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Abstract

In this paper we present a budget-constrained optimal control model aimed at finding the

optimal enforcement profile for a street-level, illicit drug crackdown operation. The objective is

defined as minimizing the number of dealers dealing at the end of the crackdown operation, using

this as a surrogate measure of residual criminal activity.  Analytical results show that optimal

enforcement policy will invariably use the budget resources completely. Numerical analysis using

realistic estimates of parameters shows that crackdowns normally lead to significant results within a

matter of a week, and if they do not, it is likely that they will be offering very limited success even

if pursued for a much longer duration. We also show that a ramp-up enforcement policy will be

most effective in collapsing a drug market if the drug dealers are risk-seeking, and the policy of

using maximum enforcement as early as possible is usually optimal in the case when the dealers are

risk averse or risk neutral. The work then goes on to argue that the underlying model has some

general characteristics that are both reasonable and intuitive, allowing possible applications in

focussed, local enforcement operations on other similar illegal activities.
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1  Introduction

Illicit drugs continue to impose a significant cost on our society. Today, it is perhaps one of the

greatest challenges confronting the law enforcement officials, social activists, and citizens.

Increasing taxpayer resources are being spent to confront the illicit drug trade and its associated

crimes. The choice of most effective enforcement strategies i.e. local vs. border control,

enforcement vs. treatment [Rydell, Caulkins and Everingham 1996], and education, while important

questions, is not the focus of this paper.

Despite differences in emphasis and paradigms of the political administrations, resources spent

on local enforcement continue to grow. Many observers, politicians, and researchers attribute the

recent reduction of crime in the United States to greater and more effective police presence on the

streets. With this viewpoint gaining ground, especially with ongoing positive results, increased

street/local enforcement may be a trend that we will continue to see. However, the bad news is that

there is mounting pressure on law enforcement agencies to demonstrate results especially in

"problem" neighborhoods. Achieving these results may require use of decision-aids that enable

identification and evaluation of innovative, efficacious enforcement strategies to "recover" high-

crime neighborhoods. The Drug Market Analysis (DMA) study in Jersey City, NJ [NIJ 1996]

showed a strong impact of novel policing strategy in reducing crime indicators and calls for

emergency service, underscoring the importance of pursuing tactics that are innovative.

One strategy that continues to be used, often as a first step to revitalization of neighborhoods, is

a drug crackdown − i.e., concentration of enforcement resources in a geographic area for a limited

time [Worden et al. 1992] or for focussing on specific types of crime [NIJ 1996]. However, for the

purpose of this paper we will use the restricted definition of focussing on a geographic area. The

limited studies done thus far on crackdowns can be categorized into two groups − evaluating the

impact of a crackdown operation [NIJ 1996, Barnett 1988, Caulkins et al. 1993, Forero 1990,

Kleiman 1988, Zimmer 1987], and modeling the effect of crackdown on illicit drug markets

[Caulkins 1990, Caulkins 1993, Baveja et al. 1993, Baveja et al. 1997, Kort et al. 1998]. This paper

extends the work in the second category by modeling the impact of such crackdowns based on

Caulkins' utility-based, dynamic model for predicting the flow of drug dealers into (out of) a drug

market as a function of dealers' profit and the enforcement risk.

Caulkins' model lends itself to optimal control literature especially to address the question of

optimal time trajectory of enforcement during a crackdown operation. Prior work by Baveja et al.

[1997] and Kort et al. [1998] used the objective of minimizing the enforcement resources (objective

function) with a constraint of collapsing the drug market. In reality, however, law enforcement

budget may be fixed and is better modeled via a constraint in an optimization model. Furthermore,
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some policy experts [Kleiman 1992] argue that drug policy should focus on how best to "manage"

the problem and the slogan "war on drugs" is misplaced. Consistent with this philosophy, the

current work focuses attention on reducing the size of a drug market to as small as possible subject

to the restriction of the law enforcement budget and a pre-specified time for the crackdown

operation. Thus this research is dealing with a more realistic optimization scenario to the important

problem of illicit drug crackdowns, consistent with the viewpoint put forth by some leading drug

policy researchers.

The rest of the paper is organized as follows. In the next section we will briefly review

Caulkins’ crackdown model along with some of its underlying dynamics. Section 3 will formulate

the optimal control model investigated in this paper following which we will present generalized

analytical conditions for optimality. Section 5 will look at application of these conditions to

determine the optimal enforcement policies utilizing example data. Finally we discuss the

implications of this work along with the inherent limitations and directions for future work.

2 Caulkins’ Dynamics

Caulkins (1993) considers a province or larger city with a large number of identical dealers that are

spread over a large number of drug markets.

Each day every dealer goes to the market that offers the best opportunity. This is not only

determined by the expected dollar profit but also by non-monetary factors such as risks of

enforcement, threats of violence by other market participants, etc. In the equilibrium, this

"generalized profit" per dealer should be the same in all markets.

Consider the following notation:

ω0 = the equilibrium level of the generalized profit or the reservation wage

If in a certain market the generalized profit exceeds ω0, then new dealers will enter. On the other

hand, if the generalized profit in a market is below ω0, then dealers will leave.

Further, if:

N(t) =number of dealers at time t in a certain market under consideration

π = generalized profit per unit of sales in this market (π >0 and constant)

assuming that sales depend on the number of dealers in the following way:
βαN  =  number of sales per day provided that there are N dealers, where

0>α  and ]1,0[∈β   are constants;
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then the generalized profit due to sales per dealer is 
N

N βπα
.

