4α) I
r − 2α− σ2

(
A

3
√
(3r − 4α) I

)β
1



=
A2

9 (3r − 4α) − I +
A2

4
lim

σ2→r−2α

1−
(

A

3

√
(3r−4α)I

)β
1
−2

r − 2α− σ2 . (3.94)

26
We do so by observing that lim

σ
2
→r−2α

β = 2.
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The limit in the last component can be calculated as follows:

lim
σ2→r−2α

1−
(

A

3

√
(3r−4α)I

)β1−2
r − 2α− σ2 = lim

σ2→r−2α

1−
(

A

3

√
(3r−4α)I

)
−

3

2
−

α

σ
2
+

√
( α

σ
2
−

1

2
)
2

+
2r

σ
2

r − 2α− σ2 .

Application of l’Hôpital’s rule yields

lim
σ2→r−2α

∂

∂ (σ2)

( A

3
√
(3r − 4α) I

)
−

3

2
−

α

σ
2
+

√
( α

σ
2
−

1

2
)
2

+
2r

σ
2

 (3.96)

= lim
σ2→r−2α

ln

(
A

3
√
(3r − 4α) I

)(
A

3
√
(3r − 4α) I

)
−

3

2
−

α

σ
2
+

√
( α

σ
2
−

1

2)
2

+
2r

σ
2

×
 α
σ4

−
α

σ4

(
α

σ2
− 1

2

)
+ r

σ4√(
α

σ2
− 1

2

)2
+ 2r

σ2


= ln

(
A

3
√
(3r − 4α) I

)(
α

(r − 2α)2 −
α

r−2α

(
α

r−2α
− 1

2

)
+ r

r−2α

3

2
r − 2α

)

= ln

(
A

3
√
(3r − 4α) I

)(
− 1

3

2
r − 2α

)
. (3.97)

Consequently, after substituting (3.97) into (3.94), we obtain the formula for the lim-

iting case of ξN : ((
A

AFN

)2

− 1
)
I − A2

2 (3r − 4α) ln
(
A

AFN

)
. (3.98)



Chapter 4

Profit Uncertainty and Asymmetric

Firms

4.1 Introduction

The aim of this chapter is to study the effects of imperfect competition on the

optimal real option exercise strategies in a situation where the costs of exercising op-

tions differ among firms. Such a framework, which relaxes the restrictive assumption

that the duopolistic rivals are identical, is motivated by the existence of many sources

of potential cost asymmetry.1 First, investment cost asymmetry is present when the

firms have different access to the capital markets. In such a case, the cost of capital of

a liquidity-constrained firm is higher than of its counterpart having access to a credit

line or with substantial cash reserves (cf. Lensink et al., 2001). Consequently, the

investment cost of the firm facing capital market imperfections is higher.

Moreover, cost asymmetry occurs when the firms exhibit a different degree of

organizational flexibility at implementing a new production technology. This flexibil-

ity, known as absorptive capacity (cf. Cohen and Levintal, 1994), measures the firm’s

ability to adopt external technologies, to assimilate to a changing economic environ-

ment, and to commercialize newly invented products. A higher absorptive capacity is

therefore equivalent to a lower cost associated with an investment project.

Differing real options embedded in the existing assets of the firms due to past

decisions are another source of possible investment cost asymmetry. After the arrival

1
Alternatively, we could introduce asymmetry by introducing firm-specific profit functions or pa-

rameters of the stochastic process. However, we expect that other forms of asymmetry lead to similar

results (cf. also Huisman, 2001, Ch. 8, and Joaquin and Butler, 2000, who analyze different forms of

asymmetry in a new market model).

75
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of a new invention it may appear that one of the existing technologies is more easily

extendable than the other. For instance, Kaplan (1986) reports that in the 1970s some

manufacturing firms invested in electronically controlled production facilities. This

investment did not bring significant improvements to the firms’ profits. However, after

the arrival of microprocessor-based technology in the 1980s, the firms that invested in

electronically controlled facilities were able to adopt the new technology more quickly

and at a lower cost.

Finally, the difference in investment costs is often a consequence of purely ex-

ogenous factors, resulting, among others, from the intervention of the authority. For

instance, the effective investment cost of the firms is reduced after obtaining govern-

mental credit guarantees, which result in a lower cost of capital (see the evidence by

Kleimeier and Megginson, 2000).

As in Chapter 3, we consider the optimal real option exercise strategy of

duopolistic firms already competing in a product market.2 Both firms have an in-

vestment opportunity enhancing ceteris paribus the profit flow. If one firm invests, the

other firm’s payoff is reduced.3 This is, for example, the case when the investment gives

the firm the possibility to produce more efficiently and thus cheaper, which leads to a

higher market share. The firms differ ex ante only with respect to the required sunk

cost associated with the investment. Our framework most directly generalizes Smets

(1991) and Grenadier (1996), who restrict the analysis to a game between symmetric

firms, and Huisman (2001), Ch. 8, who considers a new market entry of asymmetric

firms. This generalization results in the presence of three different equilibrium strate-

gies. First, when the asymmetry among firms is relatively small and so is the first-

mover advantage, the firms invest at the same time. When the first-mover advantage

is sufficiently large, the lower-cost firm preempts the higher-cost firm. In the situation

where both the first-mover advantage and asymmetry between firms are significant,

the firms exercise their investment options sequentially and their investment timing do

not affect each other directly. The two latter equilibria are also present in Perotti and

Rossetto (2000), in which the problem of cross-market entry is considered.4 The model

presented in this chapter is also closely related to Boyer et al. (2002), Section 5, in

2Contrary to Chapter 3, we do not model the structural form of the product market competition.

Instead, we impose a reduced form of profit functions.
3Mason and Weeds (2003) allow for positive network externalities among the firms, which results

in a higher profit of the incumbent after the investment of the entrant.
4It is never optimal for firms to invest simultaneously in the framework of Perotti and Rosetto

(2000) since the instantaneous profits of firm competing in both the market segments are lower than

monopolistic profits realized in the firms’ own market segments.
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which asymmetry across firms has a form of differing initial capacities.

Furthermore, we analyze the impact of uncertainty on the optimal investment

thresholds. We find that the value of the waiting option increases with the profit

volatility despite the presence of strategic interactions.

Finally, we determine the firms’ values and present welfare implications of the

strategic option exercise. We find that, when an increase in the investment expen-

diture of the higher-cost firm results in a switch from joint investment to preemption

equilibrium, the value of both firms decrease. Moreover, in the preemption equilibrium,

an increase in the higher-cost firm’s investment expenditure results in the appreciation

of this firm’s value. After a cost increase of the competitor, the low cost firm knows

that it itself could delay the investment without bearing the risk of being preempted.

This investment delay raises the value of the higher cost firm. Using an example of a

duopoly in which after the investment the firms can offer a good with a higher quality,

we derive the relationship between the type of equilibrium and the level of consumer

surplus. This analysis indicates that an equal access of competitors to a new technology

(or a new market) may not be socially optimal.

This chapter is organized as follows. In Section 4.2 we present the model. Sec-

tion 4.3 contains the derivation of value functions and optimal investment thresholds.

The discussion of the resulting equilibrium strategies is presented in Section 4.4 and

the analysis of the impact of uncertainty on the timing of investment is included in Sec-

tion 4.5. In Section 4.6 we analyze the impact of strategic interactions on the value of

the firms whereas Section 4.7 discusses the relationship between the firms’ investment

strategies and social welfare. Section 4.8 concludes.

4.2 Framework of the Model

In this chapter, the framework of Dixit and Pindyck (1996), Ch. 6, is adapted here,

with the difference that we consider two firms rather than one. The two risk-neutral

firms compete in the product market, and realize a non-negative stochastic profit flow.

The uncertainty in each of the firms’ profits is introduced via a geometric Brownian

motion process:

dx (t) = αx (t) dt+ σx (t) dw (t) , (4.1)

where α and σ are constants corresponding to the instantaneous drift and to the in-

stantaneous standard deviation, respectively, dt is the time increment and dw (t) is

the Wiener increment. Let r be the deterministic instantaneous riskless interest rate.
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It is assumed that the drift rate, α, exhibits a shortfall δ below the riskless rate, i.e.

α = r − δ. The uncertainty in the profit function is included in a multiplicative way.
The instantaneous profit of Firm i can be expressed as

πNiNj
(t) = x (t)DNiNj

, (4.2)

where, for k ∈ {i, j}, :

Nk =

{
0 if firm k has not invested,

1 if firm k has invested.

DNiNj
stands for the deterministic contribution to the profit function, and it holds that

D10 > D00

∨ ∨
D11 > D01.

(4.3)

D10 > D00 implies that the profit of the firm that invests as first exceeds ceteris paribus

the initial (symmetric) profit. Moreover, this investment leads to a deterioration of the

profit of the firm that did not undertake the project yet, i.e. D00 > D01. Finally,

the ’catch-up’ investment made by the lagging firm enhances its profit, so D11 > D01,

but, at the same time, it reduces the profit of the first mover, so that D11 < D10. The

last inequality implies that there are negative network externalities among the firms.5

Such a general formulation embraces, for instance, Cournot or Stackelberg quantity

competition.

The investment opportunity is assumed to last forever and the structure of the

associated payoff can only change as a result of the competitor’s action. Therefore, the

opportunity can be modeled as a perpetual American option with a payoff determined

endogenously. Consequently, we denote the investment cost of Firm i, i ∈ {1, 2} by Ii.
Without loss of generality I1 is normalized to I, which is the investment cost of the

low-cost firm, and I2 is set equal to κI, where κ ∈ [1,∞).
Finally, we assume that the initial realization of the process underlying both

firms’ profits, x (0), is low enough, so that an immediate investment is not optimal.6

5Mason and Weeds (2003) allow for D11 > D10 to reflect the positive network externalities on

the supply side that can arise among the competitors. In our setting (firms already compete in a

product market) such an assumption would be more difficult to justify. Moreover, D10 > D11 does

not preclude the presence of positive network externalities among the firms’ customers (for example,

the profits generated by Microsoft in the office software segment are not likely to be positively affected

by technological improvements made by Corel).
6Immediate investment is optimal in case of a sufficiently high initial realization of the stochastic

process. The mixed strategies equilibria occurring then are discussed (for identical firms) in Chapter

3 (see also Thijssen et al., 2002).
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4.3 Value Functions and Investment Thresholds

As in Chapter 3, there are three possibilities concerning the relative timing of

firms investment. First, Firm i may become the leader. Alternatively, Firm j may

invest sooner which results in Firm i becoming the follower. Finally, firms may invest

simultaneously.

In this section we establish the payoffs associated with the three situations

described above. As in the standard approach used to solve dynamic games, we analyze

the problem backwards in time. First, we derive the optimal strategy of the follower,

who takes the strategy of the leader as given. Subsequently, we analyze the decision of

the leader. Finally, the case of joint investment is discussed.

4.3.1 Follower

Consider the investment decision of the follower (Firm i) at time t, where t is

the leader’s (Firm j’s) investment timing. Firm i will undertake the investment when

profits are sufficiently large, i.e. when x exceeds a certain threshold level denoted by

xF
i
. Determining xF

i
is equivalent to finding the optimal option exercise strategy. At

x (t), the value of Firm i as the follower equals

V F

i (t) = E

[∫
TF

i

t

x (s)D01e
−r(s−t)ds

]
(4.4)

+E

[
e−r(T

F

i
−t)

(∫
∞

TF

i

x (s)D11e
−r(s−TF

i )ds− Ii
)]
,

where

T F

i
= inf

(
t|x ≥ xF

i

)
. (4.5)

The realization xF
i
corresponds to the follower’s optimal investment threshold

xF
i
=

β1
β1 − 1

Iiδ

D11 −D01

, (4.6)

and β1 is the larger root of the quadratic equation

1

2
σ2β (β − 1) + αβ − r = 0. (4.7)

The first integral in (4.4) corresponds to the present value of profits obtained before

the investment is undertaken. The second part of (4.4) reflects the present value of

profits after the investment is made minus the associated sunk cost.
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The value of the firm as well as the optimal investment threshold can be cal-

culated explicitly by applying the standard dynamic programming methodology (see

Section 1.6). By solving the differential equation describing the dynamics of Firm i’s

value with corresponding value-matching, smooth-pasting and no-bubbles conditions,

we arrive at the following expression for the value of Firm i as the follower at t:

V F

i
(x) =

 xD01

δ
+
(
xF
i
(D11−D01)

δ
− I
)(

x

xF
i

)β
1

if x ≤ xF
i
,

xD11

δ
− Ii if x > xF

i
.

(4.8)

The interpretation of (4.8) is as follows. The first row is the present value of profits

when the follower does not invest immediately. The first term is the payoff in case the

follower refrains from investing forever, whereas the second term is the value of the

option to invest. The second row corresponds to the present value of enhanced cash

flows resulting from immediate investment minus its cost.

4.3.2 Leader

Following a similar reasoning as in the previous subsection, we determine the

payoff of Firm i when it invests first, thus Firm i is the leader. Then the value function

of Firm i, evaluated at the moment of investing, t, equals

V L

i (t) = E

[∫
TF

j

t

x (s)D10e
−r(s−t)ds− Ii +

∫
∞

TF

j

x (s)D11e
−r(s−t)ds

]
. (4.9)

The first two components of (4.9) correspond to the present value of the leader’s profits

realized until the moment of the follower’s investment net of the leader’s sunk cost.

The second integral corresponds to the discounted perpetual stream of profits obtained

after the investment of the follower.

Using the results of the follower problem, we can express the time-t value of

Firm i as the leader in the following way

V L

i (x) =

 xD10

δ
− Ii − xF

j
(D10−D11)

δ

(
x

xF
j

)β
1

if x ≤ xFj ,
xD11

δ
− Ii if x > xFj .

(4.10)

The first row of (4.10) is the net present value of profits before the follower made

the investment minus the present value of future profits lost due to the follower’s

investment. The second row corresponds to the net present value of profits in a situation

where it is optimal for the follower to invest immediately.
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4.3.3 Simultaneous Investment

It is possible that the firms, despite the asymmetry in the investment cost, decide

to invest simultaneously. The value function of Firm i investing at its optimal threshold

simultaneously with Firm j, calculated for t ≤ T S

i
, is

V S

i
(x) = E

[∫
TS

i

t

xsD00e
−r(s−t)ds

]
+ (4.11)

E

[∫
∞

TS

i

xsD11e
−r(s−TS

i
)ds− Iie−rTS

i

]
,

where

T S

i = inf
(
t|x (t) ≥ xSi

)
(4.12)

and

xS
i
=

β1
β1 − 1

Iiδ

D11 −D00

. (4.13)

Expression (4.11) is interpreted analogously to (4.4) and (4.9). The simultaneous

investment threshold exists as long as D11 is larger than D00. Otherwise, it is optimal

for the firms to abstain from investing.7 Consequently, the time-t value of Firm i when

the investment is made simultaneously equals

V S

i
(x) =

 xtD00

δ
+
(
xS
i
(D11−D00)

δ
− Ii
)(

xt

xS
i

)β
1

if x ≤ xS
i
,

xtD11

δ
− Ii if x > xS

i
,

(4.14)

The second row equals the value of Firm i when the simultaneous investment is

made immediately. In such a case, we denote the value of Firm i by V J

i (x). Hence, the

difference with V S

i
(x) is that V J

i
(x) represents the value of simultaneous immediate

investment, while V S

i (x) is the value of optimal simultaneous investment. From (4.13)

it can be seen that xS
i
differs among the firms. As it is shown in the next section, this

divergence does not preclude the simultaneous investment strategy.

4.4 Equilibria

There are three types of equilibria that can occur in the choice of strategies, namely

the preemptive, sequential and simultaneous equilibrium. In this section we discuss the

characteristics of each type of equilibrium and present the conditions under which each

of them occurs.
7The lack of the simultaneous equilibrium in Perotti and Rossetto (2000) is exactly due to the

violation of this condition.
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4.4.1 Preemptive Equilibrium

The first type of equilibrium we consider is the preemptive equilibrium (cf. Subsec-

tion 3.4.1). It occurs in the situation in which both firms have an incentive to become

the leader, i.e. when the cost disadvantage of Firm 2 is relatively small. Therefore,

Firm 1 has to take into account the fact that Firm 2 will aim at preempting Firm 1

as soon as a certain threshold is reached. This threshold, denoted by xP
21
, is the lowest

realization of the process x for which Firm 2 is indifferent between being the leader

and the follower. Formally, xP
21
is the smallest solution to

ξ
2
(x) = 0, (4.15)

where ξi (x) is defined as

ξi (x) ≡ V L

i (x)− V F

i (x) , (4.16)

in which V F
i and V L

i are given by (4.8) and (4.10), respectively. As a consequence,

Firm 1 invests at

min
(
xP
21
, xL

1

)
,

where xL
1
is Firm 1’s optimal leader threshold equal to8

xL
1
=

β
1

β
1
− 1

Iδ

D10 −D00

. (4.17)

Figures 4.1 and 4.2 illustrate the firms’ payoffs associated with being the leader,

follower, both investing at Firm 1’s optimal simultaneous investment threshold and

both investing immediately. Firm 1 invests as soon as the process reaches the smaller

of two values: xP
21
at which Firm 2 is indifferent between being the leader and the

follower, and xL
1
at which it is optimal for Firm 1 to invest given that Firm 2 does not

invest until xL
1
is reached. Figure 4.1 illustrates the case where xP

21
< xL

1
. Consequently,

in the preemption equilibrium the payoff of Firm 1 as a leader is higher than the payoff

obtained if Firm 1 was second to invest. It can be seen in Figure 4.2 that to the left of

xP
21
the value of Firm 2 being the leader is lower than the value being the follower, while

to the right the opposite is true. Firm 1 uses the fact that Firm 2 has no incentive

to invest before xP
21
and preempts it by just an instant. For κ tending to 1, i.e. when

firms become symmetric, xP
21
gets closer to Firm 1’s preemption point, xP

1
, at which

Firm 1 itself is indifferent between being the leader and the follower.

8At first sight it may look surprising that the optimal threshold x
L

1 does not depend on Firm 2’s

investment timing. This is due to the fact that Firm 2’s investment affects equally the value of Firm

1’s investment opportunity and the present value of its project after the investment is made.
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Figure 4.1: Firm 1’s value functions when the resulting equilibrium is of the preemptive

type.
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Figure 4.2: Firm 2’s value functions when the resulting equilibrium is of the preemptive

type.
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Consequently, the presence of cost asymmetry implies the following corollary.

Corollary 4.1 Firm 1 extracts a relative surplus from becoming the leader vs. being

the follower, i.e.

ξ
1

(
min

(
xP
21
, xL

1

))
= V L

1

(
min

(
xP
21
, xL

1

))
− V F

1

(
min

(
xP
21
, xL

1

))
> 0. (4.18)

Proof. The proof directly follows from the definition of the preemption point and

the observation that xP
1
< min

(
xP
21
, xL

1

)
.

4.4.2 Sequential Equilibrium

The sequential equilibrium occurs when Firm 2 has no incentive to become the

leader, i.e. when equation (4.15) does not have a solution. In this case, Firm 1 simply

maximizes the value of the investment opportunity, which always leads to investment

at the optimal threshold xL
1
. In other words, Firm 1 acts as if it had exclusive rights

to invest in a profit-enhancing project but, of course, Firm 2’s investment still affects

Firm 1’s payoffs.
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Figure 4.3: Firm 1’s value functions when the resulting equilibrium is of the sequential type.

Figures 4.3 and 4.4 illustrate the firms’ payoffs associated with the sequential

investment equilibrium. From Figure 4.4 it can be concluded that Firm 2 is never

better off by becoming the leader compared to being the follower. Therefore Firm 1
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Figure 4.4: Firm 2’s value functions when the resulting equilibrium is of the sequential type.

does not need to take into account the possibility of being preempted by Firm 2. As a

result, Firm 1 is able to invest at its unconditional threshold, xL
1
(see Figure 4.3). At

xL
1
the value of the investment opportunity smooth-pastes to the net present value of

incremental benefits from making the investment (cf. Dixit and Pindyck, 1996). As in

the previous case, Firm 2 invests at its follower threshold xF
2
.

Proposition 4.1 There exists a unique value of κ > 1, denoted by κ∗, which is

equal to

κ∗ =
1

D11 −D01

(
(D10 −D01)

β
1 − (D11 −D01)

β
1

β
1
(D10 −D11)

) 1

β1−1

, (4.19)

that separates the regions of the preemptive and the sequential equilibrium. For κ <

κ∗ Firm 1 needs to take into account possible preemption by Firm 2, whereas κ ≥ κ∗

implies that firms always invest sequentially at their optimal thresholds.

Proof. See the Appendix.

Intuitively, Proposition 4.1 states that there is a cut-off level for the cost dis-

advantage of Firm 2 above which Firm 1 can act as a monopolist in exercising its

investment option.
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4.4.3 Simultaneous Equilibrium

Another type of equilibrium is the simultaneous (or joint investment) equilibrium

(cf. Subsection 3.4.2). In this case the firms invest at the same point in time. In

the simultaneous investment equilibrium one of the firms has to adopt a strategy that

does not optimize its payoff unconditionally (note that the optimal joint investment

thresholds differ). Since the optimal threshold of Firm 1 is lower than that of Firm

2, the only candidate for a simultaneous investment threshold is xS
1
, defined by (4.13).

For simultaneous investment to occur, the payoff of Firm 1 associated with being the

leader has to be lower than the payoff resulting from simultaneous investment at xS
1
.

Otherwise, Firm 1 will invest either at xL
1
or at xP

2
(depending on the level of cost

asymmetry). Moreover, Firm 2’s follower threshold must be lower than xS
1
. In other

words, Firm 2 has to find it more profitable to respond to Firm 1’s investment at xS
1

immediately than to wait. Otherwise, Firm 2 would invest as the follower at xF
2
. It

turns out that wherever it is optimal for Firm 1 to invest simultaneously, Firm 2 prefers

simultaneous investment to being the follower (see the proof of Proposition 4.2 below).

Figures 4.5 and 4.6 depict both firms’ payoffs associated with the simultaneous

equilibrium.
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Figure 4.5: Firm 1’s value functions when the resulting equilibrium is of the simultaneous

type.
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Figure 4.6: Firm 2’s value functions when the resulting equilibrium is of the simultaneous

type.

4.4.4 Conditions for Equilibria

The occurrence of a particular type of equilibrium is determined by the relationship

between the relative payoffs, which in turn depend on the level of cost asymmetry, first-

mover advantage and market parameters such as volatility, the growth rate and the

interest rate. From Proposition 4.1 we already know the cut-off value of the cost

asymmetry parameter κ that separates the preemptive and the sequential equilibrium.

Now, we concentrate on determining the region in which the simultaneous equilibrium

occurs. In order to do so, let us define

ζ
i
(x) ≡ V S

i
(x)− V L

i
(x) . (4.20)

ζ
i
(x) can be interpreted as the change in Firm i’s value associated with refraining

from an immediate investment as the leader in favor of the simultaneous investment

strategy. If the minimum of ζ
1
(x) on the interval [x (0) , xF

1
] is larger than zero, the

change is positive, and thus a simultaneous equilibrium occurs. In other words, the

simultaneous equilibrium requires that Firm 1 is always better off by investing jointly

at its optimal threshold xS
1
compared to becoming the leader.9 Otherwise, either the

sequential or the preemption equilibrium occurs.

9Strictly speaking, the equilibrium with sequential/preemptive investment still exists in this case

but is Pareto-dominated by the simultaneous entry equilibrium (cf. Fudenberg and Tirole, 1985).



88 CHAPTER 4. PROFIT UNCERTAINTY AND ASYMMETRIC FIRMS

Proposition 4.2 There exists a unique value of κ ≥ 1, denoted by κ∗∗, which is

equal to

κ∗∗ = max


(D11 −D01)

(
β
1
(D10 −D11)

(D10 −D00)
β
1 − (D11 −D00)

β
1

) 1

β1−1

, 1


 , (4.21)

that determines the regions of the simultaneous and the sequential/preemptive invest-

ment equilibria. For κ < κ∗∗ the resulting equilibrium is of the joint investment type,

whereas for κ ≥ κ∗∗ the sequential/preemptive investment equilibrium occurs.

Proof. See the Appendix.

Proposition 4.2 implies that for a relatively high degree of asymmetry between

firms (for a given set of Dijs and β
1
), simultaneous investment is not optimal and

either a sequential or preemption equilibrium occurs. Moreover, there exists a set

of parameter values for which simultaneous investment is not optimal even when the

firms are symmetric. In this case κ∗∗ is equal to 1. We present an illustration of when

the resulting equilibria occur in a two-dimensional graph. In Figure 4.7 we depict

the investment strategies as a function of the first-mover advantage, D10/D11, and the

investment cost asymmetry, κ.
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investment
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investment

Figure 4.7: Regions of sequential, preemptive and joint investment equilibria for the set of

parameter values: r = 0.05, α = 0.015, σ = 0.1, D00 = 0.5, D01 = 0.25, and D11 = 1.

When the investment cost asymmetry is relatively small and there is no significant

first-mover advantage, the firms invest jointly (a triangular area in the south-west).
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When the first-mover advantage becomes significant, Firm 1 prefers being the leader to

investing simultaneously. This results in the preemption equilibrium (area in the south-

east). Finally, if the asymmetry between firms is significant (for the set of parameter

values in the upper part of Figure 4.7), the firms invest sequentially and Firm 1 can

act as a sole holder of the investment opportunity.

4.5 Uncertainty and Investment Thresholds

From the real option literature it is known that in a non-strategic framework in-

creasing uncertainty leads to a higher optimal investment threshold. As we show below,

this observation also holds in strategic models as long as the firms’ investment thresh-

olds are solutions to the optimization problem. The follower’s threshold, the leader’s

threshold in the sequential equilibrium, and the critical value triggering simultaneous

investment satisfy this condition. Conversely, in the preemptive equilibrium the leader

(Firm 1) does not always invest at the threshold that solves its optimization prob-

lem, but instead, for certain parameter values it invests at the follower’s (Firm 2’s)

preemption point.

From (4.6), (4.13) and (4.17) it is concluded that the optimal thresholds can

be expressed as

xopt
i
=

β1

β1 − 1

Iiδ

Dafter −Dbefore

, (4.22)

where Dafter and Dbefore are the deterministic contributions to the profit function

corresponding to a given threshold (cf. (4.3)). Consequently

∂xopt

∂ (σ2)
= −

δ

(β1 − 1)
2

Ii
Dafter −Dbefore

∂β1

∂ (σ2)
> 0, (4.23)

i.e. the optimal follower threshold, optimal leader threshold and the critical value

corresponding to simultaneous investment increase with uncertainty.

The impact of volatility on Firm 2’s preemption point, xP21, at which Firm 1

invests, requires slightly more attention. Let us recall that xP21 is the smallest root of

ξ2 (x) = 0. Consequently, we calculate the derivative of ξ2 (x) with respect to the profit

uncertainty. The change of (4.16), calculated for Firm 2, resulting from a marginal

increase in σ2 can be decomposed as follows:

dξ2 (x)

d (σ2)
=

(
∂ξ2 (x)

∂β1

+
∂ξ2 (x)

∂xF1

dxF1
dβ1

)
∂β1

∂ (σ2)
. (4.24)

The derivative ∂ξ2(x)

∂β1

∂β1

∂(σ2)
measures the direct influence of uncertainty on the net benefit

of being the leader. The product ∂ξ
2
(x)

∂xF
1

dx
F

1

dβ1

∂β
1

∂(σ2)
reflects the impact on the net benefit
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of being the leader of the fact that the follower investment threshold increases with

uncertainty.

It can be shown that

∂ξ2 (x)

∂β1

∂β1

∂ (σ2)
< 0, (4.25)

∂ξ2 (x)

∂xF1

dxF1
dβ1

∂β1

∂ (σ2)
> 0. (4.26)

Apparently, the joint impact of both effects is ambiguous. The first effect is (4.25),

which represents the simple value of waiting argument: if uncertainty is large, it is more

valuable to wait for new information before undertaking the investment. As we have

just seen, this also holds for the follower. The implication for the leader of the follower

investing later is that the leader has a cost advantage for a longer time. This makes

an earlier investment of the leader more beneficial. This effect is captured by (4.26),

which can thus be interpreted as an increment in the strategic value of becoming the

leader vs. the follower resulting from the delay in the follower’s investment.

However, it is possible to show that the direct effect captured by (4.25) domi-

nates, irrespective of the values of the input parameters.

Proposition 4.3 When uncertainty of the product market increases, the leader

investment threshold increases as well.

Proof. See the Appendix.

In addition to the results obtained in (4.23) and Proposition 4.3, we perform

extensive numerical experiments aiming at determining the impact of uncertainty on

the boundaries of the equilibrium type regions. These simulations indicate that κ∗∗

increases and κ∗ decreases with σ, which implies that the preemption region reduces

with σ. This fact contributes to the positive impact of uncertainty on the firms’

investment thresholds. Our numerical results are thus consistent with Boyer et al.

(2002), who show an increase in uncertainty may result in a switch from preemptive

to the joint investment equilibrium.

Our conclusions concerning the relationship between the investment timing and

uncertainty are consistent with recent empirical evidence. The negative investment-

uncertainty relationship for firms operating in an imperfectly competitive environment

is documented, for example, by Guiso and Parigi (1999).
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4.6 Cost Asymmetry and Value of the Firm

In this section we discuss the impact of the degree of investment cost asymmetry

on the value of each firm and, in particular, on the present value of the investment

opportunities. We show that, in the presence of strategic interactions, the relationship

between the magnitude of the investment cost asymmetry and the value of the firm

can be, in general, discontinuous and non-monotonic.

