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Abstract Inspired by previous works on approximations of optimization problems
and recent papers on the approximation of Walrasian and Nash equilibria and on
stochastic variational inequalities, the present paper investigates the approximation
of Nash equilibria and clarifies the conditions required for the convergence of the
approximate equilibria via a direct approach, a variational approach, and an optimi-
zation approach. Besides directly addressing the issue of convergence of Nash equi-
libria via approximation, our investigation leads to a deeper understanding of various
notions of functional convergence and their interconnections; more importantly, the
investigation yields improved conditions for convergence of the approximate Nash
equilibria via the variational approach. An illustrative application of our results to the
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approximation of a Nash equilibrium in a competitive capacity expansion model under
uncertainty is presented.
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1 Introduction

Since the classic paper by Wets [34] on functional epiconvergence and the elegant
review of Kall [17] on related convergence concepts, the subject of approximation
of optimization problems has been extensively investigated and fruitfully developed
along various directions. Today, the subject is subsumed under the broad context of
variational analysis for which a comprehensive study is excellently documented in the
treatise by Rockafellar and Wets [29]. In general, the issue of approximation of opti-
mization problems arises in a number of ways, most prominently, (a) in dealing with
stochastic optimization problems which typically involve some multi-dimensional
integral functions that need to be approximated, (b) in the convergence analysis of
such iterative algorithms as barrier and penalty methods for solving constrained opti-
mization problems as unconstrained problems, and (c) in smoothing schemes whereby
nonsmooth functions are approximated by sequences of smooth functions. We refer to
the handbook edited by Ruszczyński and Shapiro [31], particularly Chapts. 6 and 7,
and to [26,28] on the subject of approximation of stochastic programs, to the classic
paper by Attouch and Wets [2] and the recent paper by Levy [22] on the conver-
gence analysis of iterative methods for (deterministic) optimization problems using
variational analytic tools, and to Sect. 11.8 in [10] for a systematic view of smooth-
ing methods for solving nonsmooth equations with application to finite-dimensional
variational inequalities and complementarity problems.

In contrast to optimization problems, the approximation of Nash equilibria is a sub-
ject that has so far received only minimal attention in the literature of mathematical
programming. In essence, all the reasons, practical and theoretical, for studying the
approximation of optimization problems persist in the computation of Nash equilibria.
Among these, the challenge to solve realistic Nash equilibrium problems with uncer-
tainty and extended Nash problems with coupled constraints and nonsmooth objective
functions provides a prime motivation to investigate the approximation of Nash equi-
libria. Unlike individual optimization problems, Nash equilibrium problems involve
several optimization problems that are linked together by the well-known Nash equilib-
rium concept [24]. As such, existing approximation theory for optimization problems
is not directly applicable to Nash problems in their primitive formulations. A system-
atic investigation of such a theory for the latter problems is the primary goal of this
paper.

Two recent papers, [13] and [16], provide much of the inspiration for our work.
The former paper [13] analyzes the convergence of the sample-path approach to solv-
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Approximations of Nash equilibria 225

ing stochastic variational inequalities. Yielding a first convergence theory for the
approximation of Nash equilibria, this variational approach requires the differentia-
bility of the individual players’ objective functions. In contrast, the latter paper [16]
employs a minsup formulation of the Nash equilibrium problem together with the con-
cept of “lopsided convergence” of bivariate functions [3,4] to study the convergence
of Nash equilibria, without requiring the players’ objectives to be differentiable. For
an application of the latter theory to the related Walrasian equilibrium problem, see
[15]. The two approaches differ not only in the differentiability requirement, but also
in the “continuous convergence” of the players’ approximate objective functions: the
former imposed on the partial gradients of these functions relative to the individual
players’ variables, and the latter on the objective functions themselves.

The main contributions of our work are as follows. First, we introduce a compo-
nentwise epiconvergence notion for multi-component functions, which generalizes
that of “epiconvergence” of uni-component functions of one (multi-dimensional) var-
iable, the latter being a fundamental concept in variational analysis [29]; we show that
the new notion is sufficient for the convergence of the approximate Nash equilibria.
We next show how the multi-epiconvergence property can be replaced by some var-
iational conditions on the directional derivatives and/or the subgradients when the
players’ objective functions are convex for fixed rival players’ strategies. In the pro-
cess of our analysis, we will see that the continuous convergence properties employed
in the references [13,16] can be significantly weakened; furthermore, our derived
results will clarify the connections between these asymptotic properties, which are
imposed on the functions and their (partial) gradients, respectively. We also clarify the
connections to the lopsided convergence approach of Jofré and Wets [16] and present
a competitive capacity expansion model under uncertainty to illustrate the need for an
approximation theory of Nash equilibria.

2 Convergence of Nash equilibria: the direct approach

Consider a multi-player Nash equilibrium problem where there are N players, each
labelled by an integer ν = 1, . . . , N . Player ν has a cost function θν(x) that depends on
all players’ strategies x = (xν

′
)N
ν ′=1, where each component xν

′
represents a strategy

of player ν ′, which is required to belong to the closed convex set Xν
′ ⊆ �nν ′ , for

some positive integer nν ′ . For every fixed but arbitrary tuple of rival players’ strategies
x−ν ∈ X−ν ≡

∏

ν ′ �=ν
Xν

′
, player ν solves the following optimization problem in her

own variable xν :
minimize θν(x) subject to xν ∈ Xν .

A tuple of strategies x̂ ≡ (̂xν)N
ν=1 ∈ X ≡

N∏

ν=1

Xν is a Nash equilibrium if for all

ν = 1, . . . , N ,

θν (̂x) ≤ θν(x
ν, x̂−ν) ∀ xν ∈ Xν .

123



226 G. Gürkan, J.-S. Pang

We are interested in a deeper understanding of approximation of a Nash equilibrium via
several of its equivalent formulations. At the most basic level, we distinguish between
the cases depending on whether each player’ objective function θν(·, x−ν) is convex
and/or differentiable for given x−ν and on the asymptotic properties of the approximat-
ing functions. It turns out that there are significant differences between the conditions
needed in each case and clarifying the connections between these conditions is part
of our goal.

We begin with the above definition of a Nash equilibrium; no convexity or dif-
ferentiability is assumed on the cost functions. In this approach, we approximate the
cost functions directly and compute a sequence of Nash equilibria based on such an
approximation. The key property required for the convergence of the so-generated
sequence is the following concept of functional convergence for multi-component
functions, which extends the concept of epiconvergence [29] for uni-component func-
tions. Letting n ≡ ∑N

ν=1 nν, we introduce the following basic definition.

Definition A family of multi-component functions

{
θν,1, θν,2, . . .

}N
ν=1 , (1)

where each θν,k : �n → �, multi-epiconverges to the functions {θν}N
ν=1 on the set X

if the following two conditions hold for every ν = 1, . . . , N and every x ∈ X :

(Ma) for every sequence {x−ν,k} ⊂ X−ν converging to x−ν , a sequence {xν,k} ⊂ Xν

converging to xν exists such that

lim sup
k→∞

θν,k(x
k) ≤ θν(x), where xk ≡ (xν

′,k)N
ν ′=1,

(Mb) for every sequence {xk} ⊂ X converging to x ,

lim inf
k→∞ θν,k(x

k) ≥ θν(x).

(Having introduced the above definition, we should immediately note that in Defini-
tion 3.3.1 of [8] and in Definition 4 of [9], Escobar introduced a convergence concept
for discontinuous games, i.e., games where the players’ objective functions may fail
to be continuous. Specialized to the continuous case, Escobar’s definition reduces to
multi-epiconvergence defined above. Escobar also established a convergence result,
Theorem 6 in [9], that coincides (for continuous games) with our Theorem 1 below.
Notwithstanding this overlap, we developed our theory independently of that of the
references, which primarily deal with discontinuous games. Indeed, we are grateful to
Alejandro Jofré who pointed us to Escobar’s work after he has seen a draft of our paper.)

The multi-epiconvergence concept differs from the lopsided convergence concept
for bivariate functions introduced by Attouch and Wets [3,4]. The two concepts are
introduced for different purposes: multi-epiconvergence for the direct approach of
approximating Nash equilibria (see below), and lopsided convergence for approxi-
mating saddle points which are equilibria to a two-person zero-sum Nash game. Yet,
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Approximations of Nash equilibria 227

there are some connections between the two convergence concepts in the context of
the Nikaido–Isoda function; see Sect. 4.1 for details. To prepare for our main result,
Theorem 1 below, we note that, in general, the family (1) multi-epiconverges to the
functions {θν}N

ν=1 on the set X if and only if for every ν = 1, . . . , N and every sequence
{x−ν,k} ⊂ X−ν converging to some x−ν,∞ ∈ X−ν , the sequence of uni-component
functions {ψν,k}, where

ψν,k(x
ν) ≡ θν,k(x

ν, x−ν,k), xν ∈ Xν (2)

epiconverges to the uni-component function

ψν,∞(xν) ≡ θν(x
ν, x−ν,∞), xν ∈ Xν (3)

on the set Xν . This observation connects the multi-epiconvergence concept for multi-
component functions to the well-known epiconvergence concept for uni-component
functions in several ways. One, due to well-known connections between functional
epiconvergence and graphical convergence of subdifferentials (see e.g. Attouch [1]
and [29, Theorem 12.35]), it is possible to restate the multi-epiconvergence of the fam-
ily (1) in terms of the set convergence of the graphs of subdifferentials ∂ψν,k , under the
convexity of the functions ψν,k . (For extensions of Attouch’s theorem to nonconvex
functions, see [23,27].) Two, multi-epiconvergence implies the following diagonal
epiconvergence: namely, for every ν = 1, . . . , N and every fixed x−ν ∈ X−ν , the
sequence of uni-component functions {θν,k(·, x−ν)} epiconverges to the uni-compo-
nent function θν(·, x−ν). Third, via the epiconvergence of the sequence {ψν,k}, the
convergence of Nash equilibria can be established very easily.

