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AMENITIES IN AN URBAN EQUILIBRIUM MODEL: RESIDENTIAL 

DEVELOPMENT IN PORTLAND, OREGON 
 
 

Abstract 
 
 

This paper analyzes the effect of open space and other amenities on housing prices and 
development density within the framework of an urban equilibrium model.  The model is 
estimated as a system of equations that includes households’ residential choice decisions and 
developers’ development decisions and emphasizes the importance of amenities in the formation 
of development patterns and property values.  The model is applied to Portland, Oregon, where 
ambitious open space programs have been implemented. The results suggest that amenities are 
important: households are willing to pay more for newer houses located in areas of less dense 
development, with more open space, better views, less traffic congestion, and near amenity 
locations.  For the developer, increases in housing prices result in an attempt to provide more and 
larger houses.  The attempt to provide more houses, however, results in higher density, which 
will ultimately reduce prices.  A simulation analysis evaluates the policy implications of the 
model results and indicates substantial benefits from alterations in housing patterns (JEL R11, 
R21, R31).  
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AMENITIES IN AN URBAN EQUILIBRIUM MODEL: RESIDENTIAL 

DEVELOPMENT IN PORTLAND, OREGON 

 

I. Introduction 

Since the 1970’s, the land area occupied by urban and metropolitan areas in the United 

States has more than doubled, and the expansion has accelerated in recent years (U.S. 

Department of Agriculture).1 The conversion of farmland and forests to such development has 

generated strong public support for growth management across the U.S.2 For example, during 

1998-2000, there were 454 “open space” measures placed on ballots in the U.S. Eight-four 

percent of these measures were approved, providing $17.1 billion for open space preservation 

(Land Trust Alliance, 2001). The appeal of open space preservation arises from the associated 

recreational opportunities, visual amenities, and other environmental and ecosystem benefits. 

Conversely, conversions of open space to development may reduce local recreation and cultural 

activities, increase traffic congestion, increase urban runoff and flooding, reduce water quality, 

and disturb, pollute or destroy natural habitats for wildlife. 

Open space takes many forms. City parks provide some types of recreational and visual 

amenities. Greenbelts and ecological reserves typically are larger, often natural, open space areas 

that provide a broad range of services. The experience of cities with ambitious open space 

policies, such as Portland, Oregon and Boulder, Colorado, suggests that such policies have a 

significant effect on property values.  Preserving land for open space affects property values in 

two important ways. First, it directly affects property values by restricting the supply of land for 

development. Second, open space designation and the associated amenities make certain areas 

more attractive, thereby changing the spatial patterns of demand within a given metropolitan area 
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and potentially shifting the overall demand for housing by encouraging in- or out-migration. For 

this reason, spatially explicit models are needed to analyze the effect of open space designation 

on property values. 

Spatially explicit models of land use in urban areas have been extensively investigated by 

urban and regional economists. The standard version of these models features a monocentric city 

built on a “featureless plain” with all jobs located in the city center. Households choose the 

location that provides the best tradeoff between land costs and transportation costs. Because 

transportation costs increase for locations farther from the city center, housing prices fall as the 

distance from the city center increases, compensating suburban workers for their increased costs 

of commuting.  The model has been applied in a number of settings, and also extended to include 

amenities.3  Brueckner et al. (1999) and Polinsky and Shavell (1976) analyze amenities that vary 

with distance to the city center.  Yang and Fujita (1983) analyze the competitive and efficient 

solutions of an urban land market with open space and Lee and Fujita (1997) examine the 

efficient configuration of greenbelts.  Wu (2001) and Wu and Plantinga (2003) develop a more 

general spatial equilibrium model to analyze the effect of spatial heterogeneity in amenities on 

development patterns. 

There is a large body of literature that estimates the effect of amenities (or disamenities) 

on nearby property values. For example, the hedonic price model has been applied to estimate 

the value of proximity to oceans, lakes or rivers (Lansford and Jones 1995, Leggett and 

Bockstael 2000), urban parks and forests (Weicher and Zerbst 1973, Tyrväinen and Miettinen 

2000), urban wetlands (Doss and Taff 1996, Mahan, Polasky, and Adams 2000), and general 

indicators of open space (Cheshire and Sheppard 1995, Geoghegan, Wainger, and Bockstael 

1997, Irwin and Bockstael 2001, Riddel 2001, Geoghegan 2002,  Irwin 2002). 
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In this paper we apply an urban equilibrium model to estimate the effect  of open space 

and other amenities on property values and development density.  The urban equilibrium model 

includes the interrelationships between households’ residential choice decisions and developers’ 

development decisions and emphasizes the importance of spatial heterogeneity in amenities in 

the formation of development patterns and property values.  Equilibrium in the housing market is 

defined by three interdependent expressions for housing price, development density, and house 

size.  These expressions are the basis for an empirical application of the model.  Using data on 

Portland, Oregon, we estimate a system of simultaneous equations satisfied by equilibrium in the 

housing market.  Our empirical model includes a large number of spatially-explicit variables to 

control for the heterogeneous open space amenities in the study area. 