In the absence of strategic interactions among the firms the value-asymmetry

relationship is relatively straightforward. An increase in the investment cost of Firm

2 affects its value via i) a higher present value of the investment expenditure that has

to be incurred and ii) a delay in the optimal timing of investment which results in

postponing the moment of the profit flow increase. Consequently, the value of Firm 2

decreases monotonically with κ. Conversely, the value of Firm 1 remains unaffected by

a change in κ since the firms do not interact with each other.

Introducing competition changes the way the asymmetry affects the values of

both firms. In such a case, the value of Firm 2 is affected not only by an increase in

its investment cost but also by the fact that Firm 1 moves along its reaction curve in

response to the changing characteristics of Firm 2. Consequently, the value of Firm 2

will also be affected by the change of Firm 1’s investment timing influencing the cash

flow of the former. We illustrate the impact of strategic interactions with an example

in which parameter values are chosen in such a way that for different values of the cost

asymmetry parameter all three types of equilibria are possible (cf. Figure 4.7). The

firms’ values resulting from their optimal strategies are depicted in Figure 4.8.

The lowest degree of asymmetry between the firms corresponds to the simul-

taneous investment equilibrium. In the simultaneous equilibrium the outcome closely

resembles the case where strategic interactions are absent, in the sense that a marginal

increase in κ does not affect the value of Firm 1 and has a negative impact on the value

of Firm 2.

As κ increases, sequential investment becomes more attractive for Firm 1 be-

cause of the increasing Firm 2’s follower threshold. This means that Firm 2 will invest

later so that Firm 1’s sequential investment profit goes up. Consequently, for κ ex-

ceeding κ∗∗, Firm 1 would optimally invest at its leader threshold xL1 . However, Firm

2 anticipates this and, since its leader value at xL1 is larger than its follower value,

it is willing to invest an instant before Firm 1 does. Again, Firm 1 reacts on this

and, as explained in Section 4.1, invests at Firm’s 2 preemption point xP21 < xL1 . In

such a situation the shift in Firm 1’s reaction curve is discontinuous and a preemption
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Figure 4.8: The value of Firm i (Vi) corresponding to the regions of the joint investment,

preemptive and sequential equilibria for the set of parameter values: r = 0.05, α = 0.015,

σ = 0.1, D00 = 0.5, D01 = 0.25, D10 = 1.33, D11 = 1, I = 100 and x = 4.

equilibrium resulting in lower values of both firms occurs. The implication is that a

marginal increase in the investment cost of Firm 2 that changes the equilibrium from

simultaneous to preemptive, results in both firms’ payoffs jumping downward.

Once the firms are in the preemption region, the value of both increases with κ.

The at first sight surprising positive relationship between Firm 2’s investment cost and

its value is caused by the fact that increasing κ makes Firm 2 a ’weaker’ competitor.

This implies that the preemption threat of Firm 2 declines in the investment cost

asymmetry, so that xP21 increases with κ. Therefore, Firm 1 invests later, and this is

beneficial for the cash flow of Firm 2 since it can enjoy a higher cash flow for a longer

period. In this case, the non-strategic, i.e. increasing investment cost for Firm 2, and

strategic effects work in the opposite direction and the latter dominates. As far as

Firm 1 is concerned, its value increases because its investment threshold moves closer

to xL1 . Moreover, it benefits from the delayed investment of Firm 2.

When the asymmetry between the firms reaches the critical level κ∗, above

which it is not optimal anymore for Firm 2 to become the leader, the sequential equi-

librium occurs. Upon the switch to the sequential equilibrium the values of both firms

move upward. In both cases this is caused by the discontinuous change, from xP21 to

xL1 , of Firm 1’s investment threshold. By investing at xL1 Firm 1 maximizes its value,
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and lets Firm 2 enjoy a higher cash flow for a longer period.

In the sequential equilibrium region the changes in the firms’ values result

entirely from the sunk cost asymmetry and its impact on Firm 2’s investment timing.

Firm 1 benefits from the delayed investment of Firm 2 and the value of the latter

decreases for the same reason as in the non-strategic case.

In order to provide better intuition about the nature of the non-monotonic

relationship between the value of the firm, Vi, and the investment cost asymmetry,

κ, we decompose Vi into three components. First, we calculate the expected value of

discounted future profits in case no investment is made, which reflects the value of assets

in place, A/Pi. Further, we derive the value of the firm’s own investment opportunity

given that the other firm does not invest, PV GOO

i
. Finally, the magnitude of the

impact of the competitor’s investment on the firm’s profits, PV GOC

i
is determined.

The sum of PV GOO

i
and PV GOC

i
can be interpreted as the strategic NPV of the

investment opportunity of Firm i.

Table 4.1 presents the decomposition of Firm 1’s value for different levels of

the cost-asymmetry.

κ 1.1 1.15 1.2 1.25 1.33 1.5

A/P1 57.14 57.14 57.14 57.14 57.14 57.14

PV GOO

1 14.19 15.14 17.16 18.15 18.15 18.15

PV GOC

1 −8.58 −12.17 −11.51 −10.91 −10.05 −8.57

V1 62.75 60.12 62.80 64.39 65.24 66.72

κ∗ = 1.222 κ∗∗ = 1.124

Table 4.1: Decomposition of Firm 1’s value into the expected present value of the perpetual

cash flow from assets in place, A/P1, the option to invest, PV GOO

1 , short the competitor’s

option to invest, and the value reduction due to the competitor’s investment, PV GOC

1 , for the

set of parameter values r = 0.05, α = 0.015, σ = 0.1, D00 = 0.5, D01 = 0.25, D10 = 1.33,

D11 = 1, and I = 100. The value of the firm, V1, equals A/P1 + PV GOO

1 + PV GOC

1 .

From Table 4.1 a number of conclusions can be drawn. First, we notice that the

value attributed to assets in place does not change with the investment cost asymmetry.

This is understandable since the existing production assets of the firms are identical.

Second, the value of Firm 1’s investment opportunity rises with κ. This reflects the fact

that the growing competitive advantage allows Firm 1 to keep its investment strategy

closer to the unconditional optimum, xL1 (at which the value of PV GOO

1 in the example
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equals 18.15). Consequently, the only source of non-monotonicity is the interaction of

Firm 2’s investment decision with Firm 1’s profit (see PV GOC

1 in Table 4.1). When

the cost-asymmetry becomes larger, i.e. when κ ≥ κ∗∗ = 1.124, then Firm 1 has no

longer an incentive to wait until the optimal simultaneous threshold is reached and

is aiming at preempting Firm 2. As discussed above, the resulting preemption game

deteriorates both firm’s payoffs and, as a direct consequence, their values.

Table 4.2 contains an analogous decomposition of the value of Firm 2.

κ 1.1 1.15 1.2 1.25 1.33 1.5

A/P2 57.14 57.14 57.14 57.14 57.14 57.14

PV GOO

2 13.45 11.94 11.29 10.70 9.80 7.88

PV GOC

2 −8.58 −18.25 −15.85 −12.67 −12.67 −12.67

V2 62.01 50.83 52.59 55.18 54.61 52.36

κ∗ = 1.222 κ∗∗ = 1.124

Table 4.2: Decomposition of Firm 2’s value into the expected present value of the perpetual

cash flow from assets in place, A/P2, the option to invest, PV GOO

2 , short the competitor’s

option to invest and recapture the part of the market share, PV GOC

2 , for the set of parameter

values r = 0.05, α = 0.015, σ = 0.1, D00 = 0.5, D01 = 0.25, D10 = 1.33, D11 = 1, and

I = 100. The value of the firm, V2, equals A/P2 + PV GOO

2 + PV GOC

2 .

Upon analyzing Table 4.2 it can be concluded that increasing investment cost

asymmetry has two effects on the value of Firm 2. First, it results in the reduction of

the value of Firm 2’s investment opportunity, PV GOO

2 . This relationship is monotonic

irrespective from the type of the prevailing equilibrium and results from the increase

in the investment expenditure that has to be incurred. Second, it influences the way

the competitor’s option to invest, PV GOC

2 , affects the value of the firm. In the region

of the preemptive equilibrium, i.e. for κ ∈ [1.124, 1.222], the value of Firm 2 lost

due to the exercise of the investment opportunity by Firm 1, PV GOC

2 , is inversely

related to the investment cost asymmetry. In other words, when Firm 2’s cost becomes

higher, the investment of its competitor has a smaller negative impact on its value

since the competitor invests later. This is the strategic effect of the marginal increase

in investment cost (Firm 2 becomes a ”weaker competitor”), which dominates the

direct effect of the increase in κ on the net present value of the project, PV GOO

2 .
10

10Using a static framework, Gelman and Salop (1983) show that the profit of a smaller entrant may

be positively related to its competitive disadvantage interpreted as a capacity constraint.
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So far, we considered the impact of a difference in the investment cost on the

value of the firms. We have shown that there exists a non-monotonic and discontinu-

ous relationship between the cost asymmetry and the firms’ values resulting from the

switches among the different types of equilibrium strategies. In the next section we

discuss the impact of κ on social welfare by showing how particular types of strategies

affect the consumer surplus.

4.7 Welfare Analysis

In order to assess the desirability of policies influencing the firms’ access to new

market segments and technologies, we investigate how investment cost asymmetry af-

fects social welfare. The investment cost that has to be incurred by the firm can be

influenced by the regulator, for instance, via fiscal measures and governmental guar-

antees resulting in a lower cost of capital. Kleimeier and Megginson (2000) provide

empirical evidence that the presence of a third party guarantee lowers the cost of cap-

ital. Moreover, the firms’ access to new markets and technologies can be equalized

via knowledge spillovers. Stoneman and Diederen (1994) analyze the actual diffusion

policies of the governments and their implications for the firms’ behavior.

The desirability of a policy can be measured by the way it affects social welfare,

which is the sum of the consumer surplus and the firms’ values.11 Since in the previous

sections we already established the firms’ payoffs, here we begin the analysis with

deriving the consumer surplus. Subsequently, we discuss how this surplus is influenced

by the firms investment strategies. After having done this, we are ready to present the

relationship between the investment strategies and social welfare. Finally, we provide

some conclusions.

In order to derive the consumer surplus, we specify the way investment is

beneficial to the consumers. To do so, we introduce a simple setting in which after the

investment Firm i is offering a product of quality b1 > b0, where b0 denotes the initial

quality of the product. As long as the firms offer the same quality bk, k ∈ {0, 1}, they

compete à la Cournot, whereas after making the investment first, Firm 1 achieves a

Stackelberg advantage in the differentiated product market. The Cournot outcome is

restored after Firm 2 has invested. Then both firms compete in the market with a

higher quality.

The market we consider has a continuum of consumers with an instantaneous

11Tirole (1988), Ch. 5-8, provides an extensive introduction to oligopoly theory.
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utility function

Ui (t) = θib− p (t) , (4.27)

where θi is a consumer-specific parameter that is uniformly distributed over the interval

[0, A (t)], b is the quality of the product and p (t) is its price at time t. The parameter

A (t) reflecting consumers’ valuations follows the geometric Brownian motion

dA (t) =
1

2

(
α−

1

4
σ2

)
A (t) dt+

1

2
σA (t) dw (t) , (4.28)

where α, σ and dw (t) are the same as in (4.1). It is useful to observe (by applying Itô’s

lemma) that A2 can be replaced by x since it exactly follows process (4.1).

If both firms offer the same quality, the instantaneous demand function corre-

sponding to utility function (4.27) can be expressed as

p (t) = (A− q1 (t)− q2 (t)) b, (4.29)

where qi (t) denotes the quantity offered by Firm i at time t.

Let us now derive the expressions for the instantaneous consumer surplus,

denoted by cskl (t), where k and l relate to the quality offered by the firms. In order to

analyze the complete structure of the game, we consider three cases. In the first case

only quality b0 is provided. In the second case one firm provides quality b0 and the

other b1 (> b0) and, finally, both firms offer b1. In the first and third case, maximizing

the firm’s instantaneous profits, calculating social welfare, and the residual surplus

given (4.29), yields (for a derivation see the Appendix)

cskk (t) =
2

9
bkx (t) . (4.30)

The formulation of cs10 (the second mentioned case) is slightly more involved

and it corresponds to a Stackelberg equilibrium with second degree price discrimination.

Consequently, cs10 consists of two components: the surplus of consumers purchasing

the good of quality b1 and the surplus of those who choose b0. Solving the Stackelberg

game yields the instantaneous consumer surplus (see the Appendix)

cs10 =
4b1 + 5b0
32

x. (4.31)

To find out in what way the consumer surplus is related to the firms’ investment

strategies, we analyze the changes in the consumer surplus across the equilibria. If the

resulting equilibrium is of the simultaneous type the consumer surplus, CSS (t), equals

CSS (t) = E

[∫
T
S1

t

e−r(s−t)cs00 (s) ds+

∫
∞

TS1

e−r(s−t)cs11 (s) ds

]
, (4.32)
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where T S

1 is given by (4.12). When the resulting equilibrium is of the preemption type,

the consumer surplus, CSP (t), amounts to

CSP (t) = E

[∫
min(TP21,TL1 )

t

e−r(s−t)cs00 (s) ds

]
(4.33)

+E

[∫
T
F

2

min(TP21,TL1 )
e−r(s−t)cs10 (s) ds+

∫
∞

TF
2

e−r(s−t)cs11 (s) ds

]
,

where

T P

21 = inf
(
t|x ≥ xP21

)
, (4.34)

TL

1 = inf
(
t|x ≥ xL1

)
, (4.35)

and T F

2 is defined by (4.5). The consumer surplus in the sequential equilibrium is the

same as (4.33), with the exception that min
(
TP

21, T
L

1

)
is replaced by TL

1 .

After taking into account that the firms invest later in the simultaneous equi-

librium, a comparison of (4.32) and (4.33) enables us to formulate the following propo-

sition.

Proposition 4.4 Under the preemptive/sequential equilibrium the consumer sur-

plus is always larger than in the joint investment equilibrium.

Proof. See the Appendix.

Consequently, from the consumers’ viewpoint, the situation in which the firms

invest simultaneously is undesirable. This is easy to understand since in this case the

firms invest later so that during a longer period of time the product with a higher

quality is not available.

Now, let us investigate social welfare, which equals, as mentioned earlier, the

consumer surplus plus the value of the firms. In order to relate the latter to the

analyzed market, we can make the following substitution, where the expressions at

the RHS of each equality result from the maximization of the firms’ profits (see the

Appendix):

D00 ≡
b0
9

D01 ≡
b0
16

D10 ≡
2b1 − b0
8

D11 ≡
b1
9

For a particular example, the consumer surplus and the firms’ values are de-

picted as functions of the asymmetry in the investment cost in Figure 4.9. From this

figure it can be concluded that low asymmetry in the investment costs results in a
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Figure 4.9: Value of Firm i (Vi) and consumer surplus (CS) corresponding to the regions

of the joint investment, preemptive and sequential equilibria for the set of parameter values:

r = 0.05, α = 0.015, σ = 0.1, b0 = 5, b1 = 7, I = 100, and x = 7.

relatively low consumer surplus and higher values of the firms. Increasing the asym-

metry among the firms, such that the simultaneous equilibrium is superseded by the

preemption equilibrium, leads to a downward jump in the firms’ values and, at the

same time, to an upward jump in the consumer surplus. As seen before, the decline in

the firms’ values mainly results from the need to incur the investment expenditure, I,

earlier. The increase in the consumer surplus is the consequence of an earlier provision

of the higher quality product. When the investment cost is large compared to the

increase in the consumer surplus associated with higher quality, it is optimal from a

welfare perspective to postpone the investment. Therefore, in such a case an increase

in κ leading to a switch from simultaneous to preemption equilibrium has a detrimen-

tal effect on welfare. Conversely, when the required sunk cost is relatively small, the

resulting preemption equilibrium is socially desirable.

The impact of increasing κ on social welfare is summarized in the following

corollary.

Corollary 4.2 There exists a critical level of investment expenditure below which

social welfare is always larger in the preemptive/sequential equilibrium than in the joint

investment equilibrium.
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Consequently, if the investment expenditure is small relative to the consumer

surplus, social welfare is highest under the preemption equilibrium. In this case, the

loss in the firms’ values resulting from the preemption game is outweighed by the effect

on the consumer surplus of an earlier provision of the high quality product. This implies

that in the case of a relatively low investment expenditure, a relative cost disadvantage

of one of the competitors results in strategies yielding a socially preferred outcome.

Conversely, a relatively high investment expenditure implies the social optimal-

ity of the simultaneous equilibrium. This results from the fact that the simultaneous

equilibrium is associated with the investment outlay occurring later. Since the in-

crease in consumer surplus resulting from providing a higher quality product earlier is

not sufficient to fully compensate for the higher present value of an early investment,

postponing the investment is socially desirable. Therefore, in the presence of a high

sunk cost of the project, investment strategies resulting in the simultaneous equilib-

rium maximize social welfare. This, in turn, implies that the cost asymmetry is not

desirable. Corollary 4.3 summarizes these findings.

Corollary 4.3 A socially desirable outcome is more likely to occur when investment

that requires a high sunk cost is associated with a low asymmetry across firms and when

a low sunk cost investment is to be made by highly asymmetric firms.

Corollaries 4.2 and 4.3 are closely associated with the impact of uncertainty on

the social welfare in equilibrium. Other things equal, higher profit volatility discourages

investment and may result in a switch from the preemptive to the joint investment

equilibrium. Therefore, if entering a newmarket segment is associated with a significant

investment cost, it is possible that higher uncertainty in this segment can positively

influence social welfare. Conversely, if the investment cost is relatively low, so the

preemptive equilibrium is socially optimal, uncertainty will be negatively related to

the social welfare.

We conclude that an equal access of two firms to a new market segment does not

maximize consumer surplus. Moreover, after taking into account the values of the firms,

it is not always socially desirable. If the firms’ investment costs are not excessively high,

the presence of asymmetry among them yields a socially more desirable outcome.

However, it is important to notice that these conclusions do not carry over to

the case where the first-mover advantage is large, which would occur when the product

quality difference is higher. Then, as illustrated in Figure 4.7 the preemption equilib-

rium prevails even if firms are symmetric. Consequently, from a welfare perspective,

asymmetry is not desirable even if the investment is associated with a relatively low
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sunk cost.

4.8 Conclusions

In this chapter, the impact on the firms’ optimal investment strategies of a differ-

ence in the costs associated with their profit-enhancing investments is analyzed. Since

the firms operate in an imperfectly competitive duopolistic market, the profitability of

each firm’s project is affected by the other firm’s decision to invest. We show that when

the asymmetry among firms is relatively small and so is the first-mover advantage, the

firms invest jointly. When the first-mover advantage is significant, the lower-cost firm

preempts the higher-cost firm. In the situation where the asymmetry between firms

becomes sufficiently large, the firms exercise their investment options sequentially and

their mutual decisions do not affect each other directly.

Subsequently, we analyze the impact of uncertainty on optimal investment

timing. Despite the presence of strategic interactions, increasing uncertainty always

results in a higher investment threshold. This holds not only for the optimal investment

thresholds but also for the case when the lower-cost firm faces the threat of being

preempted by its higher-cost opponent.

Furthermore, the effects of investment cost asymmetry on the values the two

firms are explored. It is shown that the relationship between the firm’s value and the

cost asymmetry is non-monotonic and discontinuous. We obtain a number of counter-

intuitive results. For reasonable parameter values, deepening the firm’s competitive

disadvantage due to a marginal rise in its irreversible cost may reduce the value of

its competitor. This situation results when a switch from simultaneous to preemptive

equilibrium occurs upon the marginal change in the cost asymmetry. Another interest-

ing effect of strategic interactions is present when the firms are engaged in a preemption

game. Then increasing the extent to which the firms is set at cost-disadvantage leads

to an appreciation of its value due to the strategic effect on the competitor’s investment

timing.

Finally, we discuss the welfare effects of strategic interactions between the

firms. In an example where the investment increases product quality, we show that

the relationship between cost asymmetry and social welfare depends on the cost of

investment. If it is relatively high and the first-mover advantage is not too large, social

welfare is maximized when none of the firms suffers from competitive disadvantage.

However, if the investment cost is low, an increase of the consumer surplus resulting

from the early investment in the preemption equilibrium exceeds the loss of the firms’
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joint value associated with such an investment. Therefore, the preemption equilibrium,

occurring when the sufficiently costs differ, is in this case desirable. This observation

allows for the conclusion that an equal access of competitors to a new technology or

market segment may not be socially optimal.

4.9 Appendix

Proof of Proposition 4.1. The sequential equilibrium occurs when Firm 2 has no

incentive to invest as the leader. Formally, this requires that ξ2 (x) is negative for all

x ∈ [x (0) , xF
2 ). Therefore, in order to determine the domain of κ-values where the

sequential equilibrium prevails, we are interested in finding a pair (x∗; κ∗) that satisfies

the following system of equations ξ2 (x
∗; κ∗) = 0

∂ξ
2
(x∗;κ∗)

∂x

∣∣∣
x=x∗

= 0.
(4.36)

In other words, we are interested in a point (x∗; κ∗) at which Firm 2’s leader function

is tangent to the follower function. After substituting (4.8) and (4.10) into (4.16), all

defined for Firm 2 for x ≤ xF

2 , and rearranging we obtain that (4.36) becomes:
x∗(D10−D01)

δ
− Iκ∗ +

xF
1
(D11−D10)

δ

(
x∗

xF
1

)β
1

−
xF
2
(κ∗)(D11−D01)

β1δ

(
x∗

xF
2
(κ∗)

)β
1

= 0

D10−D01

δ
+ β1

D11−D10

δ

(
x∗

xF
1

)β1−1

− D11−D01

δ

(
x∗

xF
2
(κ∗)

)β1−1

= 0.

(4.37)

After multiplying both sides of the second equation in (4.37) by x∗

β1
, subtracting it from

the first equation, and rearranging, we obtain

x∗ =
β1

β1 − 1

Iκ∗δ

D10 −D01

. (4.38)

Substituting (4.38) into the first equation in (4.37) and (4.6) for xF

1 yields

β1

β1 − 1
Iκ∗−Iκ∗+

(
D11 −D01

D10 −D01

κ∗
)β

1 β1

β1 − 1

D11 −D10

D11 −D01

I−

(
D11 −D01

D10 −D01

)β
1 Iκ∗

β1 − 1
= 0.

(4.39)

Rearranging (4.39) leads to the expression (4.19).

In the remaining part of the proof, we demonstrate that κ∗ > 1. It holds that

κ∗ > 1⇐⇒
(D10 −D01)

β
1 − (D11 −D01)

β
1

β1 (D10 −D11)
− (D11 −D01)

β
1
−1 > 0, (4.40)



102 CHAPTER 4. PROFIT UNCERTAINTY AND ASYMMETRIC FIRMS

which can be rewritten into

(D10 −D01)
β1 − (D11 −D01)

β1

β1 (D10 −D11)
− (D11 −D01)

β
1
−1 (4.41)

=
(D10 −D01)

β1 − (D11 −D01)
β1 − β1 (D10 −D11) (D11 −D01)

β1−1

β1 (D10 −D11)
> 0.

By substituting

a = D11 −D01, (4.42)

b = D10 −D01, (4.43)

and rearranging, we conclude that (4.41) is equivalent to

aβ
1

β1 (b− a)

((
b

a

)β1

− 1− β1

b

a
+ β1

)
. (4.44)

After observing that b > a and aβ1

β
1
(b−a)

> 0, we have to prove that the second factor of

(4.44) is positive. Let us denote w = b

a
and g (w) = wβ

1 − 1− β1w+ β1. Consequently,

we have

g (1) = 0, and (4.45)

∂g(w)

∂w
= β1w

β
1
−1 − β1 > 0, ∀β1, w > 1. (4.46)

This completes the proof.

Proof of Proposition 4.2. Firm 1 prefers simultaneous investment unless

for some x its leader payoff, V L

1 (x), exceeds the optimal joint investment payoff,

V S

1 (x). Formally, the simultaneous equilibrium occurs only if ζ1 (x) is positive for

all x ∈
(
xP

1 , x
F

2

)
. Therefore, in order to determine the domain of κ-values for which

the simultaneous equilibrium prevails, we are interested in finding a pair (x∗∗; κ∗∗) that

satisfies the following system of equations ζ1 (x
∗∗; κ∗∗) = 0

∂ζ1(x
∗;κ∗)

∂x

∣∣∣
x=x∗∗

= 0.
(4.47)

In other words, we are interested in a point (x∗∗; κ∗∗) in which Firm 1’s simultaneous

investment function is tangent to its leader function. After substituting (4.10) and

(4.14) into (4.20), all defined for Firm 1 for x ≤ xS

1 , and rearranging, we obtain
x∗∗(D00−D10)

δ
+ I +

xS
1
(D11−D00)

β1δ

(
x∗∗

xS
1

)β1

−
xF
2
(κ∗∗)(D11−D10)

δ

(
x∗∗

xF
2
(κ∗∗)

)β1

= 0

D00−D10

δ
+ D11−D00

δ

(
x∗∗

xS
1

)β1−1

− β1
D11−D10

δ

(
x∗∗

xF
2
(κ∗∗)

)β1−1

= 0.

(4.48)
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After multiplying the second equation in (4.48) by x∗∗

β1
, subtracting it from the first

equation, and rearranging, we obtain

x∗∗ =
β1

β1 − 1

Iδ

D10 −D00

. (4.49)

Substituting (4.49) into the first equation in (4.48) and (4.13) and (4.6) for xS

1 and xF

2 ,

respectively, yields

−
I

β1 − 1
+

(
D11 −D00

D10 −D00

)β
1 I

β1 − 1
−

(
D11 −D01

(D10 −D00) κ∗∗

)β
1 β1Iκ

∗∗

β1 − 1

D11 −D10

D11 −D01

= 0.

(4.50)

Given that we only consider the case that κ∗∗ ≥ 1, rearranging (4.50) leads to the

expression (4.21).

In the remaining part of the proof we show that the optimality of the simultane-

ous investment for Firm 1 implies that Firm 2 is better off by investing simultaneously

as well. Consequently, we prove that as long as it is optimal for Firm 1 to invest si-

multaneously, Firm 2’s follower threshold is always smaller than Firm 1’s optimal joint

investment threshold (since if this is true, then it is always optimal for Firm 2 to invest

immediately when Firm 1 invests). First, we determine κ̂ which solves

xF

2 (κ̂) = xS

1 (κ̂) . (4.51)

For κ < κ̂ it holds that xF

2 (κ̂) < xS

1 (κ̂). After substituting (4.6) for Firm 2 and (4.13)

for Firm 1 into (4.51), and rearranging, we obtain

κ̂ =
D11 −D01

D11 −D00

. (4.52)

Now, we show that κ̂ > κ∗∗, i.e. that

D11 −D01

D11 −D00

− (D11 −D01)

(
β1 (D10 −D11)

(D10 −D00)
β1 − (D11 −D00)

β1

) 1

β1−1

> 0 (4.53)

holds. After substituting

c = D11 −D00,

d = D10 −D00,

and rearranging, we obtain that condition (4.53) is equivalent to

1

c
−

(
β1 (d− c)

dβ1 − cβ1

) 1

β1−1

> 0. (4.54)
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This implies (
d

c

)β1

− 1− β1

(
d

c
− 1

)
> 0.

Let us denote z = d

c
and h (z) = zβ

1 − 1− β1 (z − 1) . Consequently, we have

h (1) = 0, and (4.55)

∂h(z)

∂z
= β1z

β1−1 − β1 > 0, (4.56)

since z > 1 and β1 > 1. This completes the proof.

Proof of Proposition 4.3. The difference of Firm 2’s payoffs as the leader and

the follower for x ≤ xF

2 , can be expressed as (cf. (4.8) and (4.10))

ξ2 (x) =
x (D10 −D01)

δ
− Iκ + (4.57)

+
I

D11 −D01

(
xβ1−1

β
1

D11−D01

Iδ

)β1

β1 − 1

(
β1 (D11 −D10)−

D11 −D01

κβ1−1

)
.

We are interested in the direction in which uncertainty affects xP
21, i.e. the smallest

root of (4.57). The derivative of (4.57) with respect to β1 equals

∂ξ2 (x)

∂β1

=
I

D11 −D01

(
xβ1−1

β
1

D11−D01

Iδ

)β1

β1 − 1
× (4.58)

×

(
ln

(
x
β1 − 1

β1

D11 −D01

Iδ

)(
β1 (D11 −D10)−

D11 −D01

κβ1−1

)
+D11 −D10 +

D11 −D01

κβ1−1
ln κ

)
.

It is straightforward to observe that for sufficiently small x (4.58) is positive. This can

be generalized into the statement that there exists x satisfying

sgn
∂ξ2 (x)

∂β1

=


1, x ∈ (0, x) ,

0, x = x,

−1, x ∈
(
x, xF

2

)
.

(4.59)

Since (in general) it is not possible to obtain an analytical formula for xP
21, we evaluate

the sign of the derivative (4.58) at such a realization of x for which the corresponding

sign is the same as at xP
21. Consequently, we are interested in the realization of x that

satisfies the following two properties

ξ2 (x
∗) < 0 =⇒ ξ2 (x) < 0 ∀x, and (4.60)

∃xP

21 =⇒ xP

21 < x∗. (4.61)
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Properties (4.59) and (4.61) imply that

∂ξ2 (x)

∂β1

∣∣∣∣
x=x∗

> 0 =⇒
∂ξ2 (x)

∂β1

∣∣∣∣
x=xP

21

> 0. (4.62)

The realization x∗ equal to (cf. (4.38))

x∗ =
β1

β1 − 1

Iκδ

D10 −D01

(4.63)

satisfies (4.60) and (4.61). Property (4.60) can be verified by examining the definition

of x∗ (cf. (4.36)) and by observing that

∂ξ2 (x)

∂κ
< 0.