Theorem 1 Let each Xν be a closed subset of �nν . Suppose that the family (1) multi-
epiconverges to the functions {θν}N

ν=1 on the set X. If the sequence {xk ≡ (xν,k)N
ν=1},

where each xk is a Nash equilibrium tuple of the pairs (θν,k, Xν)N
ν=1, converges to

x∞ ≡ (xν,∞)N
ν=1, then x∞ is a Nash equilibrium tuple of the pairs (θν, Xν)N

ν=1.

Proof Since each Xν is a closed set, we have x∞ ∈ X . By definition,

xν,k ∈ arg min { θν,k(xν, x−ν,k) : xν ∈ Xν } ∀ k.

Since the sequence of functions {θν,k(·, x−ν,k)} epiconverges to the function
θν(·, x−ν,∞) on Xν , it follows from the theory of epiconvergence that

xν,∞ ∈ arg min { θν(xν, x−ν,∞) : xν ∈ Xν }.

Since this holds for all ν = 1, . . . , N , the desired Nash property of the tuple x∞
follows readily. �

Theorem 1 assumes no convexity on the players’ objective functions. We can obtain
a version of the result when the approximating functions θν,k(·, x−ν,k) are convex. This
“convex” version is based on a known result in convex analysis which states that if the
sequence of convex functions { fk} converges pointwise to the finite function f (i.e.,
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228 G. Gürkan, J.-S. Pang

lim
k→∞ fk(z) = f (z) for every z), then f must itself be convex and { fk} continuously

converges to f ; i.e., lim
k→∞ fk(z

k) = f (z∞) for every sequence {zk} converging to z∞.

Corollary 1 The conclusion of Theorem 1 holds under the conditions:

(cc) for every ν = 1, . . . , N and all k = 1, 2, . . ., the functions θν,k(·, x−ν) are
convex for all fixed x−ν ∈ X−ν , and

(Pc) for every ν = 1, . . . , N and every sequence {x−ν,k} ⊂ X−ν converging to some
x−ν,∞ ∈ X−ν , the sequence of uni-components functions {ψν,k} defined by (2)
converges pointwise to the uni-component function ψν,∞ defined by (3) on Xν .

�
It is worth pointing out that the condition (Pc) is somewhat stronger than the point-

wise convergence of the sequence of functions {θν,k} to the function θν on X . The
latter condition asserts that lim

k→∞ θν,k(x) = θν(x) for every x ∈ X . In contrast, the

former condition (Pc) stipulates that

lim
k→∞ θν,k(x

ν, x−ν,k) = θν(x
ν, x−ν)

for every xν ∈ Xν and every sequence {x−ν,k} ⊂ X−ν converging to x−ν ∈ X−ν .
For later comparison, it is useful also to formally define the “diagonal” version of the
conditions (Ma) and (Mb), respectively, which we have informally mentioned above.

Definition The family (1) of multi-component functions diagonally epiconverges to
the functions {θν}N

ν=1 on the set X if for every ν = 1, . . . , N and every x−ν ∈ X−ν , the
sequence of functions {θν,k(·, x−ν)} epiconverges to the function θν(·, x−ν) on Xν ;
i.e., the following two conditions hold for every ν = 1, . . . , N and every x ∈ X :

(Da) a sequence {xν,k} ⊂ Xν converging to xν exists such that

lim sup
k→∞

θν,k(x
ν,k, x−ν) ≤ θν(x),

(Db) for every sequence {xν,k} ⊂ Xν converging to xν ,

lim inf
k→∞ θν,k(x

ν,k, x−ν) ≥ θν(x).

Clearly, (Ma) ⇒ (Da) and (Mb) ⇒ (Db). The reverse implications hold under an
“upper equicontinuity” property defined below. Notice that this definition involves
only the sequence of approximating functions and does not involve the limit function.

Definition The multi-component functions (1) are off-diagonally equicontinuous
(odec) on X if for every sequence {xk ≡ (xν,k)N

ν=1} ⊂ X converging to some x∞ ∈ X ,
it holds that, for all ν = 1, . . . , N ,

lim inf
k→∞ θν,k(x

ν,k, x−ν,∞) ≤ lim inf
k→∞ θν,k(x

k)

≤ lim sup
k→∞

θν,k(x
k) ≤ lim sup

k→∞
θν,k(x

ν,k, x−ν,∞). (4)
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Approximations of Nash equilibria 229

Clearly, if for every ν = 1, . . . , N , the sequence of functions {θν,k} converges con-
tinuously (Cc) to θν on X , then for every sequence {xk} ⊂ X converging to x∞ ∈ X ,
equalities hold throughout (4); moreover, all the limits there are equal to θν(x∞). If
the functions θν,k are differentiable and for all bounded subsets S of X ,

lim sup
k→∞

max
ν ′ �=ν

sup
x∈S

‖∇ν ′θν,k(x) ‖ < ∞ ∀ ν = 1, . . . , N ,

then (4) also holds. This can easily be seen from the following identity, which is a
consequence of the mean-value theorem for multivariate functions,

θν,k(x
k) = θν,k(x

ν,k, x−ν,∞)

+
∑

ν ′ �=ν

1∫

0

∇ν ′θν,k(x
ν,k, x−ν,∞+τ(x−ν,k −x−ν,∞))T( x−ν,k −x−ν,∞ ) dτ.

Without requiring differentiability of the functions involved, the following result sum-
marizes the connections between all the convergence concepts introduced so far.

Theorem 2 Let each Xν be a closed subset of �nν . Let the family of multi-component
functions (1) and the players’ objective functions {θν}N

ν=1 be given. The following
implications hold.

(A) (cc) + (Pc) ⇔ (cc) + (Cc);
(B) (Cc) ⇒ (odec) + (Da) + (Db);
(C) (odec) + (Da) ⇒ (Ma), and (odec) + (Db) ⇒ (Mb);
(D) (Ma) + (Mb) ⇒ convergence of Nash equilibria.

Proof It suffices to prove only the implications in (C). Assume (odec) and (Da). Let
x ∈ X and let {x−ν,k} ⊂ X−ν be any sequence converging to x−ν ∈ X−ν . Let
{xν,k} ⊂ Xν be a sequence converging to xν corresponding to x−ν ∈ X−ν as stipu-
lated by (Da). We have,

lim sup
k→∞

θν,k(x
k) ≤ lim sup

k→∞
θν,k(x

ν,k, x−ν) ≤ θν(x),

where the first inequality follows from (odec) and the second from (Da). Thus (Ma)
holds. Similarly, for any x ∈ X and any sequence {xk} ⊂ X converging to x , we have,

lim inf
k→∞ θν,k(x

k) ≥ lim inf
k→∞ θν,k(x

ν,k, x−ν) ≥ θν(x),

where the first inequality follows from (odec) and the second from (Db). Thus (Mb)
holds. �

3 The variational approach

A distinguished feature of the direct approach is that it does not require the differ-
entiability of the functions involved; moreover, the approximation is applied to the
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scalar-valued functions {θν}N
ν=1 themselves. In contrast, the approximation in the var-

iational approach described in this section requires the differentiability of these cost
functions and is applied to their (partial) gradients, which are vector functions.

Specifically, assume throughout this subsection that the functions {θν}N
ν=1 are

once differentiable on an open set containing X . It follows that [10] under (cc),
x̂ ≡ (̂xν)N

ν=1 ∈ X is a Nash equilibrium if and only if the following variational
inequality (VI) holds:

N∑

ν=1

( xν − x̂ν )T∇xν θν (̂x) ≥ 0 ∀ x ≡ ( xν )N
ν=1 ∈ X.

In [13], a convergence result of Nash equilibria was established based on an approxi-
mation of the vector function F : �n → �n , where F(x) ≡ (∇xν θν(x))N

ν=1. We call
F the VI function of the Nash game. Assuming continuous convergence to the latter
function, the proof of following result is straightforward (see the proof of Theorem 4).

