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Modeling Stochastic Crop Yield Expectations 
with a Limiting Beta Distribution 

 

David A. Hennessy 
 

The use of plausible stochastic price processes in price risk analysis has allowed advances 
not seen in crop yield risk analysis. This study develops a stochastic process for yield 
modeling and risk management. The Pólya urn process is an internally consistent dynamic 
representation of yield expectations over a growing season that accommodates agronomic 
events such as growing degree days. The limiting distribution is the commonly used beta 
distribution. Binomial tree analysis of the process allows us to explore hedging decisions 
and crop valuation. The method is empirically flexible to accommodate alternative 
assumptions on the growing environment, such as intra-season input decisions. 
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Introduction 
 
Demand for information on crop yield expectations arises from producers who seek to under-
stand and manage yield risks and from consumers concerned about future stock availabilities. 
To meet these needs, the U.S. federal government issues regular production forecasts, which 
are based on grower surveys and include official estimates of planting intentions and planted 
acres and yield forecasts through the growing season. State extension agents and private firms 
also develop estimates. This study explores a novel, flexible, and simple approach to organ-
izing and using these forecasts. A crop yield expectation stochastic process is designed that 
represents how harvest yield expectations change during the course of a crop year. This 
approach can be viewed as an application of real options methods and is similar in spirit to 
how stock, commodity, and other financial prices are typically modeled. Our key innovation 
is to identify a reasonable yield expectation stochastic process, because processes commonly 
used in price analysis are not suitable. 
 Improvements in the modeling of crop yields are likely to promote public policy forma-
tion for two reasons. The first reason has to do with the extensive government intervention in 
crop insurance markets, especially in the United States. The reasons for public intervention 
have been discussed elsewhere (see Innes, 2003). Public assistance has cost taxpayers about 
$4.25 billion per year over 2004–2010 (Shields, 2010). Private crop insurance companies sell 
and service policies through their agents, but the USDA’s Risk Management Agency designs 
insurance products and establishes or approves premium rates. Many have remarked on 
geographic imbalances in insurance rates (e.g., Babcock, 2008) while crop insurance markets 
are also fraught with information deficiencies (Smith and Goodwin, 1996; Makki and 
Somwaru, 2001). If yield insurance rate-setting is to continue as a publicly provided service, 
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then it is unlikely there will be a strong private-sector motive to engage in research to improve 
rate-setting methodologies. As a result, most research has been conducted by academics (see, 
e.g., Just and Weninger, 1999; Atwood, Shaik, and Watts, 2003; Ramírez and McDonald, 
2006; Hennessy, 2009; Harri et al., 2009). 
 The second reason that crop yield modeling should be of interest for public policy relates 
to international economic vulnerability and development assistance. Crop agriculture supports 
large vulnerable populations in Africa and South America. Crop yield risks can be large as a 
result of extreme weather conditions and pest hazards. Financial markets to cope with these 
risks are generally weak, leaving growers to choose low-productivity technologies, degrade 
soil resources, or use other costly risk management strategies (Dercon, 2004; Skees, Hartell, 
and Murphy, 2007). The World Bank, the Gates Foundation, and others have sought to 
strengthen risk management opportunities through assistance in the design, rate-setting, and 
operation of crop insurance markets. 
 To meet these challenges, we develop a plausible expected yield stochastic process of a 
maturing crop. In addition, we suggest how the model can be used to communicate about and 
manage yield risk and to make intra-season production decisions. We show that the model 
satisfies a set of properties that are desirable, if not essential, for the yield expectation 
stochastic process to possess. For example the process supports a yield distribution with 
bounded (non-infinite) positive realizations.1 It is also internally consistent in the following 
sense. If crop prospects are assessed at several points (e.g., weekly) during the growing 
season, the present-time expectation of next week’s expectation of harvest yield should equal 
the present-time expectation of harvest yield. 
 The model also possesses the property that when expected yield is extreme (high or low), 
then today’s belief about the variability of next week’s expected yield should be very low. In 
other words, when comparing a crop that has fared poorly during the early season with one 
that has had a moderate start, the expectation for the poor crop should be less sensitive to new 
information. The poor start may well lower a plant’s capacity to take advantage of better late 
season weather, perhaps because of shallow early-season root penetration. The same should 
be true for a promising crop compared with one having moderate prospects. The crop with the 
more promising growth history should have more resources available, either stored internally 
or in the soil, to overcome future weather setbacks (Bloom, Chapin, and Mooney, 1985). 
 One further requirement is that expectations should tighten as harvest approaches—that is, 
the variance of next period expectations should decline as harvest nears. This is especially 
true when early conditions have been extreme, either good or bad. In late August there remains 
little opportunity for a string of good weather to improve a crop that has earlier experienced 
poor weather. Similarly, if good early-season weather has accelerated maturity, then the crop 
may be harvested early, which obviates vulnerability to unseasonable weather near the normal 
harvest date. 
 Our expected yield stochastic process is developed from the Pólya and Eggenberger urn 
model (Mahmoud, 2009). The stochastic process converges to the beta distribution 
(Mahmoud, p. 53), which is a popular yield distribution model (Nelson and Preckel, 1989; 
Borges and Thurman, 1994; Babcock and Hennessy, 1996; Goodwin, 2009; Claassen and 