Property (4.61) follows directly. Subsequently, we determine the sign of the derivative

(4.58) at x∗ :

∂ξ2 (x)

∂β1

∣∣∣∣
x=x∗

=
I

D11 −D01

(
D11−D01

D10−D01

κ
)β1

β1 − 1
× (4.64)

×

(
ln

(
D11 −D01

D10 −D01

κ

)(
β1 (D11 −D10)−

D11 −D01

κβ1−1

)
+D11 −D10 +

D11 −D01

κβ1−1
ln κ

)
.

Let us denote

ϕ (κ) = ln

(
D11 −D01

D10 −D01

κ

)(
β1 (D11 −D10)−

D11 −D01

κβ1−1

)
(4.65)

+D11 −D10 +
D11 −D01

κβ1−1
ln κ.

Positive ϕ (κ) for ∀κ ∈ [1, κ∗] , where κ∗ is defined by (4.19), would imply the positive

relationship between uncertainty and the leader threshold. First, we show that ϕ (κ∗)

is positive. Subsequently, we prove that

ϕ (κ∗) > 0 =⇒ ϕ (κ) > 0 ∀κ ∈ [1, κ∗] . (4.66)

The proof that ϕ (κ∗) > 0 consists of three steps. First, we change the variables and

factorize the function ϕ (κ∗), which yields the product of two factors: one with negative

and one with unknown sign. Second, we show that the factor with the unknown sign

is increasing with the relevant variable. Finally, we show that the value of the factor

with a priori unknown sign approaches zero when the underlying variable approaches



106 CHAPTER 4. PROFIT UNCERTAINTY AND ASYMMETRIC FIRMS

the upper limit of its domain. The last two steps imply that the sign of the analyzed

factor is negative, which is equivalent to ϕ (κ∗) having a positive sign.

Consequently, we substitute (4.19) into (4.65) and obtain

ϕ (κ∗) = ln

(
D11 −D01

D10 −D01

)
× (4.67)

×

(
β1 (D11 −D10)− (D11 −D01)

β1
β1 (D10 −D11)

(D10 −D01)
β1 − (D11 −D01)

β1

)

+ ln

 1

D11 −D01

(
(D10 −D01)

β
1 − (D11 −D01)

β
1

β1 (D10 −D11)

) 1

β1−1

β1 (D11 −D10)

+D11 −D10.

Now, we change the variables in order to simplify the expression for ϕ (κ∗). Sub-

stitution of (4.42) and (4.43) into (4.67) yields

ϕ (κ∗) = ln
(a

b

)(
β1 (a− b)− aβ1

β1 (b− a)

bβ1 − aβ1

)
+ (4.68)

+ ln

(
1

a

(
bβ1 − aβ1

β1 (b− a)

) 1

β1−1

)
β1 (a− b) + a− b.

We proceed by dividing (4.68) by b, and defining

p =
a

b
. (4.69)

As an immediate result we get

ϕ (κ∗)

b
= ln p

(
β1 (p− 1)− pβ1

β1 (1− p)

1− pβ1

)
(4.70)

+ ln

((
1− pβ1

β1 (p
β
1
−1 − pβ1)

) 1

β1−1

)
β1 (p− 1) + p− 1.

Factorization of (4.70) yields

ϕ (κ∗)

b
= −

(1− p)

(β1 − 1) (1− pβ1)
× (4.71)

×

[
(β1 − 1)

(
1− pβ1 + ln pβ1

)
−
(
1− pβ1

)
β1 ln

(
β1

pβ1−1 (1− p)

1− pβ1

)]
.

Since it always holds that

−
(1− p)

(β1 − 1) (1− pβ1)
< 0, (4.72)
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we are interested in the sign of the second factor of (4.71). Therefore, we define

ϕ̃ (p, β1) ≡ (β1 − 1)
(
1− pβ1 + ln pβ1

)
−
(
1− pβ1

)
β1 ln

(
β1

pβ1−1 (1− p)

1− pβ1

)
(4.73)

Now, we determine the sign of the derivative of (4.73) with respect to p:

ϕ̃ (p, β1)

∂p
= −

β1

p (1− p)

(
β1p

β
1 (1− p)

(
1− ln

(
β1

pβ1−1 (1− p)

1− pβ1

))
− p

(
1− pβ1

))
.

(4.74)

This can be expressed as

ϕ̃ (p, β1)

∂p
= −

β1

(
1− pβ1

)
1− p

(
β1

pβ1−1 (1− p)

1− pβ1

(
1− ln

(
β1

pβ1−1 (1− p)

1− pβ1

))
− 1

)
.

(4.75)

The first factor of (4.75) is always negative. After the following substitution

z = β1

pβ1−1 (1− p)

1− pβ1
, (4.76)

the second factor of (4.75) can be expressed as

−z

(
1

z
− 1− ln

1

z

)
, (4.77)

which is negative for every z ∈ R++. This implies that

ϕ̃ (p, β1)

∂p
> 0. (4.78)

In the last step we show that lim
p↑1

ϕ̃ (p, β1) = 0 ∀β1. The limit of (4.73) can be decom-

posed as

lim
p↑1
(β1 − 1)

(
1− pβ1 + ln pβ1

)
− lim

p↑1

(
1− pβ1

)
β1 ln

(
β1

pβ1−1 (1− p)

1− pβ1

)
. (4.79)

The first part can be determined directly

lim
p↑1
(β1 − 1)

(
1− pβ1 + ln pβ1

)
= 0. (4.80)

The second part requires a slightly closer examination

lim
p↑1

[
−
(
1− pβ1

)
β1 ln

(
β1

pβ1−1 (1− p)

1− pβ1

)]
= (4.81)

= lim
p↑1

[
−
(
1− pβ1

)
β1 ln

(
β1

1− p

1− pβ1

)
−
(
1− pβ1

)
β1 ln

(
pβ1−1

)]
=

=

[
lim
p↑1

−
(
1− pβ1

)
β1 ln

(
β1

1− p

1− pβ1

)]
= 0
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The last equality holds since

lim
p↑1
ln

(
β1

1− p

1− pβ1

)
= 0. (4.82)

Substitution of (4.80) and (4.81) into (4.79) yields

lim
p↑1

ϕ̃ (p, β1) = 0. (4.83)

(4.83) together with (4.78) imply that (4.73) is negative and, as a consequence, (4.67)

is positive.

Having proven the positive sign of ϕ (κ∗), now we show that (4.66) holds. Differen-

tiating (4.65) with respect to κ yields

∂ϕ (κ)

∂κ
=
1

κ

(
β1 (a− b)−

a

κβ1−1

)
+ ln

(a

b
κ
) (β1 − 1) a

κβ1
− ((β1 − 1) lnκ− 1)

a

κβ1
,

(4.84)

where a and b are defined by (4.42) and (4.43). Defining

˜̃ϕ (κ) ≡ ϕ (κ)

b
, (4.85)

and substitution of (4.69) result in

∂ ˜̃ϕ (κ)
∂κ

=
β1 (p− 1)

κ
+ ln (pκ)

(β1 − 1) p

κβ1
− ln κ

(β1 − 1) p

κβ1
< 0. (4.86)

This completes the proof.

Derivation of the consumer surplus and profit functions. When both firms

offer a product of the same quality, the resulting equilibrium is symmetric. The prices

and quantities are equal to

pkk =
bkA

3
qkk =

A

3
,

which yields the instantaneous profit

πkk =
bkA

2

9
.

As it can be seen from Figure 4.10, the consumer surplus equals

cskk =
1

2

(
bkA−

bkA

3

)
2A

3
=
2bk
9

A2.

After Firm 1 achieves a Stackelberg advantage by investing, the prices and quanti-

ties obtained by solving the firms’ maximization problem equal

p10 =
2b1 − b0
4

A p01 =
b0
4
A q10 =

A

2
q01 =

A

4
.
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2qkkHtL AHtL
qHtL

AHtLbk

pkHtL

pHtL

cskkHtL

2πkkHtL

Figure 4.10: Firm’s profits, πkk, and the instantaneous consumer surplus, cskk, in a market

where firms compete with an identical product quality bk.

q10HtL+q01HtLq10HtL AHtL
qHtL

AHtLb0

AHtLb1

p10HtL

p01HtL

pHtL

cs10HtL

π10HtL

π01HtL

Figure 4.11: Firm’s profits, π10 and π01, and the instantaneous consumer surplus, cs10, in

a market where firms compete with product qualities, respectively, b1 and b0.
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The instantaneous profits are therefore equal to

π10 =
2b1 − b0
8

A2 π10 =
b0
16

A2,

and the consumer surplus is (see Figure 4.11)

cs10 =
1

2

(
b1A−

2b1 − b0
4

A

)
A

2
+
1

2

(
b0A−

b0
4
A

)
A

4
=
4b1 + 5b0
32

A2.

The observation that A2 = x allows for an immediate calculation of the consumer

surplus in terms of (6.1) and for an identification of the deterministic contributions of

the profit functions.

Proof of Proposition 4.4. Since TP
21 < T F

2 < T S
1 for each ω ∈ Ω (see Section

1.6), subtracting the value of consumer surplus in the joint investment equilibrium

from the value corresponding to the preemptive investment yields

∆CSP−S (t) =

Et

[∫ TF
2

TP
21

e−r(s−t) (cs10 (s)− cs00 (s)) ds+

∫ TS
1

TF
2

e−r(s−t) (cs11 (s)− cs00 (s)) ds

]
> 0.

An identical reasoning can be applied while comparing the simultaneous equilibrium

with the sequential exercise strategy.



Chapter 5

Entry and Strategic Quality Choice

5.1 Introduction

An uncertain economic environment results in firms managing their investment

opportunities not only by choosing the timing of market entry but also by selecting

product characteristics, such as quality. Higher quality is associated with higher costs

but allows for capturing the benefits of good states of demand. On the contrary, bad

states of demand can lead to lower quality since the cost of possible quality improve-

ment outweighs benefits from a moderate increase of the consumers’ interest in the

product. For example, the options available to the subscribers of a Japanese operator

NTT DoCoMo via the i -mode and related third generation (3G) services have been

scaled down comparing to the initial plans since demand, in relation to the associated

costs, turned out to be lower than expected. Consequently, at the time of launching

the new product, the subscribers did not have the possibility of videoconferencing or

receiving video clips, and what remains in the package offered to them is accessing

e-mail, downloading news and weather reports, and calling up location-specific infor-

mation. Adding new services was planned to be considered if the future demand was

sufficiently high.1 The case of the Japanese operator illustrates that firms face a trade-

off between the costs of quality and foregone revenues resulting from offering limited

functionality of the product. In this chapter we analyze the impact of demand uncer-

tainty and competition on the optimal choice of the firm’s strategic variables, such as

investment timing and the product quality, as well as on its valuation.

We apply the real options approach which allows to determine the value of flex-

ibility concerning the investment timing and the quality of the offered product/service.

1See The Economist, October 13-19, 2001, The Mobile Internet: A Survey.

111
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The implementation of option-based techniques requires taking into consideration two

major differences between financial and real options. First, in most cases real options

are not exclusive, i.e. exercising a given option by one party results in the termination

of corresponding options held by other parties (cf. the analysis of Chapters 3 and 4).

For example, an option to lay down a fiber-optic cable between an internet backbone

and a residential area is alive only until a competitive firm does so. Second, the firm

can influence both the value of the underlying asset as well as the exercise price of the

corresponding option. In many situations there exists a positive relationship between

the amount of the sunk cost and the revenue of the project (i.e. via the level of autom-

atization of the production process or via the product quality). Consequently, the firm

is often faced with a menu of mutually exclusive real options with different exercise

prices and payoff structures.

Both these aspects of real options have been incorporated into this chapter

and are applied to investigate the investment decision in a market with stochastic

demand, positive network externalities and competitive entry threat. We develop a

strategic model in which a firm chooses the timing of irreversible investment and the

quality of the product. Competitive entry occurs as a result of the optimal investment

decision of a second firm. We compare the cases of fixed and flexible quality in order to

determine the additional value of flexibility in quality choice. Flexible quality, which

can be adjusted over time, requires sufficient know-how within the firm, the use of a

more advanced technology or contractual flexibility (e.g. via a flexible agreement with

content providers in the case of a 3G mobile operator). Fixed and flexible quality can

also be interpreted as resulting from a licensed and internally developed technology,

respectively. In the fixed quality case, once chosen quality cannot be changed. For

instance, it may not be possible for an internet infrastructure provider to save on quality

reduction (equivalent to narrowing bandwidth capacity) since fiber-optic cable cannot

be easily resold or hired to another party during market downturn. Adding capacity

when the demand is high can also be prohibitively costly, especially if the high state

of demand results from its high volatility. In case of flexible quality, the firm is able to

change it at a low cost in response to demand fluctuations and/or competitive entry.

In practice, flexible quality is often associated with higher up-front costs. We show

that these higher costs are especially justified in competitive environments with large

demand uncertainty where the value of flexible quality more than doubles compared

to the monopoly case.

Consequently, we aim at unifying two streams of literature: strategic real op-
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tions and industrial organization-based endogenous quality choice.2 As far as the real

option framework is concerned, our model builds up upon such contributions as Smets

(1991), Grenadier (1996), Perotti and Rossetto (2000), Huisman (2001), Nielsen (2002),

Lambrecht and Perraudin (2003), and Mason and Weeds (2003), which all have in com-

mon that they analyze the effects of both competition and uncertainty on investment

timing.

Introducing quality choice as a strategic variable results in the extension of

the existing continuous-time strategic real options framework to a class of models in

which firms are equipped with two control variables. Besides choosing the timing of

investment, the firms now also have to decide about the optimal quality of the product

they are going to offer. The implication is that some of the classic real options results

cease to hold. For example, in the fixed quality case, the optimal investment timing

of the second firm is no longer irrelevant for the investment decision of the leader in

the open-loop strategies (cf. Huisman, 2001). This is due to the fact that the entry

decision of the follower interacts with the second control variable of the leader (quality),

which, in turn, influences the leader’s optimal investment timing. With flexible quality

the follower’s investment decision becomes again irrelevant since the leader can change

quality instantaneously. As a consequence, until the follower’s entry it can act as a

monopolist, thus without being influenced by the entry threat.

In this chapter it is shown that, due to strategic interaction between the leader

and follower, the value of the investment option of the former can decrease with un-

certainty if the fixed-quality technology is used. Moreover, the value of the leader is

lower than the one of the follower. This latter result is due to the strategic disad-

vantage of the first mover in a Stackelberg game in which firms compete in strategic

complements. Once the leader has invested it cannot change its quality. Hence, the

follower is in the comfortable position where it can optimally adjust its quality level

to the leader’s choice. The situation reverses under the flexible-quality technology of

the leader. Now, the value of the follower, which still has a fixed quality choice, can

decrease with uncertainty since its project’s value becomes concave in the realizations

of random demand. This is caused by the fact that now the leader can change its

quality level after the follower has made its choice.

Furthermore, we show that in the flexible-quality case the leader can drive its

competitor out of the market in high states of the demand. This is caused by the

fact that the leader can afford investing in high quality when demand is high. This

2In a recent paper, Pennings (2002) analyzes the optimal quality choice in a real options framework

using a different model set-up.
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reduces the demand for the product offered by the follower to zero for states of demand

exceeding a certain trigger. Flexible quality can thus serve as an entry deterrent control.

In this case the quality level need not be set higher than monopoly level since the

leader’s ability to raise quality instantly after a potential entry is sufficient to prevent

such an entry from occurring.

We also discuss the impact of network externalities on the optimal investment

timing, quality choice and firms’ valuations. Since, from the point of view of a con-

sumer, an increase of the degree of network externalities can compensate the decrease

in quality, the optimal quality choice of firms is inversely related to network external-

ities. Moreover, firms invest sooner and their valuations are higher when the product

market exhibits strong network externalities.

As far as the literature on strategic quality choice is concerned, our model is

related to the contributions by Motta (1993), Aoki and Prusa (1996), Foros and Hansen

(2001), Dubey and Wu (2002), Hoppe and Lehmann-Grube (2001) and Banker et al.

(1998). In general, it can be remarked that we generalize this stream of research by

analyzing a dynamic, continuous-time framework while taking into account economic

uncertainty.

Motta (1993) considers a two-stage duopoly model with either fixed or variable

costs of quality (i.e. independent from or proportional to the scale of improvement).

Fixed costs can be associated with R&D or advertising activities. Variable costs,

that correspond to our framework, reflect more skilled labor and more expensive raw

materials and inputs. The result of the paper is that firms differentiate qualities, which

is possible due to setting different prices. In a similar framework Aoki and Prusa (1996)

analyze optimal sequential and simultaneous quality choice. Again, due to the fact that

the authors assume only vertical product differentiation and price competition, there

exists a first-mover advantage in the quality choice game. In our case, products are

differentiated also horizontally, so the firms set different qualities even if the cost of the

good to consumer is equal. As a consequence, qualities become strategic complements,

reaction curves are continuous, and the profit of the second mover is higher.

Foros and Hansen (2001) apply a two-stage model extended to allow for hor-

izontal differentiation and network externalities to the market of Internet Service

Providers. They find that the optimal choice of quality is positively related to network

externalities. Their result differs from ours due to the fact that in Foros and Hansen

(2001) the substitution effect between quality and network externalities is dominated

by the impact of lower competitive pressure resulting from higher network externalities.

Dubey and Wu (2002) investigate firms’ incentives to invest in product inno-
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vation, which ultimately leads to a quality increase. They show that the relationship

between the number of firms and the propensity to innovate is bell-shaped. In other

words, if the number of firms is ”too large” or ”too small” the innovation process does

not occur. The results of Dubey and Wu (2002) are consistent with our model that

predicts that the possibility of entry increases the quality provided by the otherwise

monopolistic firm. Using a different analytical framework Banker et al. (1998) con-

clude that in the absence of synergies among the firms in the quality cost, an increasing

number of firms leads to decreasing quality. This finding coincides with the argument

of Dubey and Wu (2002) for a ”too large” number of firms and is caused by the fact

that improving quality is assumed to be sufficiently costly.

An alternative dynamic model of strategic quality choice is developed by Hoppe

and Lehmann-Grube (2001). In their framework, the firms chose the optimal timing of

entry, given that the available quality is a deterministic function of time. Prior to the

investment, firms are assumed to pay R&D costs which are proportional to time until

investing. The authors show that, depending on the cost of R&D, there can be either

rent equalization (cf. Fudenberg and Tirole, 1985) or a second-mover advantage in

the quality choice game. The assumption made by Hoppe and Lehmann-Grube (2001)

that the costs of higher quality are incurred prior to investment differs from ours in

which the costs of quality occur after the investment is made (similar to the notion

of variable quality costs in Motta, 1993). As a consequence, contrary to Hoppe and

Lehmann-Grube (2001), we do not observe the first-mover advantage (corresponding

to payoff equalization without exogenous firms’ roles) in the fixed-quality case in our

model.

This chapter is organized as follows. In Section 5.2 we present the model of

a monopolistic firm with a fixed-quality technology. Section 5.3 extends the model to

a duopolistic environment. The discussion of the monopolistic model with a flexible

quality choice is presented in Section 5.4 and the analysis of its duopolistic extension

is included in Section 5.5. In Section 5.6 we compare the impact of fixed and flexible

quality on the value of the firm. Section 5.7 concludes.

5.2 Non-Strategic Model with Fixed Quality

Consider a situation in which a risk-neutral firm has an investment opportunity

to launch a product/service in an uncertain market. It chooses the optimal investment

timing and quality of the product. In this section we assume that once chosen quality

cannot be changed. The idea of the fixed quality choice is therefore similar to Ueng
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(1997), who considers an infinitely repeated oligopoly game in which the qualities are

chosen before the first period. It is realistic to assume that the revenue per customer

is not constant but evolves stochastically over time.3 The instantaneous revenue per

customer at time t is equal to x (t) , where x follows the geometric Brownian motion

dx (t) = αx (t) dt+ σx (t) dw (t) . (5.1)

Here α denotes the deterministic drift rate and σ is the instantaneous volatility of

the process. In the analysis we assume that the initial realization of (5.1), x (0), is

sufficiently low, so that in all possible cases the market is too small for immediate

investment to be optimal.

There is a continuum of heterogenous consumers with valuations ωi distributed

uniformly over the interval [0, 1]. A consumer derives utility not only from the stand-

alone good but also from the number of other consumers using it. A utility function

satisfying these characteristics is4

Ui = ωiq + an− k, (5.2)

where q ∈ R+ is the quality of the good, k ∈ R+ is the cost the consumer has to bear

to acquire the good, and a ∈ R+ is a parameter that measures the intensity of the

network externalities.5 Consequently, ωi can be interpreted as the marginal rate of

substitution between income and quality, so that a higher ωi reflects a lower marginal

utility of income and, as a consequence, a higher income (see also Tirole, 1988, p. 98).

Large a implies that the consumer’s utility grows fast with the number of other users.

In the opposite case, when a tends to zero, the number of users of the same good does

not affect the utility of the consumer.6 The size of the network, n ∈ [0, 1], is interpreted

as the fraction of the total market that has bought a given product. Without loss of

generality, we normalize the absolute size of the total market to 1.

3For instance, the revenue per customer of a mobile telephone network depends on the intensity

of voice traffic, competitive pressure, and arrival of new services that can be offered to the customer

against an additional fee. It is natural to assume that the evolution of these economic variables over

time contains an unpredictable component.
4Heterogeneity of consumers with respect to the value attached to the quality of the stand-alone

good and their homogeneity with respect to the degree of network externalities is a common assump-

tion in the economics of network literature (cf. Mason, 2000, and references therein).
5Parameter k should not be associated with a price that the consumer has to pay for the product.

It can be interpreted as a non-monetary cost associated with the effort and time used for searching

the good with suitable characteristics.
6Of course, there are examples of negative a as well. For instance, the utility from having a

Rolls-Royce is decreasing in the number of other owners of this brand in the neighborhood.
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Network externalities are thus present if the number of other consumers using

the same product influences the utility of a given consumer. Positive (negative) net-

work externalities imply that the utility of the consumer increases (decreases) with the

number of other users. An example of a good a demand for which exhibits positive

network externalities is an access to the web via a given Internet Service Provider,

a computer operating system, an audio recorder using a particular standard (DCC,

MD, or CD-R), or a mobile phone (GSM vs. CDMA). We analyze a good for which

the consumer’s utility depends both on the network size and the quality (MacOS vs.

Windows). The purchase decision is determined mainly by these two parameters, so

that we do not incorporate a pricing strategy. This choice of modeling approach follows

recent empirical evidence. In an analysis of the on-line book retail market Latcovich

and Smith (2001) claim that ”consumers do not respond much to significant price dif-

ferences between sellers [...]. But they [...] care about vertical characteristics such as

reliability, security, and ease of use”. This supports the idea of the quality-oriented

market analyzed in our paper. Also Shapiro and Varian (1998) point out that the price

is an insignificant determinant of the purchase decision for many network goods, such

as software. Referring to the market for spreadsheets they claim that ”the purchase

price of the software is minor in comparison with the cost of deployment, training and

support. Corporate purchasers, and even individual customers, were much more wor-

ried about picking the winner of the spreadsheet wars than they were about whether

their spreadsheet costs $49.95 or $99.95” (Shapiro and Varian, 1998, p. 288).

On the basis of the consumers’ utility function, we can determine the size of

the network as a function of the quality chosen by the firm. Define the consumer of

type ω to be indifferent between acquiring the good or not. Consequently, it holds that

ωq + an− k = 0. (5.3)

By setting a < k < q, which is to ensure an interior solution for the size of the network

(we waive these restrictions later), and observing that the size of the network, n, equals

1− ω, we obtain that

n (q) =
q − k

q − a
. (5.4)

We further assume a constant value per customer, constant economies of scale

on the supply side, and that the unit cost of operation, c (q), satisfies c′ (q) > 0 and

c′′ (q) ≥ 0. The firm chooses quality q so as to maximize the value of the investment

opportunity. In order to determine the value of the investment opportunity, we begin

with calculating the value of the project after the investment decision is made. The
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value of the project is found by integrating over time the discounted difference between

the instantaneous value of the installed base of consumers, xn (q), and the operating

costs c (q)n (q).7 Therefore, if we denote the project value at time t by V (t), it holds

that

V (t) = E

[∫
∞

t

(x (s)− c (q))n (q) e−r(s−t)ds

]
(5.5)

=
n (q)x

δ
−

c (q)n (q)

r
≡ R (q)x−C (q) (5.6)

where r is the risk-free rate and δ, defined as

δ ≡ r − α, (5.7)

is the return shortfall of the demand process x. The firm has to incur a sunk invest-

ment cost, I ∈ R++. Although I does not depend on the choice of quality, the cost

associated with pursuing the project increases with quality due to a higher present

value of operating costs.8 The decision of the firm is to choose the optimal quality, q,

and timing of entry, x∗, in order to maximize the value of the investment opportunity.

To find the optimal investment threshold and product quality we proceed in

two steps. First, we solve the optimal stopping problem for an arbitrary level of q.

As an intermediate result we obtain the optimal investment threshold and the value of

the investment opportunity as a function of q. Second, we maximize the value of the

investment opportunity with respect to q.

The threshold x∗ (q), being the lowest value of x at which the firm enters the

market, is

x∗ (q) =
β1

β1 − 1

I + C (q)

R (q)
, (5.8)

where

β1 = −
α

σ2
+
1

2
+

√(
α

σ2
−
1

2

)2

+
2r

σ2
> 1. (5.9)

The value of the investment opportunity, F (q, x), equals

F (q, x) =
(β1 − 1)

β
1
−1

β
β
1

1

R (q)β1 xβ
1

(I + C (q))β1−1
. (5.10)

7The instantaneous value of the installed base of consumers can be obtained by integrating the utili-

ties of participating consumers over their types,
∫
1

ω
(ωq + an− k)dω. This equals 0.5n2a+0.5 (q − k)n

which is convex in n. However, here we assume that the firm does not price discriminate so that it

does not extract the whole consumer surplus. Instead, we impose linearity in n of the firm’s profit.
8An alternative interpretation of the cost structure is that the initial investment outlay equals

I + c (q)n (q) /r, and the marginal production cost is zero for all levels of q.
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The derivation of (5.8), (5.9) and (5.10) follows directly from Section 1.6. Subsequently,

we maximize the value of the investment opportunity with respect to q, given the

optimal investment rule, x∗ (q). In order to ensure that our solution is a maximum, we

introduce the following assumption.

Assumption 5.1 Let q∗ be the solution to ∂F (q, x∗)/∂q = 0. Then it holds that9

(β
1
(C + I)Rqq + CqRq − (β1 − 1)CqqR)|q=q∗ < 0. (5.11)

The solution to the problem of quality choice is given in the following proposition.

Proposition 5.1 Under Assumption 5.1 the optimal quality of the product, q∗, is

implicitly given by the following equation

Cq = x∗Rq. (5.12)

Proof. See the Appendix.

From Proposition 5.1 it is obtained that the value of the investment opportunity

is maximized if at the optimal investment threshold the marginal cost of increasing the

quality is equal to the expected marginal benefit. (5.12) implies that in the optimum

the ratio of elasticities of functions C (q) + I and R (q) equals the wedge occurring in

the threshold value x∗ (q) (cf. (5.8)), i.e.

εC+I,q
εR,q

∣∣∣∣
q=q∗

=
β1

β1 − 1
, (5.13)

where εf,x ≡ xfx
f
.

In order to provide more insight into the obtained result, we analyze the rela-

tionship between market uncertainty, intensity of the network externalities, size of the

network and the optimal quality. Proposition 5.2 provides part of the results.

Proposition 5.2 The quality of the product increases with revenue uncertainty and

its growth rate, i.e.

dq∗

dσ
> 0, and (5.14)

dq∗

dα
> 0. (5.15)

Proof. See the Appendix.

9When it does not yield ambiguity, subscripts denote partial derivatives.
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The fact that higher uncertainty concerning the demand side of the market

influences the quality choice of the firm positively results from the option-like structure

of the project value and upside potential from higher quality investment. Furthermore,

a higher growth rate of the market also implies a higher quality choice since the firm

prefers to incur additional cost to increase quality when revenue is expected to grow

faster.10

Furthermore, numerical simulations indicate that the impact of network exter-

nalities on the optimal quality choice is negative. The latter relationship results from

the fact that the level of quality and the degree of network externalities act as substi-

tutes in the marginal consumer’s utility function. Since a higher quality is equivalent

to a larger consumer base (cf. (5.4)), the size of the network in optimum, n∗, also rises

with σ and α.

Market uncertainty and intensity of network externalities also have an impact

on the optimal investment threshold. Since both factors affect the optimal investment

threshold directly and indirectly (via the change of the optimal quality), the total

impact is determined by calculating the following derivative:

dx∗ (q)

dθ
=

∂x∗ (q)

∂θ
+

∂x∗ (q)

∂q

dq

dθ
, θ ∈ {a, σ}. (5.16)

In the Appendix we prove the following proposition:

Proposition 5.3 It holds that

dx∗ (q)

dσ
> 0. (5.17)

Hence, the relationship between uncertainty and the optimal investment thresh-

old is positive. Therefore we conclude that the flexibility in the quality choice does not

change the classical result of real option theory (cf. Dixit and Pindyck, 1996).

Extensive numerical simulations show that the optimal investment threshold

decreases with a magnitude of network externalities. This is associated with the fact

that a higher magnitude of network externalities makes the product market more valu-

able for the firm. This results in a higher value of the investment project (other things

equal) and, thus, a lower value of x suffices to achieve the required profitability ratio,

β1/ (β1 − 1), of the project at the time of investing.