Theorem 3 Let θν be differentiable on open set containing the closed convex set
Xν ⊆ �nν . Suppose that the sequence of vector functions {Fk} converges continu-
ously to the VI function F on X. If {xk} ⊂ X is a sequence of vectors converging to
the vector x∞ such that for every k,

( x − xk )T Fk(xk) ≥ 0 ∀ x ∈ X,

then x∞ is a Nash equilibrium of the pairs (θν, Xν)N
ν=1, provided that each function

θν(·, x−ν,∞) is convex. �
In general, the continuous convergence of {Fk} to F tells us very little about the

approximation of the functions {θν}N
ν=1 themselves. A reason is that the VI function

F contains only the “principal derivatives” ∇xν θν , which gives no information about
the dependence of player ν’s objective function θν on the rival players’ variables. At
first thought, this seems to suggest an advantage in favor of the variational approach
because it requires no such information. Nevertheless, one has to keep in mind that the
convergence of {Fk} to F pertains to vector functions; a natural question is therefore
how to construct such a convergent sequence of approximate functions {Fk} based
only on the principal derivatives of {θν} and not using the full information of the latter
scalar-valued functions themselves. The reference [13] did not address this question,
neither will we. Instead, we will investigate a related issue that arises from the fol-
lowing consideration. Namely, suppose we approximate the cost functions {θν}N

ν=1
directly, and not their derivatives, even if the latter are well behaved. The question is:
how is the convergence of “functional approximation” related to the convergence of
the gradients? Interestingly, we are not aware of a direct treatment of this issue, even
for uni-component functions, although a referee has noted several related results (see
Remark 2 below). A known result for convex functions is the following. If { fk} is a
sequence of differentiable convex functions converging pointwise to the differentia-
ble function f , then the sequence of gradients {∇ fk} converges continuously to the
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Approximations of Nash equilibria 231

gradient ∇ f . (The concept of “Jacobian consistency smoothing” in [10, Definition
11.8.3] is related to the issue, but does not yield a satisfactory answer to the question.)

Before discussing the connection between functional approximation and gradi-
ent approximation in the next subsection, we present a result that is in the spirit of
Theorem 3 but does not require the functions to the differentiable. To motivate this
extension, we note that when we take Fk ≡ (∇xν θν,k)

N
ν=1 for each k in Theorem 3,

the continuous convergence of {Fk} to F means that for every sequence {xk} ⊂ X
converging to some x∞ ∈ X , we have

lim
k→∞ ∇xν θν,k(x

k) = ∇xν θν(x
∞) ∀ν = 1, . . . , N . (5)

In essence, we will replace the gradients ∇xν θν,k(xk) and ∇xν θν(x ∞) by the respective
subgradients when these gradients do not exist. In what follows, the notation ∂xν φ(x)
refers to the subdifferential of the convex function φ(·, x−ν) evaluated at xν .

Theorem 4 Let each Xν be a closed convex subset of �nν . Suppose that for every
ν = 1, . . . , N and every x−ν ∈ X−ν , the functions θν,k(·, x−ν) and θν(·, x−ν) are all
convex. Suppose further that for every ν = 1, . . . , N and every sequence {xk} ⊂ X
converging to some x∞, every sequence of partial subgradients {aν,k}, where aν,k ∈
∂xν θν,k(xk) for all k, has an accumulation point aν,∞ belonging to ∂xν θν(x∞). Then
the conclusion of Theorem 1 holds.

Proof Suppose that the sequence {xk ≡ (xν,k)N
ν=1}, where each xk is a Nash equilib-

rium tuple of the pairs (θν,k, Xν)N
ν=1, converges to x∞ ≡ (xν,∞)N

ν=1. It follows that
for every ν = 1, . . . , N and every k, there exists aν,k ∈ ∂xν θν,k(xν,k) such that

( xν − xν,k )Taν,k ≥ 0 ∀xν ∈ Xν .

By assumption, the sequence {aν,k} has an accumulation point aν,∞ belonging to
∂xν θν(x∞). Passing to the limit k → ∞ in such a convergent subsequence, we deduce

( xν − xν,∞ )Taν,∞ ≥ 0 ∀xν ∈ Xν,

which implies that xν,∞ ∈ min
xν∈Xν

θν(x
∞). Since this holds for all ν = 1, . . . , N , the

desired Nash property of x∞ follows. �

3.1 Functional versus gradient convergence

In this subsection, we deviate slightly from the main discussion of Nash equilibria
and address the issue of functional approximation versus gradient approximation. We
undertake this discussion because we believe that the issue is significant and worthy
of a careful treatment. At the end of the subsection, we present alternative conditions
for the convergence of approximate Nash equilibria via the variational approach; see
Corollaries 2 and 3.
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We begin by giving an example involving uni-component functions to show that
the convexity assumption cannot be dropped from the implication: continuous con-
vergence of { fk} ⇒ continuous convergence of {∇ fk}. Specifically, derived from a
smoothing of the absolute-value function, the example below provides a sequence
of continuously convergent functions to a nonconvex function such that a gradient
sequence is unbounded and the limit gradient is discontinuous.

Example 1 Consider the function of one variable:

ψ(t) ≡

⎧
⎪⎨

⎪⎩

t2 sin

(
1

t

)
if t �= 0

0 otherwise.

It is easy to see that this function is everywhere differentiable with

ψ ′(t) =

⎧
⎪⎨

⎪⎩

2t sin

(
1

t

)
− cos

(
1

t

)
if t �= 0

0 if t = 0.

Note that the derivative ψ ′(t) is not continuous at t = 0. Consider the sequence of
functions {ψk}, where for each k > 0,

ψk(t) ≡ t2 sin

(
1√

t2 + 1/k2

)
.

It is easy to verify that {ψk} converges continuously to ψ on the real line. Direct
differentiation gives

ψ ′
k (t) = 2t sin

(
1√

t2 + 1/k2

)
− t3

( t2 + 1/k2 )3/2
cos

(
1√

t2 + 1/k2

)
.

We have

ψ ′
k (1/k) = 2

k
sin

(
k√
2

)
− 1

23/2 cos

(
k√
2

)
,

which has no limit as k ↑ ∞, even though the sequence {1/k} converges to zero. �
The converse implication: continuous convergence of {∇ fk} ⇒ continuous con-

vergence of { fk}, is clearly not true in general. A trivial example is the sequence of
constant functions { fk(x) = k} whose gradients are all equal to zero.

Remark 1 A comment by a referee raises the question of whether the non-implication:
continuous convergence of {ψk} �⇒ continuous convergence of {∇ψk}, might be due
to the discontinuity of the limit gradient ∇ψ (in the example, it is at t = 0). Notwith-
standing this question, the above example illustrates that the continuous convergence
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Approximations of Nash equilibria 233

of a sequence of functions is too weak to imply even the continuity of the gradient
of the limit function. From this point of view, the sequence {ψk} in the example is
perhaps not needed because the implication in question is obviously not true by taking
the sequence of functions to consist of one single differentiable, but not continuously
differentiable, function. �

Assuming that all ψk and ψ are differentiable (and convex), Proposition 2 below
gives a complete characterization for the continuous convergence of {∇ψk} to ∇ψ
in terms of the continuous convergence of {ψk} to ψ , by identifying a key missing
condition. The next result, which pertains to uni-component functions, shows that if
the gradients of the approximating functions converge continuously to the gradient of
a given function, then the approximating functions converge continuously to the given
function if and only if the latter convergence occurs at a single point.

Proposition 1 Let {ψk} and ψ be differentiable scalar functions defined on an open
set containing the convex set X ⊆ �n. Suppose that {∇ψk} converges continuously to
∇ψ on X. Then {ψk} converges continuously to ψ on X if and only if a vector z ∈ X
exists such that

lim
k→∞ ψk(z) = ψ(z).

Proof We first show that {∇ψk} is uniformly bounded on compact subsets of X , i.e.,
for every compact S ⊆ X ,

sup
k

sup
x∈S

‖∇ψk(x) ‖ < ∞. (6)

Assume for contradiction that this is not true. Then there exists a compact set S ⊆ X
and a sequence {xk} ⊂ S such that

lim
k→∞ ‖∇ψk(x

k) ‖ = ∞.

Since S is compact, there is a subsequence {xk : k ∈ κ} that converges to an ele-
ment x∞ in S ⊆ X , for some infinite index set κ . It follows that {∇ψk(xk) : k ∈ κ}
converges to ∇ψ(x∞), which contradicts the above unbounded limit.

Clearly, it suffices to show the “if” assertion of the proposition. Let {xk} ⊂ X be an
arbitrary sequence converging to some x ∈ X . By the integral form of the mean-value
theorem, we can write

ψk(xk) = ψk(z)+
1∫

0

∇ψk(z + t (xk − z))T( xk − z ) dt and

ψ(x) = ψ(z)+
1∫

0

∇ψ(z + t (x − z))T( x − z ) dt.
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By (6) and Lebesque’s dominated convergence theorem, we have

lim
k→∞

1∫

0

∇ψk(z + t (xk − z))T( xk − z ) dt =
1∫

0

∇ψ(z + t (x − z))T( x − z ) dt.

Hence, the convergence of {ψk(xk)} to ψ(x) follows readily. �
Remark 2 A referee has observed that the proof of the “if” part in Proposition 1
requires only the “boundedness of the Lipschitz modulus”. Thus the proposition
remains valid if the continuous convergence of {∇ψk} to ψ is replaced by the Lips-
chitz continuity of ψk on X together with the boundedness of the Lipschitz modulus.
The proof remains more or less the same; it suffices to use a mean-value theorem
for a Lipschitz continuous function and the Clarke subdifferential [7] instead of the
gradient. This referee also noted that using Corollary 5.45 and Theorem 5.40 in [29],
Proposition 1 can be strengthened as follows: {ψk} converges continuously on X if
and only if {ψk} converges pointwise on X and is “asymptotically equicontinuous”
on X , that is, for any x ∈ X and any ε > 0, a neighborhood V of x exists such that
‖ψk(y)− ψk(x)‖ ≤ ε for all k and all y ∈ V , and ψk is bounded on V . �

To present the promised characterization of the pointwise (thus continuous) con-
vergence of a sequence of differentiable convex functions in terms of the continuous
convergence of the gradient functions, we let X̂ be the family of closed convex subsets
of X and define

	 ≡
{

S ∈ X̂ : ∃ bounded {xk} such that xk ∈ arg min
x∈S

ψk(x) ∀ k

}
.