This study extends the previous literature in three important ways. First, it assumes that 

household utility is affected not only by exogenous environmental amenities (e.g., river view) 

that are out of the developers’ control but also by endogenous “development amenities” (e.g., 

development density) that are determined by developers. Previous studies either ignore amenities 

or treat them as exogenous to the developers’ decisions. Second, the paper presents a systems 

approach to estimate the effect of amenities on housing prices. This approach takes into account 

the endogenous nature of certain amenities. Previous hedonic studies ignore the endogenous 

nature of development amenities and regress property values directly on structural variables 

(e.g., lot size and square footage). Failure to account for endogeneity will result in inconsistent 

results if housing prices and lot size are simultaneously determined.  Finally, we provide a 

rigorous theoretical foundation for variable choice in our model of residential housing prices. 
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II. The Model 

In this section we present a conceptual model of residential development to motivate our 

empirical study. We start by extending the standard residential decision model to include the 

spatial heterogeneity of amenities and then model developers’ residential development decisions.  

The first-order conditions for home buyers and developers are used to define equilibrium in the 

housing market. 

The household decision model conforms to some of the basic assumptions of the standard 

monocentric city model, including a central business district (CBD) and commuting costs that 

depend on the residence-to-CBD distance. The landscape is represented by a Cartesian 

coordinate plane R2 , with the CBD located at the origin (0,0) and the x- and y-axis representing 

west-east and north-south directions, respectively. However, in contrast to traditional models, we 

allow residential sites to be differentiated by the level of environmental amenities. Residential 

houses are located across the plane, and are characterized by an individual vector of 

environmental amenities associated with a specific location (e.g., view), a(x, y), and a vector of 

development amenities (henceforth referred to as the development density), d(x, y). Households 

take both types of amenities as given when choosing residential locations, but developers can 

change the level of development amenities. 

Households have preferences defined over the residential space (floor space) q, 

development and environmental amenities at their dwelling site, d(x, y) and ( , )a x y , and the 

consumption of a composite non-housing numeraire good z.4  Following Solow (1973) and 

others, we assume that the household utility function takes a logarithmic form, but extend it to 

include amenities.  Specifically, the utility function is assumed to be ( , , ( , ), ( , ))U q z d x y a x y =  

ln ln ln ( , ) ln ( , )q z d x y a x yα β λ γ+ + + , where , , , and a b l g  are positive parameters with 
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1a b+ = . This specification implies that amenities and residential space are substitutable; a 

small house with better amenities may provide the same level of utility as a larger house with 

less desirable amenities. 

Each households chooses its most preferred combination of residential space (q) and 

composite good (z), and the residential location (x, y) to maximize utility subject to a budget 

constraint: 

(1) { , , , }
max   ln ln ln ( , ) ln ( , ) 

        . .                  ( , ) ( )
q z x y

U q z d x y a x y

s t p x y q z t r m

α β λ γ= + + +

+ + ≤
. 

where p(x,y) is the unit price for housing (dollars per square foot), m is the household’s income, 

and t(r) is the transportation cost function where r x y= +2 2 0 5c h .
 is the distance from the 

residential site (x, y) to the CBD.  The first-order conditions for the maximization problem (1) 

yield the optimal choices of residential space and the non-housing good: 

(2) * [ ( )]( , )
( , )

m t rq x y
p x y

α −
= ,  

(3) *( , ) [ ( )]z x y m t rβ= − . 

In a spatial market equilibrium, two conditions must be satisfied:  housing prices must 

equate demand for and supply of housing, and households must have no incentive to change 

locations.  To ensure that the second of these conditions is satisfied, we assume that costless 

migration occurs between cities.5   In this case, migration equalizes utility across cities in 

equilibrium and, the utility level, denoted u , is exogenous from the perspective of a single city.  

By imposing this condition, we can express the demand for housing solely in terms of price and 

the exogenous utility level.  Substituting (2) and (3) into the utility function, setting utility equal 

to u , and solving for price yields the “bid-price function” for housing: 
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(4) 
1

*
0( , ) ( , ) ( , ) [ ( )]p x y p d x y a x y m t r

λ γ
α α α= − , 

where / /
0

up eb a aab -=  is a constant.  Equation (4) is the price households are willing to pay for 

a unit of housing at location (x, y).  When prices vary by (4) across the landscape, household 

utilities are identical across locations and households have no incentive to move. 