10The positive sign of the derivative with respect to α is equivalent to the negative derivative with

respect to the return shortfall δ of the demand process x.
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5.3 Strategic Model with Fixed Quality

Here we introduce the possibility of competitive entry by a second firm (Firm

2). In order to focus on the incumbent-entrant problem, we impose that Firm 2 can

only enter after Firm 1 has already done so (i.e. firms play the timing game in the

open-loop strategies as in Reinganum, 1981). After entering the market, Firm 2 starts

offering the good having a quality q2. In general, q2 will differ from q1, i.e. from the

quality choice made by Firm 1. The fact that the firms do not compete in prices

implies that for the consumers the cost of accessing each network is equal across the

networks. Consequently, if the products were perfect substitutes, consumers would

always choose the product with a higher quality and the resulting market outcome

would always be a monopoly.11 In case of imperfect substitution this does not hold

any longer. Denote the degree of substitution by ρ ∈ (0, 1). For ρ close to unity, the

goods are close substitutes, whereas a very small ρ implies that the firms operate in

virtually separated markets.

In order to analyze the impact of entry on the valuation of the first firm in

the market (Firm 1), we adopt a simple structure for the market with differentiated

goods (as in, e.g., Spence, 1976) and allow for the presence of network externalities as

in Section 5.2. The system of inverse demand functions is given by

{
k = (1− n1) q1 − ρn2q2 + a (n1 + ρn2) for Firm 1’s network, while

k = (1− n2) q2 − ρn1q1 + a (n2 + ρn1) for Firm 2’s network,
(5.18)

and ni, n ∈ {1, 2}, is the size of Firm i’s network. Each of the inverse demand functions

can be interpreted as follows. The LHS represents the instantaneous cost (utility loss)

of accessing the network. The RHS corresponds to the linear demand schedule that

decreases with the offered quantities, ni and nj, while its negative slope is reduced

by the presence of a component a (n1 + ρn2) which reflects network externalities. The

impact of the quantity offered by Firm j on Firm i’s demand, and the network external-

ities among its consumers is scaled down by factor ρ reflecting imperfect substitution

among the goods. It can be easily noticed that for nj equal to zero, (5.18) reduces to

the monopolistic demand function of Section 5.2 (cf. equation (5.4)).

The size of the network of Firm i obtained by solving (5.18), subject to ni ∈

11
Provided that the trivial case of equal qualities is excluded.
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[0, 1], equals

ni (qi) =



0 qi < q

i
,

1

1−ρ2

qi−q
i

qi−a
qi ∈

[
q
i
, q

i

]
,

qi−k

qi−a
qi > q

i
,

(5.19)

where

q
i
= k (1− ρ) + ρmax [k, qj] , (5.20)

q
i
=

max [k, qj]− k (1− ρ)

ρ
, (5.21)

and i, j ∈ {1, 2}, i �= j. Depending on the quality offered, Firm i competes with Firm

j for moderate values of qi, it is a monopolist for high qi, or has no customer base

if qi is low. Both qualities q
i
and q

i
depend positively on quality qj offered by the

competitor. Moreover, higher substitutability of the goods, captured by ρ, results in

shrinking the range of qualities in which firms compete. This is intuitive since the

closer substitutes the goods are, the less they can differ in qualities for both firms to

be present in the product market. Since the once chosen qualities remain fixed and

neither q
i
nor q

i
depends on x, both firms being active implies that qi ∈

[
q
i
, q

i

]
for

i ∈ {1, 2}. Otherwise, one of the firms would be better off by not entering.

For analytical convenience, we impose the following linear specification of the

cost function:

c (qi) = c0 (qi − a) , c0 ∈ R++, qi ∈ [a,∞), (5.22)

where c0 can be interpreted as an efficiency parameter. Consequently, higher values

of c0 correspond to industries that are less efficient in R&D. Setting a quality equal

to a (< k) is equivalent to the firm producing no output and incurring no cost (since

ni (a) = c (a) = 0 in this case). The instantaneous profit function corresponding to

(5.22) is

πi = (x− c0 (qi − a))ni. (5.23)

We solve the problem backwards in time. First, the optimal investment thresh-

old and quality choice of Firm 2 is determined. The value of Firm 2’s investment

opportunity at t ≤ T2 equals

F ∗2 (t) = E

[∫
∞

T2

(x (s)− c0 (q
∗

2 − a))n2(q
∗

1, q
∗

2)e
−r(s−t)ds− Ie−r(T2−t)

]
, (5.24)

where T2 denotes the random stopping time associated with x reaching Firm 2’s optimal

investment threshold. A well-known procedure (cf. Section 1.6) allows for deriving
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Firm 2’s optimal threshold, x∗2, and the value of its investment opportunity:

x∗2 =
β1

β1 − 1

(
I (1− ρ2)

q2 − q
2

+
c0
r

)
(q2 − a) δ, (5.25)

F ∗2 = max
q2

(
q2 − q

2

)
x∗2

β1 (1− ρ2) δ (q2 − a)

(
x

x∗2

)β
1

. (5.26)

From (5.26) it follows that the quality maximizing the value of Firm 2’s investment

opportunity, q∗2, is

q∗2 =
1

2 (β1 − 1)
× (5.27)[

(2β1 − 1) q2 − a+
√

q
2
− a

√
q
2
− a+ 4β1Ir (β − 1) (1− ρ2) c−10

]
.

Upon analyzing (5.27) it can be concluded that the qualities chosen by the firms are

strategic complements. Since q
2
is an increasing function of q1 (see (5.20)) and q∗2 rises

with q
2
, the quality chosen by Firm 2 is positively related to the quality choice made

by Firm 1.

This relationship, in combination with a closer inspection of (5.25), leads to

the following proposition.

Proposition 5.4 Firm 2 responds optimally to an increased quality of Firm 1 not

only by raising its own quality but also by delaying its timing of entry, i.e. the following

inequalities hold

dq∗2
dq1

> 0, and

dx∗2
dq1

> 0.

Proof. See the Appendix.

Consequently, it can be concluded from Proposition 5.4 that the choice of

higher q1 is equivalent to entry-deterrent behavior of Firm 1.

Having calculated the optimal investment threshold of Firm 2, we are in po-

sition to analyze the investment decision of Firm 1. First, we note that the value of

Firm 1’s investment project at the time of investing, t, is given by

V1 (t) = E

[∫
T2

t

(x (s)− c0 (q
∗

1 − a))n(q∗1)e
−r(s−t)ds− I

]

+E

[∫
∞

T2

(x (s)− c0 (q
∗

1 − a))n1(q
∗

1, q
∗

2)e
−r(s−t)ds

]
. (5.28)
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Working out the expectations yields

V1 =
q∗1 − k

q∗1 − a

(
x

δ
−

c0 (q
∗

1 − a)

r

)
− I︸ ︷︷ ︸

Monopolistic value

+ (5.29)

(
1

1− ρ2
q∗1 − q

1

q∗1 − a
−

q∗1 − k

q∗1 − a

)(
x∗2
δ

−
c0 (q

∗

1 − a)

r

)(
x

x∗2

)β
1

︸ ︷︷ ︸
Value lost due to the competitive entry

.

Again, an application of the well-known procedure yields the optimal threshold, x∗1,

and the value of investment opportunity, F ∗1 , of Firm 1

x∗1 =
β1

β1 − 1

I + C (q1)

R (q1)
, (5.30)

F ∗1 = (5.31)

max
q1

(q1 − k)
x∗
1

r−α
+ β1

(
q1−q

1

1−ρ2
− q1 + k

)(
x∗
2

r−α
− c0(q1−a)

r

)(
x∗
1

x∗
2

)β1

β1 (q1 − a)

(
x

x∗1

)β
1

.

It is worthwhile noticing that the optimal investment timing of Firm 1 does not ex-

plicitly depend on the action taken by Firm 2. This outcome results from the fact

that the roles of the firms (leader vs. follower) are exogenously determined. However,

this result still differs from the classical result from the real options theory (see, e.g.,

Huisman, 2001, p. 170) concerning the irrelevance of the follower’s investment timing

for the decision of the leader. The reason is that Firm 1’s timing decision is affected

by the choice of quality, q1, and, according to (5.31), q1 depends on Firm 2’s threshold

x∗2 and on the threshold quality q
1
, which is a function of q2 (cf. (5.20)).

The resulting dependence of Firm 1’s investment threshold on the behavior

of Firm 2 is caused by the fact that in our model firms have two control variables

(investment timing and quality) as opposite to a single variable in classic real option

models. It still holds that introducing the competitor does not change the optimal

ceteris paribus choice of the timing variable. However, competitive entry changes the

optimal choice of quality (the second control variable). This makes the monopolistic

choice of timing no longer optimal and, as a consequence, it holds that x∗1 �= x∗.

As far as the value of the investment opportunity is concerned, it can be de-

termined by maximizing the argument of the RHS of (5.31). The derivative of F ∗1 with

respect to q1 can be computed since x∗1, x
∗

2 and q2 are known functions of q1. Due to

complexity of the resulting relationship, the unique (in the relevant interval) root of

the derivative has to be determined numerically.
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5.3.1 Comparative Statics: Valuation of Firms

We are interested in the sensitivity of the value of the firms with respect to changes

of market parameters. Figures 5.1 and 5.2 depict the relationship between the market

volatility and the value of the investment opportunity of Firm 1 and Firm 2, respec-

tively, for different magnitudes of network externalities. On the basis of both figures

two observations can be made. First, the value of Firm 1’s investment opportunity is

lower than the one of Firm 2. The first phenomenon results from the strategic disadvan-

tage of the first mover in a game in which the firms compete in strategic complements.

As it can be shown in a simple Stackelberg setting, the follower’s payoff is higher than

the payoff of the leader if the control variables are strategic complements (cf. Tirole,

1988, p. 331, footnote 53). Despite the fact that Firm 1 enjoys profit from investment

for a longer period (it invests as first), its value is still lower than the one of Firm 2.
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Figure 5.1: The value of the investment opportunity of Firm 1 for the parameter values

ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.

Second, the sign of the relationship between the value of Firm 1’s project and

uncertainty crucially depends on the magnitude of network externalities, a. The stan-

dard option argument indicates that the sign of this relationship is positive. However,

under higher uncertainty Firm 2 sets its quality more ”aggressively” (cf. (5.14)), which

negatively influences the value of Firm 1. The sign of the joint effect is ambiguous and

reflects the above mentioned trade-off. As illustrated in Figure 5.1, the presence of
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Figure 5.2: The value of the investment opportunity of Firm 2 for the parameter values

ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.

strong network externalities amplifies the latter (strategic) effect.

Finally, it can be seen that the presence of the network externalities signif-

icantly enhances the value of the investment opportunities of both firms. The rate

of increase is most dramatic when the degree of network externalities approaches the

cost of joining the network (i.e. when the marginal consumer’s valuation of the stand

alone-good is equal to zero). Therefore, for the set of parameters as in Figures 5.1

and 5.2, the change in the value of the firms’ investment opportunities following an

increase in a from 3 to 4 (k = 5) is higher than the analogous change associated with

an increase in a from 0 to 3.

5.3.2 Comparative Statics: Firm 1’s Strategic Choice of Vari-

ables

Finally, we compare the non-strategic and strategic case with respect to Firm

1’s optimal choice of strategic variables. Figures 5.3 and 5.4 illustrate the optimal

investment threshold, whereas Figures 5.5 and 5.6 depict the optimal quality choice.

From Figures 5.3 and 5.4 it follows that the optimal investment threshold is higher if

a subsequent competitive entry threat exists. This contradicts the result known from

the strategic real option literature that the optimal investment threshold of the market
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leader is not influenced by the entry threat if the roles of the firms are predetermined.

As we already concluded from (5.30), Firm 1’s investment threshold depends on the

investment timing and quality decision of its competitor.
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Figure 5.3: The optimal investment threshold of Firm 1 in the non-strategic case for the

parameter values ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and I = 10.

On the basis of Figures 5.5 and 5.6 we conclude that the presence of a (poten-

tial) competitor increases the quality provision of Firm 1. Higher quality (as shown in

Section 5.2), as well as the fact that, from the timing of the second firm onwards, the

market must be shared with the competitor, results in the optimality of a higher - than

in the non-strategic case - investment threshold which, in turn, leads to the outcome

depicted in Figure 5.4.

This result and the one concerning the project’s value contradict the findings of

Foros and Hansen (2001), who analyze a duopoly model of Internet Service Providers.

In a modified Hotelling framework they show that profits decrease and the offered qual-

ity increases with the degree of network externalities. The reason why this differs from

our results is the following. Here, in a non-strategic framework, network externalities

can act as a substitute of quality in a consumer’s utility function. Consequently, a

firm can have less incentive to invest in (costly) quality when network externalities are

present. This effect also takes place in a strategic framework if the increase of quality

occurs for a single product. In case of Foros and Hansen (2001), the increase of inter-

connection quality affects both products so that the substitution effect is dominated
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Figure 5.4: The optimal investment threshold of Firm 1 in the strategic case for the param-

eter values ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and I = 10.
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Figure 5.5: The optimal quality choice of Firm 1 in the non-strategic case for the parameter

values ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and I = 10.
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Figure 5.6: The optimal quality choice of Firm 1 in the strategic case for the parameter

values ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and I = 10.

by lower competitive pressure resulting from higher network externalities.

5.4 Non-strategic Model with Flexible Quality

Here, it is assumed that within the firm sufficient know-how is present for adjusting

quality, which can be valuable in case of changing demand characteristics. The fact

that the firm can change quality could be caused for instance by the fact that its

technology is the result of its own R&D process. Such an interpretation implies that in

the previous section quality was fixed because the production technology was provided

by an external vendor.

Once the entry threshold, x∗∗, is reached, production commences. The marginal

cost, c (q (x)), is a function of the instantaneously chosen product/service quality. This

quality is chosen in such a way that the value of the firm is maximized. In this section

we assume that no competitive entry threat exists.
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Consequently, at each point in time the firm chooses quality q (t) such that12

q∗∗ (x) = argmax
q

[(x− c0 (q − a))n(q)] . (5.32)

From this the present value of the firm’s expected cash flow at time t can be determined

V (t) = E

[∫
∞

t

(x (s)− c0 (q
∗∗ (x (s))− a))n(q (x (s)))e−r(s−t)ds

]
. (5.33)

Since in general we allow for q < k, let us redefine n (q) (cf. (5.4)) as

n (q) = max

[
0,

q − k

q − a

]
. (5.34)

Maximizing (5.32) with cost specification (5.22) leads to the optimal quality choice

q∗∗ (x) = a +

√
(k − a) x

c0
1{x>η}, (5.35)

where

η = c0 (k − a)

and 1B is an indicator function. (5.35) implies that for low states of demand (i.e. for

x < η) the optimal choice of quality is a (< k), which corresponds to the situation

in which the market is not served and the firm incurs no cost (see (5.22)). As soon

as x hits η from below, quality jumps to k and, subsequently, adjusts continuously to

changes in x. When x hits η from above, the quality drops to a and the firm again

becomes idle without incurring variable costs.

Define the instantaneous profit function, π, to be equal to the expression under

the argmax operator in (5.32). Substituting q∗∗ into the instantaneous profit function

yields

π =
(√

x−√
η
)2

1{x>η}. (5.36)

Solving the Bellman equation13

0.5σ2x2V ′′ + αxV ′ + π = rV (5.37)
12Our formulation differs from the optimal control models of quality as, e.g., presented by El

Ouardighi and Tapiero (1998, see also references therein) since these authors consider a determin-

istic setting in which they include elements absent here such as pricing strategy and learning effects.
13The value of the firm, V , (cf. (5.33)) still satisfies the differential equation (5.37) since q is an

F-previsible process. Consequently,

dV = V
x
dx + 0.5V

xx
(dx)

2
+ V

q
dq = V

x
dx + 0.5V

xx
(dx)

2
,

which, after the substitution of (5.1), yields the LHS of (5.37).
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for appropriate value-matching and smooth-pasting conditions yields:

V =

{
BM2x

β
1 for x < η,

BM1x
β
2 + C0 + C1x

0.5 + C2x for x > η,
(5.38)

where constants BM1, BM2, C0, C1, and C2 are given by equations (5.76)-(5.80) in the

Appendix, β1 is given by (5.9), and β2 is given by

β2 = − α

σ2
+
1

2
−

√(
α

σ2
− 1

2

)2

+
2r

σ2
< 0. (5.39)

The value functions in the two regimes of the stopping region are the solutions of the

standard ODE (5.37) with the non-homogeneity term defined by (5.36). Under the

regime x < η demand is too low and no service/product is offered. Consequently, the

value of the firm consists entirely of the option value to relaunch the activities should

the market turn out to be favorable. For x > η the firm offers the service and makes

positive profit. Now, the value of the firm consists of two parts: the perpetuity value of

the current instantaneous profit and the option-like component reflecting the possibility

of ceasing the operations if x falls below η. The perpetuity value of the instantaneous

profit has the structure of a portfolio of continuously paid dividends proportional to

various powers of the GBM (5.1).

The optimal investment threshold and the value of the investment opportunity

are found by applying the standard procedure for the optimal exercise of an American

option when the value of the investment project in the stopping region is described by

(5.38). It should just be noticed that it is never optimal to exercise the investment

option for x < η since by waiting an increment dt the present value of investment cost

diminishes by Irdt, whereas the expected present value of the cash flow remains un-

changed. The value-matching and smooth-pasting conditions regarding the expression

for V when x > η in (5.38) are

AMxβ1 = BM1x
β2 + C0 + C1x

0.5 + C2x− I, (5.40)

β1AMxβ1−1 = β2BM1x
β2−1 + 0.5C1x

−0.5 + C2. (5.41)

From (5.40) and (5.41) the following implicit equation for the optimal investment

threshold, x∗∗, can be obtained

(β1 − β2)BM1 (x
∗∗)β2 + β1 (C0 − I) + (β1 − 0.5)C1 (x

∗∗)0.5

+(β1 − 1)C2x
∗∗ = 0. (5.42)
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The value of the investment opportunity equals

F = (V (x∗∗)− I)
( x

x∗∗

)β1 ≡ AMxβ1, (5.43)

where V (x∗∗) is given by the first row in (5.38).

Here, we would like to make an additional remark concerning the implications

of the flexible quality choice on the cost structure. Compared with the fixed-quality

case, the effective sunk cost in the current case equals I, as opposed to I + C in the

former. Consequently, the choice of flexible quality not only allows for optimizing the

product parameter when demand changes but also for avoiding commitment to fixed

production costs in the future.

5.5 Strategic Model with Flexible Quality

In this section we introduce the possibility of entry of a second firm (Firm 2). As

in the fixed quality case, such an entry threat is going to influence both the optimal

investment timing and the value of the investment opportunity of Firm 1. We proceed

as follows. First, we discuss possible market outcomes dependent on the realization

of the stochastic variable, x. Subsequently, we determine the value of Firm 1 in the

situation where both firms have already invested. Then, we move backwards and

calculate the value of Firm 1 after it entered the market but before Firm 2 invested.

Finally, we determine the value of Firm 1’s investment opportunity and its optimal

investment threshold, and provide some comparative statics.

As in Section 5.3, Firm 2 is assumed to have the fixed-quality technology.

Profit maximization of Firm 1 yields the following optimal quality schedule

q∗∗1 =




a, when Firm 1 is idle,

a +

√
(q

1
−a)x
c0

, when Firm 1 is a duopolist,

a +
√

(k−a)x

c0
, when Firm 1 is a monopolist.

(5.44)

The first (idle) and the third (monopoly) case have already been derived in Section

5.4. The result for the duopoly case can be obtained by maximizing the profit function

(5.23) with respect to qi, i = 1, and using the observation that n1 is in this case defined

by the second equation in (5.19). Before we derive Firm 1’s profit as a function of x,

we formulate the following proposition.

Proposition 5.5 There are three regimes of the product market structure when the

quality of Firm 1’s product is flexible. For low realizations of x the market is served
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only by the entrant (Firm 1 stays idle), intermediate realizations of x correspond to

the duopoly outcome, whereas under high realizations of x Firm 1 is a monopolist. The

three regimes correspond to the following intervals

x ∈ (0, ϕ) ,

x ∈ (ϕ,κ) , and

x ∈ (κ,∞) ,

where

ϕ ≡ c0
(
q
1
− a

)
, (5.45)

κ ≡ c2
0
ψ2

ρ2ϕ
, (5.46)

where ψ ≡ ρ (q1 − a) , and q
1
and q1 are given by (5.20) and (5.21).

Proof. See the Appendix.

The existence of three regimes of quality choice result from the fact that now

Firm 1 is able to adjust its quality, q1, as x evolves. Since from (5.20) and (5.21) we

learn that q
2
and q2 explicitly depend on q1, it follows that q

2
and q2 become functions

of x. Consequently, for low realizations of x (lower than ϕ) Firm 1 remains idle (in

order to avoid operating loss), whereas for intermediate values of x it competes against

Firm 2. If x becomes large (larger than κ), Firm 1 can afford to choose quality that

is high enough to prevent Firm 2 (with a fixed quality q2) from serving the market.

Consequently, the quality choice (5.44) reflects the optimal response in the state of

inaction, duopoly and monopoly, respectively. This relationship is illustrated in Figure

5.7.

We denote the value of Firm 1, provided that Firm 2 has already entered the

market, by V d

1
. V d

1
satisfies the following Bellman equation

0.5σ2x2
∂2V d

1

∂x2
+ αx

∂V d

1

∂x
+ π1 = rV d

1
, (5.47)

where

π1 =



0 for x < ϕ,

1

1−ρ2

(√
x−√

ϕ
)2

for ϕ < x < κ,(√
x−√

η
)2

for x > κ.

(5.48)

For x < ϕ Firm 1 is idle, for x > κ it earns monopoly profit, whereas for x ∈ (ϕ,κ)
it has a duopoly profit. The latter can be calculated by substituting the intermediate
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Figure 5.7: Trigger qualities q
2
(short-dotted line), q2 (long-dotted line) as a function of x,

for the parameter values ρ = 0.5, k = 5, a = 2, c0 = 1, and q2 = 7.5 (solid line). For low

realizations of x (below ϕ) only Firm 2 is active in the market whereas for high realizations

(above κ) Firm 1 becomes a monopolist - the quality of Firm 2 is too low. For intermediate

values of x both firms serve the market since q2 remains within the bounds determined by

q
2
and q

2
.

cases of (5.19) and (5.44) into (5.23). Solving (5.47) with the value matching and

smooth pasting conditions satisfied for realizations ϕ and κ yields

V d

1
=



(D2 +D4) x

β
1 for x < ϕ,

D1x
β
2 +D2x

β
1 + E0 + E1x

0.5 + E2x for ϕ < x < κ,

(D1 +D3) x
β2 + C0 + C1x

0.5 + C2x for x > κ,

(5.49)

where (see the Appendix) C0, C1, and C2 are defined by (5.78)-(5.80), whereas coeffi-

cients D1, D2, D3, D4, E0, E1, and E2 are defined by (5.81)-(5.87). Again, it can be

seen that the value of Firm 1 consists of the present value of the expected cash flow and

the option-like components reflecting possible switches across regimes. Parameters Ek

and Ck, k ∈ {1, 2, 3}, correspond to the duopolistic and monopolistic profit function,
respectively. Components of the form Dlx

β2, l ∈ {1, 2, 3, 4}, reflect the possibility of
switching to the regime corresponding to lower than current realizations of x, whereas

the opposite is true for components Dlx
β
1.

Equipped with the valuation formula for Firm 1 when both firms are already
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present in the market, we are ready to derive the value of Firm 1, V m
1
, prior to Firm

2’s entry

V m
1
= V +

(
V d
1
(x∗∗

2
)− V (x∗∗

2
)
)( x

x∗∗
2

)β1

, (5.50)

where V is defined by (5.38) and x∗∗
2
denotes Firm 2’s entry threshold (derived in the

Appendix). V m
1
equals the monopolistic value of Firm 1 (as defined by (5.38)) adjusted

for the component reflecting competitive entry. The latter component equals the value

loss from switching from monopoly to duopoly multiplied by the probability-weighted

discount factor corresponding to the random time of Firm 2’s entry.

In the last step, we determine the value of Firm 1’s investment opportunity. We

already know that the valuation formulae for V differ across the two regimes (cf. (5.38))

and that it is never optimal for Firm 1 to invest in the first regime. Consequently, when

applying the value-matching and smooth-pasting conditions to (5.50), we substitute for

V the expression corresponding to the second row in (5.38). A simple manipulation

of the value-matching and smooth pasting conditions (cf. (5.40) and (5.41)) yields the

following implicit formula for the optimal investment threshold of Firm 1, x∗∗

1

(β
1
− β

2
)BM1 (x

∗∗

1
)β2 + β

1
(C0 − I) + (β

1
− 0.5)C1 (x

∗∗

1
)0.5

+(β
1
− 1)C2x

∗∗

1
= 0. (5.51)

A comparison of (5.51) with (5.42) leads to the observation that x∗∗
1
= x∗∗. This is in

line with the classic strategic real option models in which the roles of the firms (leader

vs. follower) are determined exogenously and where the firms have a single control

variable (investment timing). This finding can be explained by the fact that in our

case the decision problem of the Firm 1 with one discrete control variable (timing) and

with one continuous control variable (quality) can be transformed into the problem

of a single discrete variable whereas the relevant payoff functions are at each moment

optimized with respect to the continuous variable. Consequently, the value of Firm 1

is no longer a function of quality since this is chosen optimally given the realization of

xt and the choice of exogenous parameters.

The value of the investment opportunity of Firm 1, F1, equals

F1 =

(
V (x∗∗

1
) +

(
V d
1
(x∗∗

2
)− V (x∗∗

2
)
)(x∗∗

1

x∗∗
2

)β1

− I

)(
x

x∗∗

1

)β1

≡ A1x
β1. (5.52)

It can immediately be noticed that F1 < F (cf. (5.43)) because of the present value of
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future revenues lost due to competitive entry, which is equal to

(
V d
1
(x∗∗

2
)− V (x∗∗

2
)
)(x∗∗

1

x∗∗

2

)β
1

.

As soon as competitive entry becomes very remote, i.e. when x∗∗
2

→ ∞, it holds that
the problem reduces to the valuation of a monopolistic firm and F1 = F .

5.5.1 Comparative Statics: Valuation of Firms

Analogous to Section 5.3, we are interested in the sensitivity of the firms’ value with

respect to changes of market parameters. Figures 5.8 and 5.9 depict the relationship

between the market volatility and the value of the investment opportunities of both

firms for different magnitudes of network externalities. Inspection of both the figures

leads to two main conclusions First, contrary to the fixed quality case, the value of

Firm 1’s investment opportunity is higher than the one of Firm 2. Second, the value

of Firm 2’s project is non-monotonic in uncertainty (like the value of Firm 1 in the

previous case). The first result is implied by the fact that Firm 1 is a leader in the

investment game but, thanks to its flexibility with regard to quality choice, acts as a

follower in the Stackelberg quality game. Consequently, Firm 1 not only receives cash

flow from the project over a longer period but also is able to adjust its quality optimally

to the fixed the quality choice of Firm 2, q2, and the realization of the demand, x.

The non-monotonicity of Firm 2’s value in uncertainty results from the fact

that Firm 1 can exploit to a (relatively) larger extent the changes in the demand by

changing its quality when uncertainty is high. Therefore, higher uncertainty affects

the effective discount rates of the components of Firm 2’s value that are concave in x

(see (5.90)). Consequently, the presence of such concavities leads to a lower valuation

in a more uncertain environment. A positive relationship between Firm 2’s value and

uncertainty at the low levels of uncertainty can be explained by the traditional option

argument that, in this case, dominates the strategic effects.

As far as the relationship between the degree of network externalities and

the value of the firms is concerned, it resembles the picture of the fixed quality case.

Again, the presence of the network externalities leads to an increase in the value of

the investment opportunities of both firms and the rate of this increase is high when

network externalities are relatively strong.
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Figure 5.8: The value of the investment opportunity of Firm 1 for the parameter values

ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.
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Figure 5.9: The value of the investment opportunity of Firm 2 for the parameter values

ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.



138 CHAPTER 5. ENTRY AND STRATEGIC QUALITY CHOICE

5.5.2 Comparative Statics: Firm 1’s Strategic Choice of Vari-

ables

In the case in which quality is flexible, the following observations can be made.

First, the optimal investment threshold in the presence of entry threat is identical to

the level of x triggering the investment of the monopolist. This is due to the well-

known fact that if the roles of the firms are predetermined and the only choice variable

of the leader is the investment timing, future entry of the follower does not impact the

investment timing of the leader (cf. Huisman, 2001). Second, upon examining (5.44),

we can conclude that the quality chosen by Firm 1 does not change in a continuous

way. In the following subsection, we present a short discussion of the properties of

q∗∗
1
(x).

Properties of q∗∗
1
(x)

The optimal quality choice, q∗∗
1
, piecewise (weakly) increases with the state of the

market, x. At ϕ and κ the quality exhibits discontinuities. Calculating the relevant

limits yields (cf. (5.44))

lim
x↓ϕ

q∗∗
1
(x)− lim

x↑ϕ

q∗∗
1
(x) = ρq2 + (1− ρ) k − a > 0, (5.53)

lim
x↓κ

q∗∗
1
(x)− lim

x↑κ

q∗∗
1
(x) = (q

1
− a)

(√
k − a

q
1
− a

− 1
)

< 0. (5.54)

Realizations ϕ and κ are reversible switch points in which the functional form of the

optimal quality changes. As pointed out by Mella-Barral and Perraudin (1997), the

function describing the optimal choice of a control variable is in general discontinuous

in the switch points (see also Dumas, 1991). Continuity is implied if the switch points

are chosen optimally so as to maximize the value of the firm. Here, the switch points are

not chosen optimally by Firm 1 but, instead, they result from the change of the product

market structure. From (5.44) it can be seen that for low x Firm 1 ceases operations

as the revenues do not cover the operating costs. When x reaches ϕ from below,

Firm 1 resumes operations and the resulting outcome is duopolistic. Finally, when x

reaches κ Firm 1 covers the entire market and the monopoly prevails. Consequently,

the discontinuity of q∗∗
1
(x) occurs at both ϕ and κ.