The parameter β is a crucial one: the higher β the more total sales of the market depend on the

number of dealers. If 1=β  the drugs market is a sellers' market where each dealer brings his own

customers with him. If 0=β  the total number of customers in the market is fixed (buyers' market)

and thus independent of the number of dealers. In the latter case it is less attractive for a dealer to

enter such a market if the number of dealers active in this market is already large.

Also, if

E(t) =enforcement effort associated with the crackdown at time t, and

γ = parameter associated with per dealer cost of enforcement effort (γ > 0 and constant),

then the generalized net profit per dealer incorporating risk due to enforcement is 
γβπα







−

N

E

N

N
.

Clearly, the effect of crackdown efforts completely depends on the value of γ.  It is assumed that the

burden of enforcement is equally shared among the dealers. This implies that, given the

enforcement effort more enforcement pressure is felt by an individual dealer in case there are only a

few dealers active in the market. Caulkins calls the case γ  < 1 that of risk seeking dealers, while γ

= 1 and γ  > 1 characterize risk neutral and risk averse dealers, respectively.

The well known Caulkins’ dynamics, defined for N > 0, says that












−






−= −

0
1

1 ωπα
γ

β

N

E
NcN& , (1)

where

c1  = the speed of adjustment parameter (c1 > 0 and constant).

It is reasonable to assume that the parameters satisfy

0ωπα > , (2)

since otherwise the market under consideration is not attractive and the drug market will disappear

even without a crackdown, obviously an unrealistic case. From (1) it is clear that, whether the value

of γ exceeds one or not will determine if there are decreasing or increasing returns to scale of

enforcement activities.

Before we formulate the optimization problem based on equation (1), let us discuss the

dynamics that governs the dealer population a little further, as it will help the analysis in the

following sections.
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For N > 0, one can write (1) also as

( )γγβγ
γ

ωπα NEN
N

c
N 0

11 −−= −+& . (3)

From this expression it can be obtained that a market collapse (i.e. 0=N ) is not possible if

1<+ βγ , since in this case the first term within brackets goes to infinity when N  approaches zero.

If we assume for the moment that γ + β - 1 > 0, the situation can be illustrated in Fig. 1.

E

NNmin Nmax

A

BC

D

EF

G

Figure 1. The Caulkins' dynamics. The bold line denotes stable states. "Pushing the balloon a little" with low
enforcement: ABCDA; the balloon is popped with high enforcement: AEFG.

Let us first compute the long-run equilibrium without enforcement, by equating the part

between parentheses in (3) to zero. This yields:

β

ω
πα −









=

1

1

0
maxN . (4)

Clearly Nmax can never be exceeded when starting below this value. Further, different steady

state levels of N  can be determined as a function of the enforcement level. The highest

enforcement level associated with a positive steady state level of dealers, leads to the following

equilibrium level for the number of dealers:

βββ

ω
πα

γ
βγ

γ
β −−−
















 −+
=







 −
−=

1
1

0

1
1

max
1

1

min
11

1 NN , (5)

where according to (3) the attractiveness of the market to new dealers is particularly high. This is

reflected by the fact that a very high enforcement level is needed to keep the number of dealers

constant. It is obvious that Nmin > 0 is only defined for γ + β > 1.
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In order to complete the discussion of the shape of the curve in Fig.1, we note that it has an

inflection point between Nmin and Nmax [see p.182 of Kort et al. 1998]. However, the exact shape is

not really important and it suffices to know that it is bell shaped.

If starting from a situation (point A in Fig. 1) with a high number of dealers, e.g. Nmax, then

exerting a low enforcement effort means just "pushing the balloon a little" since the movement

according to (3) is from B to the new equilibrium level C.  As soon as the crackdown is over,

enforcement jumps to zero and the solution jumps to point D from where the previous equilibrium

(point A) is again approached.

The "balloon is popped" only with high enforcement effort, since then the movement is from

point E to point F, where the dealer population is extinct. Note that for N = 0 the Caulkins'

dynamics (1) or (3) is not defined, but we make the reasonable assumption that in such a situation

the dealer population would stay at zero level.

3 Budget-Constrained Crackdown Optimization Model

Past optimization work based on Caulkins’ dynamic equation has focused on minimizing the

enforcement resources subject to the constraint of collapsing the drug market. However, the total

enforcement budget available is rarely under the direct control of the law-enforcement decision-

maker and often is a pre-specified resource. Typically, the objective of a crackdown operation is  to

minimize the street drug dealing as much as possible keeping within the budgetary constraint.

Mathematically, this is a new, uninvestigated, relevant problem requiring challenging optimization

solution methodologies. To specify the model, we need to define the following additional

parameters:

B = budget available for the crackdown (B > 0 and constant),

T = horizon date (T > 0 and constant),

r = discount rate (r > 0 and constant).

The Budget-Constrained Crackdown Optimization Model (BCOM) can be written via the

following optimal control formulation:

Minimize ( )TNe rT− , (6)

subject to












−






−= −

0
1

1 ωπα
γ

β

N

E
NcN& ,   N(0) = N0, (7)
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( ) BdttE
T

≤∫
0

. (8)

Alternatively, the objective could be extended by adding the discounted integral of the number

of dealers throughout the crackdown period. Since such a crackdown period is usually short (a week

or so), we choose to ignore the impact of number of dealers during the crackdown period in the

objective function.

Note that even though we have used N(T) in the objective function, it can be replaced by a

function, f(N(T)), with f’>0 for all N(T), without changing the solution of the optimal enforcement

profile. This is true, because f(N(T)) is minimized by minimizing N(T), since f’>0. The model also

emphasizes that if the drug market is not collapsed at the end of the crackdown operation (i.e.,

N(T)>0) and no post-crackdown enforcement/recovery programs are in place, the gains achieved

maybe quickly lost with the market bouncing back to a level of Nmax. Therefore, in investigating this

model we assume that a crackdown operation is followed up by a phase 2 which targets improving

lighting/housing/facilities and bringing businesses/residents back into the area. It is reasonable to

assume that the cost of such a Phase 2 project is increasing in the number of dealers remaining,

N(T). Note that this model is still valid even if the cost of the post-crackdown operation is non-

linear in N(T), provided the reasonable property that the function is increasing in N(T) holds.