                                                 
1 Agronomists have long worked with the idea of potential yield (i.e., maximum yield for a cultivar under ideal fertility, 

cultivation, and weather; see Araus et al., 2008). Tollenaar and Lee (2002) report a variety of estimates for maize, including one of 
about 400 bushels per acre for the U.S. Corn Belt. Acknowledging bounded support is important. Distributions with tails, however 
small in probability weighting, can allow reasonable mean, variance, and skewness statistics, but such tails can distort expected 
crop insurance indemnity payouts. 
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Just, 2011). The distribution has finite support and accommodates both positive and negative 
skewness. 
 Our approach is flexible both as a model for abstract analysis and as an empirical model. 
The ability to use a reasonable stochastic model should allow analysts and commercial risk 
managers to better quantify, communicate, and characterize risk attributes. The model’s 
flexibility affords risk managers the opportunity to overcome any deficiencies that time and 
use may reveal about our proposed basic model. Stated differently, if it becomes clear that the 
basic model fails to capture some important feature of yield distributions, then opportunities 
exist to tweak the model. We will identify and comment on some opportunities to better 
calibrate the model were the need to arise. The method’s flexibility should also prove useful 
in production analysis. Many researchers have studied intra-season information use in crop 
management (Antle, 1983; Antle and Hatchett, 1986; Antle, Capalbo, and Crissman, 1994; 
Saphores, 2000). We will show how to adapt our basic model to address these production 
problems. 
 Marcus and Modest (1984) posit an alternative approach in which expected yields follow a 
geometric Brownian motion over the growing season. This is convenient because the Black 
and Scholes valuation approach can then be employed to arrive at production choices that 
maximize crop asset values. However, this class of model necessarily uses lognormal yield 
distributions that exhibit positive skewness and a slowly decaying right tail. Neither property 
is consistent with observed data regarding yield distributions, especially in the prime crop 
growing areas of the United States (Harri et al., 2009). 
 After presenting and explaining our model of how expected yield evolves over the growing 
season, some of its properties are demonstrated. We show how the model can be viewed as a 
binomial tree, i.e., where each piece of additional information allows for one of two outcomes 
regarding yield expectations. The binomial tree feature provides a way to implement the 
model to, e.g., characterize yield sensitivities to weather and to better understand how intra-
season production decisions shape the yield distribution. When weather is assumed to be the 
origin of uncertainty, binomial tree analysis also allows for dynamic hedging against a 
weather derivative contract. We use this observation to value a crop and also to better 
understand the hedging of yield risks. The paper concludes with some observations on model 
adaptability, and on other possible applications of the method. 
 

The Model 

Our model assumes a growing year with T + 1 periods. The first period begins at time t = 0, 
the planting date, and continues to t = T, the harvest date. The step length could be a day, 
week, or month, depending on when new information becomes available, the desired level of 
accuracy, and model implementation costs. We are interested in yield expectations at each 
time point t  {0, 1, …, T}. With YT as the measure of actual harvest yield, Ω t is the infor-
mation set available at time t. The expected harvest yield given information available at t is 
written as μ t = E[YT | Ω t  ]. 
 If we assume that yield realizations are nonnegative and finite, then it can be assumed 
without further loss of generality that the yield distribution has support only on the interval 
[0, 1]. To demonstrate this, suppose that lower case yT is true yield. Then appropriate choices 
of a and b for a linear location-and-scale transformation YT = (yT – a)/b ensure that YT  [0, 1]. 
Thus, if we model the distribution of YT  [0, 1], we can translate the distribution to model 
yT  a + bYT  [a, a + b].  
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 It is also assumed that yield expectations have a logistic form. This specification has been 
widely used to model plant growth processes (Carrasco-Tauber and Moffitt, 1992; Tschirhart, 
2000). The assumption allows for expected yields to possess standard regularity properties 
including monotonicity, concavity, and bounded output (Chambers, 1988, p. 9). Specifically, 
we define expected yield at time t = 0 as: 