The housing price function (4) reveals the difference between our model and the standard 

monocentric city model. In the standard model, environmental amenities are assumed to be 

distributed uniformly across the landscape. In this case, equation (4) indicates that housing prices 

always fall with the distance from the CBD, compensating suburban residents for their cost of 

commuting. However, with spatial variations in amenities, the spatial pattern of housing prices is 

more complicated. A household may be willing to sacrifice proximity to the workplace for local 

amenities, with the result that willingness to pay for housing may no longer be a monotonically 

decreasing function of CBD distance.   

On the supply side, housing is produced with land, labor and materials under constant 

returns to scale. The developers’ per-acre development costs are assumed to be 

0( , , , ) ( , )c d s x y c x y d qd f= , where d is the development density (the number of houses per acre), 

and q is the house size (floor space, or square footage per house), parameters δ and φ are greater 

than one, and 0 ( , )c x y  reflects the effect of location on construction costs. At each location, the 

developer chooses the development density and the house size to maximize profit: 

(5) *
0,

max  ( , , , )= ( , ) ( , )
d q

d q x y p x y dq c x y d qδ φπ − . 

The first-order conditions for this maximization problem are: 

(6) 
*

* 1 * 1
0 0( , ) ( , ) 0pp q dq c x y d q p q c x y d q

d d
d f d fp a ld d

a
- -∂ ∂ +Ê ˆ= + - = - =Á ˜Ë ¯∂ ∂

, 
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(7) * 1
0 ( , ) 0p d c x y d q

q
d fp f -∂ = - =

∂
, 

where the derivation of (6) makes use of the result, from (4), * */ /p d p dl a∂ ∂ = . 

These first-order conditions yield the following relationships between development 

density, house size, and housing price: 

(8) 
1

1 111 *1 11
0 ( , )d c x y p q

fd
d dd

a l
da

-- -
- --

+Ê ˆ= Á ˜Ë ¯
, 

(9) 
1 11

*1 11
0[ ( , )]q c x y p d

d
f fff

--
- --= . 

Both density and house size are functions of housing price and, through prices, the level of 

amenities at each location.  Further, an increase in housing price would increase the development 

density and the square footage of each house built.  If development density is a disamenity for 

households (i.e., 0l < ), however, then (4) indicates that an increase in development density will 

reduce households’ willingness to pay for housing.  Thus, the developer must balance the 

number of houses built and their size with price. 

 

III. Empirical Specification and Estimation 

Spatial equilibrium in the housing market satisfies (4), (8), and (9).  These expressions 

provide the theoretical basis for an application to Portland, Oregon in which we econometrically 

analyze the effect of amenities on housing prices and development density.  Taking logarithms of 

both sides of (4), (8), and (9), and assuming the same additive logarithmic structure for 

amenities, income, CBD distance, and factors affecting construction costs, we obtain the 

following system of simultaneous equations: 
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(10) Housing price:   *
0 1 2 4 5 1

1

ln ln ln ln ln
K

k
i i ki i i i

k
p d a m rx x x x x e

=

= + + + + +Â , 

(11) Household density:  *
0 1 2 3 2

1

ln ln ln ln
K

k
i i i ki i

k
d p q aq q q q e

¢

=

= + + + +¢Â , 

(12) House size:   *
0 1 2 3 3

1

ln ln ln ln
K

k
i i i ki i

k
q p d aV V V V e

¢

=

= + + + +¢Â , 

where i is an index of residential location, 1 2( , ,..., )i i Kia a a  is a vector of environmental amenities 

at location i, 1 2( , ,..., )i i K ia a a ¢¢ ¢ ¢  is a vector of physical variables that affect housing construction 

costs at location i, the sx , sq , and sV  are parameters, and 1 2,i ie e , and 3ie  are error terms.  To 

estimate the equation parameters in (10)-(12), we regress each of the endogenous variables on a 

set of instrumental variables, selected, in part, from the exogenous variables in the above 

equations.6  From these auxillary regressions, we generate predicted values for the endogenous 

variables and substitute these into the right-hand sides of (10)-(12).  For reasons discussed 

below, the density and size equations are estimated using only a subset of observations used to 

estimate the price equation.  Since this results in unbalanced equations, the housing price 

equation is estimated separately from the density and size equations.  As the errors in the two 

supply equations are likely to be contemporaneously correlated, these are estimated using the 

seemingly unrelated regression estimator. 