Clearly, 	 contains all the singletons {x} with x ∈ X . If X is convex and compact,
then 	 = X̂ .

Proposition 2 Let ψk and ψ be differentiable functions defined on an open set con-
taining the convex subset X of �n. Consider the following statements (a–d).

(a) The sequence of gradients {∇ψk} converges continuously to the gradient ∇ψ on
X and for all S ∈ 	,

lim
k→∞ min

x∈S
ψk(x) = min

x∈S
ψ(x). (7)

(b) The sequence of gradients {∇ψk} converges continuously to the gradient ∇ψ on
X and there exists x̄ ∈ X such that lim

k→∞ψk(x̄) = ψ(x̄).

(c) The sequence of functions {ψk} converges continuously to ψ on X.
(d) The sequence of functions {ψk} converges pointwise to ψ on X.

It holds that (a) ⇒ (b) ⇒ (c) ⇒ (d). If in addition each ψk is convex, then (d) ⇒ (a);
moreover, any one of the statements (a–d) is further equivalent to
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(e) the sequence of gradients {∇ψk} converges continuously to the gradient ∇ψ on
X and there exists S ∈ 	 such that (7) holds.

Proof (a) ⇒ (b). This is obvious by taking S = {x̄}.
(b) ⇒ (c). This follows from Proposition 1.
(c) ⇒ (d). This is obvious.
(d) ⇒ (a) under convexity of ψk . It suffices to prove that (7) holds for all sets

S ∈ 	. Let S be any such set. Let {xk} ⊂ S be a bounded sequence such that
xk ∈ arg min {ψk(x) : x ∈ S} for all k. Since S is bounded, {xk} has at least one
accumulation point; moreover, every such point must be a minimizer ofψ on S. Indeed,
let {xk : k ∈ κ} be a subsequence of {xk} converging to a limit x∞, which must belong
to S by its closedness. For every x ∈ S, we have ψk(xk) ≤ ψk(x). Passing to the limit
k(∈ κ) → ∞ and using the pointwise (and thus, continuous) convergence of {ψk} to
ψ on X , it follows that ψ(x∞) ≤ ψ(x), as desired.

Finally, it remains to show that if each ψk is convex, then (e) implies (d). By way
of contradiction, assume that the sequence {ψk(x̄)} does not converge to ψ(x̄) for
some x̄ ∈ X . There exist a scalar ε > 0 and an infinite subset κε of {1, 2, . . . , } such
that |ψk(x̄) − ψ(x̄)| > ε for all k ∈ κε. Let {xk} be a bounded sequence such that
xk ∈ arg min {ψk(x) : x ∈ S} for all k, where S is as prescribed by (e). By working
with an appropriate subsequence of {xk : k ∈ κε} if necessary, we can assume without
loss of generality that the latter sequence converges to some limit x∞, which must be
an element of S by the closedness of S. We claim that x∞ ∈ arg min {ψ(x) : x ∈ S}.
Indeed, by the definition of xk , we have, for every k,

( y − xk )T∇ψk(x
k) ≥ 0 ∀ y ∈ S.

Passing to the limit k(∈ κε) → ∞ and by the continuous convergence of {∇ψk} to
∇ψ , we deduce

( y − x∞ )T∇ψ(x∞) ≥ 0 ∀ y ∈ S,

which establishes the claim, by the convexity of ψ . It follows from (7) that

lim
k(∈κε)→∞ ψk(x

k) = ψ(x∞).

By the same proof as that for Proposition 1, we deduce that {ψk : k ∈ κε} con-
verges continuously, hence pointwise, to ψ on X . But this contradicts the fact that
|ψk(x̄)− ψ(x̄)| > ε for all k ∈ κε. Hence, part (e) holds. �
Remark 3 Proposition 2 is reminiscent of Attouch’s theorem that characterizes the
epiconvergence of convex functions in terms of the graphical convergence of their
subdifferentials, which also involves the existence of a point x̄ at which the sequence
{ψk(x̄)} converges to ψ(x̄); see [29, Theorem 12.35]. �

Propositions 1 and 2 can be used to weaken the strong limit hypothesis (5) to a
“diagonally continuous convergence” of the gradients; see condition (CcD) below.

123



236 G. Gürkan, J.-S. Pang

We first present a result using the former proposition. No convexity is needed in this
case.

Corollary 2 Let each Xν be a closed subset of �nν . Let (1) be a family of differentia-
ble multi-component functions satisfying (odec). Suppose furthermore that for every
ν = 1, . . . , N and every x−ν ∈ X−ν , the function θν(·, x−ν) is differentiable,

(Pc1) there exists x̄ν ∈ Xν such that lim
k→∞ θν,k(x̄

ν, x−ν) = θν(x̄
ν, x−ν), and

(CcD) the sequence of principal gradients {∇xν θν,k(·, x−ν)} converges continuously
to ∇xν θν(·, x−ν) on Xν .

Then the conclusion of Theorem 1 holds.

Proof By Proposition 1, it follows that for every ν = 1, . . . , N and every x−ν ∈
X−ν , the sequence of functions {θν,k(·, x−ν)} converges continuously to the function
θν(·, x−ν). Hence, conditions (Da) and (Db) both hold. Since (odec) is in place, the
corollary follows from Theorem 2. �

If the functions θν,k(·, x−ν) and θν(·, x−ν) are all convex, then the condition (Pc1)
can be replaced by the convergence of the sequence of minimum objective values{

min
xν∈Sν

θν,k(x)

}
to min

xν∈Sν
θν(x) for a suitable subset Sν of Xν . In particular, taking Sν

to be Xν , we have the following result, whose proof is the same as that for Corollary 2
and thus omitted.

Corollary 3 Let each Xν be a closed convex subset of �nν . Let (1) be a family of
multi-component functions satisfying (odec). Suppose that for every ν = 1, . . . , N and
every x−ν ∈ X−ν , the functions θν(·, x−ν) and θν,k(·, x−ν) for all k are differentiable
and convex and that

(Pc1 ′) Xν contains a bounded sequence {xν,k}, where for each k, xν,k ∈ arg min
xν∈Xν

θν,k(x) and

lim
k→∞ min

xν∈Xν
θν,k(x) = min

xν∈Xν
θν(x),

(CcD) the sequence of principal gradients {∇xν θν,k(·, x−ν)} converges continuously
to ∇xν θν(·, x−ν) on Xν .

Then the conclusion of Theorem 1 holds. �
We conclude the discussion in this section by raising the question of whether there

is an extension of Corollary 3 for nondifferentiable functions wherein the gradients
in condition (CcD) are replaced by the respective subgradients as done in Theorem 4.
We do not have an answer to the question at this time.

4 The optimization approach

In [15,16], Jofré and Wets employ the “Nikaido–Isoda” (NI) function [25] to formu-
late an equivalent optimization problem to study the approximation of Nash equilibria.
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(Incidentally, such an optimization formulation is not new (cf. e.g. [30]) and has been
the basis for a class of “relaxation algorithms” for computing Nash equilibria, even
with coupled constraints [5,20,21,33].) Jofré and Wets also approximate the players’
strategy sets. Consistent with our developments so far, we will not consider the latter
approximation. The main tool that Jofré and Wets used is the theory of lopsided con-
vergence for bivariate functions [2–4]. In order for this theory to be applicable, these
authors assumed that the sequence of approximate objective functions converges con-
tinuously to the players’ objective functions. Our goal in this section is to show that
under the multi-epiconvergence condition, it is possible to bypass the lopsided conver-
gence theory and establish the convergence of the sequence of NI minima to a Nash
equilibrium directly, thereby strengthening the Jofré-Wets analysis with the weak-
ening of the continuous convergence assumption. Furthermore, our analysis allows
the approximate Nash equilibria be computed inexactly according to a certain error
criterion.

In what follows, we employ a regularization of the NI function. The benefit of
such a regularization is well known from the optimization perspective. Phrased in the
game context, the regularization yields unique players’ responses to rivals’ strategies.
Specifically, the regularized Nikaido–Isoda function is, by definition, for an arbitrary
scalar c > 0 the bivariate function: for x = (xν)N

ν=1 and y = (yν)N
ν=1,

φc(x, y) ≡
N∑

ν=1

[
θν(x

ν, x−ν)− θν(y
ν, x−ν)− c

2
( xν − yν )T( xν − yν )

]
.

Consider the following value function:

χc(x) ≡ max
y∈X

φc(x, y), x ∈ X

=
N∑

ν=1

{
θν(x)− min

yν∈Xν

[
θν(y

ν, x−ν)+ c

2
( xν − yν )T( xν − yν )

] }
.

There are close connections between the function χc(x) and the regularized gap func-
tion for a VI [10–12]; since such connections are not relevant to our analysis here, we
omit their discussion. Instead, we summarize several basic properties of χc(x) in the
following result.

Proposition 3 Let each Xν be a closed convex subset of �nν . Assume that for every
ν = 1, . . . , N and every x−ν ∈ X−ν , θν(·, x−ν) is convex. The following statements
are valid for any scalar c > 0.