(1) 0
( )

,
( ) ( )

g

f g
 


x

x x
 

where input vector 1( , , ) ,N
Nx x  x    the positive real numbers in dimension N, is a 

vector of input choices, while ( ): Nf  x    and ( ): Ng  x   are continuously differen-
tiable functions. 
 As distinct from Antle’s (1983) sequential decision model, our basic model assumes 
production choices are made only at planting time, t = 0. It is convenient to write 
h(x) = g(x)/ f(x) so that μ0 = h(x)/[1 + h(x)]. Expected yield at time t = 0 is μ0 = E[YT

 | Ω0]. 
Expected yield is increasing in each input choice xi, i  {1, 2, …, N} if and only if 
dh(x) / dxi ≥ 0, while expected yield at time t = 0 is concave in any given argument whenever 
d2h (x) / 2 0.idx  Writing the optimal input choices x = x* as given, we abbreviate f * = *(f x ) 
and * *( ).g g x  
 The model is one of information-conditioned updating of yield expectations as relevant 
events and their yield consequences are processed. At t = 1, new information arrives and 
expected yield evolves as follows (Durrett, 1996, p. 241; Mahmoud, 2009, p. 53): 
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for c > 0. Here c > 0 is a parameter that recognizes good weather over the first growing period. 
It can be viewed as the benefit from good weather in that 
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tivity to weather outcomes in that 2* ** *
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 The general expression over t time periods is defined as: 
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where equation (2) arises when t = 1.2 Expression (3) provides the expected yield stochastic 
process that we posit over t  {0, 1, …, T}. Notice that 11 0.t t t

 
        Note also that 

c is time independent, while we have not precluded .T   Consequently, in order to ensure 
the process has bounded support, it is necessary for the favorable and unfavorable outcomes 
to depend on the prior probability, μ t−1. By contrast, the stochastic processes most commonly 
encountered in economics—Brownian motion and geometric Brownian motion—do not even 
have bounded unconditional variance.3 
 The change in the random variable’s value is state dependent, also unlike the stochastic 
processes most commonly encountered in economics. We believe state dependence to be 
reasonable because the change in expected yield should depend on events over the whole 
growing season. For example, rainfall early in the season provides a buffer against drought 
later on. Perhaps surprisingly, the process for μ t  possesses the Markov property. This requires 
that the distribution of μ t  given time t − 1 information can be conditioned on μ t−1 alone 
among historical process realizations {μ0,  μ1, …, μ t−1}, i.e., Prob (μ t+1 | μ t ,  μ t−1,  …, μ0) = 
Prob (μ t+1 | μ t) .  
 Equation (3) illustrates that the Markov property applies in a nonhomogeneous manner.4 
Specifically, the distribution of μ t  at time t − 1 depends on the value of t − 1 as well as on the 
value of μ t−1 . Stating that the expectation at this time point is   is not enough to establish the 
next time point’s conditioned distribution on the expectation. One also needs to identify that 
  was realized at time t because the distribution varies with t as well as with the expected 
value at t. 
 
Martingale Property 

Notice from (2) that 1 0 1 0 1 0 0[ | ] (1 ) .E            In general form, (3) allows us to 
establish that 1 1 1 1[ | ] (1 ) .t t t t t t tE  

             Thus, μ t  satisfies the martingale prop-
erty that the time t − i expected value of the time t expectation of yield equals the time t − i 
expectation of yield for all i  {0, 1, …, t}. The time t − i expectation is consistent with later 
state expectations, a necessary condition for the rational formation of expectations.5 
 
Binomial Tree Attribute 

Viewing the stochastic process as a binomial tree is useful for a variety of reasons. In partic-
ular, it provides a way to use the process in Monte Carlo simulations where intra-season events 
are of interest. Binomial trees also allow for the process to be used as an ingredient in a dynamic 
programming model. To explain the binomial tree attribute, consider what equation (3) implies 
for the distribution of forecasts two steps after planting. Substitute in for μ1  to obtain: 

                                                 
2 Formally, the Pólya urn algorithm has an initial state of g green balls and f white balls. A ball is drawn randomly. If it is green, 

then c more green balls are added. If it is white, then c more white balls are added. At time t − 1, a total of (t – 1)c new balls have 
been added to the urn. This explains why (t – 1)c appears in m(·) for the probability transition equations in (3). The probability of 
drawing a green ball at time t depends on the urn’s composition at time t − 1. This explains the role of μ t − 1  in expression (3). 