The positive sign of (5.53) results from the fact that the quality of the idle firm

equals a (cf. (5.44)), whereas resuming the operations requires the quality exceeding

k (> a). The negative sign of (5.54) can be explained as follows. At the moment x

equals κ (cf. Figure 5.4), quality chosen by Firm 1 is that high that Firm 1 captures



5.6. VALUATION EFFECTS OF FLEXIBLE VS. FIXED QUALITY 139

all customers. Hence, Firm 2 leaves the market after which Firm 1 reduces quality. It

can do so since Firm 2 will not re-enter (unless x falls below κ). Firm 2 knows that

if it re-entered, Firm 1 would immediately raise quality to the optimal duopoly level.

We conclude that flexible quality serves as an entry deterrent control here, while still

it can be set at the optimal monopoly level.

5.6 Valuation Effects of Flexible vs. Fixed Quality

In this section we analyze the effects on the valuation of the flexible vs. fixed

technology choice made by Firm 1. We address the following two related questions:

i) what is the relationship between the loss in value due to the expected competitive

entry (in comparison with monopoly) and the fixed or flexible quality choice, and ii)

what is the impact of flexibility on the valuation with and without competitive entry

threat.
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Figure 5.10: The relationship between the ratio of Firm 1’s duopolistic to monopolistic value

and uncertainty under fixed quality choice for ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015,

and I = 10.

Figures 5.10-5.13 contain a comparison of the ratio of Firm 1’s value in the

monopoly vs. duopoly case for flexible and fixed quality choice. On the basis of Figures

5.10 and 5.11 it can be concluded that the value lost due to competitive entry is much

lower when quality is flexible (as opposed to fixed quality). This results from the fact
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Figure 5.11: The relationship between the ratio of Firm 1’s duopolistic to monopolistic

value and uncertainty under flexible quality choice for ρ = 0.5, k = 5, c0 = 1, r = 0.05,

α = 0.015, and I = 10.
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Figure 5.12: The relationship between the ratio of Firm 1’s flexible to fixed technology

non-strategic value and uncertainty for ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and

I = 10.
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Figure 5.13: The relationship between the ratio of Firm 1’s flexible to fixed technology

strategic value and uncertainty for ρ = 0.5, k = 5, c0 = 1, r = 0.05, α = 0.015, and

I = 10.

that the flexible quality choice is associated with Firm 1’s follower’s role in the quality

game played by the firms at each instant. The second-mover advantage in setting the

quality by the incumbent is stronger when the demand uncertainty is higher. Therefore,

when uncertainty is high, the gap between the monopolistic and the strategic value of

Firm 1 is almost closing (cf. Figure 5.11). Finally, we can observe that the degree of

network externalities have little effect on the firms’ relative valuation until they become

very high in the fixed quality case. Then the fraction of Firm 1’s value lost due to the

competitive entry as compared to monopoly is even higher (cf. Figure 5.10).

Moreover, we analyze the impact of flexible quality choice on the firms’ valua-

tion from a slightly different angle. Instead of looking at the value lost due to competi-

tive entry, we investigate the value impact of a switch from the fixed- to flexible-quality

technology. Figures 5.12 and 5.13 illustrate this effect as a function of demand uncer-

tainty for different magnitudes of network externalities. The following conclusions can

be drawn. First, the incremental value of the flexible technology over the fixed-quality

technology is higher in a strategic than in a monopolistic framework. Moreover, the

strategic impact of flexibility is increasing with demand uncertainty (cf. Figure 5.13).

Whereas in the monopolistic framework the value gain occurring due to the flexible

technology is moderate and does not increase sharply in σ, both the value gain and
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its sensitivity towards growing uncertainty are much more dramatic. Like previously,

the value impact of network externalities is relatively small and affects the advantage

of the flexible technology adversely.

5.7 Conclusions

In this chapter we determine advantages of flexibility in quality choice of a firm

considering an uncertain product market sector exhibiting network externalities. The

firm is able to adjust quality over time when it, for instance, possesses sufficient know-

how, invented the technology itself, or adopted a more advanced technology. In general,

this requires larger sunk costs and the aim of this paper is to determine in which cases

it is particularly justified to incur these larger costs.

First, we derive the optimal investment threshold and the quality choice of

the firm using the fixed-quality technology in both the monopolistic and duopolistic

framework. Second, we repeat the analysis for the flexible technology choice. Finally,

we perform a comparison of outcomes resulting from applying the two alternative

technologies.

We show that the qualities chosen by the firms in the fixed-quality framework

are strategic complements. This implies that a higher quality chosen by the market

leader is associated with a higher quality provided by the second firm to enter. More-

over, the market leader uses the quality as a means to deter entry since its level of

quality chosen under competitive entry threat is higher than in an isolated monopolis-

tic market. Finally, since the firms play a version of a Stackelberg game in strategic

complements, the value of the second firm to enter exceeds the one of the leader.

We also extend general results of strategic real options theory. From this theory

it is known that if the roles of the firms are exogenous or when they sufficiently differ

in characteristics, the follower’s investment timing is irrelevant for the decision of the

leader. However, due to the addition of a second control in the form of quality choice,

the investment timing of the first investor is influenced by the decision of the other

firm.

If the market leader is able to adjust quality over time, its optimal investment

strategy is identical to the monopolistic case. This observation results from the fact

that the loss due to the competitive entry equally affects the value of its investment

opportunity before investing and the value of the project once the sunk cost is incurred.

Moreover, the flexible quality choice of the leader implies three different market struc-

tures as functions of the underlying demand. When demand is low, only the second
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firm is active, moderate demand is associated with both firms serving the market,

whereas high demand implies that the entire market is served by the leader.

A comparison of firms’ values under two alternative technologies leads to fur-

ther conclusions. It appears that the relative value of the flexible (as opposed to fixed)

technology is much higher in the duopolistic case than in an isolated monopoly. A

related observation is that the value loss from a competitive entry is much lower when

the quality is flexible. Second, the value of flexible quality choice increases with un-

certainty since an immediate quality adjustment to the changes in stochastic demand

is possible. Moreover, the case of flexibility also allows for achieving the second-mover

advantage in the Stackelberg game after the competitive entry. The latter result is

amplified if the market uncertainty is high.

5.8 Appendix

Proof of Proposition 5.1. The optimal quality level is calculated by maximizing

(5.10) with respect to q. The corresponding first-order condition is (dependence on q

is dropped for the sake of transparency)

0 =
(β1 − 1)β1−1

β
β
1

1

xβ1

(C + I)2β1−2
× (5.55)(

β1R
β
1
−1 (C + I)β1−1Rq − (β1 − 1)Rβ

1 (C + I)β1−2Cq

)
,

from which it follows that

β1 (C + I)Rq − (β1 − 1)RCq = 0. (5.56)

Dividing by (β1 − 1)x∗R and observing that β
1

β
1
−1

C+I
x∗R

= 1 yields the desired result.

The corresponding second-order condition is

(β1 (C + I)Rqq + CqRq − (β1 − 1)CqqR)|q=q∗ < 0. (5.57)

This is a necessary and sufficient condition for the relevant functions which ensures that

q∗ corresponds to a local maximum. This is formulated as Assumption 5.1. If (5.56)

has multiple solutions satisfying (5.57), then the one corresponding to the highest value

of (5.10) is chosen.

Proof of Proposition 5.2. We begin by defining (cf. (5.56))

H (q) = β1 (C (q) + I)Rq (q)− (β1 − 1)Cq (q)R (q) . (5.58)
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For q∗ it holds that H (q∗; ·) = 0. Therefore, the impact of a change in θ ∈ {a, σ} can
be determined by calculating the total derivative of H:

dq∗

dθ
= −Hθ

Hq

. (5.59)

By Assumption 5.1 we know that

∂H (q)

∂q

∣∣∣∣
q=q∗

< 0. (5.60)

Consequently, from (5.59) and (5.60) it follows that (we drop the dependence of vari-

ables on q)

sgn
∂H

∂θ

∣∣∣∣
q=q∗

= sgn
dq

dθ

∣∣∣∣
q=q∗

for θ ∈ {a, σ}. (5.61)

We have

∂H

∂σ

∣∣∣∣
q=q∗

=
∂β1

∂σ
((C + I)Rq − CqR) > 0, (5.62)

∂H

∂α

∣∣∣∣
q=q∗

=
∂β1

∂α
((C + I)Rq − CqR)

+β1 (C + I)Rqα − (β1 − 1)CqRα (5.63)

=
∂β1

∂α
((C + I)Rq − CqR) > 0.

Proof of Proposition 5.3. Repeating (5.16) for σ, we have

dx∗ (q)

dσ
=

∂x∗ (q)

∂σ
+

∂x∗ (q)

∂q

dq

dσ
. (5.64)

We are interested in the signs of the components of (5.16). It holds that

∂x∗ (q)

∂q
=

β1

β1 − 1
CqR− (C + I)Rq

R2
. (5.65)

Consequently, in the optimum

∂x∗ (q)

∂q

∣∣∣∣
q=q∗

=
β1

β1 − 1
CqR− (C + I)Rq

R2

>
β1

(β1 − 1)2
(β1 − 1)CqR− β1 (C + I)Rq

R2

= 0. (5.66)

The last equality directly results from (5.56). Moreover, by differentiating (5.8), we

immediately obtain that
∂x∗ (q)

∂σ
> 0. (5.67)
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Furthermore, using the results of Proposition 5.2 we obtain that

dq∗

dσ
> 0. (5.68)

This completes the proof.

Proof of Proposition 5.4. The sign of derivative dq∗2/dq
∗
1 immediately follows

from (5.27) and the argument thereafter. In order to determine the sign of dx∗2/dq
∗
1,

we first express x∗2 as (cf. (5.25))

x∗2 =
β1

β1 − 1
I (1− ρ2) r + c0

(
q2 − q

2

)
r

q2 − a

q2 − q
2

δ. (5.69)

Since we already know that q
2
is an increasing function of q1 (cf. (5.20)), the desired

result is obtained if we can show that the two last factors of (5.69) increase with q
2
.

We first derive expressions for q2 − q
2
and q2 − a on the basis of (5.27):

q2 − q
2
=

1

2 (β1 − 1)
× (5.70)[

q
2
− a+

√
q
2
− a

√
q
2
− a+ 4β1Ir (β − 1) (1− ρ2) c−10

]
,

q2 − a =
1

2 (β1 − 1)
× (5.71)[

(2β − 1)
(
q
2
− a

)
+
√

q
2
− a

√
q
2
− a + 4β1Ir (β − 1) (1− ρ2) c−10

]
.

By inspecting (5.70) we immediately conclude that the second factor of (5.69) is in-

creasing with q
2
. Now, we concentrate on the derivative of the ratio q2−a

q2−q
2

. It can be

written (using (5.70) and (5.71)) as

d

dq
2

(
q2 − a

q2 − q
2

)
=

d

dq
2


(2β1 − 1)

(
q
2
− a

)
+ f

(
q
2

)
q
2
− a + f

(
q
2

)

 , (5.72)

where

f
(
q
2

)
=

√
q
2
− a

√
q
2
− a+K.

and K = 4β1Ir (β1 − 1) (1− ρ2) c−10 > 0. Now, (5.72) can be expressed as

d

dq
2

(
q2 − a

q2 − q
2

)
=
2 (β1 − 1)

(
f
(
q
2

)
− f ′

(
q
2

)(
q
2
− a

))
(
q
2
− a + f

(
q
2

))2 .
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In the final step, we determine the sign of the second factor in the numerator

f
(
q
2

)
− f ′

(
q
2

)(
q
2
− a

)
=

=
√

q
2
− a

√
q
2
− a+K −

(
2q

2
− 2a +K

)√
q
2
− a

2
√

q
2
− a +K

=

=

(
2q

2
− 2a+ 2K

)√
q
2
− a

2
√

q
2
− a+K

−

(
2q

2
− 2a+K

)√
q
2
− a

2
√

q
2
− a+K

> 0.

This completes the proof.

Proof of Proposition 5.5. The proposition can be proven by analyzing the profit

functions of the firms in a duopoly and two cases of a monopoly. Profit maximization

based on the system of demands (5.18) with the optimal quality schedule of Firm 1

(5.44) yields the following Stackelberg profits of Firm 1 and Firm 2, denoted by π1 and

π2, respectively:

π1 =
1

1− ρ2
(√

x−√
ϕ
)2

, (5.73)

π2 =
1

1− ρ2

(−ρ
√
ϕ

κ
x1.5 +

c0ψ

κ
x+ ρ

√
ϕx0.5 − c0ψ

)
, (5.74)

and

κ = c0 (q2 − a) . (5.75)

Here, ϕ, ψ and κ are functions of q2, which is chosen at the beginning of the game (the

quality chosen by Firm 2 is fixed at the moment of undertaking investment). Since π2

is concave and decreasing for sufficiently large x (but smaller than κ), we get that for

x > κ it holds that π2 = n2 = 0 (since Firm 2 will cease the production in the region

x ∈ (κ,∞), where the attainable profit is negative). In the same fashion in can be
shown that π1 = 0 for x < ϕ. What remains to be proved is that ϕ < κ. It can be

seen upon manipulating (5.45) and (5.46) that

κ − ϕ = c0
(q1 − a)2 −

(
q
1
− a

)2
(
q
1
− a

) > 0⇔ q1 − q
1
> 0.

The latter inequality is proven directly by observing that

qi − q
i
= 0 for ρ = 1, and

∂
(
qi − q

i

)
∂ρ

< 0.
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This completes the proof.

Value function coefficients with flexible quality: non-strategic case. The

following coefficients are derived on the basis of Bellman equation (5.37) with value-

matching and smooth-pasting conditions applied to V for x = η and with no-bubble

conditions for x → 0 and x → ∞:

BM1 ≡ C0

η−β2β1

β2 − β1

+ C1

η0.5−β2 (β1 − 0.5)
β2 − β1

+ C2

η1−β2 (β1 − 1)
β2 − β1

, (5.76)

BM2 ≡ C0

η−β1β2

β2 − β1

+ C1

η0.5−β1 (β2 − 0.5)
β2 − β1

+ C2

η1−β1 (β2 − 1)
β2 − β1

, (5.77)

C0 ≡ η

r
, (5.78)

C1 ≡ −2√η

r − 0.5α + 0.125σ2
, (5.79)

C2 ≡ 1

δ
. (5.80)

By either solving the Bellman equation of type (5.37) with a non-homogeneity term

being proportional to the n-th power of x, or by calculating the drift coefficient in the

GBM for y ≡ xn using Itô’s lemma, it can be shown that the effective discount rate

corresponding to the n-th power has a form r − nα− 0.5n (n− 1)σ2 (cf. Dixit, 1993,

p. 13). Of course, this puts a restriction on the pairs (α, σ2) if finite valuations are to

be obtained.

Value function coefficients with flexible quality: strategic case. The

following coefficients are derived on the basis of Bellman equation (5.47) with value-

matching and smooth-pasting conditions applied to V d
1 for x = ϕ and x = κ, and with

no-bubble conditions for x → 0 and x → ∞:

D1 ≡ E2

ϕ1−β
2 (β1 − 1)

β2 − β1

+ E1

ϕ0.5−β
2 (β1 − 0.5)

β2 − β1

+ E0

ϕ−β
2β1

β2 − β1

, (5.81)

D2 ≡ −E2

κ
1−β1 (β2 − 1) ρ2

β2 − β1

−E1

κ
0.5−β1 (β2 − 0.5)

β2 − β1

(1− ρ2)ϕ− η

ϕ

−Ed
0

κ
−β1β2ρ

β2 − β1

, (5.82)

D3 ≡ −E2

κ
1−β2 (β1 − 1) ρ2

β2 − β1

−E1

κ
0.5−β2 (β1 − 0.5)

β2 − β1

(1− ρ2)ϕ− η

ϕ

−Ed
0

κ
−β

2β1ρ

β2 − β1

, (5.83)

D4 ≡ E2

ϕ1−β
1 (β2 − 1)

β2 − β1

+ E1

ϕ0.5−β
1 (β2 − 0.5)

β2 − β1

+ E0

ϕ−β
1β2

β2 − β1

, (5.84)
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E0 ≡ 1

1− ρ2
ϕ

r
, (5.85)

E1 ≡ 1

1− ρ2
−2√ϕ

r − 0.5α+ 0.125σ2
, (5.86)

E2 ≡ 1

1− ρ2
1

r − α
. (5.87)

Derivation of Firm 2’s optimal investment threshold. First, we derive the

value of the Firm 2. Denote the value of the Firm 2 after entering the market by V2.

V2 satisfies the following Bellman equation

0.5σ2x2tV
′′
2 + αxV ′

2 + π2 = rV2, (5.88)

where

π2 =




c0ψ−ρϕ
(1−ρ2)κ (x− κ) for x < ϕ,

1

1−ρ2
(
−ρ√ϕ
κ

x1.5 + c0ψ

κ
x+ ρ

√
ϕx0.5 − c0ψ

)
for ϕ < x < κ,

0 for x > κ.

(5.89)

In (5.89) the value of π2 for x > κ is zero since for high demand, Firm 1 captures the

entire market share (cf. Lemma 5). For ϕ < x < κ the result corresponds to (5.74),

whereas for x < ϕ Firm 2 achieves monopoly profit (cf. (5.23)) since Firm 1 remains

idle. Solving (5.88) with the value matching and smooth pasting conditions satisfied

for realizations ϕ and κ yields

V2 =



(B2 +B4) x

β
1 + CM

0 + CM
2 x for x < ϕ,

B1x
β2 +B2x

β1 + CD
0 + CD

1 x0.5 + CD
2 x+ CD

3 x1.5 for ϕ < x < κ,

(B1 +B3) x
β2 for x > κ,

(5.90)

where

B1 ≡ CD
3

ϕ1.5−β
2 (β1 − 1.5)

β2 − β1

+ CD
2

ϕ1−β
2 (β1 − 1)

β2 − β1

ρϕ

c0ψ

+CD
1

ϕ0.5−β2 (β1 − 0.5)
β2 − β1

+ CD
0

ϕ−β2β1

β2 − β1

ρϕ

c0ψ
, (5.91)

B2 ≡ −CD
3

κ
1.5−β1 (β2 − 1.5)

β2 − β1

−CD
2

κ
1−β1 (β2 − 1)
β2 − β1

−CD
1

κ
0.5−β1 (β2 − 0.5)

β2 − β1

−CD
0

ϕ−β1β2

β2 − β1

, (5.92)

B3 ≡ −CD
3

κ
1.5−β

2 (β1 − 1.5)
β2 − β1

−CD
2

κ
1−β

2 (β1 − 1)
β2 − β1

−CD
1

κ
0.5−β

2 (β1 − 0.5)
β2 − β1

−CD
0

κ
−β

2β1

β2 − β1

, (5.93)
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B4 ≡ CD
3

ϕ1.5−β1 (β2 − 1.5)
β2 − β1

+ CD
2

ϕ1−β1 (β2 − 1)
β2 − β1

ρϕ

c0ψ

+CD
1

ϕ0.5−β
1 (β2 − 0.5)

β2 − β1

+ CD
0

ϕ−β
1β2

β2 − β1

ρϕ

c0ψ
, (5.94)

CM
0 ≡ − (c0ψ − ρϕ) c0a

r
, (5.95)

CM
2 ≡ c0ψ − ρϕ

δ
, (5.96)

CD
0 ≡ −1

1− ρ2
c0ψ

r
, (5.97)

CD
1 ≡ 1

1− ρ2
α
√
ϕ

r − 0.5α+ 0.125σ2
, (5.98)

CD
2 ≡ 1

κ (1− ρ2)

c0ψ

δ
, (5.99)

CD
3 ≡ −1

κ (1− ρ2)

α
√
ϕ

r − 1.5α− 0.375σ2
. (5.100)

Despite the fact that the expressions for the value of Firm 2 differ across the regimes,

calculating the option value of the investment opportunity of Firm 2 represents no

additional difficulty comparing to the traditional analysis. It can be shown that the

value is negative under the first regime (x < ϕ), reaches a peak under the second

regime (ϕ < x < κ), and tends asymptotically to zero under the third regime (x > κ).

Therefore, it cannot be optimal for Firm 2 to invest under regimes one and three.

Consequently, the value of Firm 2’s option to invest can be calculated on the basis of

the value-matching and smooth-pasting conditions corresponding to the second regime

A2x
β1 = B1x

β2 +B2x
β1 + CD

0 + CD
1 x0.5 + CD

2 x+ CD
3 x1.5 − I

β1A2x
β1−1 = β2B1x

β2−1 + β1B2x
β1−1 + 0.5CD

1 x−0.5 + CD
2 + 1.5C

D
3 x0.5.

From this it is obtained that the optimal investment threshold of Firm 2, x∗∗2 , is im-

plicitly defined by

(β1 − β2)B1 (x
∗∗
2 )

β2 + β1

(
CD
0 − I

)
+ (β1 − 0.5)CD

1 (x
∗∗
2 )

0.5

+(β1 − 0.5)CD
2 x∗∗2 x+ (β1 − 0.5)CD

3 (x
∗∗
2 )

1.5 = 0

Furthermore, the value of the investment opportunity of Firm 2 is

F2 = A2x
β1,

where

A2 ≡ max
q2

B1 (x
∗∗
2 )

β2 +B2 (x
∗∗
2 )

β1 + CD
0 + CD

1 (x
∗∗
2 )

0.5 + CD
2 x∗∗2 + CD

3 (x
∗∗
2 )

1.5 − I

(x∗∗2 )
β1

.
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Chapter 6

Investment and Debt Renegotiation

6.1 Introduction

One of the consequences of debt financing is its influence on the firm’s investment

policy. As it is known from Myers (1977), the presence of a risky debt in the company’s

books leads to underinvestment, i.e. a situation in which some positive NPV projects

are foregone. Although the impact of the agency costs of debt on the firm’s investment

policy has been widely discussed in the literature in qualitative terms, relatively little

has been done to analyze the magnitude of these costs. Moreover, the existing con-

tributions yield differing predictions concerning the influence of the renegotiability of

debt on the investment policy (cf. Mella-Barral and Perraudin, 1997, and Mauer and

Ott, 2000). This chapter uses the contingent claims approach to examine the firm’s

optimal investment and liquidation policy in the presence of debt financing and the

equityholders’ option to default and renegotiate the original debt contract.

The main objective of this chapter is to investigate the impact of the renego-

tiation option, the distribution of bargaining power, and indirect bankruptcy costs on

the optimal investment and liquidation policy of the firm. In particular, we are inter-

ested in the impact of those debt characteristics on the magnitude of underinvestment

problem. Furthermore, the impact of a growth opportunity on the optimal bankruptcy

and renegotiation timing is analyzed. In this way it can be investigated whether firms

operating in sectors with significant growth opportunities are less likely to file for debt

restructuring than their counterparts in more mature industries.

The motivation for this chapter arises also from the ongoing debate on the dif-

ferences in bankruptcy codes between the European Union and the United States, and
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the implications of the EU countries bankruptcy law for the firms’ operating decisions.1

Under Chapter 11 of the US bankruptcy law, financially distressed firms suspend their

coupon payments and a reorganization plan including writing new debt contracts is

implemented. The operations of a firm entering Chapter 11 reorganization usually re-

main unaffected by the negotiations process, which makes it relatively easy to remain

in business if the financial restructuring is successful. In Europe, however, a distressed

firm most likely goes under court administration, and its operations are suspended.

As a result, the reputation of the firm deteriorates and there is a high chance that

liquidation occurs.

In our model debt renegotiation constitutes a good approximation of a private

work-out. Under the work-out the initial debt contract is changed so that the equi-

tyholders, as the first-best users of assets, are better off running the company than

declaring bankruptcy. Moreover, the creditors benefit from the fact that the modified

debt contract reduces the probability of bankruptcy. The case of bankruptcy better

resembles the European system. A firm that defaults on its debt obligations goes

bankrupt and its assets are foreclosed by the creditors. Such foreclosure leads in many

cases to inefficiently early liquidation since the value of the assets to the creditors is

lower than their value to the original owners. US Chapter 11 remains between these

two cases as far as the time allowed for renegotiation is concerned, but it is more

shareholder-friendly from the point of view of coupon suspension.

Our analysis also provides insight into the differences between the impact of

a bank credit and diffusely held debt on the firm’s operating policy. Bank credit is

mostly associated with the possibility of debt renegotiation upon financial distress,

whereas diffusely held debt makes renegotiation less likely (cf. Bolton and Scharfstein,

1996). The outcome of renegotiating the bank debt depends on the bargaining power

of the equityholders vis-à-vis the bank and on both parties’ outside options. Usually,

the bargaining power of the bank is large, in particular when the firm is relatively small

and uses a portfolio of its services. Consequently, the share of the renegotiation surplus

received by the bank may be substantial (cf. Hackbarth et al., 2002). When corporate

debt is held by dispersed bondholders, the bargaining power of the creditors is usually

small and such is the surplus from renegotiation that accrues to the creditors (cf. Hege

and Mella-Barral, 2002).

The model is based on the following assumptions. The firm has an investment

opportunity to scale up its activities upon incurring an irreversible cost. The cash flow

1See, e.g. The Economist, 23rd March 2002, ’Up from the ashes’, and 7th September 2002, The

firms that can’t stop falling: Bankruptcy in America.
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of the firm follows a random process and the firm has to pay an instantaneous coupon

on its debt. Failure to pay the coupon triggers bankruptcy. Following Mella-Barral

and Perraudin (1997) and Fan and Sundaresan (2000), we assume that the coupon

payment can be renegotiated so that bankruptcy is avoided and the surplus is split

among the equityholders and creditors.

A number of other models known from the literature can be nested in our

framework. Setting the coupon level equal to zero leads to the basic model of Dixit

and Pindyck (1996) with the firm scaling up its activities. Excluding the renegotiation

possibility reduces our model to Mauer and Ott (2000). By setting the investment

cost to infinity and liquidation value to zero, we arrive at Fan and Sundaresan (2000),

whereas imposing prohibitively high investment cost in combination with take-it or

leave-it offers and no taxes reduces our model to Mella-Barral and Perraudin (1997).

Consequently, this chapter builds upon Mauer and Ott (2000), who analyze

the interaction between the leverage and investment option when renegotiation is not

allowed for, and both Mella-Barral and Perraudin (1997), and Fan and Sundaresan

(2000), who focus on strategic debt service.2 Bankruptcy and renegotiation concepts

used in our paper coincide with two polar cases analyzed by Morellec and Francois

(2001), who model US Chapter 11 as costly reorganization with a limited duration.

The extreme cases in which the renegotiation is not allowed for (duration equal to

zero) and can last infinitely long, are analyzed by Leland (1994) and Mella-Barral and

Perraudin (1997), respectively.

In this chapter it is shown that the presence of the renegotiation option exac-

erbates the underinvestment problem. This is due to the fact that the wealth transfer

to the debtholders, which occurs upon investment, is higher if the shareholders can

default strategically on their original debt contract. The additional underinvestment

does not occur if all the bargaining power is given to the creditors. Another implica-

tion of the renegotiability of the debt contract is that the problem of inefficient early

liquidation can be reduced. This results from the fact that firm remains in the hands

of the original shareholders, who can run it most efficiently. However, it cannot be

avoided fully, due to the impact of the suboptimal investment policy on the choice of

2A far from complete list of references includes Vercammen (2000), analyzing how bankruptcy,

triggered by the assets value falling below the face value of the debt, influences investment, Leland and

Toft (1996), considering a finite maturity debt with a stationary structure, Anderson and Sundaresan

(1996), Mella-Barral (1999), Acharya et al. (2002), and Hackbarth et al. (2002), analyzing debt

renegotiation. Related work is presented by Mauer and Triantis (1994), Fischer et al. (1989), and

Dangl and Zechner (2001), who focus on the optimal recapitalization policy.
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liquidation trigger.3

The firm’s operating decisions partially influence its optimal debt restructuring

policy. The presence of a positive NPV project, in combination with a high debtors’

bargaining power, may result in an earlier timing of debt reorganization. However, the

firm’s liquidation policy determined, among others, by the magnitude of its tangible

collateral, does not affect its optimal debt reorganization policy. This finding may be

to some extent counterintuitive since the magnitude of collateral influences both the

creditors’ outside option and the value of the firm. It appears that these two effects

cancel out when the debt renegotiation decision is made.

The chapter is organized as follows. In Section 6.2 the basic model of the firm is

described, whereas in Section 6.3 debt renegotiation is introduced. Comparative statics

and some empirical implications are presented in Section 6.4. Section 6.5 concludes.

6.2 The Basic Model

As a starting point, consider a firm that generates a random cash flow x (t), where

x (t) is the time-t realization of a stochastic process. The firm has an option to make

an irreversible investment, I, after which it will be entitled to a cash flow, θx (t), where

θ > 1. Randomness of the cash flow is incorporated in our model by letting x follow

the stochastic differential equation

dx (t) = αx (t) dt+ σx (t) dw (t) , (6.1)

where α and σ are constants corresponding to the instantaneous growth rate and the

volatility of the project’s cash flow, respectively, and w (t) denotes a standard Brownian

motion.4 Let r be the deterministic instantaneous riskless interest rate. It is assumed

that all the agents are risk neutral and the drift rate of the cash flow, α, exhibits a

shortfall δ below the riskless rate, i.e. α = r − δ.