(a) χc(x) is a well-defined nonnegative function on X.
(b) x̂ is a Nash equilibrium if and only if x̂ is a global minimizer of χc(x) on X and

χc (̂x) = 0.
(c) For every x ∈ X, there exists a unique y(x) ≡ (yν(x))N

ν=1 such that for every
ν = 1, . . . , N,

arg min
yν∈Xν

[
θν(y

ν, x−ν)+ c

2
( xν − yν )T( xν − yν )

]
= yν(x),
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and yν(x) is continuous in x.

Proof Part (a) is clear; so is the “only if” statement of part (b). To prove the “if”
statement, suppose that x̂ ∈ X satisfies χc (̂x) = 0. We then have φc (̂x, y) ≤ 0 for
all y ∈ X . Fix an arbitrary ν and let xν ∈ Xν be arbitrary. For any τ ∈ [0, 1], let
yν

′ = x̂ν
′

for all ν ′ �= ν, and yν = τ x̂ν + (1 − τ)xν . We then have

0 ≥ φc (̂x, y)

= θν (̂x
ν, x̂−ν)− θν(τ x̂ν + (1 − τ)xν, x̂−ν)+ c

2
(1 − τ)2 (̂xν − xν)T (̂xν − xν)

≥ ( 1 − τ )
[
θν (̂x

ν, x̂−ν)− θν(x
ν, x̂−ν)+ c

2
( 1 − τ ) ( x̂ν − xν )T( x̂ν − xν )

]
.

Dividing by 1 − τ and then letting τ ↑ 1, we deduce that θν (̂x) ≤ θν(xν, x̂−ν) for all
xν ∈ Xν . Since this holds for all ν = 1, . . . , N , it follows that x̂ is a Nash equilibrium.
Part (c) follows well-known results in parametric optimization in view of the fact that

for every ν = 1, . . . , N and every x ∈ X , the function yν �→ θν(yν, x−ν)+ c

2
(xν −

yν)T(xν − yν) is strongly convex with modulus at least c > 0, which is independent
of x . �

By part (b) of Proposition 3, the Nash equilibrium problem is equivalent to the
minmax problem

min
x∈X

χc(x) = min
x∈X

max
y∈X

φc(x, y)

having a solution x̂ that satisfies χc (̂x) = 0. In terms of the function y(x), we have

χc(x) =
N∑

ν=1

( θν(x)− ζ ν(x) ) , where

ζ ν(x) ≡ min
yν∈Xν

[
θν(y

ν, x−ν)+ c

2
( xν − yν )T( xν − yν )

]

= θν(yν(x), x−ν)+ c

2
( xν − yν(x) )T( xν − yν(x) ).

Note that a vector x ∈ X satisfying χc(x) ≤ ε for some ε > 0 can be considered an
inexact Nash equilibrium. In the theorem below, this is used as an inexact criterion for
the approximate Nash equilibria corresponding to a family of multi-component func-
tions {θν,1, θν,2, . . .}N

ν=1 approximating {θν}N
ν=1. For such a family, we write χc,k(x)

for the value function corresponding to the k-th subfamily {θν,k}N
ν=1; we also write

ζ ν,k(x) accordingly.

Theorem 5 Let each Xν ⊆ �nν be closed convex and {θν,1, θν,2, . . .}N
ν=1 be a family

of functions multi-epiconverging to the functions {θν}N
ν=1 on the set X. Suppose that

for every ν = 1, . . . , N and every x−ν ∈ X−ν , θν(·, x−ν) and θν,k(·, x−ν) for all k
are convex. Let {εk} be an arbitrary sequence of positive scalars converging to zero
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and let c > 0 be an arbitrary scalar. If the sequence {xk ≡ (xν,k)N
ν=1}, where each

xk ∈ X satisfying χc,k(xk) ≤ εk , converges to x∞ ≡ (xν,∞)N
ν=1, then x∞ is a Nash

equilibrium tuple of the pairs (θν, Xν)N
ν=1.

Proof We have

χc,k(x
k) =

N∑

ν=1

(
θν,k(x

k)− ζ ν,k(x
k)

)
, where

ζ ν,k(x
k) = min

yν∈Xν

[
θν,k(y

ν, x−ν,k)+ c

2
( xν,k − yν )T( xν,k − yν )

]
.

By the multi-epiconvergence of {θν,k}N
ν=1 to {θν}N

ν=1 on X , it follows that for every
ν = 1, . . . , N , the sequence of functions

{ θν,k(·, x−ν,k)+ (c/2)(xν,k − ·)T(xν,k − ·) }

epiconverges to the function θν(·, x−ν,∞)+ (c/2)(xν,∞ − ·)T(xν,∞ − ·) on Xν . Con-
sequently,

lim
k→∞ ζ ν,k(x

k) = ζ ν(x
∞) ∀ ν = 1, . . . , N .

Since

lim inf
k→∞

N∑

ν=1

θν,k(x
k) ≥

N∑

ν=1

lim inf
k→∞ θν,k(x

k) ≥
N∑

ν=1

θν(x
∞),

where the second inequality is due to condition (Mb), we obtain

lim inf
k→∞ χc,k(x

k) ≥
N∑

ν=1

(
θν(x

∞)− ζ ν(x
∞)

) = χc(x
∞).

By assumption, the lim inf on the left side is equal to zero. Since χc is a nonnegative
function, it follows that χc(x∞) = 0. Hence x∞ is a desired Nash equilibrium. �

The advantage of Theorem 5 over Theorem 1 is that each xk is not required to be
an exact Nash equilibrium for (θν,k, Xν)N

ν=1. This is presumably a benefit of using the
regularized NI function versus the direct approach. The verification of this benefit in
practical computations is beyond the scope of this work, whose aim is to understand
the supporting theory of these approaches.
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4.1 Multi-epi, lopsided, and system-epi convergence

In this subsection, we briefly discuss the relation between multi-epiconvergence of
the players’ payoff functions and lopsided convergence applied to the original (un-
regularized) Nikaido–Isoda bivariate function:

φ(x, y) ≡
N∑

ν=1

[
θν(x

ν, x−ν)− θν(y
ν, x−ν)

]
.

For this purpose, we take a family {θν,1, θν,2, . . .}N
ν=1 of multi-component functions

approximating the players’ objective functions {θν}N
ν=1. This sequence of approximat-

ing functions induces the family {φk}, where

φk(x, y) ≡
N∑

ν=1

[
θν,k(x

ν, x−ν)− θν,k(y
ν, x−ν)

]
, k = 1, 2, . . . .

By the definition of lopsided convergence (see [2–4,15,16]), we say that the family
{φk} converges lopsidedly to φ if for every pair (x, y) ∈ X × X ,

(Na) for every sequence {xk} ⊂ X converging to x , a sequence {yk} ⊂ X converging
to y exists such that

lim inf
k→∞ φk(x

k, yk) ≥ φ(x, y);

(Nb) a sequence {xk} ⊂ X converging to x exists such that for every sequence
{yk} ⊂ X converging to y,

lim sup
k→∞

φk(x
k, yk) ≤ φ(x, y).

Under lopsided convergence, it follows that if {(xk, yk)} is a sequence converging to
(x, y) such that, for every k, (xk, yk) is a saddle point of φk on X × X , then (x, y) is
a saddle point of φ on X × X .

In what follows, we examine the connection between the conditions (Na)–(Nb) and
the conditions (Ma)–(Mb). It turns out that these conditions are naturally linked to the
approximation of the “system objective function”, which is by definition the sum of the
players’ objective functions: namely, �(x) ≡ ∑N

ν=1 θν(x). For convenience of com-
parison, we recall that the family {�k}, where �k(x) ≡ ∑N

ν=1 θν,k(x), epiconverges
to � on X if the following two conditions hold for every x ∈ X :

(Sa) a sequence {xk} ⊂ X converging to x exists such that

lim sup
k→∞

N∑

ν=1

θν,k(x
k) ≤

N∑

ν=1

θν(x),
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(Sb) for every sequence {xk} ⊂ X converging to x ,

lim inf
k→∞

N∑

ν=1

θν,k(x
k) ≥

N∑

ν=1

θν(x).

The minimization of the function�(x) on the set X is known as the system optimiza-
tion problem; the latter problem is often used in a system planning context as opposed
to the Nash equilibrium problem which is a model describing the non-cooperative
behavior of the players.

The following result summarizes the relations between the three sets of conditions
(Ma)–(Mb), (Na)–(Nb), and (Sa)–(Sb).

Proposition 4 The following statements hold.

(A) (Ma) + (Mb) ⇒ (Na);
(B) (Mb) ⇒ (Sb);
(C) under (Ma) and (Mb), (Nb) ⇔ (Sa).

Proof It would be useful to remind the reader the following elementary fact: for any
finite number of sequences {aν,k}N

ν=1,

N∑

ν=1

lim inf
k→∞ aν,k ≤ lim inf

k→∞

N∑

ν=1

aν,k ≤ lim sup
k→∞

N∑

ν=1

aν,k ≤
N∑

ν=1

lim sup
k→∞

aν,k .

Suppose (Ma) and (Mb) hold. Let (x, y) ∈ X × X be given and let {xk} ⊂ X converge
to x . For each ν = 1, . . . , N , let {yν,k} ⊂ Xν be a sequence converging to yν , whose
existence is guaranteed by (Ma), such that

lim sup
k→∞

θν,k(y
ν,k, x−ν,k) ≤ θν(y

ν, x−ν).