3 The Ornstein-Uhlenbeck process and related mean-reverting processes are commonly used to preclude price drift over time 
toward implausibly extreme values and infinite unconditional variance (Hull, 2009, p. 751). Infinite unconditional variance is 
implausible because high prices will entice additional resources into producing the commodity, while substitutes will be found if 
the commodity’s price does not eventually fall. These mean-reverting processes do allow for high price events, but with low proba-
bility, and so may be appropriate to account for commodity price spike events. 

4 On the Markov property, including instances of nonhomogeneity, see Bhattacharya and Waymire (1990, pp. 109–117, and 
especially pp. 116–117) or Durrett (1996, chapter 5). 

5 See Durrett (1996, chapter 4) for extensive detail on martingales. 
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Due to the Markov property, yield expectations are the same under the good-then-bad weather 
outcome in expression (4) as under the bad-then-good outcome. This exchangeability attribute 
(Bhattacharya and Waymire, 1990, p. 116) simplifies the stochastic structure.6 
 The distribution given in expression (4) can be viewed as a two-period binomial tree (Hull, 
2009).7 Binomial trees are multi-step models of all possible paths of a random variable over 
time. Two outcomes are allowed at each step, and probabilities are provided for outcomes 
along each possible path. Thus, the probability distribution of the random variable at the time 
of interest can be established. As depicted in figure 1, t = 2 yield outcomes are right-most, 
and probabilities over each of the two time intervals are given under the appropriate arrow. 
There are three nodes established at points where information becomes available. These are 
(a) time point 0, NODE 0; (b) time point 1, NODE 1A that occurs when favorable information 
was obtained at node 0; and (c) time point 1, NODE 1B that occurs when unfavorable 
information was obtained at node 0. If the process proceeds T steps, then there are T + 1 
distinct terminal outcomes in the interval [0, 1]. 
 The realization possibilities for time t expected yield are given by:8 
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The values are evenly spaced where least value * ** / ( )g f g tc   decreases and greatest 
value *( )g tc / * *( )f g tc   increases as time t increases. State probabilities are more 
involved, as they are products of terms such as * *( , , 1, , )n f g t i c  and its complement 

* *1 ( , , 1, , ).n f g t i c   
 

Variance Attributes 
 
Using expression (3), we calculate the variance of yield expectations conditional on 
information available at the preceding time point. Write 2

1 1 1( ) [( ) | ]t t t t tV E        so 
that:  

                                                 
6 As a practical matter when hedging or assessing value, the process could be modified so that exchangeability is not required. 

This is often the case when modeling stock prices with binomial trees to account for dividend effects. Allowing for this is just a 
matter of introducing an additional line in the programming code that would be used to support asset valuation, where the assumed 
distribution can be established through Monte Carlo simulations. 

7 There are three time points: 0, 1, and 2. There are two periods: 0 through 1 and 1 through 2. 
8 The urn interpretation of general expression (3) also applies to equation (5). The total number of balls at time t is f  * + g* + c. 

The fraction that are green can be g*/( f  * + g* + tc), arising when all t weather draws were bad. The fraction can be (g* + tc) / 
( f  * + g* + tc) , arising when all t weather draws were good. Or it can be at t − 1 equally spaced points between these two 
values. 
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     Figure 1. Binomial tree for the Pólya urn process, probabilities  
     under arrows while {good then bad} and {bad then good} are 
     equiprobable events 
 

(6)   

2 2
* *

1 1
1 1 1 1 1* ** *

2 2 2 2
1 1 1 1 1 1

2 2 2* * ** * *

( , , , )
( ) (1 )

1 ( , , , ) 1 ( , , , )

(1 ) (1 ) (1 )
.