At this stage, it is instructive to clarify the differences between our empirical model and 

hedonic price equations commonly estimated in the literature.  The standard hedonic equation (or 

implicit price function) represents a locus of competitive equilibria between buyers and sellers in 

a housing market.7  It is a reduced-form expression for the equilibrium price and, in most 

applications, modeling focuses on demand-side variables accounting for price differences, such 

as structural characteristics, neighborhood characteristics, and environmental amenities.  In 
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contrast, the bid-price function in (10) is a structural equation, specifically the inverse demand 

for a unit of housing at a specific location.  As noted above, the bid-price function incorporates 

the equilibrium condition requiring household utilities to be constant across space.  Equations 

(11) and (12) represent the supply side of the market—the density and size of houses that 

developers will supply given housing prices and construction costs.  The demand and supply 

sides of the market come together in the system of simultaneous equations (10, 11, and 12).  

These equations are satisfied, according to our theoretical model, in a spatial market equilibrium.  

Housing prices, development densities, and house sizes are endogenously determined in the 

model.  

Several econometric issues arise in the estimation of the equation system. One concerns 

the choice of functional form. The double-log specification is based on the theoretical model 

used here, which is built upon the assumption that the utility function is logarithmic (or Cobb-

Douglas)8, a commonly used functional form in the urban economics literature.  However, since 

utility may not take the logarithmic or Cobb-Douglas form, it is useful to examine how sensitive 

the results would be to the specification of functional form. 

A more general specification of functional form is the quadratic Box-Cox (Halvorsen and 

Pollakowski, 1981), which takes double-log, semi-log and several other functional forms as 

special cases. But an overly general specification may not prove robust to small mis-specification 

(Cassel and Mendelsohn, 1985; Cropper, Deck and McConnell, 1988). For example, Cropper, 

Deck and McConnell (1988) find that when variables are omitted or replaced by proxies, simpler 

forms such as linear or double-log perform better than more complex ones. Box and Cox warn 

against the use of the transformation when the transformed dependent variable is of primary 

interest, since any nonlinear transformation will introduce bias. Because of the problems 
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associated with using complex functional forms, many studies assume a particular, simple 

functional form, such as linear, double-log, or semi-log in their hedonic analyses (see, e.g., 

Leggett and Bockstael, 2000; Tyrvainen and Miettinen, 2000; Halvorsen and Pollakowki, 1981). 

Following these studies, we consider three more functional forms; the semi-log (dependent 

variables in logarithms, and independent variables in linear forms), inversed semi-log (dependent 

variables in linear forms, and independent variables in logarithms), and linear (both dependent 

and independent variables in linear forms).  Estimation results for these three specifications are 

qualitatively and statistically similar to the estimates, discussed below, for the double-log 

specification. 

Multicollinearity poses another potential problem to the estimation of hedonic models, 

given that neighborhood characteristics are frequently correlated (Leggett and Bockstael, 2000). 

The major undesirable consequence of multicollinearity is that estimated coefficients for the 

collinear variables are unstable and have large variances. The solutions to the problem include 

dropping highly collinear variables from the model, obtaining more data, and formalizing 

relationships among regressors or parameters (Kennedy, 1998; pp. 187-88).  To avoid the 

potential multicollinearity problem, variables that are highly correlated with other variables are 

dropped from our final model.  In addition, a large number of observations are used in the 

estimation of our final model.   

A final estimation issue concerns spatial autocorrelation.  We must construct a number of 

variables with spatial dimensions—housing densities, availability and proximity to open space, 

distance to the city center, and so on.  Failure to measure these variables in a way that accurately 

reflects the underlying spatial processes is likely to induce spatial dependence in the error terms.  

We test for spatial autocorrelation by computing Moran’s I statistic for each equation, given by 
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' 'ˆ ˆ ˆ ˆ( ) / ( )I N SW= e e e e  where N is the number of observations, ê  is a vector of estimated 

residuals, W is a matrix indicating the spatial structure of the data, and S is a standarization 

factor equal to the sum of the elements of W.  Each element of W, ijw , is equal to one if the ith 

observation is in a zip code area that borders the zip code area for the jth observation and, 

otherwise, is equal to zero.9   

As discussed below, we find evidence of spatial autocorrelation in all three equations.  

We assume the error structure in each equation is given by Wr +e = e u  where r  is a scalar 

and u  is a vector of spherical disturbances with zero mean.  We assume there is no cross-

equation spatial dependence in the errors.  To estimate r , we use the generalized moments 

estimator developed by Kelejian and Prucha (1999).  Applying equation (7) in Kelejian and 

Prucha, we estimate r  for each equation and transform the data with the matrix ˆ ˆP Wr-= I , 

where I is the identity matrix.   