We begin the analysis with the simple case of an all-equity financed firm. In

Subsection 6.2.1 the optimal liquidation and investment decisions of the unlevered firm

are investigated. Subsequently, we introduce a mixed capital structure. The presence

3These results show the limitations of the two-period model of Myers (1977). In his case, the

investment and the liquidation decisions are made simultaneously so that the possibility of renegoti-

ation enhances investment and reduces liquidation. In the continuous-time framework of the present

model, renegotiation reduces inefficient liquidation in bad states of nature but (anticipated by the

shareholders in good states of nature) also impairs the investment activity.
4We do not impose a constant positive marginal cost to avoid the need of tackling the issue of

limited liability of the creditors in some states of nature.
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of debt results in a positive probability of bankruptcy and the shareholders’ option

to default. The optimal bankruptcy trigger and the impact of bankruptcy on the

investment decision are analyzed in Subsection 6.2.2.

6.2.1 All-Equity Financing

The cash flow of the firm is subject to taxation and the corporate tax rate is τ . No

other taxes are assumed. The firm may always decide to sell its assets and liquidate.

Define an indicator i ∈ {0, 1} to be equal to 0 if the investment has not yet been made,
and 1 in the opposite case. Liquidation entails receiving a lump sum payment, γi, in

return for the present value of the firm’s expected future cash flow.

The standard no-arbitrage argument (cf. Dixit and Pindyck, 1996) implies

that any claim, F , contingent on the process x and having an instantaneous payoff

Bx+ C, where B,C ∈ R, satisfies the ordinary differential equation

rF = (r − δ)x
∂F

∂x
+
1

2
σ2x2

∂2F

∂x2
+Bx+ C. (6.2)

For the value of the unlevered firm, Vi, parameters B and C are θi (1− τ ) and zero,

respectively. The general solution to (6.2) is of the form

F =
B

δ
+

C

r
+M1x

β
1 +M2x

β2, (6.3)

where β1 (β2) is the positive (negative) root of the characteristic equation

1

2
σ2β (β − 1) + (r − δ) β − r = 0, (6.4)

and M1 and M2 are constants determined from boundary conditions specific to the

type of the contingent claim.

Let us first consider the value of the firm after the investment has been made.

The only decision that is to be made by the shareholders at each instant is whether to

continue running the firm or to liquidate it. The value of the firm after the investment,

V1, equals

V1 =




γ1 x < xL1 ,

xθ(1−τ)

δ
+
(
γ1 − xL

1
θ(1−τ)

δ

)(
x

xL
1

)β2

x ≥ xL

1 ,
(6.5)

where xL

1 is the optimal liquidation threshold. The value of the firm prior to liquida-

tion equals the present value of earnings in perpetuity and the value of the option to

liquidate. Analogous to, e.g., Dixit and Pindyck (1996), Ch. 6, the solution to the

liquidation problem equals

xL1 =
−β2

1− β2

γ1δ

θ (1− τ )
. (6.6)
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Before the investment, the strategy space of the firm consists of the three

following elements

{continue, liquidate, invest}.

Liquidation occurs when earnings fall below a certain trigger, whereas investment takes

place when earnings are sufficiently high. This results in a double-barrier problem

where the optimal investment threshold and liquidation trigger before the investment

have to be found simultaneously. The optimal investment and liquidation policies are

found by solving ODE (6.2) for V0 subject to

V0 (x
∗) = V1 (x

∗)− I, (6.7)

∂V0

∂x

∣∣∣∣
x=x∗

=
∂V1

∂x

∣∣∣∣
x=x∗

, (6.8)

V0

(
xL0

)
= γ0, (6.9)

∂V0

∂x

∣∣∣∣
x=xL

0

= 0, (6.10)

where xL0 denotes the before-investment liquidation trigger and x∗ is the optimal in-

vestment threshold.

6.2.2 Debt and Equity Financing

Now, let us assume that the firm is partially financed with debt. The debt contract

is associated with a perpetual coupon stream b, which is tax deductible. The par value

of debt is assumed to equal b/r. Because of the limited liability of equityholders, in

some states of nature it is optimal for them to default on debt obligations. A failure

to pay the contracted coupon results in bankruptcy upon which creditors take over the

firm. We impose the absolute priority rule (APR) so the equityholders receive nothing

in the event of bankruptcy as long as the claim of debtholders is not fully satisfied.5

Since we are interested in the optimal debt restructuring policy, we assume

an endogenous bankruptcy procedure. Such a procedure stipulates that equityholders

declare bankruptcy so to maximize the value of equity. In such a case it is possible that

for low cash flow realizations, the equityholders may actually inject cash to the firm.

This modeling approach is consistent with, for instance, Leland (1994), Mella-Barral

5Evidence presented by Franks and Torous (1989) indicates significant departures from the absolute

priority rule in many bankruptcy settlements. Our assumption has been introduced for simplicity.

Waiving this assumption would result in bankruptcy occuring for higher realizations of cash flow than

with APR.
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and Perraudin (1997), and Acharya and Carpenter (2002). It differs from the models of

exogenous bankruptcy, which is triggered by the asset value falling below a prespecified

level. For instance, in Merton (1974) bankruptcy occurs when the terminal value of

assets is lower than the debt principal, whereas in Black and Cox (1976) it is triggered

when the level of assets hits a deterministic barrier.6 Yet another approach is taken by

Kim, Ramaswamy and Sundaresan (1993), who assume that bankruptcy is triggered

by illiquidity, i.e. when net profits fall negative.

The value of the firm operated by the creditors after bankruptcy is a func-

tion of the cash flow from output, denoted by Ri (x). Following Fan and Sundaresan

(2000), we abstain from analyzing the issue of dynamic recapitalization. As a con-

sequence, the firm run by the creditors remains all-equity financed for ever, and the

tax shield is irreversibly lost upon bankruptcy. Moreover, if bankruptcy occurs prior

to the investment, the growth option expires unexercised. Finally, as in Mella-Barral

and Perraudin (1997), it is assumed that the debtholders will run the firm less effi-

ciently, so that the cash flow generated by the firm in the hands of the creditors equals

ρθi (1− τ) x, where ρ ∈ (0, 1).7 The latter assumption reflects, among others, superior
ability of existing management to run the firm and distraction of management upon

bankruptcy, combined with impaired ability to contract and suboptimal investment in

firm-specific human capital (see Hackbarth et al., 2002).

Since the value of the firm, Vi, its equity, Ei, debt, Di, and creditors’ reservation

value, Ri, are securities contingent on the earnings process, x, they all satisfy ODE

(6.2). The values of constantsB and C defining their instantaneous payoffs are depicted

in Table 6.1.

Vi Ei Di Ri

B θi (1− τ ) θi (1− τ) − ρθi (1− τ)

C bτ −b (1− τ ) b −

Table 6.1: Instantaneous payoffs associated with the value of the firm, Vi, equity, Ei, debt,

Di, and the creditors’ outside option, Ri.

First, we determine the value of the firm run by the creditors, Ri. It is obtained

by solving (6.2) with value-matching and smooth-pasting conditions reflecting the fact
6See Bielecki and Rutkowski (2002) for a detailed reference list concerning related safety covenants.
7Hege and Mella-Barral (2000) develop a model in which the firm in the hands of new owners

has exactly the same set options concerning new debt issues and subsequent reorganizations as under

the management of incumbents. The assumption about proportional reduction of cash flow upon

bankruptcy remains unchanged.
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that the only option available to the firm run by the creditors is to liquidate. It holds

that Ri is equal to

Ri =




γi x < xLR1 ,

ρxθ
i(1−τ)

δ
+
(
γi − ρxLR

i
θ
i(1−τ)

δ

)(
x

xLR
i

)β
2

x ≥ xLR1 ,
(6.11)

where

xLR
i
=

−β2

1− β2

γiδ

ρθi (1− τ)
(6.12)

is the optimal liquidation trigger of the creditors running the firm.

We determine the value of the firm and the optimal investment threshold by

first considering the case in which the firm has already invested. We solve (6.2) for

the firm’s equity, E1, and debt, D1 with value-matching conditions at the bankruptcy

trigger that correspond to the absolute priority rule. The value of the firm’s equity,

E1, and debt, D1, after the investment is made, can be described as follows

E1 =



0 x < xB1 ,

(1− τ)

[(
xθ

δ
− b

r

)− (
xB
1
θ

δ
− b

r

)(
x

xB
1

)β2]
x ≥ xB1 ,

, (6.13)

and

D1 =




R1 (x) x < xB1 ,

b

r
+
(
R1

(
xB1

)− b

r

) (
x

xB
1

)β
2

x ≥ xB1 .
, (6.14)

The optimal equityholders’ bankruptcy trigger is determined using the smooth-pasting

condition for the equity value upon bankruptcy and equals

xB1 =
−β2

1− β2

bδ

rθ
. (6.15)

The value of the firm equals

V1 = E1 +D1 = (6.16)

=




R1 (x) x < xB1 ,

xθ(1−τ)

δ
+ bτ

r
+
(
R1

(
xB1

)− xB
1
θ(1−τ)

δ
− bτ

r

)(
x

xB
1

)β2
x ≥ xB1 ,

.

Figure 6.1 depicts the value of the firm and the claims written on it after the

investment is made. The value of the firm approaches the present value of earnings

increased by the tax shield for a high earnings level. For lower realizations of the

earnings process, the concavity of the firm’s value increases, which reflects the value of

the equityholders’ option to default. At the bankruptcy trigger, xB1 , the firm’s value
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function exhibits a kink which reflects the fact that bankruptcy is neither optimal

nor reversible as seen from the perspective of the firm value maximization.8 The

value of equity approaches the present value of earnings minus the after-tax coupon

payment. For lower realizations of earnings, its convexity increases due to the limited

liability effect. At the equityholders’ optimal bankruptcy trigger, the value of equity

smooth-pastes to zero. Finally, the value of debt tends to its riskless valuation for

high realizations of the earnings process, and equals the firm’s value at the bankruptcy

trigger.

x1
Bx1

LR

x

V 1
,
E 1
,
D 1

x θ H1− τL
������������������������������

δ
+
b τ
����������
r

x θ H1− τL
������������������������������

δ
−
b H1− τL
�������������������������

r

b
�����
r

γ1

V1

E1

D1

Figure 6.1: Valuation of the firm, V1, its debt, D1, and equity, E1, with bankruptcy occurring

upon default.

Equipped with the value of the firm after the investment has been made, we

are ready to determine the optimal exercise policy of the investment option. We cal-

culate both the firm value-maximizing and the equity value-maximizing investment

thresholds. Here, we use the framework of Mauer and Ott (2000) and correct two of

their boundary conditions9. We start by observing that the value of the firm as well as

8If bankruptcy was optimal then the value function would be differentiable at xB1 as a result of the

smooth-pasting condition. Reversibility would imply the continuity of the first derivative of the value

function at xB
1

due to the no-arbitrage condition (for details see Dumas, 1991).
9First, we replace the investment bankruptcy trigger in condition (9.20a) on p. 159 of Mauer and

Ott (2000) that ignores the impact of the investment opportunity, by the one determined optimally.

Second, we add a smooth-pasting condition necessary for calculating the optimal trigger in the presence

of the investment opportunity.
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its equity and debt before the investment, V0, E0, and, D0, respectively, satisfy ODE

(6.2). Therefore the corresponding values can be written as

V0 =
x (1− τ)

r − α
+

bτ

r
+K0x

β
1 +B0x

β2, (6.17)

E0 =
x (1− τ)

r − α
−

b (1− τ)

r
+ A01x

β
1 + A02x

β
2, (6.18)

D0 = V0 −E0. (6.19)

The component K0x
β
1 is the value of the growth option and B0x

β
2 reflects the value

lost due to the potential future bankruptcy. A01x
β
1 is the fraction of the value of the

investment option that accrues to the equityholders and A01x
β2 is the equityholders’

option to default. The constants K0, B0, A01, A02, the optimal bankruptcy trigger x
B
0

and the firm value-maximizing investment threshold, x∗, are uniquely determined by

the system of equations

V0 (x
∗) = V1 (x

∗)− I, (6.20)

E0 (x
∗) = E1 (x

∗)− I, (6.21)

∂V0
∂x

∣∣∣∣
x=x∗

=
∂V1
∂x

∣∣∣∣
x=x∗

, (6.22)

E0

(
xB
0

)
= 0, (6.23)

∂E0

∂x

∣∣∣∣
x=xB

0

= 0, (6.24)

V0
(
xB
0

)
= R0

(
xB
0

)
. (6.25)

Equations (6.20) and (6.21) are the value-matching conditions ensuring the

continuity of the value of the firm as well as of its equity and debt (by D0 = V0 −E0)

at the optimal investment threshold. (6.22) is the smooth-pasting condition associated

with the firm value-maximizing property of the investment threshold. (6.23) and (6.24)

are the value matching and smooth-pasting conditions for the equityholders at the

bankruptcy trigger. (6.24) ensures that the bankruptcy trigger is chosen such that

the value of equity is maximized. (6.25) is the value-matching condition for the firm

at the bankruptcy trigger. Its RHS implies that the investment option expires upon

bankruptcy.

It holds that xB
1
is lower than xB

0
. This is due to the fact that the cash

flow is higher after the investment has been undertaken and the present value of the

incremental cash flow from investment is worth more than the option to acquire it.

The debtholders benefit from undertaking the investment project in two ways.

First, the probability of bankruptcy decreases so that the present value of the expected
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coupon stream is higher. Second, the outside option of the debtholders becomes more

valuable. After bankruptcy is declared, the debtholders will run a firm that generates

a higher cash flow than prior to the investment.

Since in most cases it is impossible to implement an investment schedule that

maximizes the value of the firm, we compare the first-best solution with the second-

best that maximizes the value of the equity.10 The investment decision associated with

maximizing the value of the equity requires replacing (6.22) by

∂E0

∂x

∣∣∣∣
x=x∗

=
∂E1

∂x

∣∣∣∣
x=x∗

(6.26)

Constants K0, B0, A01, A02, and triggers xB
0
and x∗ are completely described by the

system of equations (6.20)-(6.25) with (6.22) replaced by (6.26). The optimal invest-

ment threshold is in this case higher since the wealth transfer to debtholders occurring

upon investment causes that the equityholders invest later than the first-best solu-

tion would indicate. Furthermore, the optimal bankruptcy trigger is lower under the

second-best investment rule than under the first-best policy. The reason for such a

relationship is that under the second-best investment rule the value of the investment

opportunity for the equityholders is higher than under the first-best policy. Therefore,

at any x the continuation value is higher under the second-best that under first-best.

As a consequence, the continuation value under the second-best smooth-pastes to the

stopping value (equal to zero) at a lower x than under the first-best.11

6.3 Debt Renegotiation

The divergence between the optimal liquidation trigger of the firm and the equity-

holders’ endogenous bankruptcy trigger implies that there is a scope for debt renegoti-

ation. The scope for renegotiation stems from the fact that upon bankruptcy the three

following components of the firm’s value are irreversibly lost. First, the investment

opportunity ceases to exist when the creditors take over the company. Second, upon

bankruptcy the firm forgoes the present value of the tax shield. Finally, creditors run

10In general, it is not in the interest of shareholders to align perfectly the incentives of the managers

with their own in the presence of debt (cf. Brander and Poitevin, 1992, and John and John, 1993). The

optimal compensation scheme should be constructed in such a way that the combined agency costs of

equity and debt are minimized. However, in this paper’s framework with a single owner-manager the

first-best solution is not achievable.
11Mauer and Ott (2000) fail to incorporate this relationship in their model.
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the firm less efficiently so the instantaneous earnings of the firm are reduced by fraction

(1− ρ) of the current cash flow.

In this section we analyze the impact of debt renegotiation on the investment

policy and the value of the firm. We assume that the renegotiation process has a form

of Nash bargaining in which the bargaining power is split between the two types of

the firm’s stakeholders (cf. Perraudin and Psillaki, 1999, and Fan and Sundaresan,

2000). The distribution of the bargaining power is given exogenously and is described

by parameter η ∈ [0, 1], where a high η is associated with high bargaining power of

the shareholders. The take-it or leave-it offers made either by the shareholders or by

the creditors (as in Mella-Barral and Perraudin, 1997) are limiting cases of the Nash

bargaining solution. Consequently, they correspond to the cases where η = 1 and

η = 0, respectively. The former situation can be related to large corporations that

are likely to be aggressive in negotiations, whereas the latter corresponds to small and

young firms that use a portfolio of the bank’s services.

The remainder of this section consists of two parts. In Subsection 6.3.1, we

calculate the value of the firm as a function of the equityholders’ renegotiation trigger

and determine the optimal sharing rule. In Subsection 6.3.2 we simultaneously derive

the values of debt and equity, and determine the optimal equityholders’ renegotiation

and investment policies and the firm’s optimal liquidation rule.

6.3.1 Nash Bargaining Solution

Debt renegotiation has a form of a strategic debt service, i.e. it is associated with

a lower than contractual coupon payment. The new coupon payment schedule has

to satisfy both the shareholders’ and debtholders’ participation constraints associated

with the renegotiation process. We follow Mella-Barral and Perraudin (1997) and Fan

and Sundaresan (2000) in assuming that the coupon is a function of the current cash

flow. Such an approach allows for avoiding path-dependency, which leads to analytical

intractability.12 Repeated renegotiation is possible and occurs in equilibrium with

positive probability.

It is assumed that bargaining power is distributed among the shareholders and

the creditors which results in the surplus from renegotiation being distributed with

a certain proportion among the two groups. Moreover, we impose the assumption

made by Fan and Sundaresan (2000) that during the renegotiation process the tax

shield is temporarily suspended. As soon as the cash flow from operation recovers and

12Hege and Mella-Barral (2000) assume that a once reduced coupon cannot be increased.
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debtholders are receiving coupon b again, the tax shield is restored.13,14 Finally, it is

assumed that γi, i ∈ {0, 1}, satisfies

γi <
b

r
ρ (1− τ ) . (6.27)

Condition (6.27) implies that the liquidation value is small enough so that it will not

be optimal for the creditors to liquidate the firm immediately after the original debt

contract is infringed.15

First, we determine the value of the firm, V NB

i
, as a function of the optimal

renegotiation trigger. Since the present value of the tax shield depends on the moment

of commencing the debt renegotiation, the value of the firm as a whole depends on the

renegotiation trigger. V NB

i can be expressed as the sum of the present value of cash

flow, tax shield, TSi, growth option (for i = 0), K0x
β
1, and liquidation option, Lix

β2:

V NB

i =
θix (1− τ )

δ
+ TSi + (1− i)K0x

β1 + Lix
β2. (6.28)

In the Appendix we show that for a given choice of the renegotiation trigger, xNB

i , the

tax shield, TSi, equals

TSi =




bτ

r

−β
2

β1−β2

(
x

xNB
i

)β
1

x ≤ xNB

i
,

bτ

r

(
1− β1

β1−β2

(
x

xNB
i

)β2)
x > xNB

i .
(6.29)

The expressions on the right-hand side have an immediate interpretation. They are

the products of the present value of the perpetual tax shield, bτ

r
, a stochastic discount

factor associated with hitting the renegotiation boundary,
(
x/xNB

i

)β2, and a fraction
β1

β1−β2
that reflects the fact that the tax shield operates only in the renegotiation region.

The constants K0 and L0 will be determined later, i.e. at the time of solving

the firm’s investment problem. The constant L1 is given by

L1 =

(
γ1 −

θ (1− τ )xLN1
δ

−
−β2

β1 − β2

bτ

r

(
xLN1
xNB
1

)β1

)(
xLN1

)
−β

2 , (6.30)

13According to Fan and Sundaresan (2000), p. 1072, the fact of temporary tax shield suspension

in the renegotiation region ”may be interpreted as debtholders agree to forgive some debt and the

Internal Revenue Service (IRS) suspends tax benefits until contractual payments are resumed.” An

alternative approach is proposed by Hege and Mella-Barral (2000), and Hackbarth et al. (2002), who

assume that the magnitude of the tax shield corresponds to the prevailing coupon payment.
14Fan and Sundaresan (2000) claim (footnote 12, p. 1073) that the optimal renegotiation trigger is

lower when the tax benefits accrue during the strategic debt service. In fact, the optimal renegotiation

trigger is higher when the tax shield is not suspended since the value of starting renegotiation is higher

in such a situation. Therefore, our main results would be even stronger if we did not impose suspension

of the tax shield. See also footnote 17.
15Since ρ (1− τ) < 1, condition (6.27) also implies that the debt is risky.
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where xLN1 is the after-investment liquidation trigger. The latter is implicitly given by

1− β2

−β2

xLN1 θ (1− τ)

δ
+

bτ

r

(
xLN1
xNB
1

)β1

= γ1 (6.31)

(for derivation of (6.30) and (6.31) see the Appendix). It can be directly seen that

in the absence of taxes, (6.31) reduces to (6.6) with τ = 0. Upon comparing (6.31)

with (6.6) it can be concluded that xLN1 is lower than xL1 as long as xNB

1 is finite.

Consequently, in the presence of taxes the liquidation option is exercised later when

the firm is partially financed with debt and renegotiation is possible.

Having determined the value of the firm, we are ready to calculate the solution

to the bargaining game. Let ϕ∗
i
be the outcome of the Nash bargaining process being

equal to the fraction of the firm received by the shareholders. Given that the value of

the firm is described by (6.28), the shareholders receive ϕ∗1V
NB

i
and the debtholders get

(1− ϕ∗i )V
NB
i . The outside options (the off-renegotiation payoffs) of equityholders and

debtholders are zero and Ri, respectively. Consequently, the solution to the bargaining

game can be written as follows:16

ϕ∗
i
= argmax

ϕ

[(
ϕV NB

i

)η (
(1− ϕ)V NB

i
−Ri

)1−η]

= η
V NB
i −Ri

V NB
i

. (6.32)

From (6.32) it can be concluded that the fraction of the firm received by the equity-

holders in the renegotiation process critically depends on the creditors’ outside option,

Ri. If the creditors’ outside option equals zero (i.e. if γi = ρ = 0), shareholders receive

the fraction of the firm equal to their bargaining power coefficient. In the opposite

case, i.e. when creditors outside option equals the value of the firm (ρ = 1, τ = 0,

and i = 1), shareholders receive nothing in the renegotiation process. Moreover, the

optimal sharing rule again depends on the amount of the current cash flow, x.

6.3.2 Equity Valuation and Optimal Renegotiation Policy

Having calculated the value of the firm and the optimal sharing rule given the

shareholders’ renegotiation trigger, we now derive the optimal renegotiation policy.

16In the formulation of bargaining problem we follow Perraudin and Psillaki (1999), and Fan and

Sundaresan (2000), (where for η = 0.5 the game is the one of Rubinstein, 1982, with ∆t → 0) who

impose this multiplicative form of the objective function. The drawback of an alternative, additive

formulation is that it yields bang-bang solutions.
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We begin by deriving the formulae for the securities values. Subsequently, we simulta-

neously determine the optimal renegotiation and investment policy by maximizing the

value of the equity and the optimal liquidation policy by maximizing the value of the

firm.

Given the value of the firm as a function of the underlying cash flow, we are

ready to determine the after-investment value of equity, ENB

1 , and to find the optimal

renegotiation trigger. The value of equity is determined by solving ODE (6.2) with an

appropriate value-matching condition associated with the renegotiation trigger, xNB

1 .

Consequently, ENB

1 equals

ENB

1 =




η
(
V NB
1 (x)−R1 (x)

) (
= ϕ∗V NB

1 (x)
)

x ≤ xNB
1 ,

θx(1−τ)

δ
− b(1−τ)

r
+
(

x

xNB
1

)β2
×(

η
(
V NB

1

(
xNB

1

)
−R1

(
xNB

1

))
−

θxNB
1

(1−τ)

δ
+ b(1−τ)

r

)
x > xNB

1 .

(6.33)

Applying the smooth-pasting condition allows for finding the optimal renegotiation

trigger, xNB

1 (cf. the Appendix), which is equal to

xNB

1 =
−β2

1− β2

b (1− τ + ητ ) δ

(1− η (1− ρ)) θ (1− τ ) r
, (6.34)

It is straightforward to notice that the trigger xNB

1 increases with taxes. This

is because the effect of taxes on the cash flow that accrues to the firm’s shareholders

dominates the effect of a temporarily suspended tax shield. Therefore, despite the fact

that the tax shield is suspended under renegotiation, the shareholders prefer an earlier

debt reorganization.17

From (6.34) it can be seen that the renegotiation trigger is independent from

taxes only if η is equal to zero. This is equivalent with the creditors holding the

entire bargaining power. In such a case the optimal renegotiation trigger equals the

optimal bankruptcy trigger and the latter has already been shown to be independent of

taxes (cf. (6.15)). Moreover, the optimal renegotiation trigger does not depend on the

liquidation value γ1. This results from the fact that the change of the instantaneous

17The impact of taxes on cash flow is not taken into account while analyzing the optimal bankuptcy

trigger in Leland (1994) (see footnote 22 therein concerning the ceteris paribus assumption) and the

renegotiation trigger in Fan and Sundaresan (2000) (see Assumption (6), p. 1061 therein). Conse-

quently, the optimal renegotiation trigger in Fan and Sundaresan (2000) is reported to decrease in

taxes since only the effect of the increasing tax shield is taken into account. Moreover, contrary to the

result of Fan and Sundaresan (2000) obtained without the liquidation option, introducing taxes does

not always imply that shareholders receive a higher fraction of the firm in the renegotiation process.
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payoff when the renegotiation commences is not influenced by the collateral.18

The after-investment value of the firm, V NB

1
, can be determined now by sub-

stituting (6.29) and (6.30) into (6.28). Having also calculated the value of equity, ENB

1
,

and knowing the value of R1 (see (6.11)), we are able to provide the value of its debt,

DNB

1
. It holds that

DNB

1
=



(1− η)V NB

1
+ ηR1 x ≤ xNB

1
,

b

r
+
(
(1− η)V NB

1
+ ηR1 −

b

r

) (
x

xNB
1

)β
2

x > xNB
1

.
(6.35)

Figure 6.2 depicts the value of the firm and the claims written on it after the

investment is made and there exists a possibility of renegotiation. The value of the

firm remains within the band bounded from below by the present value of the cash flow

and from above by the present value of the cash flow and of the perpetual tax shield.

The value of the equity behaves as in the case without renegotiation with the only

difference being that the option to default is replaced by a more highly valued option

to renegotiate. The value of debt tends to its riskless valuation for high levels of cash

flow as in the previous case, and it equals a fraction of the firm value, (1− ϕ∗)V NB

1
,

for its low levels.
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Figure 6.2: Valuation of the firm, V1, its debt, D1, and equity, E1, with the shareholder’s

option to renegotiate the debt.

18
If γ

1
was high enough so that R1

(
x
NB

1

)
= γ

1
, then the renegotiation trigger would depend on γ

1
.

However, this is ruled out by assumption (6.27).
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At the optimal equityholders’ renegotiation trigger, the value of all the claims

remain differentiable. For the equity it is the result of the smooth-pasting condition

that guarantees optimality of the trigger. For the value of the firm and its debt it is a no-

arbitrage condition. Since the renegotiation process is reversible, i.e. the equityholders

will restore the original coupon flow, b, as soon as the earnings process again exceeds

the critical threshold xNB
1
, the first-order derivative of the value of all the claims must

be continuous. As a consequence, the value of the firm and of its debt does not exhibit

kinks at the renegotiation trigger, xNB
1
.

In order to determine the optimal investment, renegotiation and liquidation

triggers and the value of the corporate securities, we first observe that the value of

equity before investment, ENB

0
, can be expressed as

ENB

0
=

x (1− τ )

δ
−

b (1− τ )

r
+ A01x

β
1 + A02x

β2. (6.36)

A01x
β1 and A02x

β2 are the components of the value of equity associated with the

investment and debt renegotiation option, respectively. Using equation (6.36) for ENB

0
,

(6.33) for ENB

1
, (6.28) with i = 0 and i = 1 for V NB

0
and V NB

1
, respectively, and (6.11)

for R0, we obtain the optimal triggers and securities’ values by solving the following

system of equations

V NB

0
(x∗) = V NB

1
(x∗)− I, (6.37)

ENB

0
(x∗) = ENB

1
(x∗)− I, (6.38)

∂V NB

0

∂x

∣∣∣∣
x=x∗

=
∂V NB

1

∂x

∣∣∣∣
x=x∗

, (6.39)

ENB

0

(
xNB
0

)
= η

(
V NB

0

(
xNB
0

)
−R0

(
xNB
0

))
, (6.40)

∂ENB

0

∂x

∣∣∣∣
x=xNB

0

= η
∂
(
V NB

0
−R0

)
∂x

∣∣∣∣∣
x=xNB

0

, (6.41)

V NB

0

(
xLN
0

)
= γ

0
, (6.42)

∂V NB

0

∂x

∣∣∣∣
x=xLN

0

= 0. (6.43)

Equations (6.37) and (6.38) are the value-matching conditions required for the value

of the firm and equity to be continuous at the optimal investment threshold, x∗. The

smooth-pasting condition (6.39) guarantees the optimality of the investment threshold,

x∗. Conditions (6.40) and (6.41) are the value-matching and smooth-pasting conditions

associated with the optimal renegotiation trigger chosen by the equityholders, respec-
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tively. The RHS of (6.40) is the share of the value of the firm received by the share-

holders upon renegotiation. (6.42) is the value matching condition reflecting the value

of the firm at the liquidation trigger. Finally, (6.43) is the smooth-pasting condition

for the value of the firm at the closure point.

Now, we are ready to state the following proposition.