[1 ( , , , )] [ ( 1) ] [ ]

t t
t t t t t t

t t t t t t

m f g t c
V

m f g t c m f g t c

c c

m f g t c f g t c f g tc

 
    

     

     
           

   

        
     

 

Variance is maximized when predicted yield is at the midpoint of the support, μ t−1 = 0.5, and 
minimized at support extremes, μ t−1  {0, 1}. For example, if the growing season started 
poorly, then expected yield is unlikely to move dramatically upward in light of one period’s 
good weather. Similarly, if the growing season started well, then a future period’s bad weather 
is unlikely to move expected yield markedly downward. These observations we refer to as 
resilience. 
 Equation (3) can be used to interpret equation (6) in terms of the magnitudes of forecast 
updates: 
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If μ t  is close to 1, then any upward revision in the expectation is small. If μ t  is close to 0, then 
any downward revision in the expectation is small. 
 The sensitivity of 

1( )t tV    with respect to time is involved because t arises in two places. It 
appears in the denominator of the final expression in (6). This is referred to as the determin-
istic effect of time. Time also appears as a subscript on μ t−1 ,  and this appearance is referred 
to as the stochastic effect. The deterministic effect decreases step-ahead conditional variance 
over time and narrows the step-ahead conditional variance near harvest. The interpretation of 
the stochastic effect of time is less clear-cut in its consequence. If the process moves away 
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from the middle of the distribution over time, then variance declines because of resilience. If 
the process moves toward the middle, then variance increases as the crop’s prospects become 
more weather sensitive. 
 

Marginal Weather Effects 
 

Equations (2) and (3) indicate that the spread in expectations due to good weather is increasing 
and concave in c. To see this, differentiate * */ ( )t t c f g tc        to obtain: 
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This indicates there are diminishing returns to good weather. Also, the expression ( )t td    / 
dt < 0 confirms that the step-ahead increase in variance decreases over time. 
 

Beta Limiting Distribution 
 
In binomial tree applications, constant proportional up and down movements approximate the 
lognormal distribution as step size decreases and the number of steps increase so that variance 
is unchanged. What happens to the discrete distribution in expression (3) under this limit 
operation? Pólya (1931) demonstrated that a limiting distribution for YT exists, and it has 
density:9 

(9) 
 

     
**

* *
( / ) 1 ( / ) 1

* *

( ) /
1 ,

/ /

g c f c
T T

f g c
Y Y

f c g c

  


 
 

where Г(·) is the Gamma function. Thus, as the number of time periods to harvest increases, 
the realizations and associated probabilities for the discrete distribution given in (3) converge 
to a beta distribution. 
 Using standard formulae for beta distribution moments, the planting time information-
conditioned mean and variance of this limiting distribution are 
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The mean is independent of the weather outcome parameter c, but the variance is not. 
Variance increases with the parameter c, which measures the sensitivity of yield expectations 
to weather realizations. Variance is 0 under c = 0, while 0 0 0lim ( ) (1 ).c TV Y     The 
limiting distribution under c   is the binomial, a special case of the beta distribution. 

                                                 
9 See Mahmoud (2009, p. 53) for a proof. 
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Derivative Analysis 
 
In this section, we develop the mechanics of hedging yield risk using weather derivatives, 
which have become popular offerings on formally organized exchanges.10 Weather derivatives 
based on cooling and heating degree days are generally the most liquid (Morrison, 2009), and 
many researchers have explored their implications for crop insurance (Vedenov and Barnett, 
2004; Woodard and Garcia, 2008; Xu, Odening, and Musshoff, 2008). Both the stochastic 
process described by expression (3) and the limiting distribution given in (9) identify crop 
yields to be dependent on stochastic weather realizations, as represented by the presence of c. 
Thus, our model provides an explicit link between weather stochastic processes and yield 
expectations. As such, yield has value that depends on weather, i.e., it is a derivative and 
its value can be hedged if a financial instrument exists that pays out on relevant weather 
events. 
 Without loss of generality, we assume a one-period process where yield is realized at t = 1 
when weather derivatives are used to hedge yield losses.11 An Arrow-Debreu financial 
instrument can be purchased in a liquid market at time 0, say planting, for $q  where the pay-
off at time t = 1 is $1 whenever good weather occurs. The payoff is: 

(12) 
1 if good weather in period 1,

0 if bad weather in period 1.
U


 


 

The crop price is assumed to be known as P at t = 0. Applying the standard modeling approach 
for hedging a derivative that can be represented as a binomial tree, assume the hedger takes a 
time t = 0 long position in v weather derivative instruments. 
 Equation (3) indicates that the time 1 state-contingent payoffs are: 

(13) 

* *

* ** *

1 **

** * *

( )
with prob. ,

with prob. .

