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The Contracting Experiments in Detail 

The experimental design of the contracting sessions builds upon BSW and Schotter and 

Weigelt (SW), and is nearly identical to those of Wu and Roe (WR), and Wu, et. al.  

Thus, we will not provide a detailed treatment of the underlying mathematics, and instead 

refer the reader to (WR), and Wu et. al.  Here we will focus on providing the reader with 

only enough detail to conceptualize the experiments.  

In each contracting session, subjects play 10 identical rounds of each contracting 

game.  In each round, subjects begin by choosing a costly “decision number” (effort) 

from 0 to 100.  Higher effort levels costs more and once a subject chooses an effort level, 

she looks up the cost of that effort level from a table distributed to her.  She subsequently 

records this cost on a worksheet.  An example of a cost table is shown on page 14.   All 

subjects are informed of all experimental parameters, including opponents’ cost tables.  

In fact, during asymmetric cost experiments, both the low and high cost tables are 

projected onto a screen during the experiments and each low cost subject knows that her 

pair member has the high cost table and vice versa.  Only the identity of pair members is 

unknown.  Next, a subject is randomly chosen to draw a “common shock” number from a 

bucket and all subjects add this to their decision numbers.  Then each subject randomly 

draws a personal “idiosyncratic shock” number from another bucket and adds this 

number to her decision number and the common shock number.   Both the idiosyncratic 

and common shocks are normally distributed (but may have different variances) and 

copies of the probability distributions for all shocks are given to subjects before the 

experiment and explained in detail.  The sum of the decision number, common shock and 
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idiosyncratic shock yields a subject’s performance for the round.  The mathematical 

expression of performance in a two-player tournament is:  

(A1) yi = ei + uC + ui                               i =1, 2 

where yi is performance, ei is effort,  uC is a common shock, and ui is an idiosyncratic 

shock that is independently and identically distributed across i.  We also assume that 

2(0, )C Cu N σ� ,  2(0, )iu N σ� , ( , ) 0C iCov u u = , and ( , ) 0i jCov u u = , ∀ i ≠ j.  The way we 

implement the random shock in the experiments is to approximate each shock using 300 

pennies each marked with an outcome.  The frequency for each outcome is determined by 

approximating the number of outcomes out of 300 that occur under a normal distribution.  

For experiment 1, for example, we calculate the probability function in Excel for a 

normal distribution with mean zero and standard deviation 15.8, and multiply the 

probability for each outcome by 300 and round to the nearest integer.  We then place the 

300 pennies in a bucket and have subjects draw a penny for each shock. 

 In T sessions, administrators compare outputs of pair members; the pair member 

with more (less) output receives high payment, R (low payment r), where R > r.  That is, 

if yi > yj, then player i receives a high payment, R, and player j receives a low payment, r, 

and vice versa (ties are broken by coin flip).  All subjects were informed of the specific 

values of R and r at the beginning of each session.  Each subject only knows her payment 

and not the difference in output.  This is consistent with the way many comparative 

performance contracts work where growers/workers are informed about their rankings 

but are not provided detailed information about competitors’ performance.  

 In F sessions, administrators compare output to some fixed standard, y*,  which 

we set to “41.”  If performance exceeds 41, the subject receives high payment R.  If not, 
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she receives the low payment, r.  We avoided the obvious choice of y* = 37 so that 

subjects are not provided a focal point to which they might naturally gravitate.  Instead, 

we choose y* = 41 and then adjust our payment spread to ensure that 37 is the optimal 

choice. To end the round, subjects subtract effort-costs, which were determined at the 

beginning of the round when effort was chosen, from revenue (R or r), and record the 

result (profits) in a worksheet. At the end of round 10, subjects calculate cumulative 

payoffs.  A session lasts about 20 minutes. 