 

IV. Study Area and Data 

The study area is that portion of Multnomah county that lies within the Portland urban 

growth boundary. Multnomah county encompasses the city of Portland, the largest city in the 

state of Oregon, with a population of about 530,000 in 2000.  Portland and the surrounding 

communities are located at the north end of the Willamette Valley and are noted for their 

generally high level of environmental amenities. 

The data used in this study were obtained from several sources. Real estate data for 

Multnomah county were obtained from MetroScan, Sacramento, California, which collects real 

estate data from Assessor’s records for numerous cities.10 Metro Regional Services, a directly 

elected regional government agency for the greater Portland area, provided digital neighborhood 
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and environmental characteristics for each residential property that was sold. Metro’s ArcView 

geographic information system was used to calculate the percentages of land designated for 

alternative uses (e.g., parks and public open space, commercial use) within each zip code area. 

Distance calculations were made using a raster system where all data are arranged in grid cells. 

Each cell is 54-feet square. Distances were measured as the Euclidean distance in feet from the 

centroid of the tax lot to the nearest edge of the feature.  Because information on household 

income is unavailable for individual households, median household income within each zip code 

area was used as a regressor. This information was obtained from the U.S. Census. 

The variables used in this analysis, along with descriptive statistics for each, are provided 

in Table 1. Specifically, Table 1 presents descriptions of 19 amenity and house characteristic 

variables, of which three are the endogenous variables in the simultaneous equations system 

(housing price per square feet, house size, and development density). Categorical variables for 

location and amenity type are also included.   

The housing price per square foot is obtained by dividing the actual sales price of a 

residence by the square footage of the house. Actual sales prices of individual properties are 

preferred to other forms of data on property values such as assessed, appraised or census tract 

estimates because they more accurately reflect homeowners preferences.  A total of 14,485 

market-based residential sales occurred in Multnomah county between June 1992 and May 

1994.11  Sales prices were adjusted by a price index for the Multnomah county residential 

housing market to a May 1994 price level.  The average sales price is $75 per square foot, with 

an average square footage of 1426 square feet. 

The amenity measures include elevation, proximity to natural and man-made features, 

such as rivers, parks, lakes, wetlands, and the central business district, and percentage of land 
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designated as parks or public open space in the zip code area. Categorical variables relate to the 

location of the house within the metropolitan area and level of traffic. Other explanatory 

variables include income, proximity to industrial or commercial zones within the metropolitan 

area, and age of the house.  The mean age of houses in the sample is approximately 45 years.  

This statistic raises an important issue about how to appropriately model the developer’s 

decision.12  In (11) and (12), density and house size are functions of house prices, which in our 

data are measured during the early to mid-1990s.  Since developers are likely to base decisions 

on recent prices, we should model development decisions contemporaneous with the observed 

prices.  Accordingly, we estimate (11) and (12) with data on houses less than five years in age.  

To take full advantage of variation in the housing price variable, all of the observations are used 

to estimate (10).  

 

V. Results 

The parameter estimates and summary statistics for the double-log specification of the 

simultaneous equation system are presented in Tables 2 and 3.  Table 2 reports the parameter 

estimates for the households’ bid-price function for housing (equation 10, with PRICE as the 

dependent variable) while Table 3 presents the supply equations as determined by the 

developer’s decisions regarding the number of houses to build per acre (Equation 11, with 

DENSITY as the dependent variable) and the size of those housing units (Equation 12, with 

TOTAL SF as the dependent variable).  As indicated above, spatial autocorrelation was detected 

and adjusted for in each of the equations.  For the price, density, and size equations, respectively, 

the value of the Moran’s I statistic, with the standard deviation following in parentheses, is 

0.0036 (0.0003), 0.0055 (0.0026), and –0.0059 (0.0026).  Assuming an approximate standard 
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normal distribution for I, the null hypothesis of no spatial autocorrelation is rejected at the 5% 

level in each case.  The estimated values of the spatial autocorrelation parameter r  are, 

respectively, 1.41×10-7, 3.55×10-6, and –2.20×10-5.  In the final model, the equations have 

reasonable explanatory power (with respect to the transformed variables) and the coefficients in 

each equation are, with few exceptions, statistically significant at the 5% level. The signs of the 

coefficients are largely consistent with effects predicted by the theoretical model.  

In Table 2, the relationships between the bid price for housing (represented as price per 

square foot) and the various amenities are statistically significant at the 5% level, except for 

slope and distance to rivers and commercial districts, and in almost all cases have the expected 

signs. Specifically, the results suggest that households are willing to pay more for newer houses 

located closer to areas of open spaces (e.g., near parks, lakes, wetlands) and in areas of less dense 

development (i.e., lower density). In addition, houses with better views (located at higher 

elevations) and located farther from industrial areas and in areas of less traffic congestion, are 

more highly valued. 