P g c g
v

f g c f g
P vU

Pg f

f g c f g

 


     

   

 

Set the derivative position at v = v# , where v#  is the value of v that equates payoffs across 
weather states. That is, solve * ** * * *( ) / ( ) / ( )v P g c f g c Pg f g c        so that v#  = 
−Pc * */( ).f g c   Hedge choice v = v#  secures payoff ** *

1 / ( ),P vU Pg f g c      which 
is invariant to weather outcome, i.e., it is risk-free. Thus, equation (13) represents a risk-free 
portfolio that should be a perfect substitute for a risk-free bond. Investors should be 
indifferent between owning a risk-free bond and owning a crop for which v = v#  weather 
derivatives have been purchased. Similar to equation (1), v#  bears a logistic relation with c. 
 For continuous-time interest rate r, the time t = 0 present value of the payout is Pg*e− r/  
( f * + g* + c). With time t = 0 value of this crop defined as W0,  it follows that the t = 0 port-
folio value is # ** *

0 / ( )rW v q Pg e f g c     so that 

(14) 
*

0 * *

( )
.

rP g e cq
W

f g c

 


    

                                                 
10 Interested readers who are not familiar with financial binomial tree methods are directed to Hull (2009, chapter 11). 
11 For a more extensive tree, it is only necessary to apply the hedge to follow at each node. 
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This is a risk-neutral value for the crop, i.e., the fair market price when the opportunity to 
trade away risk is available. It can be achieved whenever the standard assumptions on trans-
actions costs and market completeness apply.12 Some reflection on how the valuation was 
arrived at shows that the method is essentially a dynamic program. The hedge identified in 
equation (13) would be applied at each node on a binomial tree and backward recursion would 
be used to arrive at risk-purged crop valuations during the growing season. 
 Some caution is warranted concerning the reliability of equation (14) when valuing crops. 
For example, hedging actions that support this valuation are sensitive to the model specifica-
tion. If the yield expectation model is not representative of the true stochastic process, then 
the suggested hedging action will not completely remove risk and the present value of the 
resulting portfolio should not be calculated using the risk-free rate. In addition, basis risk will 
typically exist in that the weather affecting the crop being hedged will differ from the weather 
measurement underlying the weather derivative. To the extent unhedged risk would remain, it 
would not be appropriate to assume a risk-free rate when arriving at equation (14). 
 In equation (14), if c = 0, so that V0(YT) = 0 by (6), then W0 = Pg*e−r / ( f * + g*) = Pμ0e−r. 
This is the discounted expected crop value, known with certainty at the beginning of the 
growing season. In that case, v# = 0 and the good weather state price q does not enter the valu- 
ation because hedging serves no purpose. A model for the price of q, i.e., the pricing of 
weather risk, is not required when c = 0. 
 One approach to crop valuation is to use a risk-neutral measure (Hull, 2009), if it exists, is 
unique, and can be found. In our case, the risk-neutral measure is easy to obtain. If π is the 
risk-neutral probability of favorable weather, then equations (2) and (14) provide: 

(15)   
* * * *

0 * * * ** * * *

( ) ( ) ( )
(1 ) .

r r
rP g e cq g c g Pe g c

W Pe
f g c f g c f g c f g c

 
     

       
        

 

Upon cancellation, it follows that π = qer. Thus, the risk-neutral, as distinct from true, proba-
bility of a favorable weather event over the period is taken as the forward discounted market 
valuation of an Arrow-Debreu derivative that pays off $1 upon the event. Of course, risk 
preferences are not absent in (15); it is just that they have been corralled into a premium 
embedded in price q.13 
 This brings us to formally modeling the good weather state price $q  where the payoff is $1 
in the event of good weather for time 1. Let the good weather state bear a capital asset pricing 
model (CAPM) beta coefficient of βq with the capital market as a whole. Rate rm is the overall 
market rate of return, where rm > r is assumed. Then the continuous-time equilibrium expected 
rate of return on the binary payout good weather event asset will be rq = r + βq(rm – r). 
 Since the expected payout is μ0 , the state price will be 0 exp[ ( )].q mq r r r      Insert 
this value together with ** *

0 / ( )g f g    into equation (14) to obtain: 

(16) 
( )* *

0 0 * *

[ ]
,

q mr r
r f g ce

W P e
f g c

 
  

 
    

                                                 
12 One needs a liquid market with payouts that are strictly monotonic in exactly the appropriate weather risk. Transactions costs 

should be negligible to support frequent portfolio rebalancing. Furthermore, risk-free interest rate r should be common to both 
lenders and borrowers. 