  We ran a total of seven experiments, with three of the experiments involving 

asymmetric cost subjects where half the subjects were randomly assigned “high” effort-

cost tables and the other half “low” effort-cost tables.  And then each high cost subject 

was paired with a low cost subject for the T-sessions.  For the F-sessions, no such pairing 

was necessary because each subject competes only against the fixed threshold y*.   In the 

remaining four symmetric cost experiments, all subjects were assigned identical effort-

cost tables.  This table can also be expressed mathematically as:  

(A2)  
2

( )
10,000

i
i i

e
c e =   1,2,....,100ie =  

which is identical to the cost function used by BSW.   In the asymmetric cost 

experiments, the cost structure was modified slightly to get:  

(A3) 
2

( )
10,000

i i
i i

e
c e

α=  

Heterogeneity is created by letting the parameter iα  vary across agents.  For high cost 

subjects, we set 1.5iα = , and for low cost subjects, we set 1iα = , which is identical to 

(A2).  Examples of cost tables for the asymmetric cost experiments are provided on pages 

18 and 19. 
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In order to calculate expected payoffs under T and F for a given subject, we first 

have to define the probabilities of “winning” under T and the probability of exceeding the 

threshold y* under F.  Under T, this is Prob( i jy y> ) = Prob( i j j iu u e e− > − ) = 

1 ( )j iF e e− −  where ui – uj ~ N(0, 2σ2) and F(•) is the normal CDF of i ju u− .  Under F, 

the probability that agent i will exceed y* is Pr ( *)iob y y> = Prob(uC + ui > y* - ei) = 1 - 

( * )iG y e− , where uC + ui ~ N(0, 2 2
Cσ σ+ ) and G(•) is the normal cumulative density 

function of uC + ui.  To make F(•) and G(•) operational, we had to choose specific values 

for 2
Cσ  and 2σ  which are listed in table 1 in the AJAE article.  Now it is straightforward 

to calculate the per-round expected payoffs.  The expected payoff in the symmetric T-

session is: 

(A4) [ ]
2

( ) 1 ( )
10,000

T i i
i j i

e
E r F e e R r

απ � �= + − − − −� �   i =1,2  

where 1iα =  for the low cost subject and 1.5iα =  for the high cost subject.  For 

symmetric cost experiments, 1iα =  for all subjects.  Finally, the expected per-round 

payoff under the F-contract is 

(A5) [ ][ ]
2

( ) 1 ( * )
10,000

F i i
i i

e
E r G y e R r

απ = + − − − −   i =1,2 

where 1iα =  for all subjects in the symmetric cost experiments.  In the asymmetric cost 

experiments, 1iα =  or 1.5iα =  depending on whether subject i is high or low cost.   

 We can calculate actual numeric values for expected payoffs by choosing specific 

numeric values for 2
Cσ , 2σ , iα , R and r.  Moreover, choosing specific values of these 

parameters should also affect optimizing behavior of our subjects; that is, the optimal 
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effort they choose under each of the contracts.  For example, under the T contract, the 

two-players paired together will choose effort levels that simultaneously satisfy their first 

order conditions from (A4) which are: 

(A6) [ ]1 1 1
2 1

1

( ) 2
( ) 0

10,000

TE e
f e e R r

e
π α∂ = − − − =

∂
 

(A7) [ ]2 2 2
2 1

2

( ) 2
( ) 0

10,000

TE e
f e e R r

e
π α∂ = − − − =

∂
 

Solving (A6) and (A7) simultaneously will yield the Nash equilibrium effort levels for 

the two players.  While the tournament was repeated over 10 rounds, the theory is based 

on a static model.  Such repetition is common in experimental practice because subjects 

make complex decisions.  Moreover, the only subgame perfect Nash equilibrium to a 

finitely repeated game is the Nash equilibrium decision level to the one-shot game.  Thus, 

predictions concerning equilibrium play were independent of finite repetition (BSW).  

Note that the solutions will depend on the specific numeric values of R, r, iα , 2
Cσ , and 

2σ .  The variances 2
Cσ  and 2σ will affect the first order conditions via the normal density 

function 2 1( )f e e− .  The specific numeric values of 2
Cσ , 2σ , iα , R and r for the seven 

experiments are listed in table 1.  Optimal effort under F is determined by the first order 

condition of (A5), which is:  

(A8) [ ]( ) 2
( * ) 0

10,000

F
i i i

i
i

E e
g y e R r

e
π α∂ = − − − =

∂
 

Solving (A8) for each subject i, would yield the optimal effort level under F.   