The demand by residential house buyers for lower density housing, as reflected in the 

desire to be closer to “open space,” and in the sign on the “DENSITY” variable, runs counter to 

recent land use policies adopted by the Metro Regional government (and most other western 

Oregon cities) to develop more houses per unit of land brought into development. The existence 

of government-mandated urban growth boundaries and higher density housing requirements in 

the Portland metropolitan area points to a fundamental conflict between home buyers’ 

preferences and the societal desire to preserve open space on the city fringe. 

Other amenity features have mixed effects on the willingness to pay for housing. For 

example, distance to commercial districts does not significantly affect housing prices.  This 
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result may reflect a combination of positive effects (proximity to shopping, restaurants, etc.) and 

negative effects (noise, incidental light, etc.).  Being located within the Portland urban growth 

boundary has a positive effect on prices (all dummy variables for houses located within the 

designated Portland metropolitan boundary have positive values). These results indicate a 

preference for houses within the Portland city limits and again sets up potential development 

problems, given the incompatibility between an expressed desire on the part of home buyers for 

less density (larger lot size) and locations within the Portland metropolitan area. 

The equations representing the developer’s decision problem (of how many and what size 

house to supply) are contained in Table 3.  Most of the coefficient estimates are significantly 

different from zero at the 5% level, particularly in the density equation.  For the developer, 

increases in housing prices result in an attempt to provide more houses per unit area (i.e., the 

relationship between DENSITY and PRICE is positive) and large houses (PRICE has a positive 

effect on TOTALSF).  The attempt to provide more houses, however, results in higher density, 

which will ultimately reduce prices since density is a disamenity for households (Table 2). 

The effect of amenities differs in some cases between the developer and the consumer. 

For example, elevation increases consumers willingness to pay but reduces the number of houses 

supplied (as does slope) due to the effect on construction costs. The coefficients on the amount 

of nearby parks and open space (PARKOPEN) are negative in the density and size equations.  At 

first glance, this result may seem counterintuitive since one would expect developers to increase 

density and house size in neighborhoods with desirable amenities.  However, it is important to 

interpret these results holding prices constant.  Controlling for the positive effect of PARKOPEN 

on density and size through the price variable, more parks and open space may simply decrease 

the remaining land available to build houses and, thus, lower densities and house sizes.  The 
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signs on most other variables can be explained either by their effect on construction costs or the 

price of undeveloped land. The size of houses is affected differently by some variables than is 

the decision regarding the number of houses to provide. That is, in some locations where 

construction or land costs are high, developers have an incentive to build larger but fewer homes 

per unit of land in order to maximize profits.   

The simultaneous system of equations provides a framework with which to explore a 

range of policy questions concerning residential development patterns. To exploit the potential of 

the systems approach, the estimated structural equations for housing price, development density 

and house size are solved for their reduced-form equivalents.  These reduced-form equations are 

then used to simulate the effect of changes in exogenous amenity variables on housing price, 

development density and house size. An advantage of the systems approach used here is that the 

reduced-form equations capture both the direct effects of an amenity variable on an endogenous 

variable as well as indirect effects through other endogenous variables.  Some of the potential 

effects of such changes are presented in Table 4. 

The simulation results from Table 4 show that an increase in elevation (by 100 feet) 

reduces development density (by 261 units per square mile) and increases house size (by 42 

square feet) and housing price (by $2.12 per square foot).  Because buyers are willing to pay a 

higher price for a house with a better view and larger lot, developers tend to build fewer but 

larger houses in scenic hill locations surrounding the city.  An increase in parks and open space 

by 5 percent increases house prices, reduces density, and has a negligible effect on house size.  

These amenities (and others in the table) increase housing price both directly, through 

willingness to pay, and indirectly through effects on development density.  The negative 

reduced-form effect of parks and open space on density indicates that positive effects on density 
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(e.g., those transmitted through prices) are outweighed by negative direct effects potentially 

related to land availability and negative indirect effects transmitted through the size equation.   

The results of Table 4 can also suggest the value of public investments or land use 

policies. For example, traffic congestion has a substantial effect on house prices (reduces price 

by nearly $3.00 per square foot). Thus, for the average house size (of approximately 1500 square 

feet), transportation planning which reduces congestion (by one category within the ranking used 

here) would increase house prices by $4500 per household. Similarly, zoning or other policies 

which increase land in open space by 5 percent increases the willingness to pay for housing by 

$0.71 per square foot and the house value by approximately $1,000. These increases translate 

into increased property tax revenue which in turn may pay for such public investments in 

structural or operational measures. Similar calculations can be performed for other amenities. 