By (Mb), we have

lim inf
k→∞ θν,k(x

ν,k, x−ν,k) ≥ θν(x
ν, x−ν).

Negating the former inequality and adding all the inequalities for ν = 1, . . . , N
yield (Na). Statement (B) is obvious in view of the string of inequalities noted at the
beginning of the proof.

Suppose (Mb) and (Sa) hold. Let (x, y) ∈ X × X be given. Let {xk} ⊂ X be a
sequence converging to x , whose existence is guaranteed by (Sa), such that

lim sup
k→∞

N∑

ν=1

θν,k(x
k) ≤

N∑

ν=1

θν(x). (8)
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For every sequence {yk} ⊂ X converging to y, by (Mb), we have, for every ν =
1, . . . , N ,

lim inf
k→∞ θν,k(y

ν,k, x−ν,k) ≥ θν(y
ν, x−ν).

Negating this inequality and adding for all ν and to (8) yield (Nb). Conversely, suppose
(Ma), (Mb), and (Nb) hold. Let x ∈ X . By (Nb), there exists a sequence {xk} ⊂ X
converging to x such that for any sequence {̃xk} ⊂ X converging to x , we have

lim sup
k→∞

N∑

ν=1

[
θν,k(x

k)− θν,k (̃x
ν,k, x−ν,k)

]
≤ 0. (9)

By (Ma), for every ν = 1, . . . , N , we may choose the sequence {̃xν,k} ⊂ Xν such that
lim sup

k→∞
θν,k (̃x

ν,k, x−ν,k) ≤ θν(x). By (Mb), it follows that lim
k→∞ θν,k (̃x

ν,k, x−ν,k) =
θν(x). Adding these equalities for ν = 1, . . . , N and to (9), we deduce (Sa). �

It is natural to ask whether there are further relations between these conditions;
regrettably, we don’t have an answer for this question. In particular, we don’t know
whether the three sets of conditions are equivalent if the system objective function is
convex. Instead of pursuing such open issues, we summarize the above discussion in
the diagram below.

(Cc) �⇒ (Ma) + (Mb) �⇒ convergence of Nash equilibria
���(Sa)

(Cc) �⇒ (Na) + (Nb) �⇒ convergence of Nash equilibria.
[16]

5 Competitive capacity expansion under uncertainty

This section presents an illustrative example of a Nash equilibrium problem where
approximation of the players’ cost functions is needed for practical solution. The prob-
lem is a Nash–Cournot extension of a well-known capacity expansion problem under
economic uncertainty. The latter problem is conveniently formulated as a standard
two-stage stochastic program with recourse; see e.g. [6,14,18]. The extension from
a monopolistic environment to an oligopolistic competition is the topic of discussion
herein. While being a natural combination of two well-known problems—a stochastic
monopolistic two-stage model and a deterministic oligopolistic Nash–Cournot model,
the full model has not been formally presented and analyzed in the literature.

There are finitely many firms, each labelled by an index ν = 1, . . . , N , who are
competing in finitely many spatially separated markets indexed by the elements in the
set N . Each firm has the same information on market uncertainty; there is no entry of
new firm and there is no firm exit in the model. Firm ν chooses a vector of regional
production capacities denoted by xν ∈ Xν ⊆ �nν , where Xν is a closed convex set
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of admissible capacities. Capacity is installed prior to demand being realized; these
supply-side decisions must be made prior to observing market equilibrium. In model-
ing economic uncertainty, it is reasonable to parameterize price-quantity relationships.
Thus we have a regional price p j (Q j , ω) that is a random function defined on the triple
(�,F ,P), which denotes the underlying common probability space for all the random
variables and random functions in the model with ω ∈ �, and Q j ≡ ∑N

ν=1 qνj is the
total production by all firms in region j ∈ N . For each realizationω of the model’s ran-
domness, and each (deterministic) capacity vector xν , firm ν determines its production
quantities qν ≡ (qνj ) j∈N by solving a profit maximization problem in anticipation of
other firms’ productions q−ν :

maximize πν(qν, q−ν, ω) ≡
∑

j∈N

[
p j (Q j , ω)q

ν
j − cνj (q

ν)
]

subject to qν ∈ Sν(xν, ω)

(10)

where Sν(xν, ω) is firm ν’s set of admissible productions and cνj (q
ν) is firm ν’s pro-

duction cost in region j . In what follows, we assume that

Sν(xν, ω) ≡ { qν ∈ �mν : W νqν ≤ hν(ω)− Bν(ω)xν },

with W ν being firm ν’s recourse matrix, which we assume to be constant, Bν being
firm ν’s technology matrix, and hν is a vector, with the latter matrix and vector being
random.

When the map
(
qν

)N
ν=1 �→ − (∇qν πν(q, ω)

)N
ν=1 is strongly monotone, an equi-

librium solution q∗(x, ω) ≡ (
qν,∗(x, ω)

)N
ν=1 of the firms’ productions to the Nash

subgame defined by the maximization problems (10) exists and is unique. This sub-
game is the second-stage game. Letϑν(x, ω) ≡ πν(q∗(x, ω), ω) be firm ν’s maximum
profit as a function of all firms’ capacity vector x and the random realization ω. The
first-stage game is to determine a capacity tuple x∗ ≡ (xν,∗)N

ν=1 such that, for all
ν = 1, . . . , N , θν(x∗) ≤ θν(xν, x−ν,∗) for all xν ∈ Xν , where

θν(x) ≡ ην(x
ν)− IEϑν(x, ω)

is firm ν’s net cost ην(xν) of securing the capacity xν less the expected maximum
profit.

For a given integer � > 0, let {ω1, . . . , ω�} ⊂ � be � independently and identically
distributed samples of the model’s randomness. Consider the random functions:

θν,�(x) ≡ ην(xν)− 1

�

�∑

i=1

ϑν(x, ω
i ) = ην(x

ν)− 1

�

�∑

i=1

πν(q
∗(x, ωi ), ωi )

and the approximate Nash model wherein player ν’s optimization problem is

minimize θν,�(x) subject to xν ∈ Xν . (11)
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Let x̂� ≡ (̂xν,�)N
ν=1 denote an equilibrium solution to the latter approximated Nash

capacity game, which we assume exists. Notice that this solution is a random vector.
(A remark: not implied by the setting so far, the existence of x̂� is not a trivial matter
because the capacity game is actually an equilibrium problem with equilibrium con-
straints whose systematic study is still very much in an infant stage. For one thing,
player ν’s objective function θν,�(xν, x−ν) is not necessarily a convex function in xν

for fixed x−ν , due to the non-concavity of ϑν(xν, x−ν, ω) in xν .) In what follows, we
wish to establish the almost sure (subsequential) convergence of (̂x�)∞�=1 to a deter-
ministic equilibrium x∗ of the two-stage capacity game. The cornerstone to establish
this convergence is to show that, under the assumptions imposed in Proposition 5

below, the sequence of random variables
{

1
�

∑�
i=1 πν(q

∗(x, ωi ), ωi )
}∞
�=1

continu-

ously converges in x to the expected value IEωϑν(x, ω) almost surely. Toward this
demonstration, we assume that each firm’s profit function πν(·, q−ν, ω) is continu-
ously differentiable and concave for fixed q−ν . It then follows that the vector q∗(x, ω)
is a solution of the VI (	(x, ω),�(·, ω)) where

	(x, ω) ≡
N∏

ν=1

Sν(xν, ω) and �(q, ω) ≡ − ( ∇qν πν(q, ω)
)N
ν=1 .

It is well-known that when the function�(·, ω) is strongly monotone with a modulus
that is valid for all ω ∈ �, q∗(x, ω) exists and is the unique solution of the said VI; see
[10]. The next result, Proposition 5, will establish an important uniform (in ω) locally
Hölderian property of the solution function q∗(·, ω) under some mild assumptions.
Although there are variations of this result in the VI literature, see e.g. [10, Chapts. 5
and 6], Proposition 5 below distinguishes itself both in the setting and the conclusion.
For the setting, we note that the constraint set 	(x, ω) of the VI (	(x, ω),�(·, ω))
depends on the pair (x, ω); for the conclusion, we note that the resulting Hölderi-
an bounds (13) and (14) hold uniformly for all ω. For completeness, we will give a
detailed proof of the result below. (See Remarks 4 and 5 for more discussion related
to Proposition 5.)

Afterwards, using this rather technical result, we establish in Theorem 6 below the
almost sure convergence of the sample average of the players’ profits, from which
the almost sure convergence of the Nash equilibria of the sampled games to a Nash
equilibrium of the stochastic capacity game follows readily. Finally in Sect. 5.1, we
present an application of Theorem 6 for isoelastic price-demand functions of the form

p j (Q j , ω) = a j (ω) Q
−1/b j (ω)

j with Q j > 0 and appropriate positive random coef-
ficients a j and b j . In particular, we demonstrate how to verify some of the conditions
of Proposition 5. Clearly, a similar (and simpler) analysis can also be carried out for
linear price-demand relationships of the form p j (Q j , ω) = a j (ω)− b j (ω)Q j with
the assumptions on a j and b j modified appropriately.