 All first order conditions, (A6) and (A7), and (A8) were solved in Maple software 

program which yields solutions listed in column (1) of table 2 in the AJAE article.  The 

Maple software programs are available upon request from the authors, but examples are 
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provided later in this document.  For readers interested in more detail, we refer them to 

(WR), and Wu, et. al. 

Contracting Under Inequity Aversion 

Fehr and Schmidt (FS) argue that, while many people may adhere to standard 

assumptions and care only about material payoffs, a non-negligible fraction also care 

about relative payoffs.  Inequity aversion means people will forgo some payment to 

increase the equity of payouts across subjects.  Consider a simple version of FS’s model: 

(B1) ( ) max[ ,0] max[ ,0]i i i j i i i jU x x x x x xδ β= − − − −          for i j≠  

where xi is agent i’s payoffs, and the index j denotes a reference agent.  The second term 

in (B1) captures utility loss from disadvantaged inequity, while the third term captures 

advantageous inequity.  FS assume i iδ β>  or that agent i’s utility loss is greater when 

agent i has the lower payoff.  This utility structure implies that, given some absolute 

monetary payoff, agent i’s utility is highest when payoffs are equal, and that people are 

more averse to disadvantaged inequity than advantaged inequity.   

 Grund and Sliwka used FS’s insights to develop a model of tournaments where 

agents exhibit inequity aversion.   In a two-player tournament, if player i “wins”, she will 

have an utility of [ ]
2

w i i
i i

e
v R R r

k
αβ= − − −  whereas if she “loses” her utility is 

[ ]
2

L i i
i i

e
v r R r

k
αδ= − − − .  Expected utility for agent i is then: 

(B2)

[ ] [ ] [ ]
2

1 ( ) 1 ( ) ( )
10,000

T i i
IE j i j i i j i i

e
E U r F e e R r F e e R r F e e R r

αβ δ� � � � � �= + − − − − − − − − − − −� � � �� �

Comparing (B2) to (A4), one can see inequity aversion causes an expected utility loss in 
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the amount [ ] [ ]1 ( ) ( )j i i j i iF e e R r F e e R rβ δ� �− − − + − −� � .  If we assume that agents are 

not averse to advantaged inequity, which is consistent with our econometric results, then 

this loss reduces to just [ ]( )j i iF e e R rδ− −  because 0iβ = . 

Moving to F contracts, note that there are four scenarios that might be relevant.  

Both agents can earn the high payment, which is not possible under T, resulting in no 

inequity.  Agent i can earn the high payment while agent j earns the low payment 

resulting in advantaged inequity for agent i, and vice versa.  Finally, both agents can earn 

the low payment, which, again, is not possible under T, resulting in no inequity.  

Mathematically, these four scenarios are expressed respectively as, 
2

1 i i
i

e
v R

k
α= − , 

2
2 ( ) i i
i i

e
v R R r

k
αβ= − − − , 

2
3 ( ) i i
i i

e
v r R r

k
αδ= − − − , and 

2
4 i i
i

e
v r

k
α= − .  Hence, we have: 

(B3) [ ][ ] [ ] [ ]1 ( * ) 1 ( * ) ( * )F
IE i i j iE U r G y e R r G y e G y e R rβ� � = + − − − − − − − −� �  

  
2

1 ( * ) ( * ) ( ) i i
j i i

e
G y e G y e R r

k
αδ� �− − − − − −� �  

The expected loss from inequity is thus [ ] [ ]1 ( * ) ( * )i j iG y e G y e R rβ− − − −   

1 ( * ) ( * ) ( )j i iG y e G y e R rδ� �+ − − − −� � .  If 0iβ =  so that the agent is not averse to 

advantaged inequity, then this loss reduces to 1 ( * ) ( * ) ( )j i iG y e G y e R rδ� �− − − −� � .  Note 

that the loss from disadvantaged inequity is not as severe under F as it is under T due to 

the fact inequity will occur less frequently under F.  