Proposition 6.1 The optimal investment threshold, x∗, renegotiation trigger, xNB
0

,

and liquidation trigger, xLN
0

, can be obtained by simultaneously solving the following

equations

(θ − 1) (1− τ)

δ
−

−β
1
β
2

β
1
− β

2

bτ

rx∗

((
x∗

xNB
1

)β2

−

(
x∗

xNB
0

)β2

)

+β
2
(L1 − L0) (x

∗)β2−1 − β
1
K0 (x

∗)β1−1 = 0, (6.44)

1− β
2

−β
2

xNB
0
(1− τ) (1− η (1− ρ))

δ
−

b

r
(1− τ + ητ )

−

1− β
2

−β
2

(
ηK0

(
xNB
0

)
−A01

(
xNB
0

))
= 0, (6.45)

1− τ

δ
+

−β
1
β
2

β
1
− β

2

bτ

rxLN
0

(
xLN
0

xNB
0

)β1

+ β
1
K0

(
xLN
0

)β
1
−1

= 0. (6.46)

The constants K0, L0, A01, and A02 are defined by equations (6.65) and (6.66) in the

Appendix.

Proof. See the Appendix.

Unfortunately, an analytical solution to the above system of equations cannot

be obtained. Therefore, we rely on numerical methods. Figure 6.3 depicts the values

of the firm, its debt and its equity, in the presence of the investment and renegotiation

options.

The boundary conditions for the equity value-maximizing investment policy

are the same as for the firm value-maximizing policy, except for that

∂ENB

0

∂x

∣∣∣∣
x=x∗

=
∂ENB

1

∂x

∣∣∣∣
x=x∗

(6.47)

replaces (6.39). This leads to the following proposition.

Proposition 6.2 The shareholders’ value-maximizing investment threshold is ob-

tained by solving simultaneously equations (6.45), (6.46), and

(θ − 1) (1− τ )

δ
+ β

2
(A12 −A02) (x

∗)β2−1 − β
1
A01 (x

∗)β1−1 = 0. (6.48)
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Figure 6.3: Valuation of the firm, V0, its equity, E0, and debt, D0, with the shareholder’s

option to renegotiate the debt and the option to invest exercised at the firm value-maximizing

level of earnings.
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Figure 6.4: Valuation of the firm, V0, its equity, E0, and debt, D0, with the shareholder’s op-

tion to renegotiate the debt and the option to invest exercised at the equity value-maximizing

level of earnings.
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Constants A01, A02 and A12 are defined by equations (6.66) and (6.67) in the Appendix.

Proof. See the Appendix.

Figure 6.4 depicts the value of the firm, and its debt and equity in the presence

of the investment and renegotiation options when the second-best investment policy is

implemented. Now, it is the value of equity that is differentiable at x∗ (cf. (6.47)).

Finally, we are able to present the optimal debt service prior to and after

exercising the growth option. The coupon stream resulting from renegotiating the

original debt contract, cNB
i
, can be expressed as follows

cNB
i

=




(1− η)xθi (1− τ ) + ηrγ
i

x ∈
(
xLN
i

, xLR
i

]
,

(1− η (1− ρ)) xθi (1− τ ) x ∈
(
xLR
i

, xNB
i

]
,

b x > xNB
i

.

(6.49)

The first regime in the strategic debt service corresponds to earnings remaining between

the firm’s optimal liquidation trigger, xLN
i
, and the level triggering liquidation if the

firm was run by the creditors, xLR
i
. In this case the creditors receive a weighted average

of cash flow from holding the collateral, rγ
i
, and operating the firm as the first-best

users, xθi (1− τ ). These streams are weighted with the shareholders’ bargaining power

coefficient, η. For the earnings level above xLR
i
, but still in the renegotiation region,

the creditors receive a weighted average of the cash flow from operating the company

as the second-best , xρθi (1− τ), and as the first-best users, xθi (1− τ). Outside the

renegotiation region, the contractual coupon b is paid.

Note that for τ = 0 and η ∈ {0, 1} the coupon schedule corresponds to the

outcome of the take-it or leave-it offers in Mella-Barral and Perraudin (1997), whereas

setting γi to zero reduces the solution to the payment scheme of Fan and Sundaresan

(2000).

On the basis of (6.49) it can be concluded that the presence of the growth

opportunity does not change the coupon flow to the creditors within given regimes.

This results from the following fact. In the bargaining process both groups of stake-

holders receive the following portfolio: a fraction of the firm’s value, V NB

i
, and the

fraction of the creditors’ outside option, Ri. Strategic debt service reflects cash flows

to which these portfolios of securities are entitled. Since the investment opportunity

that constitutes a part of the firm’s value is not associated with any payment stream,

the strategic debt service within a given regime is not influenced by its presence.

Although the growth option does not influence cash flows from the firm’s se-

curities, it affects, via its impact on optimal triggers, the regimes determining the
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structure of payoff under the strategic debt service. Let us observe that the following

relationships hold
xLN
1

xLN
0

>
γ1

θγ0

=
xLR
1

xLR
0

� xNB
1

xNB
0

. (6.50)

The first inequality is implied by the positive value of the growth option. Without the

growth option, the liquidation trigger xLN
0

would be equal to θγ
0
xLN
1

/γ
1
. However,

the presence of growth option raises the opportunity cost of liquidating the firm. As a

consequence, the firm is liquidated optimally at a cash flow level lower than θγ
0
xLN
1

/γ
1
.

The equality in the middle follows from the solution to the creditors’ liquidation prob-

lem when the value of the firm run by the creditors is given by (6.11). The remaining

relationship reflects an ambiguous sign of the impact of the growth opportunity on the

renegotiation policy.

All the above relationships directly translate into the changes in the strategic

debt service resulting from the presence of the growth option. First, the inequality on

the left reflects the effect of the investment opportunity on the liquidation trigger. It

implies that in the presence of the growth option, the debt will be strategically serviced

for a longer period before the ultimate decision to abandon the firm. Furthermore,

the boundary between the regimes delineated by the trigger xLR
1
is unaffected by the

presence of the investment opportunity. After all, the creditors running the company

after the bankruptcy do not hold the growth option anymore. Finally, the impact

of the investment opportunity on the cash flow level that triggers the renegotiation

is ambiguous. On the one hand, since the value of equity contains an additional

component reflecting the value of the option to invest, the equityholders’ value of

the outside option increases, which makes renegotiation ceteris paribus less attractive.

However, the value of the firm is also higher when the investment opportunity exists.

Therefore, the value of renegotiation increases as well. Since these two effects work

in the opposite directions, the presence of the investment opportunity can, in general,

either raise or reduce the renegotiation trigger.

Proposition 6.3 The optimal renegotiation threshold in the presence of the invest-

ment opportunity can either be lower or higher than the corresponding threshold in a

situation where there is no such opportunity. The condition

ηK0 > A01 (6.51)

determines the range of η in which the presence of investment opportunity results in

earlier renegotiation.

Proof. See the Appendix.
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From Proposition 6.3 we conclude that it is possible to determine the crit-

ical level of the shareholders’ bargaining power, η, that demarcates the two cases.

It holds that under both the first-best and second-best solution, the optimal rene-

gotiation trigger exceeds the one without the investment opportunity if and only if

K0 − A01 > 1−η

η
A01. This condition describes the case where the present value of the

wealth transfer to the creditors occurring upon investment exceeds the value of the

option to invest that accrues to the shareholders by more than a factor 1−η

η
. This

means that if the bargaining power of the shareholders is high enough, it is optimal

for them to begin the renegotiation process earlier in the presence of an investment

opportunity. By doing so, the shareholders forgo the component of the value of equity

associated with the investment option A01x
β
1, but they are more than compensated

by receiving a fraction (dependent on η) of the firm’s value including the firm’s growth

option K0x
β
1.

Introducing the option to renegotiate the debt may adversely affect the value

of the debt itself. This happens in a situation where the renegotiation trigger is close,

but the bankruptcy trigger (in the absence of renegotiation) lies much below the rene-

gotiation trigger, i.e. when the shareholders’ bargaining power, η, is sufficiently high

and the efficiency of creditors as the would-be managers, ρ, is low. Naturally, for x

close enough to the bankruptcy trigger, allowing for renegotiation increases the debt

value since the creditors’ renegotiation payoff is higher than the one received after the

bankruptcy.

6.4 Numerical Results and Testable Implications

This section presents comparative statics concerning the firm’s optimal investment,

liquidation, and debt restructuring policies, the first passage time probabilities and

securities’ values. Moreover, it presents some testable implications of the model. The

input parameters used for graphical illustrations as follows: risk-free rate r = 0.05,

drift rate of the earnings process α = 0.015, volatility of earnings σ = 0.2, effective tax

rate τ = 0.05, instantaneous coupon b = 0.66, efficiency of the creditors as the second-

best users of the firm’s assets ρ = 0.5, bargaining power of the shareholders η = 0.5,

liquidation value before investment γ0 = 1, investment cost I = 10, earnings multiplier

resulting from exercising the growth option θ = 2, liquidation value after investment

γ1 = 2. In Subsection 6.4.1 we analyze the optimal policies, whereas in Subsection 6.4.2

we look at the first passage time probabilities. Subsection 6.4.3 discusses securities’

valuation and Subsection 6.4.4 provides empirical implications.
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6.4.1 Optimal Policies

The comparative statics for optimal investment, debt restructuring, and liquidation

triggers are depicted in Table 6.2 below.

σ α, δ r, δ r, α b ρ η I, θ−1 τ γ
0

γ
1

x∗ + − + (i) (ii) (iii) (iv) + + (v) (v)

xNB
0

− − + − + − + + + − +

xB
0

− − + (i) + (vi) 0 + + (vi) (vi)

xLN
0

− − + + + − + + + + −

Table 6.2: Comparative statics concerning the optimal investment, x∗, renegotiation, xNB
0

,

bankruptcy, xB
0
, and liquidation, xLN

0
, thresholds. ”+” (”−”) denotes a positive (negative)

derivative with respect to a given parameter. The numbers in brackets refer to the explanatory

notes in the text.

The signs of first derivatives for both the first-best and second-best policy are

included in Table 6.2. Below, we provide a discussion of those results that differ from

the well-known results from the real options and corporate finance literature.

(i) From real options theory it is known that under all-equity financing the relation-

ship between the optimal investment threshold and the risk-free interest rate,

r, given constant return shortfall, δ, is increasing.19 Such a relationship holds

because the wedge between the Marshallian and optimal investment threshold

increases with r, whereas the present value of the project does not change. Debt

financing introduces another effect, which works in the opposite direction. Given

that the coupon b is fixed, a higher r is associated with a lower debt value, and

thus with a lower magnitude of the underinvestment problem. Consequently,

a higher r can stimulate earlier investment since it is associated with a lower

wealth transfer from shareholders to debtholders. The latter effect dominates if

cash flow uncertainty is low. For low levels of uncertainty the optimal invest-

ment threshold is low, and this implies a relatively high leverage at the moment

of undertaking the project. In such a case the impact of the change in r on

the value of wealth transfer to debtholders is high and the wealth transfer effect

dominates the waiting option effect. As a result, for low cash flow uncertainty the

relationship between interest rate and optimal investment threshold is U-shaped

(cf. Figure 6.5).20
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Figure 6.5: Equity value maximizing investment threshold in the presence of renegotiation

option, x∗ (NB, ·), and without renegotiation, x∗ (B, ·), for σl = 0.1, σh = 0.2 and varying

interest rate with the return shortfall rate, δ, kept constant at the 0.035 level.

0.25 0.5 0.75
b

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x∗
x∗HEL

x∗HNB,SL

x∗HB,FL
x∗HB,SL
x∗HNB,FL

Figure 6.6: First-best, x∗ (NB,F ), and second-best, x∗ (NB,S), investment thresholds

in the presence of renegotiation option compared to first-best, x∗ (B,F ), and second-best,

x∗ (NB,F ), thresholds without renegotiation, and with the all-equity threshold, x∗ (E), for

varying leverage (coupon rate), b.
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Figure 6.7: First-best, x∗ (NB,F ), and second-best, x∗ (NB,S), investment thresholds

in the presence of renegotiation option compared to first-best, x∗ (B,F ), and second-best,

x∗ (B,S), thresholds without renegotiation, and with the all-equity threshold, x∗ (E), for

varying magnitude of the creditors outside option, ρ.

(ii) The impact of leverage, b, on the optimal investment threshold for the first-best

and second-best solutions differs (see Figure 6.6). If the investment is made so

as to maximize the value of the firm, the optimal investment threshold decreases

with leverage. The latter relationship results from a higher increase in the present

value of the tax shield upon completing the investment. The opposite is true

in the situation where the investment threshold is chosen so to maximize the

value of equity. In this case the optimal investment threshold increases with

leverage. This can be explained by the wealth transfer from the equityholders to

the debtholders, positively related to the level of leverage. The wealth transfer

occurs since after undertaking the project the renegotiation trigger is lower than

before the investment has been made.

(iii) The outside option of the debtholders, ρ, influences the optimal investment

threshold either by delaying investment, if the threshold is chosen so that the

value of the firm is maximized, or by accelerating it, if the shareholders choose

19See Dixit and Pindyck (1996), Ch. 6.
20When the first-best solution is applied, the wealth transfer to the debtholders does not directly

influence the investment policy so that the optimal investment threshold always increases in r.
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Figure 6.8: First-best, x∗ (NB,F ), and second-best, x∗ (NB,S), investment thresholds

in the presence of renegotiation option compared to first-best, x∗ (B,F ), and second-best,

x∗ (NB,F ), thresholds without renegotiation, and with the all-equity threshold, x∗ (E), for

varying distribution of bargaining power, η.

the investment timing (cf. Figure 6.7). The reason for which the first-best invest-

ment threshold increases with ρ is that the optimal renegotiation trigger decreases

with ρ. Consequently, since a lower renegotiation trigger is equivalent to a lower

increase of the PV of the tax shield, the value of the project decreases with ρ

and the investment is undertaken later. In the special case of τ = 0, the tax

shield argument is no longer present and the threshold is equal to the 100% eq-

uity one. Conversely, if the value of equity is maximized, a lower wealth transfer

associated with high ρ (thus low xNB
0
) moves the investment threshold closer to

the all-equity case. When the second-best solution is applied, the wealth transfer

from debtors to creditors always occurs upon investment so that even in case of

τ = 0 the equity value-maximizing investment rule differs from the one given by

the optimal all-equity threshold.

(iv) The shareholders’ bargaining power, η, affects the optimal investment threshold

in an opposite way than ρ (cf. Figure 6.8). If the timing of investment is chosen

optimally so as to maximize the value of the firm, the optimal investment thresh-

old decreases with η. This results from the fact that the value of the investment
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Figure 6.9: First-best, x∗ (NB,F ), and second-best, x∗ (NB,S), investment thresholds

in the presence of renegotiation option compared to first-best, x∗ (B,F ), and second-best,

x∗ (NB,F ), thresholds without renegotiation, and with the all-equity threshold, x∗ (E), for

different liquidation values, γ
0
.

opportunity to the firm increases with η, since the present value of the additional

tax shield (due to investment) increases. For an analogous reason as in (iii),

the first-best investment threshold is insensitive to changes in η in the absence of

taxes. However, if the timing of investment is chosen by the equityholders so that

the value of equity is maximized, the optimal investment threshold increases with

η. This is due to the fact that the renegotiation trigger is positively related to

η. Since the renegotiation trigger decreases upon investment, debtholders benefit

most from investment when the initial trigger is high. A higher wealth transfer

that accrues to the debtholders upon undertaking the project results in a later

investment.

(v) The impact of the liquidation value of the firm on the optimal investment policy

depends on the presence of the renegotiation option and on the fact whether the

first-best solution can be implemented (cf. Figure 6.9). When the investment

threshold is chosen as to maximize the value of the firm, the investment is always

undertaken later (thus closer to the all-equity trigger) when the liquidation value

γ0 (γ1) is higher (lower). This results from the fact that investment becomes less
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attractive if it is associated with a lower increase in the liquidation value. This

effect is reversed if in the presence of the renegotiation option the choice of the

investment trigger maximizes the equity value. Since a higher initial liquidation

value negatively influences the probability of strategic default, the wealth transfer

to the debtholders, which occurs at the moment of investment, is lower. This

results in an earlier investment. The same argument can be applied to analyze

the impact of γ
1
. Finally, when renegotiation is not allowed for and the second-

best solution is implemented, the investment trigger does not depend on the

firm’s liquidation value.

(vi) The bankruptcy trigger, xB
0
, is influenced neither by the firm’s liquidation value

nor by the efficiency of the creditors as the second-best users of the firm’s as-

sets as long as the investment threshold is chosen as to maximize the equity

value. In a situation where the first-best solution can be implemented, the op-

timal bankruptcy threshold is positively related to the liquidation value γ1 and

negatively related to the creditor’s efficiency and liquidation value γ
0
. A posi-

tive change in a liquidation value and low creditor’s efficiency make investment

particularly attractive since it lowers the present value of the economic cost of

bankruptcy. Consequently, investment occurs too early comparing with the case

when the effect of the change of economic costs of bankruptcy is absent. This

results in a lower value of the firm’s claims as a going-concern and lower oppor-

tunity cost of bankruptcy.

6.4.2 First Passage Time Probabilities

Interactions between the options to scale up the operations and to reorganize debt

can already be observed by analyzing the relevant optimal triggers. However, since

equityholders face a double-barrier control problem, there is no one to one correspon-

dence between the optimal triggers and the first passage time probabilities. Therefore,

we extend the analysis and calculate the first passage time probabilities associated with

the optimal renegotiation trigger and with the optimal investment threshold.

In order to evaluate the influence of a given option, or parameter, on the

relevant decision trigger, we calculate the probabilities of reaching the trigger within a

time interval of length T . For example, the probability of strategic debt restructuring

is equivalent to the probability of the cash flow process hitting, either the renegotiation

trigger, xNB
0
, or, first, the investment threshold x∗ and then the renegotiation trigger,

xNB
1
. Conversely, the probability of investment equals the probability of hitting the
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investment threshold, x∗, conditionally on not hitting the liquidation trigger, xLN
0
. The

derivation of the relevant probabilities, based on solving a partial differential equation

(PDE), is presented in the Appendix.

In Table 6.3 we present the comparative statics concerning the first passage

time probabilities. The presented results have been obtained by numerical calculation

of the relevant probabilities for an extensive range of input parameters.

σ α, δ r, δ r, α b ρ η I, θ−1 τ T γ
0

γ
1

p∗ (vii) + − (viii) (ii) (iv) (iv) − − + (v) (v)

pNB (vii) − + −

∗ + − + + + + −

∗ +∗

pB (vii) − + −

∗ + (vi) 0 + + + (vi) (vi)

Table 6.3: Comparative statics concerning the first passage time probabilities associated with

investment, p∗, debt renegotiation, pNB, and bankruptcy, pB.∗ relationship can be reversed

when x∗ − x is very small. The numbers in brackets refer to the explanatory notes in the

text.

(vii) Non-monotonicity of the investment-uncertainty relationship has been already

pointed out by Sarkar (2000) and analyzed further in Chapter 3 of this thesis.

It crucially depends on the relationship between the horizon T and the time to

reach the deterministic Jorgensonian threshold. From Chapter 3 it is obtained

that if the horizon T is relatively short, the investment-uncertainty relationship

is humped, while for high T it is negative. Another factor that influences the

probability of investment in this double-barrier problem of the firm is the prob-

ability of bankruptcy (or of liquidation when renegotiation is possible) which is

also sensitive to the changes in uncertainty. On the basis of Figure 6.10 one

can conclude that higher uncertainty results in a lower probability of investment

when cash flow is high. However, for lower levels of cash flow, uncertainty raises

the probability of investment since bankruptcy becomes less likely. The latter

holds since the bankruptcy threshold decreases with σ.

The presence of renegotiation option affects the probability of investment

twofold. First, it raises the optimal investment threshold. Second, it allows to pre-

serve the investment opportunity for the levels of cash flow lower than the bankruptcy

trigger. The smaller than one ratios of the probabilities with and without renegotia-

tion illustrate that the effect of an increased investment threshold in the presence of
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Figure 6.10: The probability of investment when the renegotiation is not possible for xl =

0.6, xm = 0.7, and xh = 0.8, as a function of cash flow volatility, σ.
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Figure 6.11: The ratio of probabilities of investment when the renegotiation is and is not

possible for xl = 0.6, xm = 0.7, and xh = 0.8, as a function of cash flow volatility, σ.
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Figure 6.12: The probability of renegotiation for xl = 1.0, xm = 1.1, and xh = 1.25, as a

function of shareholders’ bargaining power, η.
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Figure 6.13: The ratio of probabilities of debt renegotiation with, pNB (·, GO), and without,

pNB (·, NGO), the growth option for xl = 1.0, xm = 1.1, and xh = 1.25, as a function of

shareholders’ bargaining power, η.
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renegotiation more than offsets the impact of losing the investment opportunity upon

bankruptcy (see Figure 6.11).

(viii) An increase in the interest rate, r, when the return shortfall, δ, is kept constant,

can change the probability of investment in both directions. If the investment

threshold decreases with r (see (i)), then the probability of investment always

increases with r. However, when the investment threshold is positively related to

r (also see (i)), the sign of the investment-interest rate relationship is ambiguous.

This results from the fact that such increase in the investment threshold is coun-

terbalanced by the increase in the cash flow drift rate as well as by a decrease in

the bankruptcy trigger (see (6.15)). The sign of the joint effect depends on the

specific choice of model parameters.

What remains to be considered is the relationship between the presence of the

growth option and the probability of strategic debt restructuring. Renegotiation is

more likely when the debtors are given more bargaining power (cf. Figure 6.12). How-

ever, the magnitude of the influence of bargaining power on the renegotiation proba-

bility highly depends on whether the firm holds positive NPV growth opportunities.

Such a comparison is illustrated in Figure 6.13. It appears that in the presence of a

positive NPV project, the probability of debt renegotiation can be higher than without

the investment option. Such a situation occurs when the actual renegotiation trigger

xNB
0

exceeds the renegotiation trigger without the investment opportunity (equal to

xNB
1

θ), and the current cash flow is not excessively high.21 This situation occurs when

the shareholders’ bargaining power, η, is large (cf. Proposition 6.3). This effect is

magnified for moderate levels of uncertainty (high uncertainty relatively increases the

shareholders’ value of the investment option which makes renegotiation less likely).

6.4.3 Valuation of Securities

In this section the comparative statics concerning the valuation of the firm’s secu-

rities are presented. Since the signs of the relevant relationships does not depend on the

presence of the renegotiation option, the existence of such an option is assumed here.

Table 6.4 depicts the direction of the impact of model parameters on the valuation of

equity, debt and the entire firm.

21In the absence of the renegotiation option the bankruptcy triggers are the relevant ones. Since it

holds that xB
0

is always lower than x
B

1
θ, the presence of the investment opportunity always reduces

the default probability when there is no option to renegotiate.
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σ α, δ r, δ r, α b ρ η I, θ−1 τ γ0 γ1

ENB

0
+ + − + −+ − + − − − −

DNB

0
(ix) + − (xi) +− + − − − + +

V NB

0
(x) + − (xii) +− + − − − + +

Table 6.4: Comparative statics concerning the valuation of the firm, its debt and equity. ”+”

(”−”) denotes a positive (negative) derivative with respect to a given parameter, and ”+−”

(”−+”) indicates a humped (U-shaped) relationship. The numbers in brackets refer to the

explanatory notes in the text.

Since changes in the valuation of the claims resulting from the changes in input

parameters are mostly consistent with those reported in the dynamic capital structure

literature (e.g. Leland, 1994), we mainly discuss the results that are directly influenced

by the interactions between the option to invest and to restructure the debt.

(ix) The relationship between the cash flow volatility, σ, and the value of debt, DNB

0
,

depends on the current level of the earnings process, x. When this level is high,

the value of the debt decreases with volatility since higher volatility makes renego-

tiation, other things equal, more likely. However, for realizations of x sufficiently

close to xNB
0
, two other effects result in a positive relationship between the value

of the debt and uncertainty. First, for low x, the impact of xNB
0

decreasing with

σ is stronger than the impact of a higher probability of hitting any fixed trigger

lower than x.22 Second, the renegotiation value of debt rises with σ. The latter

relationship results from the fact that the value of the firm rises with σ, because

of the included investment opportunity component.

(x) The relationship between the cash flow volatility, σ, and the value of the firm,

V NB

0
, results from the impact of the volatility on the value of debt and equity.

For a given σ and varying x, the value function is first convex (which mainly

reflects the option value of the tax shield after the contractual debt service is

restored), then it becomes concave (as a result of a short option on the tax shield

once contractual service is restored), becomes once again convex (when the option

component associated with the investment opportunity starts to dominate) and,

eventually, becomes and remains concave (when it value-matches to V NB

1
−I, see

(6.37)). Consequently, the effect of changes in σ is only unambiguous when the

firm either is financially distressed (positive relationship) or close to the optimal

exercise of its growth option (negative relationship).
22Using a similar reasoning Leland (1994) explains the behavior of junk bonds.
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(xi) The sign of the relationship between the value of debt and the risk-free interest

rate, r, given constant return shortfall, δ, is in general ambiguous. The relation-

ship is hump-shaped for low uncertainty combined with a high convenience yield,

and decreasing otherwise. If the firm’s debt was riskless, its value would always

decrease with r, irrespective of the drift rate, α, and return shortfall, δ. Here,

the positive probability of renegotiation makes it risky. A very low interest rate,

in combination with a positive return shortfall, is associated with a negative drift

rate. If the uncertainty is small, the stochastic discount factor associated with

renegotiation is high. Therefore, for low levels of uncertainty the value of the

debt may benefit from an increasing interest rate if the latter is sufficiently low.

(xii) The relationship between the value of the firm and the risk-free interest rate, r,

given constant return shortfall reflects the impact of r on the value of equity,

ENB

0
, and debt, DNB

0
. Since the value of equity increases monotonically with r,

the impact of the interest rate on the value of the firm depends on the relative

slope of the debt value function comparing to equity. Since the former can both

increase and decrease with r (see (xi)), the value of the firm is in general hump-

shaped or increasing with r. For a very high r, the value of the firm levels off

since the impact of changes in leverage becomes negligible (as b/r → 0).

The comparative statics results from the last two columns of Table 6.4 coincide

with the findings in the recent dynamic capital structure literature (cf. Flor, 2002, and

references therein). It appears that ex post (i.e. when the capital structure is already

fixed) the value of the firm’s equity decreases with the asset resale value, γ
i
. This

results from the fact that the asset resale value increases the bargaining position of

the creditors (who can always seize the assets upon the violation of the original debt

contract by the equityholders), who are granted bigger concessions in the renegotiation

process.

6.4.4 Empirical Implications

Testing empirical predictions of our model requires identifying proxy variables that

can capture the effects of different costs of renegotiation (in the model we consider

only two polar cases: zero costs and costs offsetting entire benefits from renegotiation),

equityholders’ bargaining power η, and creditors’ outside option, ρ. The costs of rene-

gotiation (cf. Bolton and Scharfstein, 1996) are expected to be low when the firm is

financed with a bank debt or, in general, when the number of its creditors is small.
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The distribution of bargaining power (cf. Hackbarth et al., 2002) crucially depends

on the firm’s size, age, and degree of diversification. Moreover, it is also influenced by

the country’s legal system (US Bankruptcy Code of 1978 is more shareholder-friendly

than the codes in most continental European countries). Finally, creditors’ efficiency

as managers of the firm is expected to be higher when the brand recognition is low (cf.

Mella-Barral, 1999) and in the sectors with low intensity of R&D.

In this section, we first analyze the sensitivity of investment to the firm’s cash

flow. Subsequently the stock price behavior and credit spreads are discussed. Finally,

some social welfare results are presented.

Investment-cash flow sensitivity. The set-up of this paper’s model stipu-

lates that investment is triggered by a sufficiently high level of cash flow from opera-

tions. This implies that a higher magnitude of Myers’ (1977) underinvestment makes

the investment ceteris paribus less likely to be triggered by an incremental cash flow

increase. As a consequence, the presence of the renegotiation option and high share-

holders’ bargaining power, which both result in higher underinvestment, is likely to

decrease the sensitivity of investment to the firm’s cash flow. Therefore, our model pro-

vides an alternative explanation of the empirical evidence that small and young firms

exhibit relatively higher investment-cash flow sensitivity (cf. Lensink et al., 2001, Ch.

3, and references therein). Since small firms usually have a limited bargaining power

in the debt renegotiation with banks, the magnitude of the additional underinvestment

resulting from the renegotiation option will be in the most cases insignificant. This

relatively lower magnitude of underinvestment implies that their investment-cash flow

sensitivity is likely to remain high. The same argument can be used to claim that the

capital investment of big and mature firms with dispersed bond market debt will be

on average more sensitive to cash flow than investment of similar firms with a mixture

of bank and bond market debt and with bank debt only (cf. Moyen, 2002).

Stock price behavior. Asymmetric returns are inherent to the equity of firms

that hold a substantial portfolio of real options. As Bernardo and Chowdhry (2002)

point out (cf. also Berk et al., 1997, and Pope and Stark, 1997), positive earnings

surprises have a stronger effect on the prices of equity than negative ones. This is

because the presence of a real option makes the payoff to equityholders convex in the

stochastic variable that underlies the firm’s cash flow. In the current model, the equity

value function consists of two convex components, options to invest and to restructure

the debt/declare bankruptcy, and one linear, present value of cash flow. Therefore, it

is itself convex. As a consequence, the stock price returns exhibit right-skewness.
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The presence of an investment and a renegotiation option has also implications

for the responsiveness of the stock price to the earnings surprises. Upon introducing the

renegotiation option alone, one can observe that the stock price becomes less responsive

to the earnings surprises. This is associated with a decrease of the first derivative of

the equity value function with respect to the process x. The reason for that is that

the renegotiation option has a relatively higher value in the adverse states of nature

(i.e. for low realizations of x). Consequently, any variation in x results in less drastic

changes in E0 in the presence of renegotiation option. The responsiveness of the stock

price to the earnings surprises is magnified by introducing the growth option. This

results from the fact that higher realizations of x not only give rise to the present value

of cash flow but also enhance the value of the growth option. As a consequence, the

derivative ∂E0

∂x
increases and so does the responsiveness to the earnings surprises.