The isoperimetric constraint (8) can as usual be transformed into a terminal value constraint by

introducing a new state variable:

D(t) = money spent on crackdown enforcement on [0, t).

Incorporating this variable, we restate the formulation as:

Minimize ( )TNe rT− , (6)

subject to












−






−= −

0
1

1 ωπα
γ

β

N

E
NcN& ,  N(0) = N0, (7)

ED =& ,   ( ) 00 =D ,  (9a)

( ) BTD ≤ . (9b)

with two states, N and D, and one control, E.

The exp(-rT) term in the objective function (6) plays no role. It is included because it does play

a role in subsequent free end state versions of the problem. For a fixed T, discounting does not

change the optimal solution as we will see e.g. from (17) in Section 5.

Next, we investigate necessary conditions for the optimal trajectory.
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4 Necessary Optimality Conditions

In this section we employ optimal control theory to establish some analytical results that will help

us in understanding the dynamics of the optimal solution. We first formulate the Hamiltonian (see,

e.g., Feichtinger and Hartl (1986)):

E
N

E
NcH 20

1
11 λωπαλ

γ
β +












−






−= − , (10)

and obtain the necessary optimality conditions:

E maximizes H.

Since λ1, λ2 are shadow prices of the undesirable states, “number of dealers” and “budget

already used”, respectively, it is reasonable to consider λ1 ≤ 0, λ2 < 0. Below (15) we show that

these inequalities indeed hold. If we assume that γ < 1, i.e. dealers are risk seeking (the case of γ ≥ 1

will be considered separately in Sections 6 and 7), we get

02
1

11 =+−= −− λγλ γγ NEcH E . (11)

Furthermore we have:

( )[ ]rNEcNcHr N +−−−=−= −−− 1
1

2
1111 1 γγβ γπαβλλλ& , (12)

222 λλλ rHr D =−=& , (13)

( ) 11 −=Tλ , (14)

( ) ( )( ) 0,0,2 =−≥−= TDBT αααλ . (15)

Note that (15) comes from constraint (9b) and implies ( ) 02 ≤Tλ . Hence, by (13), ( ) 02 ≤tλ  for

all t. From (11), this in turn implies ( ) 01 ≤tλ  for all t.

Let us now make the following observation:

Proposition 1. If the budget B is finite, it is always optimal to spend the whole budget:

( ) BTD = . (16)

Proof: Assume on the contrary that ( ) BTD <  which, by (15), implies α = 0 and ( ) 02 =tλ  for

all t, because of (13). Thus, the optimal solution, by (11), would be ∞=E  for all t where 01 <λ ,

which at least holds on a final time interval, say (τ, T]. However, by this solution constraint (8) is

violated.

The above proposition implies that an optimal crackdown enforcement strategy necessarily

exhausts the budget resources completely. This is intuitively appealing and practically significant

since it indirectly implies that “left-over” resources can always be beneficially utilized and never



A Resource-Constrained Optimal Control Model for Crackdown on Illicit Drug Markets

8

does it make sense to leave resources unused.  This result is consistent with the essence of the

argument for the crackdown operation that a concentrated use of resources is beneficial.

The proof of Proposition 1 also shows that, in fact, 02 <λ , since otherwise α = 0 would imply

∞=E  for all t. On the other hand, 01 <λ  is clear since otherwise the Hamiltonian maximizing

condition implies E = 0 which again gives the worst solution possible.

In the next section we discuss the actual optimal policies under the conditions of γ < 1, γ = 1 and

γ > 1.

5  Profiling the Optimal Enforcement Policy

To understand the characteristics of the optimal enforcement policy for the BCOM, we consider the

following three exhaustive cases – risk seeking dealer (γ  < 1 ), risk neutral dealer (γ  = 1 ), and risk

averse dealer (γ  > 1 ).

5.1 Risk-Seeking Dealers - Decreasing Returns to Scale of Enforcement

In this case γ  < 1 and the Hamiltonian is strictly concave in E. Therefore the optimal E is

continuous over time and follows the differential equation

( ) ( )[ ]0
11 1

1
γωβγπα

γ
β +−+−

−
= −N

N

Ec
E& . (17)

To understand the implications of this equation, we present the following proposition.

Proposition 2. For the monotonicity of enforcement effort we have to consider two cases:

a) when γ + β  ≤ 1  then  0>E&  is always optimal (ramp up enforcement);

b) when γ + β  > 1  then  0







<
>

E&   if  minNN







<
>

 with Nmin from (5).

We can now analyze the phase diagram for 1>+ βγ  and 1<β , which is depicted in Figure 2.

Proposition 2b is reflected in the position of the vertical part of the 0=E&  isocline which is exactly

at minNN = . This implies that enforcement decreases for minNN <  while E increases for

minNN > . The 0=N&  isocline is the same as in Figure 1.
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0=N&

0=E&

E

N
Nmin Nmax

0=E&

I

Ê

II

III

Figure 2. The phase diagram for γ + β > 1 and β < 1.

The equilibrium )ˆ,( min EN  with ( ) γβπα
1

0
1

min
ˆ wNNE −= −  is unstable, since the Jacobian

determinant is (note that 0=∂∂ EE&  in this equilibrium) (see Feichtinger and Hartl (1986)):

0ˆ
1

)1)(1( 3
min

2
1 >

−
−+− −− γγβ

γ
βγβπαγ

EN
c

.