Proposition 5 Suppose that conditions (A) and (B) below hold:

(A) for each (x, ω) ∈ X ×�, q∗(x, ω) exists and is unique;

(B) sup
ω∈�

max

(
max

1≤ν≤N
‖ Bν(ω) ‖, max

1≤ν≤N
‖ hν(ω) ‖

)
< ∞.
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Let X be a bounded subset of X such that

(a) a constant ρ > 0 exists such that for all triples (x, x ′, ω) in X × X ×�,

( q∗(x, ω)− q∗(x ′, ω) )T(�(q∗(x, ω), ω)−�(q∗(x ′, ω), ω) )
≥ ρ ‖ q∗(x, ω)− q∗(x ′, ω) ‖2;

(b) a vector x̄ ∈ X exists such that sup
ω∈�

‖ q∗(x̄, ω) ‖ < ∞;

(c) positive constants ξ < 2, γ > 0, β > 0, ζ1, and ζ2 exist such that for all
(x, x ′, ω) ∈ X × X ×�,

‖�(q∗(x, ω), ω)‖ ≤ ζ1 + ζ2 ‖ q∗(x, ω) ‖ξ

and, for all ν = 1, . . . , N,

∣∣πν(q∗(x, ω), ω)− πν(q
∗(x ′, ω), ω)

∣∣ ≤ β ‖ q∗(x, ω)− q∗(x ′, ω) ‖γ . (12)

Then positive scalars LX and L ′
X exist such that for all triples (x, x ′, ω) in X ×X ×�,

‖ q∗(x, ω)− q∗(x ′, ω) ‖ ≤ LX ‖ x − x ′ ‖1/2 (13)

and, for all ν = 1, . . . , N,

∣∣πν(q∗(x, ω), ω)− πν(q
∗(x ′, ω), ω)

∣∣ ≤ L ′
X ‖ x − x ′ ‖γ /2. (14)

Proof Let X be as given. For each pair (x, ω) ∈ X × �, there exists λ(x, ω) ≡
(λν(x, ω))N

ν=1 satisfying the Karush–Kuhn–Tucker conditions of the VI (	(x, ω),
�(·, ω)): for all ν = 1, . . . , N ,

0 = �ν(q∗(x, ω), ω)+ (W ν )Tλν(x, ω)

0 ≤ λν(x, ω) ⊥ W νqν,∗(x, ω)+ Bν(ω)xν − hν(ω) ≡ µν(x, ω) ≤ 0.
(15)

We claim that positive scalars ζ ′
1 and ζ ′

2 exist such that for each (x, ω), we can choose
λ(x, ω) satisfying

‖ λ(x, ω) ‖ ≤ ζ ′
1 + ζ ′

2 ‖ q∗(x, ω) ‖ξ . (16)

Indeed, it suffices to choose λ(x, ω) so that, for each ν, the rows of W ν corresponding
to the positive components of λν(x, ω) are linearly independent. Writing Jν ≡ { j :
λν(x, ω) j > 0}, we have, for all ν = 1, . . . , N ,

‖λν(x, ω)‖ = ‖λνJν (x, ω)‖ ≤
∥∥∥∥

[
W ν

Jν ·(W ν
Jν · )

T
]−1

W ν
Jν ·

∥∥∥∥ ‖�ν(q∗(x, ω), ω) ‖

≤
∥∥∥∥

[
W ν

Jν ·(W ν
Jν · )

T
]−1

W ν
Jν ·

∥∥∥∥
[
ζ1 + ζ2 ‖ q∗(x, ω) ‖ξ ]
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from which the existence of ζ ′
1 and ζ ′

2 follows readily, due to the fact that there are
only finitely many index sets. Next we show that

sup
(x,ω)∈X×�

‖ q∗(x, ω) ‖ < ∞. (17)

Pre-multiplying the first equation in (15) by qν,∗(x, ω)T, summing over ν, and using
the strong monotonicity condition (a), we have

0 =
N∑

ν=1

{
qν,∗(x, ω)T

[
�ν(q∗(x, ω), ω)+ (W ν )Tλν(x, ω)

] }

≥ ρ ‖ q∗(x, ω)− q∗(x̄, ω) ‖2

−
[

sup
ω∈�

‖q∗(x̄, ω)‖
] [

2ζ1 + ζ2

(
‖q∗(x, ω)‖ξ + sup

ω∈�
‖q∗(x̄, ω)‖ξ

) ]

− (
ζ ′

1 + ζ ′
2 ‖q∗(x, ω)‖ξ )

[
max

1≤ν≤N
sup
ω∈�

‖Bν(ω)‖ ‖x‖ + max
1≤ν≤N

sup
ω∈�

‖ hν(ω)‖
]
.

By (b), the boundedness of X , and the fact that ξ ∈ (0, 2), (17) follows readily. Clearly,
(17) and (16) imply that for the chosen λ(x, ω), we have sup

(x,ω)∈X×�
‖λ(x, ω)‖ < ∞.

From (15), we have, for any (x, x ′, ω) ∈ X × X ×�,

0 =
N∑

ν=1

(
qν,∗(x, ω)− qν,∗(x ′, ω)

)T [
�ν(q∗(x, ω), ω)−�ν(q∗(x ′, ω), ω)

]

+
N∑

ν=1

[
W ν

(
qν,∗(x, ω)− qν,∗(x ′, ω)

) ]T (
λν(x, ω)− λν(x ′, ω)

)

≥ ρ ‖ q∗(x, ω)− q∗(x ′, ω) ‖2

− max
1≤ν≤N

sup
ω∈�

‖ Bν(ω) ‖ ‖ x − x ′ ‖ ‖ λ(x, ω)− λ(x ′, ω) ‖.

Since λ(x, ω) and λ(x ′, ω) are bounded, (13) follows readily. It is clear that (14)
follows from (13) and (12). �
Remark 4 It would be useful to explain a bit about the assumptions in Proposition 5,
which will be verified subsequently for the family of power price functions; see
Sect. 5.1. Here, we make some general remarks about these assumptions. First of
all, it is not uncommon for each set Xν to be bounded in practice as capacity is lim-
ited. Nevertheless, the main point of the proposition is the uniformity in ω in the two
inequalities (13) and (14). The boundedness of X is not sufficient for such uniformity
to hold. As already noted, the existence and uniqueness of q∗(x, ω) holds if�(·, ω) is
strongly monotone; assumption (a) postulates essentially that such strong monotonic-
ity is uniform in ω. Assumption (B) holds if the functions Bν and hν are continuous
and� is compact. (A referee has suggested that this explicit boundedness assumption

123



Approximations of Nash equilibria 247

could be weakened to a condition of “boundedness by integrable functions”; while we
agree that this could be done, we employ (B) in order to partially avoid the technical
complexity induced by weakened condition and also since it may easily be justified
practically.) The compactness of � also provides a sufficient condition for (b) to
hold, provided that the solution function q∗(x̄, ·) is continuous for some x̄ . Finally,
assumption (c) induces some technical conditions on the profit functions πν(·, ω). All
these assumptions (except (B)) will be verified for the special case of isoelastic price
functions; see Lemma 1. �

Theorem 6 below establishes the almost sure convergence of the sample average
of the players’ profits, from which the almost sure convergence of the Nash equilibria
of the sampled games to a Nash equilibrium of the stochastic capacity game follows
readily.

Theorem 6 Assume that conditions (A) and (B) in Proposition 5 hold, and that each
function ην(xν) is continuous. Let {ωi } be a sequence of independently and identi-
cally distributed samples with compact support �. The following two statements are
valid.

(I) For every sequence
{

x� ≡ (xν,�)N
ν=1

}
⊂ X converging to x∞ ≡ (xν,∞)N

ν=1 in X ,

where X is a bounded subset of X that satisfies conditions (a)–(c) in Proposition 5,
it holds that

lim
�→∞

1

�

�∑

i=1

πν(q
∗(x�, ωi ), ωi ) = IEπν(q

∗(x∞, ω), ω) almost surely.

(II) For each positive integer �, let x̂� ≡ (̂xν,�)N
ν=1 be an equilibrium solution to

the approximated Nash capacity game where the individual player’s optimization
problem is given by (11). If {̂x�} is contained in a bounded subset X of X that sat-
isfies conditions (a)–(c) in Proposition 5, then, almost surely, every accumulation
point of {̂x�} is a Nash equilibrium solution of the two-stage capacity game.

Proof Condition (c) and (17) imply that, for all ν = 1, . . . , N ,

sup
(x,ω)∈X×�

∣∣πν(q∗(x, ω), ω)
∣∣ < ∞.

This implies thatπν(q∗(x, ω), ω) has a finite variance that is bounded independently of
x ∈ X . Let {x�} ⊂ X be a sequence converging to x∞ ∈ X . Sinceπν(q∗(x∞, ωi ), ωi )

are independent and identically distributed samples of πν(q∗(x∞, ω), ω), it follows
from the strong law of large numbers that, for every ν = 1, . . . , N ,

lim
�→∞

1

�

�∑

i=1

[
πν(q

∗(x∞, ωi ), ωi )− IEπν(q
∗(x∞, ω), ω)

]
= 0 almost surely.
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We can write

πν(q
∗(x�, ωi ), ωi )− IEπν(q

∗(x∞, ω), ω)
=

[
πν(q

∗(x�, ωi ), ωi )− πν(q
∗(x∞, ωi ), ωi )

]

+
[
πν(q

∗(x∞, ωi ), ωi )− IEπν(q
∗(x∞, ω), ω)

]
.