 

VI. Concluding Comments 

This paper develops and applies an amenity-based urban equilibrium model to analyze 

the effect of open space and other amenities on housing prices, development densities, and house 

sizes. By explicitly incorporating household and developer decisions into the estimation 

framework, both direct and indirect effects of amenities on the housing market can be obtained.  

Further, we can represent development density as an endogenous process, in contrast to standard 

hedonic analyses which treat density as exogenous.  The model is applied to the Portland, 

Oregon metropolitan area, a region of rapid population growth and where concerns over “quality 

of life” issues frequently enter policy debates concerning growth. 

Results from the empirical analysis are largely consistent with our theoretical model and 

are robust to alternative specifications of the functional form.  The estimation results from the 
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structural relations indicate households willingness to pay for a range of amenities, including 

more parks and open space. Conversely, developers tend to respond to higher prices with more 

houses per unit of land. Reduced-form equations are used to perform hypothetical policy 

simulations on a number of the amenity variables. The ability to perform such simulations 

supports the usefulness of a systems approach to the measurement of open space values. From a 

policy perspective, the structural relationships and reduced-form simulations point to conflicts 

between household preferences and societal desires to reduce the conversion of open space to 

housing. Failure to recognize these differences between house purchaser preferences and those of 

land developers will reduce the effectiveness of zoning and other land use planning mechanisms. 

A natural extension of our modeling framework is to estimate the welfare effects of 

changes in amenity levels.  It is well known that hedonic price functions can be used for benefit 

estimation only under strong restrictions, including the assumption that changes in amenities do 

not affect developers’ costs of supplying housing.  This assumption is not supported by our 

results, which reveal housing supply to depend significantly on amenity variables.  In general, 

welfare analysis requires knowledge of the structural demand and supply relationships, which we 

estimate explicitly with this approach.  Additional research is needed to determine if and how the 

estimated relationships can be used to derive consumer and producer surplus measures.  If this is 

possible, then our framework can be used for comprehensive benefit-cost analysis of prospective 

land use policies. 
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TABLE 2. HOUSING PRICE FUNCTION ESTIMATES FROM THE SIMULTANEOUS DOUBLE-LOG 
EQUATION SYSTEM 

 
Variables Coefficient t-statistic 
Endogenous Variables   
Ln(DENSITY) -0.329* -11.85 
Exogenous Variables   
INTERCEPT 4.532* 9.46 
Ln(ELEVATE) 0.021* 3.10 
Ln(PARKOPEN) 0.014* 3.64 
Ln(PARK_DS) -0.006*  -2.48 
Ln(RIVER_DS) -0.002 -0.47 
Ln(LAKE_DS) -0.068* -15.01 
Ln(WTLD_DS) -0.009* -2.88 
Ln(SLOPE) -0.0002 -0.68 
Ln(INDUS_DS) 0.017* 7.86 
Ln(COMM_DS) 0.0002  0.18 
Ln(TRANS_DS) 0.006* 3.64 
DLTTRAF 0.050* 6.36 
Ln(HOUSE AGE) -0.011* -11.74 
Ln(INCOME) 0.437* 20.01 
Ln(CBD) -0.163* -20.59 
DSW 0.043* 2.92 
DSE 0.136* 14.84 
DNW 0.176* 9.61 
DNE 0.120* 12.21 
 
Number of Observations 14191  
Adjusted R-Square 0.18  
* denotes significance at the 5% level. 
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TABLE 3. DEVELOPER SUPPLY FUNCTION ESTIMATES FROM THE SIMULTANEOUS DOUBLE-LOG 
EQUATION SYSTEM 

 
 Ln(DENSITY)  Ln(TOTAL SF) 
 Coefficient t-statistic  Coefficient t-statistic 
Endogenous Variables      
Ln(PRICE) 0.691* 9.66  0.666* 15.34 
Ln(TOTAL SF) -0.939* -16.42     
Ln(DENSITY)    -0.525* -17.15 
Exogenous Variables      
INTERCEPT 12.019* 30.22  8.525* 24.65 
Ln(ELEVATE) -0.088* -6.23  0.052* 5.16 
Ln(PARKOPEN) -0.043* -2.08  -0.030* -1.97 
Ln(PARK_DS) 0.008 1.52   0.007 1.90 
Ln(RIVER_DS) 0.069* 10.19  0.003 0.56 
Ln(LAKE_DS) -0.039* -2.77  -0.008* -0.78 
Ln(WTLD_DS)  0.051* 8.58  -0.002 -0.50 
Ln(SLOPE) -0.002* -2.54  0.002* 3.54 
DSW -0.001 -0.01  0.016 0.43 
DSE -0.104* -2.05  -0.082* -2.22 
DNW 0.324* 5.50  0.145* 3.40 
DNE -0.090 -1.83  0.048 1.33 
      