The other equilibrium )0,( maxN  is a saddle point, since the Jacobian determinant becomes

[ ] 0)1(
1

)1( 1
0

3
max

2
1 <−+−

−
−

− −− ββ βγπαγω
γ
βπα

NN
c

,

when approaching this equilibrium. Note that while γγγ −−−=∂∂ NEcEN 1
1

&  tends to minus infinity,

the product ( )( )NEEN ∂∂∂∂ &&  tends to zero when approaching this equilibrium.

The proposition is best understood in the context of the highest attractive state of the market to a

dealer, minN ; see (5). From Figure 1 it is clear that if N > minN , and as N decreases (caused by the

current crackdown effort), more enforcement intensity will become necessary to reduce the number

of dealers. In other words, the market appears more attractive to a dealer therefore requiring an

increased enforcement-intensity as a function of time - E& > 0 – as the proposition suggests. This

argument also holds for the first part of the proposition where minN < 0 ensuring that N > minN .

On the other hand, when N < minN , the enforcement pressure felt by an individual dealer is

large making it exceedingly difficult for dealers to deal. Therefore, a reduced enforcement effort

may be acceptable - E& < 0 – as suggested in the second part of the proposition.
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Solution procedure

Since the transversality conditions do not give the values of E(T) and N(T), it is not immediately

clear which of the various solution candidates (extremals of the canonical system) represents the

optimal solution. The answer is, that for a given N(0), the corresponding E(0) has to be chosen such

that the solution of system (7) and (17) satisfies the budget constraint (16).

For a small budget and N = Nmax (the equilibrium for E = 0) we have trajectory I in Fig. 2. For a

moderate budget, starting from N = Nmax, we have trajectory II.

If N is very small and B is also very small, then trajectory III could occur where N increases

initially. At first sight, this is not a realistic situation, since at the beginning of a crackdown N is

usually large. However, it could occur if in a previous period a crackdown was carried out which

reduced the number of dealers but not enough to collapse the market. Trajectory III signals a point

of caution for enforcement personnel. The lesson here is that “a small drug market does not

automatically justify a small crackdown budget as it may be counterproductive”.

Next, the solution procedure5 is illustrated via an example.

Example

To illustrate this solution methodology we choose the following parameter values from illicit drug

sales estimates in Washington, D.C. [Baveja et al. (1997)]:

N0 = 100,  ω0 = 50 (typical reservation wage per dealer per day based on a monthly  average of

$1046). β = 0.5, πα = 500 (estimated based on N0 = Nmax).

However, different from Baveja et al. (1997) we initially choose γ  = 0.6. Baveja's original

choice of γ  > 1 leads to a convex problem which is dealt with in the next section. Note that

1>+ βγ  and 1<β  so that Figure 2 applies.

For these values we obtain:

Nmin ≈ 2.78, Nmax= 100,

and the enforcement effort in the unstable equilibrium Ê  ≈ $185000. Proposition 2 implies that the

enforcement effort is increasing over time except when N < 2.78 in which case it is decreasing.

Now for a typical crackdown time interval of T = 7 days we have plotted the above mentioned

diagram E(0) vs. D(T) for different initial budgets B:

                                                
5 For a given N(0) the amount of budget D(T) used up by the terminal time T according to (9a) will
be an increasing function of E(0). Thus we have to find an E(0) value such that D(T) = B. This is
illustrated next via an example.
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50

100

150

200

250

300

350

E0

D(T)

N0 = 100 dealers

time period T = 7 days

20000 40000 60000 80000

Figure 3. Budget used, D(T),  within  T = 7  days, starting from different initial enforcement levels  E(0)  and
following the canonical system.

Assuming an average weekly salary of $1200 per enforcement officer, the personnel cost of 20

officers would be $24,000/week. For a round-the-clock three eight-hour shift schedule, this would

imply a cost of $72,000 for a week. With some additional overheads we estimated the budget of a

weeklong crackdown operation to be $84,000. For a given budget, in our case for B = $84,000, we

can obtain that the initial enforcement should be about $369 per day. For a given budget, e.g. again

for B = $84,000, we can also look at the enforcement profile, i.e. at the time path of E(t) (Figure 4).

From the figure it is clear that we have obtained an extreme ramp-up enforcement profile. This

is consistent with the claim of Proposition 2 where γ + β  > 1 and minNN > , implying 0>E& .

Intuitively, enforcement’s effect is most felt when N decreases (i.e. later in the crackdown

operation) resulting in the risk factor ( )γNE− to increase making dealers leave the market.

Practically, the ramp-up strategy has a psychological benefit – the maximum impact of the

crackdown will be felt towards the end of the crackdown operation, an important morale booster for

law enforcement agencies, which may convince residents, activists and city officials to commit

additional ongoing resources for follow-up neighborhood revitalization efforts.
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1 2 3 4 5 6 7 time t

20000

40000

60000

80000

100000

120000

E(t)

budget B = $84000

N0 = 100 dealers

time period T = 7 days

optimal

constant

Figure 4. The optimal enforcement profile for a budget  B = $84,000 over the planning interval of T = 7
days.

It is also instructive to plot how the number of dealers evolves over time as a reaction to the

crackdown enforcement. Figure 5 shows that starting from N(0) = 100 the dealer population

decreases to N(T) = 8.5. This optimal crackdown effect is compared with the constant enforcement

E = $12,000 spreading the B = $84,000 equally over the 7 days (Figures 4 and 5). It is clear from

the figures that while the higher enforcement effort up-front in case of constant enforcement yields

very little benefit, the additional resources towards the end in the case of the optimal strategy indeed

is very beneficial. This results in N(7) = 40 for the case of constant enforcement versus N(7) = 8.5

for the optimal strategy.