By Proposition 5, positive constants L ′ and γ ′ exist such that, for all ω,

∣∣∣πν(q∗(x�, ω), ω)− πν(q
∗(x∞, ω), ω)

∣∣∣ ≤ L ′ ‖ x� − x∞ ‖γ ′
.

Thus the limit in (I) follows. Hence, for every ν = 1, . . . , N , the sequence of random
functions {θν,�(x)}∞�=1 converges continuously in x to θν(x) almost surely. Statement
(II) follows from Theorems 1 and 2(B)–(D). �
Remark 5 As it is evident from the above proof, a key conclusion that we need from
Proposition 5 is the convergence of the sequence {πν(q∗(x�, ω), ω)} toπν(q∗(x∞, ω),
ω) uniformly on compact sets almost surely as � → ∞. Via the Hölderian inequali-
ties (13) and (14), the setting of Proposition 5 is sufficient for this purpose. More gen-
erally, Chap. 6 in [31], particularly Proposition 7 therein, and the paper [32, Sect. 4]
address the kind of convergence in part (I) of Theorem 6 under broad conditions that
are much weaker than those in Proposition 5. Nevertheless, the latter proposition is
useful as an intermediate result for practical application, as illustrated in the next
subsection. �

5.1 Power price functions

Finally, we present an application of Theorem 6 by considering the random isoelastic
price function p j (Q j , ω) of the type:

p j (Q j , ω) = a j (ω) Q
−1/b j (ω)

j , Q j > 0, (18)

for appropriate positive random coefficients a j and b j . We first establish a lemma
summarizing two properties of such a function.

Lemma 1 Suppose that each function cνj (q
ν) is convex and twice continuously dif-

ferentiable, and for some positive constants γc < 2, β1,c, and β2,c,

‖∇cνj (q
ν) ‖ ≤ β1,c + β2,c ‖ qν ‖γc ∀ ν = 1, . . . , N and j ∈ N . (19)

If the random variables a j (ω) and b j (ω) are such that, for all j ∈ N ,

0 < inf
ω∈� a j (ω) ≤ sup

ω∈�
a j (ω) < ∞, (20)
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and

1 < inf
ω∈� b j (ω) ≤ sup

ω∈�
b j (ω) < ∞, (21)

then, for every convex set Q in which q ≥ 0,

inf
q∈Q

min
j∈N

Q j > 0,

and each cνk (q
ν) is Lipschitz continuous, the following two statements hold:

(a ′) a constant ρQ > 0 exists such that, for all (q, q ′, ω) ∈ Q × Q ×�,

( q − q ′ )T(�(q, ω)−�(q ′, ω) ) ≥ ρQ ‖ q − q ′ ‖2,

(c ′) positive constants β1,q , β2,q , and LQ exist such that

sup
(q,ω)∈Q×�

‖�(q, ω)‖ < β1,q + β2,q‖q‖γc ,

and, for all ν = 1, . . . , N,

∣∣πν(q, ω)− πν(q
′, ω)

∣∣ ≤ LQ ‖ q − q ′ ‖ ∀ ( q, q ′, ω ) ∈ Q × Q ×�.

(22)

Proof For (a ′), it suffices to show that

inf
(q,ω)∈Q×�

min‖z‖=1
zT Jq�(q, ω)z > 0

since the uniform positive definiteness of partial Jacobian matrix Jq�(q, ω) guaran-
tees the strong monotonicity of �(q, ω) in q uniformly for all ω. In general, letting
rν(q, ω) ≡ ∑

j∈N qνj p j (Q j , ω) be firm ν’s revenue function and recalling Q j =
∑N
ν=1 qνj , we deduce ∂rν (q,ω)

∂qνj
= p j (Q j , ω)+ ∂p j (Q j ,ω)

∂Q j
qνj , and

∂

∂qν
′

k

(
∂rν(q, ω)

∂qνj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if k �= j

∂p j (Q j , ω)

∂Q j
+ ∂2 p j (Q j , ω)

∂Q2
j

qνj if k = j and ν ′ �= ν

2
∂p j (Q j , ω)

∂Q j
+ ∂2 p j (Q j , ω)

∂Q2
j

qνj if k = j and ν ′ = ν.
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Therefore, with z ≡ (zν)N
ν=1 and zν ≡ (zνj ) j∈N , it follows that

zT Jq�(q, ω)z =
N∑

ν=1

( zν )T

⎡

⎣
∑

j∈N
∇2cνj (q

ν)

⎤

⎦ zν

−
∑

j∈N

∂p j (Q j , ω)

∂Q j

⎡

⎣
N∑

ν=1

( zνj )
2 +

(
N∑

ν=1

zνj

)2 ⎤

⎦

−
∑

j∈N

∂2 p j (Q j , ω)

∂Q2
j

(
N∑

ν=1

qνj zνj

) (
N∑

ν=1

zνj

)
.

With p j (Q j , ω) given by (18), we have
∂p j (Q j ,ω)

∂Q j
= − a j (ω)

b j (ω)
Q

−1−1/b j (ω)

j , and
∂2 p j (Q j ,ω)

∂Q2
j

= a j (ω)

b j (ω)

(
1 + 1

b j (ω)

)
Q

−2−1/b j (ω)

j , which yield

zT Jq�(q, ω)z =
N∑

ν=1

( zν )T

⎡

⎣
∑

j∈N
∇2cνj (q

ν)

⎤

⎦ zν

+
∑

j∈N

a j (ω)

b j (ω)
Q

−1−1/b j (ω)

j

⎡

⎣
N∑

ν=1

( zνj )
2 +

(
N∑

ν=1

zνj

)2 ⎤

⎦

−
∑

j∈N

a j (ω)

b j (ω)
Q

−2−1/b j (ω)

j

(
1 + 1

b j (ω)

) (
N∑

ν=1

qνj zνj

) (
N∑

ν=1

zνj

)
.

Since

(
N∑

ν=1

qνj

) ⎡

⎣
N∑

ν=1

(zνj )
2 +

(
N∑

ν=1

zνj

)2⎤

⎦ −
(

1 + 1

b j (ω)

) (
N∑

ν=1

qνj zνj

) (
N∑

ν=1

zνj

)

≥ Q j

[
1 − 1

4

(
1 + 1

b j (ω)

)2
]

N∑

ν=1

( zνj )
2, because b j (ω) > 1,

it follows that,

zT Jq�(q, ω)z ≥
∑

j∈N

a j (ω)

b j (ω)
Q

−1−1/b j (ω)

j

[
1 − 1

4

(
1 + 1

b j (ω)

)2
]

N∑

ν=1

( zνj )
2

≥
{

inf
j∈N

a j (ω)

b j (ω)
Q

−1−1/b j (ω)

j

[
1 − 1

4

(
1 + 1

b j (ω)

)2
] }

‖ z ‖2.
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This establishes (a ′). Since

�νj (q, ω) = a j (ω) Q
−1/b j (ω)

j

[
1 − 1

b j (ω)

qνj
Q j

]
+ ∂cνj (q

ν)

∂qνj
, and

sup
(q,ω)∈Q×�

{
a j (ω) Q

−1/b j (ω)

j

[
1 − 1

b j (ω)

qνj
Q j

] }
< ∞,

the existence of the constants β1,q and β2,q satisfying (c ′) follows from the assumption
on the functions cνj (q

ν); cf. (19). We have

πν(q, ω)− πν(q
′, ω) =

∑

j∈N

[ (
p j (Q j , ω)q

ν
j − p j (Q

′
j , ω)q

ν,′
j

)

−( cνj (q
ν)− cνj (q

ν,′) )
]
.

Since Q j is bounded away from zero on Q, it follows that p j (·, ω) is Lipschitz con-
tinuous on Q, with a Lipschitz constant independent of ω ∈ �. Finally, since each
cνj (q

ν) is Lipschitz continuous on Q and sup
(q,ω)∈Q×�

p j (Q j , ω) < ∞ for all j ∈ N ,

the Lipschitz condition (22) follows readily. �
Note that (a′) of Lemma 1 guarantees condition (A) of Proposition 5. Therefore,

based on the above calculations, we deduce the following convergence result for the
two-stage Nash capacity expansion game with price functions given by (18). The proof
follows readily from the above analysis and the details are omitted.

Corollary 4 Let each p j (Q, ω) be given by (18) where the coefficients satisfy (20)
and (21). Suppose that each function cνj (q

ν) is convex, twice continuously differentia-
ble, and globally Lipschitz continuous, that condition (B) in Proposition 5 hold, that
each function ην(xν) is continuous, and that {q∗(x, ω) : (x, ω) ∈ X ×�} is contained
in a set Q in which q ≥ 0 and

inf
q∈Q

min
j∈N

Q j > 0. (23)

Let {ωi } be a sequence of independently and identically distributed samples with
compact support �. For each positive integer �, let x̂� ≡ (̂xν,�)N

ν=1 be an equilib-
rium solution to the approximated Nash capacity game where the individual player’s
optimization problem is given by (11). If {̂x�} is bounded, then, almost surely, every
accumulation point of {̂x�} is a Nash equilibrium solution of the two-stage capacity
game. �

We finish the paper by noting that condition (23) is sometimes called “industry
boundedness”. The condition was used in [19] to show the existence of a Nash–Cour-
not equilibrium; similarly (20) and (21) are standard assumptions to ensure the good
behavior of the regional isoelastic price functions.
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