Number of observations 1334        1334  
R-square 0.19         0.42  
* denotes significance at the 5% level 
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TABLE 4.  ESTIMATED EFFECTS OF AMENITIES AND OTHER VARIABLES ON HOUSING PRICE, 

DEVELOPMENT DENSITY, AND HOUSE SIZE 
_________________________________________________________________________ 
 Changes in 

An increase in a  

Housing 
Price 

( 2$ ft ) 

Development 
Density 
( 2# mi ) 

House 
Size 
( 2ft ) 

Elevation by 100 feet 2.39 -330 129 
Percent land area in parks and open space by 5% 0.73 -50 0 
Distance to nearest park by 1000 feet -0.24 5 2 
Distance to nearest river by 1000 feet -0.42 74 -19 
Distance to nearest lake by 1000 feet -0.18 -15 0 
Distance to nearest industrial zone by 1000 feet 0.27 2 4 
Distance to nearest commercial zone by 1000 feet 0.00 0 0 
Distance to nearest wetland by 1000 feet -0.71 104 -30 
Distance to public transportation by 1000 feet 0.20 2        3 
Distance to the CBD by one mile -1.67 -13 -22 
Traffic from “light” to “heavy” -3.26 -26 -43 
House age by 10 years -0.15 -1 -2 
Median household income by $5000 3.98 30 51 
a All other variables are set at the mean values when the effect of each change is 
calculated. 
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Footnotes 
                                                           
1 Eleven million acres of farmland, forest, and open space were converted to development 
between 1992 to 1997 in the U.S. (U.S. Department Agriculture 2001). The average rate for 
those five years is nearly double that recorded from 1982 to 1992. From 1982 to 1997, the total 
acreage of developed land increased by more than 25 million acres, or one-third (34 percent). 

2 Public opinion polls confirm that there is strong public support for growth management. For 
example, a 2000 poll commissioned by Smart Growth America found that 78 percent of 
Americans support policies to slow urban expansion. A 1999 poll, commissioned by Americans 
For Our Heritage and Recreation and The Nature Conservancy, finds that even in areas where the 
federal government already owns a large percentage of the land base, there is public support for 
purchasing land for conservation. A poll, conducted for the Trust for Public Land, shows that a 
clear majority of voters from both parties feel government efforts to protect land from 
development are inadequate.  

3 For example, Carpenter and Heffley (1982) use such a model to analyze the effect of 
transferable development rights on housing rents and property-tax revenue; White (1975) 
assesses the effect of zoning on the size of metropolitan areas; McMillen and McDonald (1993), 
and Grieson and White (1981) evaluate the effect of zoning on property values.  Additional 
extensions of the model examine the effect of different income groups, zoning, imperfect 
housing markets, and multiple employment centers. For a review, see Anas et al. (1998). 

4 We assume that utility depends on development density and amenities at location (x,y), rather 
than on densities and amenities in the neighborhood of (x,y).  This is done to simplify the 
analytics.  However, in the empirical application, we include more general measures of 
neighborhood characteristics. 

5 An open city model is adopted here because the degree of household mobility has implications 
for the validity of cross-section regression results to predict property value adjustments in 
responses to changes in the spatial patterns of amenities (Polinsky and Shavell, 1976). As shown 
by equation (4), below, in an open city with perfect mobility, the utility level is exogenously 
determined, and housing prices at any location depend only on amenities at that location. In this 
case, cross-section regression results can be used to predict property value adjustments in 
response to changes in amenities. However, in a closed city, housing prices at any location 
depend on amenities throughout the city because the utility level depends on amenities 
throughout the city. As a result, cross-section regression results cannot be used in a direct way to 
predict property value adjustments. Polinsky and Shavell (1976) suggest that the open city model 
may be applied to small communities in a large urban area where there is a high degree of 
mobility, which is the case of Portland, Oregon. 

6 The instrumental variable results are not reported, but are available from the authors upon 
request. 

7 For a review of the hedonic price method, see Freeman (1993). 
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8 Because the logarithmic functional form is a logarithmic transformation of the Cobb-Douglas 
form, all theoretical results hold if the utility function is assumed to take the Cobb-Douglas 
functional form. 

9 The choice to delineate “neighborhoods” using zip code boundaries is somewhat arbitrary.  Zip 
codes are a convenient choice since several variables are delineated in this fashion and because 
other choices (e.g., townships) results in extreme differences in levels of aggregation. 

10 We thank Brent Mahan of the U.S. Army Corps of Engineers for making available the real 
estate data.  

11 We have complete observations of all the variables used in the analysis for 14,191 of these 
sales.  

12 We are indebted to a referee for pointing this out. 