Credit Spreads. The riskiness of debt reflected by the credit spread is highly

influenced by the presence of both an investment and a renegotiation option. On the

basis of the formula for the credit spread (in bps), SPR, where

SPR =

(
b

D0

− r

)
∗ 100, (6.52)

it can be concluded that for a given coupon and a riskless rate, the credit spread

is inversely monotonic in the market value of debt. Consequently, the results of the

analysis of Section 6.3 can be translated into implications for the credit spreads.

The first theoretical prediction is that the presence of growth options reduces

ceteris paribus credit spreads. Anticipated future exercise of such options is associated

with the prospect of lowering both the bankruptcy and renegotiation thresholds, which

negatively affects the riskiness of the debt. In the absence of a renegotiation option,

introducing the growth option the results not only in a decreasing the after-investment

bankruptcy threshold but also in lowering the initial bankruptcy threshold. The latter

holds since the opportunity cost of declaring bankruptcy is higher in the presence of the

growth option. Consequently, in the absence of the renegotiation option, the impact

of the investment opportunity on credit spreads is substantial.

When the renegotiation option is allowed for, a lower renegotiation threshold,

which arises after completing the investment, reduces the riskiness of the debt even

before the investment project is undertaken. However, there is a second effect that

can increase the firm’s credit risk. Contrary to the bankruptcy case, the impact of

the growth option does not have to make the debt restructuring less likely. In the

situation described in Proposition 6.3, the presence of the growth option increases the
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renegotiation trigger. This can lead to a higher riskiness of the debt, resulting in a

higher credit spread. The magnitude of both opposing effects highly depends on the

shareholders’ bargaining power and the creditors’ outside option. Higher shareholders’

bargaining power results in a higher magnitude of the latter effect, whereas a higher

creditors’ outside option has an opposite effect. In general, for an extensive grid of

the model parameters’ values, the presence of the growth option reduces credit spreads

even in the presence of strategic debt restructuring.

The impact of the market parameters such as interest rate, return shortfall

and earnings volatility, as well as of the indirect bankruptcy costs is consistent with

the literature on firm-value based models of credit risk (cf. Anderson and Sundaresan,

2000).

Social Value of the Firm. According to Hege and Mella-Barral (2000), the

social value of the firm is not affected by the distribution of the bargaining power

among the debtors and the creditors. The reason is that any loss of the tax shield,

which is associated with premature renegotiation due to a higher bargaining power

of the debtors, is just a transfer to the government. Contrary to that observation,

in the current model the distribution of the bargaining power has an externality on

the investment and the liquidation decision. Despite the fact that the changes in the

present value of the tax shield do not directly influence the social value of the firm

(they merely change the redistribution of wealth), they do affect the investment and

liquidation policy. Consequently, in order to assess the impact of the distribution

of bargaining power on the social value of the firm, one has to compare the first-best

investment and liquidation thresholds calculated under all-equity financing assumption

with the ones determined in the presence of a mixed capital structure.

In our set-up debt distorts the optimal investment and liquidation policies.

As it can be seen from Figure 6.6, the optimal equityholders’ investment threshold

is higher than in the all-equity case. Moreover, the optimal investment threshold

increases with the shareholders’ bargaining power coefficient. Consequently, a high

shareholders’ bargaining power exacerbates the underinvestment problem, in this case

the inefficiently late exercise of the option to expand (i.e. beyond the point at which the

marginal cost of investing equalizes with the marginal revenue from expansion taking

into account irreversibility and uncertainty).

Allowing for the possibility of renegotiating the original debt contract results in

the liquidation trigger being a function of the shareholders’ relative bargaining power.

This is because the liquidation trigger is determined so as to maximize the value of the
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firm. The latter quantity is endogenous and depends on the renegotiation trigger that

in turn is affected by the distribution of bargaining power. As it can be concluded on

the basis of Table 6.2 the optimal liquidation threshold is an increasing function of η.

The optimal liquidation threshold in the presence of debt financing and renegotiation

lies between the all-equity liquidation threshold in the world without taxes and the

all-equity threshold with when corporate tax is sufficiently high. Therefore, reducing

the shareholders’ relative bargaining power mitigates the negative externality of debt

on the optimal liquidation decision.

We conclude that there are two negative welfare effects of a high bargaining

power of the debtors. The first is associated with an excessively delayed investment,

and the other with a too early liquidation.

6.5 Conclusions

The investment policy of the firm is affected by its capital structure. Introducing

debt financing results in an inefficient delay in exercising the growth option. We show

that eliminating costly bankruptcy by introducing the possibility of debt restructuring

does not solve this problem. In fact, underinvestment is higher if the renegotiation

option exists.

The departure from the all-equity financing affects the firm’s liquidation pol-

icy. If renegotiation is not allowed for, the decision to liquidate the firm is made by

the creditors who become the owners of the firm upon the bankruptcy. This results

in an ex ante inefficient liquidation and this inefficiency constitutes part of the indi-

rect bankruptcy costs. The introduction of a mixed capital structure combined with

a renegotiation option influences the optimal liquidation policy twofold. First, the

presence of the tax shield delays liquidation since ceteris paribus it enhances the value

of the firm. Second, partial debt financing leads to the departure from the first-best

investment policy, which results in the value of the firm being deteriorated and in the

opportunity cost of its liquidation being lowered. For sufficiently high taxes the for-

mer effect dominates, thus liquidation occurs later than under all-equity financing but

not as late as under the optimal liquidation all-equity financing in the world without

taxes. Since there exists a positive relationship between the liquidation trigger and

the shareholders’ bargaining power, reducing this power brings the liquidation policy

closer to the optimum.

Furthermore, we show that the debt restructuring policy is affected by the pres-

ence of the growth option. The growth option positively influences the renegotiation
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trigger if a high shareholders’ bargaining power is combined with a substantial wealth

transfer to the creditors occurring upon investment. In the opposite situation, this is

when the creditors possess higher bargaining power and if they do not gain much upon

investment, the renegotiation trigger falls.

Finally, we would like to indicate several extensions that may potentially con-

stitute interesting research areas. A more realistic setting would include constructing

a model with multiple investment opportunities (cf. Morellec, 2001). The model can

also be extended to provide a pricing framework for a renegotiable debt with finite

maturity where the coupon flow is a function of the underlying state variable (cf.

Shackleton and Wojakowski, 2001). Moreover, the current analysis can be modified to

incorporate the impact of product market interactions on the firm’s investment behav-

ior (the area pioneered by Fries et al., 1997, and Lambrecht, 2001). Another extension

would include investigating the impact of Chapter 11 regulation on the intra-industry

bankruptcy intensity. Current anecdotal evidence often indicates that artificially sus-

tained capacity results in a lower sector profitability and, as a consequence, a higher

chance of exit of other players.23 The choice of the second-best solution in the current

modeling set-up calls for an introduction of an executive compensation scheme that

would allow for aligning the incentives of the self-interested managers with the value

of the firm. Such alignment may prove to be ex post optimal from the equityholders’

point of view. Finally, the divergence of the stakeholders’ objectives may lead to an

asset substitution problem, which will influence the equityholders’ investment policy

(cf. Leland, 1998, and Subramanian, 2002, in an agency, and Dangl and Lehar, 2002,

in a banking regulation application).

6.6 Appendix

Derivation of (6.29). The value of the tax shield, TSi, satisfies ODE (6.2) with the

following instantaneous payoffs coefficients

(B,C) =

{
(0, 0) x < xNB

i ,

(0, bτ) x ≥ xNB

i
.

Consequently TSi can be written as

TSi =

{
M1x

β
1 +M2x

β2 x < xNB

i ,
bτ

r
+M3x

β1 +M4x
β2. x ≥ xNB

i
.

(6.53)

23Cf. The Economist, 7th September 2002, The firms that can’t stop falling: Bankruptcy in America,

and 14th December 2002, Testing the limits of Chapter 11.
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Since

lim
x↑∞

TSi =
bτ

r
, and (6.54)

lim
x↓0

TSi = 0, (6.55)

it holds that M2 = M3 = 0. The only remaining unknown constants are M1 and M4.

They can be determined by applying the value-matching and smooth-pasting conditions

at xNB

i

lim
x↑xNB

i

TSi = lim
x↓xNB

i

TSi, (6.56)

∂TSi
∂x

∣∣∣∣
x↑xNB

i

=
∂TSi
∂x

∣∣∣∣
x↓xNB

i

, (6.57)

which results in

M1 =
bτ

r

−β2

β1 − β2

(
xNB

i

)−β
1 , and (6.58)

M4 =
bτ

r

−β1

β1 − β2

(
xNB

i

)−β2 . (6.59)

Derivation of (6.31). The value of the firm at the optimal liquidation trigger

satisfies the Bellman equation (6.2) with B = θ (1− τ) and C = 0, subject to the

following value-matching and smooth-pasting conditions

V NB

1

(
xLN1

)
= (6.60)

xLN1 θ (1− τ )

δ
+

−β2

β1 − β2

bτ

r

(
xLN1
xNB
1

)β1

+ L1

(
xLN1

)β2 = γ1,

∂V NB

1

∂x

∣∣∣∣
x=xLN

1

= (6.61)

θ (1− τ )

δ
+

−β1β2

β1 − β2

bτ

xLN1 r

(
xLN1
xNB
1

)β1

+ β2L1

(
xLN1

)β
2
−1
= 0.

The constant L1 can be directly calculated from (6.60). Multiplying both sides of

(6.60) by β2x
LN

1 and subtracting it from (6.61) yields the implicit formula for xLN1 .

Derivation of (6.34). When the shareholders’ optimal renegotiation trigger

is approached from above, the value of equity satisfies the Bellman equation (6.2)

with B = θ (1− τ ) and C = −b (1− τ), subject to the following value-matching and
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smooth-pasting conditions

lim
x↓xNB

1

ENB

1 =
xNB

1 θ (1− τ )

δ
− b (1− τ)

r
+ A12

(
xNB

1

)β2 , (6.62)

lim
x↑xNB

1

ENB

1 = η
(
V NB

1 −R1

)
= η

[
xNB

1 θ (1− τ)

δ
+

−β2

β1 − β2

b (1− τ )

r

+

(
γ1 −

xLN1 θ (1− τ )

δ
+

−β2

β1 − β2

b (1− τ )

r

(
xLN1
xNB
1

)β
1

)(
xNB

1

xLN1

)β
2

−
(
γ1 −

xLR1 ρθ (1− τ )

δ

)(
xNB

1

xLR1

)β2

]
, (6.63)

lim
x↑xNB

1

∂ENB

1

∂x
= η

[
θ (1− τ)

δ
+

−β1β2

β1 − β2

b (1− τ)

rxNB
1

+
β2

xNB
1

(
γ1 −

xLN1 θ (1− τ )

δ
+

−β2

β1 − β2

b (1− τ )

r

(
xLN1
xNB
1

)β1

)(
xNB

1

xLN1

)β2

− β2

xNB
1

(
γ1 −

xLR1 ρθ (1− τ )

δ

)(
xNB

1

xLR1

)β2

]
. (6.64)

Calculating the derivative of (6.62), and applying value matching and smooth pasting

at xNB

1 yields the formula for xNB

1 .

Proof of Proposition 6.1. First, on the basis of (6.28), (6.33), (6.36)-(6.38),

(6.40), and (6.42), we determine the constants K0, L0, A01, and A02:

[
K0

L0

]
= (6.65)

1

(x∗)β1 (xLN0 )
β2 − (x∗)β2 (xLN0 )

β1

[ (
xLN0

)β2 − (x∗)β2
−
(
xLN0

)β1 (x∗)β1

]
×




(θ−1)x∗(1−τ)

δ
− β2

β1−β2

bτ

r

((
x∗

xNB
1

)β
2 −

(
x∗

xNB
0

)β
2

)
− I + L1 (x

∗)β2

γ0 − xLN
0

(1−τ)

δ
− −β

2

β1−β2

bτ

r

(
xLN
0

xNB
0

)β1

 ,
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and[
A01

A02

]
= (6.66)

1

(x∗)β1 (xNB
0 )

β2 − (x∗)β2 (xNB
0 )

β1

[ (
xNB
0

)β
2 − (x∗)β2

−
(
xNB

0

)β
1 (x∗)β1

]
×


 (θ−1)x∗(1−τ)

δ
+
(
η
(
V NB

1

(
xNB

1

)
−R1

(
xNB

1

))
− θxNB

1
(1−τ)

δ
+ b(1−τ)

r

)(
x∗

xNB
1

)β2 − I

η
(
V0

(
xNB

0

)
−R0

(
xNB

0

)) (
x∗

xNB
0

)β
2 − xNB

0
(1−τ)

δ
+ b(1−τ)

r


 .

Moreover, on the basis of (6.48) we define

A12 ≡
(
xNB

1

)−β
2

(
η
(
V NB

1 −R1

)
− θxNB

1 (1− τ)

δ
+

b (1− τ)

r

)
, (6.67)

so that A12x
β
2 is the equityholders’ value of the option to renegotiate. The implicit

formulae for the optimal investment threshold, x∗, optimal renegotiation trigger, xNB

0 ,

and liquidation trigger, xLN0 , are obtained by rearranging equations (6.39), (6.41) and

(6.43).

Proof of Proposition 6.2. Proposition 2 directly results from replacing equation

(6.39) by (6.47) in the system of equations (6.37)-(6.43).

Proof of Proposition 6.3. The optimal renegotiation trigger can be calcu-

lated on the basis of equations (6.40) and (6.41). After multiplying (6.40) by β2 and

subtracting (6.40) from (6.41) we obtain that

(1− β2)
xNB

0 (1− τ ) (1− η (1− ρ))

δ
+ β2

b

r
(1− τ + ητ)

= (β1 − β2) (ηK0 −A01)
(
xNB

0

)β
1 . (6.68)

This yields

xNB

0 =
−β2

1− β2

b (1− τ + ητ) δ

(1− η (1− ρ)) (1− τ ) r
(6.69)

+
β1 − β2

1− β2

δ (ηK0 −A01)
(
xNB

0

)β2
(1− η (1− ρ)) (1− τ )

.

The first row in (6.69) equals the optimal renegotiation trigger in the absence of the

investment opportunity (cf. (6.34)). Consequently, xNB

0 is higher than such a trigger

if and only if ηK0 −A01 is positive.

Derivation of the First Passage Time Probabilities. In general, the proba-

bility that an event (i.e. bankruptcy, renegotiation or investment) will occur within the
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time interval of length T , denoted by p (x, T ), satisfies the following partial differential

equation (PDE)

− (r − δ)x
∂p

∂x
+
1

2
σ2x2

∂2p

∂x2
= − ∂p

∂T
, (6.70)

subject to the following boundary conditions

p (x, T ) = a, (6.71)

p (x, T ) = b, (6.72)

p (x, 0) = 0. (6.73)

where the lower bound, x, upper bound, x, and parameters a and b are given in the

following matrix.

Probability

x, x; a, b of investment of debt restructuring

Growth option present

Renegotiation possible xLN
0

, x∗; 0, 1 xNB
0

, x∗; 1, q
(
x∗, xNB

1

)
Bankruptcy upon default xB

0
, x∗; 0, 1 xB

0
, x∗; 1, q

(
x∗, xB

1

)
No growth option

Renegotiation possible - xNB
0

,∞; 1, 0

The function q (x, y) denotes the the probability of reaching the lower trigger y before

time T conditional on starting at x. It can be obtained by applying a change of

variables to Corollary B.3.4 in Musiela and Rutkowski (1998), p. 470. Consequently,

it holds that

q (x, y) = 1 +

(
x

y

)
−

2α

σ
2
+1

Φ

(
− ln x

y
+
(
α− 1

2
σ2
)
T

σ
√
T

)

−Φ

(
ln x

y
+
(
α− 1

2
σ2
)
T

σ
√
T

)
, (6.74)

where Φ (·) denotes the standard normal cumulative density function.
As an example, let us interpret the boundary conditions for the probability of

debt renegotiation in the presence of the growth option. Condition (6.71) implies that

the renegotiation is certain if the level of cash flow hits the boundary xNB
0
. Equation

(6.72) means that upon reaching the investment threshold, x∗, the renegotiation trigger

switches to xNB
1

and the probability of renegotiation is described by (6.74). Finally,
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when the length of the time interval tends to zero, the probability of renegotiation

approaches zero as well.

Since an analytical solution to the PDE (6.70) with boundaries (6.71)-(6.73)

has not been found, a numerical procedure has to be applied. To calculate the relevant

probabilities, the explicit finite difference method is used (cf. Brennan and Schwartz,

1978).
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Samenvatting

Investeringsmogelijkheden kunnen gezien worden als (reële) opties om kapitaalgo-

ederen te verwerven. Een juiste identificatie van de optimale uitoefeningsstrategieën

van reële opties speelt een cruciale rol in het bepalen van het optimale investeringsge-

drag en in het maximaliseren van de waarde van een onderneming.

De meeste standaard leerboeken in de financiering beschrijven de netto con-

tante waarde (Net Present Value of NPV) regel als het criterium voor het waarderen van

investeringsprojecten. Volgens deze regel moet de contante waarde van de verwachte

kasstroom, die gegenereerd wordt door een nieuwe fabriek of een productielijn, geschat

worden. Vervolgens moeten de uitgaven, die noodzakelijk zijn om de fabriek of de

nieuwe productlijn te lanceren, van deze kasstroom afgetrokken worden. Een positief

verschil (een positieve NPV) impliceert dat het project uitgevoerd zou moeten worden.

Zoals aangegeven door Dixit en Pindyck (1996) leidt het NPV-criterium alleen

tot optimaal investeringsgedrag wanneer een van de volgende cruciale en dikwijls ge-

negeerde aannames gelden: de investering is ofwel helemaal omkeerbaar (in dit geval

kan het gëınvesteerde geld teruggekregen worden indien de toestand van de markt ex

post slechter is dan verwacht), of de investering is een nu-of-nooit beslissing. In de

meeste gevallen wordt aan geen van de bovenvermelde voorwaarden voldaan. In feite

geldt voor de meeste investeringsprojecten dat ze onomkeerbaar zijn, dat de resul-

terende kasstroom onzeker is en dat het mogelijk is de investering uit te stellen.

Onomkeerbaarheid betekent dat de investeringskosten verzonken kosten zijn.

Dit houdt in dat het onmogelijk is om de investeringskosten terug te krijgen nadat de

investering is gedaan. Daarom is de investeringsuitgave equivalent aan de uitoefen-

ingsprijs van een financiële optie. Onomkeerbaarheid is een gevolg van tenminste een

van de volgende drie factoren: het investeringsproject is alleen van belang voor het

betreffende bedrijf of industrie, of er is sprake van adverse selection op de tweedehands

markt voor deze goederen.

In de meeste situaties is de kasstroom die voortvloeit uit een investeringspro-

ject onzeker. In veel gevallen worden de opbrengsten van de investering in een nieuw
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product bëınvloed door onzekerheid in de productmarkt. De waarde van een invester-

ingsproject in de oliesector is een functie van de variërende olieprijs op de internationale

markt. In de literatuur wordt aangenomen dat de ontwikkeling van de huidige waarde

van deze kasstroom beschreven kan worden door een stochastisch proces. Daarom

spelen bij het bepalen van de waarde van een investeringsmogelijkheid dezelfde soort

effecten een rol als bij een financiële optie.

Voor de meeste projecten bestaat er een mogelijkheid om de investering uit te

stellen. Uitstel is in principe kostbaar omdat de onderneming tot het tijdsstip van de

investering geen opbrengsten heeft. Het voordeel van wachten met investeren is echter

dat de onderneming meer informatie over de waarde van het project kan vergaren

alvorens tot investeren over te gaan. Een soortgelijke trade-off speelt ook een rol bij

de optimale uitoefeningsbeslissing van een Amerikaanse optie.

De noodzaak van het ontwikkelen van waarderingsmodellen die investeringsken-

merken als onomkeerbaarheid, onzekerheid, timing en flexibiliteit in het beslissingspro-

ces opnemen, heeft geresulteerd in een groot aantal publicaties op het gebied van reële

opties en investeren onder onzekerheid (zie o.a. Myers, 1977, Brennan en Schwartz,

1985, McDonald en Siegel, 1986, Dixit, 1989, en een gedetailleerd overzicht door Dixit

en Pindyck, 1996).

Reële optiemodellen kunnen niet alleen gebruikt worden om de waarde van

een investeringsproject te berekenen, maar ook om het optimale investeringsbeleid van

een onderneming te bepalen. In veel situaties moeten de modellen bekend van de fi-

nanciële optieliteratuur uitgebreid en aangepast worden om rekening te houden met

de economische omgeving. Hierbij valt te denken aan exogene discrete veranderin-

gen in de economische omgeving, strategische interacties tussen ondernemingen of de

financieringsaspecten van een investeringsproject.

De huidige literatuur verschaft betrekkelijk weinig inzicht in de invloed van

structurele veranderingen van de economische omgeving op het investeringsgedrag van

de onderneming. Bestaande artikelen analyseren meestal continue veranderingen in

de waarde van een relevante economische variabele. Evenwel is het vaak realistischer

om de economische variabele te modelleren als een proces dat op bepaalde tijdstippen

discrete sprongen maakt. In zulke gevallen wordt er gebruik gemaakt van een Poisson

(sprong) proces. Dit gebeurt bijvoorbeeld in Hassett en Metcalf (1999), waarin de

invloed van een verwachte reductie van een investeringssubsidie geanalyseerd wordt.

Het uitgebreide proces van deregulatie en de golf van fusies en overnames die

plaatsvonden in het vorige decennium hebben geresulteerd in een oligopolistische mark-

tstructuur in een groot aantal sectoren. Imperfecte concurrentie in de productmarkt
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impliceert dat de onderneming rekening moet houden met strategische interacties met

andere marktparticipanten. Het opnemen van imperfecte concurrentie in reële op-

tiemodellen vereist dat het resulterende model gebaseerd moet zijn op bijdragen op

het gebied van timing spelen in de niet-coöperatieve speltheorie (zie o.a. Reinganum,

1981, en Fudenberg en Tirole, 1985).

In geval een investeringsproject wordt gefinancierd met vreemd vermogen zouden

er twee soorten agencyproblemen kunnen ontstaan, die suboptimaal investeringsgedrag

tot gevolg kunnen hebben. Ten eerste leidt financiering met vreemd vermogen tot een

keuze van riskantere projecten, hetgeen het welzijn van de houders van vreemd ver-

mogen reduceert (Jensen en Meckling (1976)). Een ander effect van financiering met

vreemd vermogen op het investeringsgedrag van de onderneming is beschreven door

Myers (1977). Hij heeft aangetoond dat de investering ondernomen door de houders

van eigen vermogen gepaard gaat met een welzijnstransfer aan de houders van vreemd

vermogen. Deze transfer impliceert dat sommige goede investeringsprojecten (waar-

voor geldt dat de NPV niet opweegt tegen de welzijnstransfer) niet uitgevoerd worden.

In dit proefschrift worden de drie bovenvermelde aspecten van reële opties

geanalyseerd.

In Hoofdstuk 2 ontwikkelen we een niet-strategisch model waarin de invloed van

een plotselinge beleidsverandering op het investeringsgedrag geanalyseerd wordt. Voor-

beelden van zo’n beleidsverandering betreffen het opheffen van een investeringssubsidie

of een verandering in de voorkeursbehandeling van een buitenlandse investeerder. In

het model leidt de beleidsverandering tot een opwaartse sprong in de effectieve invester-

ingskosten (zie Hassett en Metcalf, 1999). De sprong vindt plaats op het moment dat

de waarde van het project een bovengrens bereikt. De onderneming heeft incomplete

informatie over de drempelwaarde van het proces waar de sprong plaatsvindt, en ac-

tualiseert haar schatting betreffende die drempelwaarde middels de regel van Bayes.

De invloed van de onzekerheid aangaande het moment van de beleidsverandering kan

geanalyseerd worden door het effect te bepalen van een verandering in de variantie

van de onderliggende waarschijnlijkheidsverdeling. In dit hoofdstuk wordt de opti-

male investeringsdrempel die de waarde van de onderneming maximaliseert afgeleid.

Verder wordt aangetoond dat de drempel een niet monotone functie is van de mate

van beleidsonzekerheid.

Hoofdstuk 3 analyseert de beslissing van de onderneming om een bestaande

technologie te vervangen door een nieuwe, kostenefficiëntere versie. Kulatilaka en Per-

otti (1998) leiden af dat, binnen een tweeperioden model, een stijgende productmarkt

onzekerheid de onderneming kan aanmoedigen om eerder strategisch te investeren in
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een nieuwe technologie. We breiden hun raamwerk uit tot een model in continue tijd en

tonen aan dat, in tegenstelling tot het tweeperioden model, meer onzekerheid impliceert

dat de onderneming naar verwachting later investeert. Daarnaast wordt aangetoond

dat onder stijgende onzekerheid de waarschijnlijkheid van een optimale vervanging van

het productiegoed binnen een bepaalde periode altijd daalt, indien de betreffende pe-

riode het optimale deterministische vervangingstijdstip omvat. Voor kortere periodes

zijn er tegenovergestelde effecten in werking, die bewerkstelligen dat de verhouding

tussen onzekerheid en de investeringswaarschijnlijkheid een omgekeerd U-vorm heeft

(zie ook Sarkar, 2000).

In Hoofdstuk 4 wordt een model bekeken met twee ondernemingen die ver-

schillende investeringskosten hebben. We analyseren de invloed van de onderlinge

verschillen in die investeringskosten op de ondernemingswaarde en op de optimale in-

vesteringstijdstippen. Beide ondernemingen hebben de mogelijkheid om te investeren

in een project dat ceteris paribus de kasstroom verbetert. We tonen aan dat drie

soorten evenwichten bestaan. Bovendien bepalen we de kritische niveaus van de koste-

nasymmetrie die de bestaansregio’s van de evenwichten begrenzen. De aanwezigheid

van strategische interacties leidt tot contra-intüıtieve resultaten. Ten eerste kan een

marginale toename in de investeringskosten van de onderneming met het kostennadeel

een toename in de waarde van deze onderneming veroorzaken. Ten tweede kan zo’n

kostenstijging leiden tot een daling van de marktwaarde van de concurrent. Vervolgens

bespreken we de welzijnsimplicaties van het optimale investeringsgedrag en tonen aan

dat kostenasymmetrie kan leiden tot een sociaal meer gewenste uitkomst. Tenslotte

bewijzen we dat winstonzekerheid altijd leidt tot uitstel van de investering. Dit laatste

geldt zelfs in een situatie waarin het zeer gewenst is om eerder te investeren dan de

andere onderneming.

In Hoofdstuk 5 wordt de waarde van flexibiliteit in strategische kwaliteitskeuze

bekeken. Ondernemingen beslissen over de kwaliteit van hun producten op het moment

dat ze een productmarkt betreden. Flexibiliteit in kwaliteitskeuze impliceert ceteris

paribus dat eerder investeren optimaal is. Verder wordt afgeleid dat de waarde van

flexibele kwaliteit toeneemt als er sprake is van meer onzekerheid in de vraag en/of bij

aanwezigheid van een potentiële concurrent. We tonen aan dat flexibele kwaliteit ook

dienst kan doen als afschrikking van potentiële concurrentie, waarbij het niet eens nodig

is om het kwaliteitsniveau af te laten wijken van het optimale monopolistische niveau.

In bestaande reële optiemodellen is het bepalen van het optimale investeringsmoment

vaak de enige beslissing die genomen moet worden. In het onderhavige model komt

daar de kwaliteitsbeslissing bij. Wij tonen aan dat dit impliceert dat de timing van
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investeren van de tweede investeerder van invloed is op het investeringstijdstip van de

leider, hetgeen normaal gesproken niet het geval is in reële optiemodellen waarin de

rollen van eerste en tweede investeerder vastliggen. Dit betekent een uitbreiding van

de theorie van strategische reële opties. Tenslotte tonen we aan dat als de vraag groot

is de leider de mogelijkheid heeft om door een “agressieve” kwaliteitskeuze de volger

uit de markt te stoten.

Hoofdstuk 6 analyseert het optimale investerings- en liquidatiebeleid van de

onderneming wanneer financiering met vreemd vermogen en heronderhandelen van het

oorspronkelijke schuldcontract mogelijk zijn. We tonen aan dat de aanwezigheid van de

optie tot heronderhandelen (”zachte schuld”) het onderinvesteringsproblem beschreven

door Myers (1977) versterkt. De nadelige invloed van de optie tot heronderhandelen

op het investeringsbeleid wordt veroorzaakt door het feit dat op het moment van de in-

vestering deze optie de welzijnstransfer aan de houders van vreemd vermogen verhoogt.

Dit is het gevolg van een significante reductie in de waarschijnlijkheid van een strate-

gische wanbetaling die voorkomt op het moment van de investering. Bovendien vinden

we dat, als financiering met vreemd vermogen mogelijk is, het liquidatiebeleid verschilt

van het optimale liquidatiebeleid onder volledige financiering met eigen vermogen. Zelfs

als we belasting wegdenken, hetgeen effecten van het belastingsschild elimineert, wordt

het liquidatiebeleid bëınvloed door het second-best investeringsbeleid. Dit impliceert

dat liquidatie te vroeg zal plaatsvinden. Ook wordt de invloed van de groei optie op de

optimale timing van faillissement en heronderhandelingen geanalyseerd. Aangetoond

wordt dat een combinatie van hoge onderhandelingsmacht van de houders van eigen

vermogen met de aanwezigheid van groei opties kan leiden tot een grotere waarschijn-

lijkheid van strategische wanbetaling.
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