We now turn to an analysis of how incentives are affected by inequity.  This also 

provides an outline of how predicted effort levels under inequity aversion (table 2 in 
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AJAE article) were calculated.  Using B2, we can calculate the first order conditions for 

both players in a two-player tournament as:  

(B4) [ ][ ] 1 1
2 1 1 1

1

2
( ) 1 0

T
IEE U e

f e e R r
e k

αδ β
� �∂ � �= − − + − − =
∂

  

(B5) [ ][ ] 2 2
2 1 2 2

1

2
( ) 1 0

T
IEE U e

f e e R r
e k

αδ β
� �∂ � �= − − + − − =
∂

 

Solving (B4) and (B5) simultaneously will yield the Nash equilibrium effort levels.  The 

main difference between the standard first-order conditions, (A6) and (A7) and the 

inequity averse first-order conditions is the presence of the term [ ]1 i iδ β+ − , which, by 

the assumption that subjects dislike disadvantaged inequity more than advantaged 

inequity, is greater than 1.  Hence, effort will be greater for inequity averse agents.  We 

use Maple software to generate numeric solutions using the same parameter values for R, 

r, iα , 2
Cσ , and 2σ  as we used for the non-inequity averse simulations.  We also had to 

choose specific values for the parameters iβ  and iδ .  We chose 0iβ =  (subjects not 

averse to advantaged inequity, which is consistent with our econometric results) and 

0.15iδ = (mild aversion to disadvantaged inequity).  The results of these simulations are 

contained in the parentheses in column 2 of table 2 in the AJAE article. 

Equation (B3) can be used to generate first order conditions for the F-contract: 

(B6) 
2

( * )( ) 1 (1 ( * )) ( * ) i i
i j i j j

e
g y e R r G y e G y e

k
αδ β� �− − + − − − − −� � =0. 

Although disadvantaged inequity still affects effort under F, the impact is scaled down by 

the probability that another subject will receive a different payoff, so that the impact of 

inequity is less under F than T.   Numerical solutions for optimal effort are also 
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calculated using Maple and all software programs are available from the authors, 

although examples are provided later in this document.     
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Example of Experimental Instructions for Symmetric Cost Tournaments 

Introduction 
 
This is an experiment about decision making.  The instructions are simple, and if you 
follow them carefully and make good decisions, you could earn a considerable amount of 
money, which will be paid in cash to you at the end of today’s session. 
 
Specific Instructions 
 
As you read these instructions you will be in a room with a number of other subjects.  
One of these subjects has been chosen to be paired with you by a random drawing of 
subject numbers conducted before you arrived.  This subject will be called your pair 
member.  The identity of your pair member will never be revealed to you and your pair 
member will never know your identity. 
 
In the experiment you will perform a simple task.  In each round of the experimental 
game you will choose a number between 0 and 100 – this is called your ‘Decision 
Number’.  Associated with each Decision Number is decision cost, which is listed in 
Column B of Table 1.  Note that the higher the Decision Number you choose, the higher 
is the associated decision cost.  Your pair member has an identical table.   
 
At the beginning of each round of the experimental game you and your pair member will 
each select a Decision Number separately.  Write your number in Column 1 of Sheet 1.  
Also, record the decision cost associated with your decision number in Column 6 of 
Sheet 1. 
 
When all subjects have selected their decision numbers, an experimenter will have one 
subject choose a penny from a bucket with a large number of pennies in it.  Each penny 
in the bucket has a number written on it and the set of all possible numbers range from –
35 to + 35.  The sheet “Distribution of the Random Number Draw” contains both the 
frequency (number of pennies for each specific number) and the probability of drawing a 
particular number.  You will note that more pennies feature numbers closer to zero and 
the fewer pennies feature numbers close to –35 and +35.  In other words, there is a higher 
probability of drawing numbers closer to zero than numbers far from zero.  The penny 
chosen will be called the ‘Group Random Draw Number’.  Everyone in the room will 
enter this number in Column 2. 
 