1 2 3 4 5 6 7
time t

20

40

60

80

100

N

budget B = $84000

N0 = 100 dealers

time period T = 7 days

optimal

constant

Figure 5. The time path of the dealers as they leave the market in case of optimal usage of budget  B =
$84,000  over the planning interval of T = 7  days.
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Comparing the terminal dealer level N(T) = 8.5 in Fig. 5 to minN  ≈ 2.78 and the terminal

enforcement level E(T) ≈ 120000 in Fig. 4 to Ê  ≈ 185000, we see that our numerical example

represents a part of trajectory I or II in Fig. 2 (never reaching minN  due to budget constraints).

Sensitivity w.r.t. time and budget

If the horizon time is increased from 1 week to 2 weeks, then spreading the same budget B =

$84,000 optimally over T = 14 days brings only a marginal reduction of final level, N(T), compared

to T = 7; now we have N(14) = 7.9 rather than N(7) = 8.5.

In order to see the effect of available budget, B, and time, T, on the outcome N(T) of the

crackdown, we plot N(T) for different values of B and T in Figure 6. From this figure it is easily

obtained that increasing the budget sufficiently beyond $ 84000 will lead to a market collapse, thus

a situation where the number of dealers is reduced to zero6.

5 7.5 10 12.5 15 17.5 20
Time T

10

15

20

25

N(T)

budget B = 70 000

budget B = 77 000

budget B = 84 000

N0 = 100 dealers

Figure 6. The outcome of the crackdown, N(T), as a function of available time, T, for different values of
budget B.

Figure 6 offers two clear policy implications relevant to this example:-

1. A reduction in budget to $70,000 (compared to the earlier $84,000) can have a severe

detrimental effect and could jeopardize the success of the crackdown operation. In real terms,

since the average personnel cost of a police officer for a 24-hour day is approximately $3,600

                                                
6 It turned out that it was very difficult to numerically compute a solution where such a market
collapse actually occurs. The difficulty lies in the fact that for E > 0 and 0→N  (approaching the
E-axis) it holds that −∞→E&  and −∞→N& .
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this reduction can be translated to two less officers or one less patrol car. This underscores the

importance of each patrol car on the street during a crackdown operation.

2. Figure 6 also indicates that a crackdown length of one week seems reasonable. Less than one

week leads to a significantly less impact in reducing the number of dealers. On the other hand, a

time period greater than one week does not yield any additional significant benefits. This result

is both important and consistent with the findings of Baveja et al. (1997) where they showed

that a crackdown’s value could be gauged soon – often during a week of a crackdown.

5.2 Non-Risk-Seeking Dealers - Constant and Increasing Returns to Scale of
Enforcement

In case of decreasing returns to scale of enforcement, γ  < 1, the Hamiltonian was strictly

concave in E. Therefore the optimal E was continuous over time and was uniquely given by the

solution of equation (11). This is no longer true in the case of constant returns to scale of

enforcement, γ  = 1 (risk-neutral dealers), or increasing returns to scale of enforcement, γ  > 1 (risk-

averse dealers), where the Hamiltonian is linear or convex in the control E.  Here the optimal

strategy could suggest use of infinite values of the enforcement, E, which are obviously unrealistic.

Therefore, for γ  ≥ 1 it is necessary to have a realistic upper bound E .

The decision problem now becomes

Minimize ( )TNe rT− , (6)

subject to:












−






−= −

0
1

1 ωπα
γ

β
N

E
NcN& ,  N(0) = N0, (7)

ED =& ,   ( ) 00 =D , (9a)

( ) BTD ≤ , (9b)

EE ≤≤0 . (18)

It will turn out that the cases γ  = 1 and  γ  > 1  have the same optimal solutions. Thus, in order

to avoid repeating arguments, we first analyze a linearized control problem that will then give the

optimal solution for both cases.

Linearization of the convex case

In case of increasing returns to scale of enforcement, γ  > 1, we replace the function

γ

γ

N

E
NEh =),(  by the function E

N

g
NEh γ=),(

~
 with 1−= γEg . Thus ),(

~
NEh  is linear in E.

Furthermore it holds that:
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),0(),0(
~

NhNh =  and ),(),(
~

NEhNEh =  (20)

Due to (20) and the convexity of ),( NEh  in E , we obtain that within the allowed control

region it holds that ),(),(
~

NEhNEh ≥ , as depicted in Figure 7.

h

E
E

h
~

h

Figure 7. The original convex effectiveness of enforcement, h and its linearized version, h
~

 for fixed N.

We conclude that the value of the Hamiltonian corresponding to the model with the linear

function represents an upper bound for the value of the Hamiltonian corresponding to the model

with the convex function ),( NEh . Now the plan is to derive the optimal solution for the model with

),(
~

NEh , and then approach this solution as much as possible while solving the original problem.

The model is:

)(TNeMax rT−− , (21)

subject to:

{ }0
1

1 wgENNcN −−= −− γβπα& , (22)

BTDED ≤= )(,& , (23)

EE ≤≤0 . (24)

We now solve this linear model.