13 Readers interested in understanding the distinction between the risk-neutral and the true probability measure are referred to 
Hull (2009, pp. 241–242). 
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whereas 0
rP e is the crop value under risk neutrality. The risk premium is: 

(17)  
( ) ( )

0 0 0 0* ** *

[1 ] [1 ]
( ), ( ) .

q m q mr r r r
r r re e

P e W P e c Pe J J c
f g c f g c

   
   

      
   

   

If good crop-growing weather is positively correlated with overall market returns, or βq > 0, 
then 

( )
1 q mr r

e
  

and 0 0.rP e W   Therefore, premium factor ( )J   conveys that the crop’s 
value at planting will be lower than its present value when discounted by the risk-free rate. 
 Finally, with 1( , ..., ) N

Nw w  w   as the input price vector corresponding to input choice 
vector ,N

x   x = x* is chosen so that W0 in expression (14) is its maximum possible value. 
So interior solutions satisfy 

(18) 0 0 ( )
.r

i
i i i

W J
Pe w

x x x
    

      


 

The marginal risk premium, reflected in ( ) / ,iJ x   could be positive or negative depending 
on whether the input is risk-increasing or risk-decreasing (Roosen and Hennessy, 2003). 
 

Extensions 

One limitation of the basic model is that stochastic realizations are not allowed to evolve over 
the growing season. Another is that its exchangeability property may fail in the sense that a 
good-then-bad realization does not lead to the same expectation as a bad-then-good realiza-
tion. A third limitation is that the model does not allow for zero yield where zero yield may 
be due to crop abandonment or to an event that kills the growing crop. In this section, we 
discuss these matters and develop an approach that overcomes some of these limitations. 
 To address the first two concerns, one can allow parameter c  to change with time steps 
(i.e., c = ct) and/or with states. For example, in a two-period model, one can allow parameter 
c to change with time such that c = c1 over step 1 and c = c2 over step 2. In that case, expres-
sion (4) would become 

(19)  

* **
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* * ** * *
1 2 1
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* * ** * *
1 2 1

2 ** *
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1 2 1
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
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



   


     

 

Allowing the values of c1 and c2 to differ relaxes the exchangeability assumption.14 In partic-
ular, if c1 > c2 , then it would be better to have good weather occur before bad weather rather 
than the reverse. This assumes plants with poor germination rates or weak early root develop-
ment have limited capacity to take advantage of subsequent good weather.  

                                                 
14 Equation (6) shows that letting the value of parameter c change with the time step allows the programmer to vary the variance 

in yield expectations from period to period as one moves through the growing season. 
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 Alternatively, consider allowing parameter c to change with the state. In the two-step 
model, one could have just parameter value c over step 1, value c + ε with ε > 0 over step 2 if 
the state is good in step 1, and value c − ε over step 2 if the state is bad in step 1. Requirement 
ε > 0 allows for higher variance in yield expectations conditional on good weather in the first 
step when compared with a bad weather outcome in the first step. Cropping in the semi-arid 
Sahel region on the southern margin of the Sahara Desert illustrates an example of this 
situation. Millet and sorghum are planted only if spring rains occur. Both crops also need 
further rain after planting, as the soils are sandy and canopy cover is insufficient to allow for 
substantial soil water storage in the face of intense heat. Thus, the conditional expectation of 
yield and the conditional variance are both zero in the absence of spring rains. However, the 
conditional moments are positive when spring rains occur. 
 If parameter c is allowed to change with the state, distribution (4) becomes 

(20)   

* **

* * ** * *

** *

* * ** * *

2 ** *

* * ** * *
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
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The expression * ** * * *( ) / ( 2 ) ( ) / ( 2 )g c f g c g c f g c             indicates it is better 
to have good beginning weather followed by poor ending weather than the reverse. The 
expression reduces to ** .g f    If the probability of a good state at season outset is low, or 
g* *,f  then it would be better to have a good start and a bad end than a good end and a bad 
start. The adaptations suggested above come at a cost in that the limiting distribution is very 
unlikely to be beta. Then Monte Carlo simulation analyses could be used to identify the shape 
of the harvest yield distribution. 
 One final point is that the model could be used to study production decisions. Suppose, as 
in Antle (1983), information is available about intra-season production decisions. If so, the 
dynamic program used to arrive at asset valuation (14) can be adapted to allow for optimum 
input choices at each node of the decision tree. In figure 1, it could be that Node 1A, where 
good early-season weather occurs, supports additional pesticide use relative to Node 1B so as 
to protect the promising crop. Accounting for these state-conditional decisions will affect 
valuation earlier in the season, and so input choices earlier in the season. 
 Even in the world’s most productive cropping regions, it is not uncommon for a crop to fail 
completely (Mendelsohn, 2007). In order to understand how, as a practical matter, one might 
account for such risks when modeling a yield distribution, consider two scenarios. One is 
where some catastrophic event with probability η, perhaps a hail storm or flood, destroys an 
immature crop. In this case, suppose the probability of such an event over the growing season 
is independent of the crop’s performance and the crop’s performance follows the process we 
suggest. Then the yield distribution is a mixture of distributions. It is that given as the harvest 
outcome from algorithm (3) with probability 1 – η, and is zero with probability η. Crop valua-
tion along the lines of expression (14) above would involve identifying a premium for insuring 
against the catastrophic event.  
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 There is an alternative way by which zero yield may arise, one that involves intra-season 
decisions. This is that the crop is abandoned (i.e., an endogenous failure) mid-season as an 
unprofitable bet for continued investment (Chen and Miranda, 2007). Consider figure 1 again 
and suppose, regardless of weather, costs amounting to K > 0 must be incurred mid-season or 
the crop dies. With output price P, expected profit is 

1P K   whenever weather is good early 
in the season. The grower does not abandon the crop since the profit situation is more favor-
able than it had been at planting. If weather is bad early in the season, then expected profit 
is 1 ,P K   and this could be negative even though the grower saw fit to plant. If 1 ,P K   
then it would be privately logical, and socially efficient absent external issues, to abandon the 
crop. 
 This abandonment option has been studied widely in the economics of investment 
(Trigeorgis, 1996). The general assumption in the literature is that the stochastic process at 
issue follows geometric Brownian motion. For our purpose, abandonment would mean the 
yield distribution would no longer be characterized by the distribution in (4), but rather by 

(21) 
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One can readily program a multi-step algorithm to account for the possibility of mid-season 
abandonment when there may be multiple in-season decision points.15 The yield distribution 
this program would construct depends on the timing and cost of decisions as well as the under- 
lying yield expectation stochastic process. 
 

Conclusion 
 
This paper has developed a method for modeling expected yield as an information-conditioned 
stochastic process over the course of a crop growing season. The process has as its limiting 
distribution a commonly estimated crop yield distribution. The process allows for yield 
randomness similar to derivative valuation methods used for modeling commodity prices. In 
the presence of appropriate financial instruments such as weather derivatives, the process 
allows for the identification of optimal dynamic hedging strategies. In the absence of such 
instruments, risk managers can use the framework to sharpen real-time risk assessments. 
 The approach has two appealing features. First, it provides a model of stochastic crop pro-
duction that is consistent with modern finance theory; and second, it is flexible. A binomial 
tree approach allows for calibration and adapts readily to discrete-time dynamic programming 
methods. For example, the c parameter can be allowed to vary as the growing season 
progresses to better comply with historical information on yield expectations and findings in 
the agronomy literature.  

                                                 
15 There are no conceptual difficulties in risk-neutral crop valuation along the lines of valuation (14), but with the option to 

abandon. 
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 Concerning further possible developments, a bivariate extension to account for price-yield 
correlations would be required to model revenue insurance contracts within this framework. 
Methods are available to model bivariate discrete time stochastic processes (Boyle, 1988; Ho, 
Stapleton, and Subrahmanyam, 1995). As far as we know, the use of these methods has been 
confined to approximating multivariate geometric Brownian motion. Therefore, modifications 
would be required if such models were to be used for rating crop revenue insurance contracts. 
Our approach also provides a framework for looking at interactions between how information 
becomes available and production decisions. One such interaction concerns the decision to 
abandon a crop. Our approach affords opportunities to understand how a grower’s set of 
available information affects that choice. It may also be possible to introduce insurance indem- 
nities into the model and then study how insurance contract design affects moral hazard. 
 

[Received October 2009; final revision received January 2011.] 
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