Solution for the Linearized Model

The Hamiltonian of this linear problem is:

{ } EwgENNcH 20
1

11 λπαλ γβ +−−= −−  (25)

Then, with the switching function

211 λλσ γ +−=
∂
∂

= −gNc
E

H
 (26)

the necessary conditions are the following:
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0for

E

undefined

0

















>
=
<

















=

=
σE ,  (27)

( ){ }1
1

2
1111 1 −−− −−−=

∂
∂

−= γβ γπαβλλλ gENcNcr
N

H
r& ,   1)(1 −=Tλ , (28)

22 λλ r=& ,    0)(2 ≤Tλ .  (29)

We can identify 3 possible paths for positive N depending on the value of E relative to its

boundary:

Path 1: maximum enforcement EE =

Path 2: interior enforcement EE <<0

Path 3: zero enforcement 0=E

Using the necessary conditions we can prove the following Proposition:

Proposition 3:

a) a singular control (Path 2) can only happen for minNN =  and









−+
−

==
1

1
* min

0

βγ
βγN

g

w
EE  (30)

b) a switch to and from E = E* (Path 2) is only possible for minNN =

c) a switch from E = 0 (Path 3) to EE =  (Path 1) is only possible for minNN ≥

d) a switch from EE =  (Path 1) to E = 0 (Path 3) is only possible for minNN ≤

The proof is deferred to the Appendix. In the Appendix we also prove that it is not possible to

connect Path 2 with any other path, so that it represents a hairline case which need not be

considered any further. This is also in accordance with economic intuition since following Path 2

would mean staying at the level Nmin which is not very reasonable because at this level the

attractiveness of the market for new dealers is particularly high.

This yields the following proposition:

Proposition 3. The only possible sequences are

... Path 3 →  Path 1 →  Path 3 →  Path 1

... Path 1 →  Path 3 →  Path 1 →  Path 3

The necessary optimality conditions are satisfied by the following sequences consisting of only

two paths:
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Ramp-Up Sequence:

Path 1Path 3 Tt31

time
E = 0

enforcement

EE =

where N ≥ Nmin at the coupling time t31. In most situations where N0 = Nmax (i.e. the market is at a

high stable level of dealers), the time t31 is chosen such that B
t

dtE
T

=∫
31

. In words, the crackdown

operation will be delayed (until time t31 ) to ensure that there are enough resources to sustain the

maximum intensity of EE =  until the end of the operation.

Ramp-Down Sequence:

Tt
time

E = 0EE =

Path 1 Path 3

enforcement

where N ≤ Nmin at the coupling time t13. This can be considered a ramp down strategy, where the

policy EE =  is followed initially until the budget is used up.

Note that this sequence cannot be optimal if N > Nmin at the coupling time, which happens if, for

example, the budget is too small and/or 0N  is too large.

This policy will be optimal, if using EE =  in a certain interval of length t13 makes the market

collapse, N(t13) = 0, and if the budget is large enough, B ≥ t13 E . After the market collapses at time

t13, enforcement E can be reduced to zero and N will not increase again. This result suggests putting

all the resources up-front and with sufficient budget availability, can actually result in a market

collapse by time t13. Of course once the market collapses no crackdown enforcement will be

required (recall that since E is the crackdown enforcement in addition to the baseline level, a

maintenance level would still be enforced).

From a practical standpoint it seems reasonable to expect a ramp-up sequence to be optimal

when budget is insufficient to result in a significant collapse using the resources available. The

argument for this would be as follows:-  if a ramp-down sequence is used in such a low-budget

scenario, after the switch to zero enforcement when the market is “still around”, the market will

grow and flourish suggesting that the ramp-up rather than ramp-down sequence may be beneficial.

On the other hand, if sufficient enforcement resources are available for effecting a market collapse,

ramp-down sequence seems reasonable.
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While it is an open question whether and in what situation sequences of 3 or more paths could

be optimal, our conjecture is that such sequences will never be optimal.

Solution for the Non-Risk-Seeking Dealers Model

The results of the previous subsection immediately apply to the case of Risk-Neutral Dealers,

γ = 1, where we simply set γ = g = 1.

Let us now turn to the case of increasing returns to scale of enforcement (Risk-Averse Dealers),

γ  > 1, as was suggested by Baveja et al. (1997). As in the previous subsection, it is necessary to

have an upper bound E  on enforcement in order to prevent infinite values of E.

We note that for γ  > 1 the Hamiltonian

E
N

E
NcH 20

1
11 λωπαλ

γ
β +












−






−= −

is now strictly convex in the control, so that the Hamiltonian maximizing condition is similar to

(27) for the linearized model:

γ
γ λλ −








<
>









= 1
211

10
E

N
cif

E
E , (31)

while now interior controls EE <<0  cannot occur and in the hairline case 0=E  or EE =  can be

optimal. It is easy to show the following result:

Proposition 5. The optimal solution is the same as the optimal solution of the linearized model

(21) - (24).

Proof. We know that the value of the objective function of this linear (maximization) model is

an upper bound for the original model, since the effectiveness of enforcement is the same at the

boundaries and is higher in the interior. Now, from the previous section we know, that the optimal

solution of the linearized model will only consist of paths with boundary controls E = 0 and EE = ,

respectively. Thus the objective value of this solution for the original convex problem is the same as

the objective value in the linearized model so that it is also optimal in the original convex problem.
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6 Concluding Remarks

Using optimal control theory, this paper analyzed the question of optimal drug crackdown

enforcement policy, subject to a budget constraint.  Based on the analysis of Caulkins’ dynamic

crackdown model, several insights were derived aimed at providing assistance to law enforcement

managers in implementing drug crackdown operations. First, our analysis shows that in most

realistic situations it is always optimal to use the entire enforcement budget. In other words, it rarely

makes sense to leave unused resources, suggesting that a concentration of resources is indeed

beneficial.

Second, combining Baveja et al.’s (1997) results of risk-averse dealer and those from our

analysis of the risk-seeking dealer, it is reasonable to expect a crackdown operations’ success to be

gauged within a short period of time – e.g. a week. If crackdown operations will be successful, one

can usually see it happening in a matter of days (and not months). This is consistent with the

findings of actual crackdown operations – both successful and unsuccessful. For example, Buffalo,

NY police department undertook a crackdown operation “STORM” in 1991-92, which eventually

was called off after 14 months when success seemed unlikely. Our model argues that the lack of

success in such cases is due to the resources being distributed over longer time duration instead of

concentrating them for a shorter, more forceful operation. The model also questions the validity of

waiting such a long time before recognizing the failure of the operation and suggests making a

determination within a matter of week or so, which could save valuable resources in the long run.

Third, the paper shows that the optimal enforcement profile is a function of the risk aversion of

a drug dealer. If the dealers are risk-seeking, the profit-making opportunity the latter part of the

crackdown operation offers (due to fewer competitors) will make dealing attractive to them. This in

turn will make reducing the size of the market harder as the operation progresses, suggesting use of

an enforcement effort that increases with time. On the other hand, if the dealers are risk averse (or

even risk neutral), the optimal strategy is one of using maximum resources as soon as the operation

begins, until the market collapses7. One can rightly question the usefulness of these findings given

that estimating the risk aversion of a drug dealer is difficult. Studying the economics of a drug

market, Nell (1994) finds that law enforcement efforts catch the amateurs and the unorganized

dealers improving market position of the more seasoned ones. Based on this finding, one possible

characterization of a risk-averse dealer in Caulkins’ model could be to consider them as seasoned

and experienced. While this non-rigorous categorization of dealers may not be entirely accurate, it

                                                
7 This assumes that enough budget is available. In case of insufficient budget availability, the
optimal strategy is one of waiting and then using the maximum enforcement until the end of the
crackdown period.
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may still be a good starting point, useful for estimating the risk profile of a dealer – a parameter the

model clearly identifies as important in determining most efficient way of allocating crackdown

enforcement resources. Finally, as mentioned earlier, a drug crackdown can never be successful in

isolation and requires a post-crackdown effort as well. Typically, a crackdown operation is followed

by a revitalization initiative aimed at normalizing the functioning of the area via improved street

lighting, safe housing and efforts to relocate businesses and facilities to the neighborhood. Further,

a maintenance enforcement level is needed to prevent a drug-market spring back especially in the

case when crackdown budget was insufficient to result in a complete market collapse. It could be

argued that the resources spent on this post-crackdown effort would be an increasing function of the

number of dealers at the end of the crackdown phase, a quantity that our model minimized. Thus

our model’s results indirectly helps reduce the resources spent on follow-up operations. Our model

did not explicitly incorporate the costs of follow-up operations since, often, these resources come

from sources other than law-enforcement agencies e.g. city/mayor and federal empowerment funds.

However, it is not difficult to see that any additional term in the objective function which is an

increasing function of N(T), will not alter the optimal enforcement profile the current model

outputs.

The above-mentioned results, while significant, are clearly limited by the simplifying

assumptions the model makes. The drug-dealing activity being modeled is illegal and consensual,

making it difficult to measure directly, which makes certain assumptions necessary from a modeling

standpoint. Despite these underlying limiting assumptions, we do believe that the model is a

reasonable approximation of reality for several reasons. First, a profit-risk tradeoff framework

which the model uses, and the accompanying underlying utility dynamics are a good estimate of the

mental model of a money-driven activity. Further, the key characteristics of the dynamics in this

model are that the actors (dealers in this case) flow in or out of the market in a self-interested

manner, there is enforcement swamping, and the benefit of participating in the "market" is a

decreasing function of the number of people in the market. These properties are so general that the

basic model can be safely considered a good approximation of reality, and in fact, may also be

applicable to purveyors of any black market commodity like, e.g., prostitution, numbers running,

etc., or even burglary. Whether this modeling framework is indeed applicable to other illegal

activities requires further investigation and is suggested as a direction for future research.

Another major limitation of the analysis presented here is that displacement of a dealer to other

neighborhoods due to a crackdown operation has been essentially ignored. But as Baveja et al.

(1997) argue displacement, while an important factor, cannot be used as a reason to disregard the

model or argue against the effectiveness of crackdowns. Further, recent empirical study [NIJ 1996]
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reported little evidence of displacement of criminal activity to neighboring areas. Additionally,

some researchers argue [Caulkins 1991] that since displacement could take the form of fewer

negative externalities, a crackdown operation could still be beneficial despite occurrence of

displacement. While these arguments do not justify not explicitly incorporating displacement in our

model, it does offer some validity to the simplifying assumption.

With a growing effort among cities to reclaim crime-infested neighborhoods, the strategy of

concentrating resources will probably be widely used in the future. However, many such operations

that involve a concentration of resources may not be “crackdowns” in the restricted way this paper

defines. Nevertheless, Caulkins’ model and the accompanying analysis may prove to be a useful

framework for defining a broader crackdown model – one which will have wider applicability to a

variety of “clean-up” local enforcement operations that restrict/impede/arrest illegal

activities/operations of individual criminals making decisions based on profit-risk tradeoffs.

7 Appendix

7.1 Proof of Proposition 3

Let us first compute the derivative of the switching function (26):

2
1

1111 λγλλσ γγ &&&& ++−= −−− NgNcgNc (32)

provided that this derivative exists. Otherwise this formula holds for the one sided derivatives

because of (26) and because these derivatives exist for N, 1λ  and 2λ . Substitution of (22), (28) and

(29) into (32) implies:

( )

2
1

0
2
11

1222
11

22
111

1222
1

22
1111 1

λγλγλ

παγλλγπαβλλσ
γγ

γβγγβγ

rNgwcENgc

NgcENgcNgcgNrc

+−−

++−+−=
−−−−

−−−−−−−&

Rewriting gives:

( ) 2
1

0
2
11

22
1111 1 λγλπαβγλλσ γγβγ rNgwcNgcgNrc +−−++−= −−−−−& (33)

Now (26) can be used to simplify this further:

( )[ ]0
112

11 1 wNgNcr γπαβγλσσ βγ −−++= −−−& (34)

Proof of part a) and b):

On a singular arc the following conditions hold:

0=σ   and therefore  0=σ& .

From (34) we can conclude that
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which is the same as (5) in the main paper. This in turn implies that
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which can be simplified to (30).

This completes the proof of a) and, by continuity of the state N, of b).

Proof of part c):

A switch from path E = 0 to path EE =  is only possible for 0=σ  and 0≥σ& , or, at least,

0=σ , 0≥+σ&  and 0≥−σ& .

From (34) we can derive that 0=σ  and 0≥σ&  leads to

( ) 01 0
1 ≤−−+ − wN γπαβγ β
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The Proof of part d) is completely analogous to that of part c).

7.2 The Coupling Procedure

The coupling procedure begins at the planning horizon and then works backwards in time. Since the

transversality conditions 1)(1 −=Tλ  and 0)(2 ≤Tλ  can hold on all paths [cf. the switching function

(26)] all paths can be the final path. So we have three possibilities:

1. Path 1 with EE = is the final path

2. Path 2 with E = E* is the final path

3. Path 3 with E = 0 is the final path

Path 1 is the final path: EE =

At time T it holds that

021 ≥+= − λσ γgNc  with 0)(2 ≤Tλ  (35)

which is possible.
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Path 2 → Path 1 is impossible:

The continuity of the co-state variables and N  requires that:

,0)(,0)( 2121 ≥= +tt σσ & (36)

where 21t  is the point of time where Path 2 passes into Path 1. From Proposition 3b we know that

min21)( NtN =  so that

( )[ ] 01)( 0
112

1121 =−−+= −−−+ wNgNct γπαβγλσ βγ& . (37)

Now it is interesting to compute the second derivative. From (34), i.e.,

( )[ ]0
112

11 1 wNgNcr γπαβγλσσ βγ −−++= −−−& ;

we get the general expression
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(38)

By 0=σ&  and min21)( NtN =  at the point of coupling, the first two terms vanish and (38)

becomes

( )( ) 0)(11)( 21
32

1121 <−−+−= +−−+ tNNgct &&& γβπαββγλσ . (39)

Now σ = 0, 0)( 21 =+tσ&  and 0)( 21 <+tσ&&  imply that 0)( 21 <+ εσ t  for all positive ε small enough

which is a contradiction to EtE =+ )( 21 ε .

Path 3 → Path 1 is only possible for N > Nmin

The continuity of the co-state variables and N  requires that:

0)(,0)(,0)( 313131 ≥≥= +− ttt σσσ && . (40)

From Proposition 3c) we know that min31)( NtN ≥ .

Assume for the moment that min31)( NtN = . By 0)( 31 =tσ  and (34) this yields 0)( 31 =+tσ& . As

in (39) this implies 0)( 21 <+tσ&&  which again gives the contradiction 0)( 21 <+ εσ t and

EtE =+ )( 21 ε .

Thus only min31)( NtN >  is possible at the switching time. Then,
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( )[ ] 01 0
112

11 >−−++= −−− wNgNcr γπαβγλσσ βγ& ,

which is in accordance with switching from E = 0 to EE = .

Proceeding in this way gives ... Path 3 →  Path 1 →  Path 3 →  Path 1

Path 2 is the final path: *EE =

At time T it holds that

021 =+= − λσ γgNc  with 0)(2 ≤Tλ ,  (41)

which is clearly possible.

Switching to Path 2 is not possible

This is because at t12 or t32 one would have min2 )( NtN x = . By 0)( 2 =xtσ  and (34) this yields

0)( 2 =−
xtσ& . As in (39) this implies

( )( ) 0)(11)( 32
32

1132 >−−+−= −−−− tNNgct &&& γβπαββγλσ

because of E = 0 on path 3 and thus 0)( 32 >−tN& . With 0)( 2 =xtσ  and 0)( 2 =−
xtσ&  this again gives

the contradiction 0)( 32 >− εσ t  against 0)( 32 =− εtE .

On the other hand

( )( ) 0)(11)( 12
32

1112 <−−+−= −−−− tNNgct &&& γβπαββγλσ

because of EE =  on path 1 and thus 0)( 32 <−tN& . With 0)( 2 =xtσ  and 0)( 2 =−
xtσ&  this again gives

the contradiction 0)( 12 <− εσ t  against EtE =− )( 12 ε .

Notice that having Path 2 throughout is a hairline case8, since it can only occur when

N(0) = Nmin and BdtE
T

=∫
0

* . Thus we need not consider Path 2 any further.

Thus we need not consider Path 2 any further.

Path 3 is the final path: E = 0

At time T it holds that

                                                
8 Furthermore, it is economically clear that path 2 will not be used, since there - at minN - the
market is particularly attractive for new dealers and thus keeping N constant at this level is certainly
expensive and not reasonable.
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021 ≤+= − λσ γgNc  with 0)(2 ≤Tλ ,  (42)

which is possible.

Path 2 → Path 3 is impossible:

The proof is the same as with Path 2 → Path 1 above.

Path 1 → Path 3 is only possible for N < Nmin

The proof is the same as with Path 3 → Path 1 above.

According to the previous arguments the resulting sequence will become ... Path 1 →  Path

3 →  Path 1 →  Path 3
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