Then the experimenters will bring buckets around to each of you.  You will draw a penny 
from the bucket and the number on this penny will be called your ‘Individual Random 
Draw Number’.  Record your Individual Random Draw Number in column 3 of Sheet 1 
and then return the penny to the bucket.  
 
Calculation of Payments  
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The amount of money you earn in each round will be determined as follows.  You will 
add your Decision Number (column 1) to the Group Random Draw Number (column 2) 
and to your Individual Random Draw Number (column 3)  – write this total in Column 4 
of Sheet 1.  Your pair member will do the same.  The experimenter will also record this 
information after you receive your Individual Random Draw Number. 
 
Since all subjects have worked in privacy, the experimenter will then compare the totals 
of you and your pair member.  If your total in Column 4 is greater than your pair 
member, you receive the high payment of $0.81; if your point total is smaller than your 
pair member, you receive the low payment of $0.40.  Whether you receive $0.81 or $0.40 
depends only on whether your point total is greater than or less than the point total of 
your pair member.  It does not depend on how much bigger or smaller it is.  If there is a 
tie in total points, the experimenter will flip a coin to determine who gets the high 
payment.   
 
The experimenter will announce whether you have received a high or low payment.  
Circle the appropriate payment in Column 5 and subtract the decision cost associated 
with your decision number, which is in Column 6.  Record this difference in Column 7.  
The amount in Column 7 is your earnings in dollars for the round unless this is a practice 
round.  If this is a paying round, this amount will be added to your running total, which is 
tabulated in Column 8.  Your running total at the end of the 10th paying round is then 
carried forward to the next experiment. 
 
Before we get started, make sure that you write your chair number on “Sheet 1”.   
 
Are there any questions? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Review of Instructions 

1. Beginning of Round Announced 

2. Choose Decision Number   � Record in Column 1 

3. Locate associated Decision Cost from Table 1  � Record in Column 6 

4. One Subject Draws Group Random Number � Record in Column 2 

5. Each subject draw Individual Random Number � Record in Column 3 

6. Add Numbers in Columns 1, 2 and 3 � Record in Column 4 

7. If your sum is:  

a. Higher than your ‘pair member’ � Circle $0.81 as your payment 

b. Lower than your ‘pair member’ � Circle $0.40 as your payment 

8. Subtract your ‘Decision Cost’ from your payment � Record in Column 7 

9. If this is a paying round then � Update running total (Col. 8) 
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Example of Experimental Instructions for Symmetric Cost Fixed Standard Contract 
 
This experiment is identical to Experiment A in all aspects except the following. 
 
In Experiment A you received the high payment if the sum of your Decision Number, the 
Group Random Draw Number and your Individual Random Draw Number was greater 
than your pair member’s sum.  If your sum was lower than your pair member, you would 
receive the low payment. 
 
In this Experiment, you will receive a high payment of $0.85 if the sum of your Decision 
Number, the Group Random Draw Number and your Individual Random Draw Number 
is greater than or equal to 41.  If this sum is less than 41, you will receive a low payment 
of $0.43.  Whether you receive $0.85 or $0.43 as your payment depends only on whether 
your point total is greater than or equal to 41 – it does not depend on how much bigger or 
smaller. 
 
All instructions for recording your Decision Number, Decision Cost, Group Random 
Number, Individual Random Number and payment amount and all instructions for 
calculating your per round earnings are the same as before.   
 
You will resume tabulating your running total after the one practice round.  Please 
remember to carry forward your net running total from the bottom of Sheet 1 to the top of 
Column 7 on Sheet 2 so that you can correctly tabulate your running total for this 
experiment.  That is, your running total builds upon your net earnings from the previous 
experiment and will be carried forward to the next experiment. 
 
Are there any questions? 
 
 Review of Instructions 

10. Beginning of Round Announced 

11. Choose Decision Number   � Record in Column 1 

12. Locate associated Decision Cost from Table 1  � Record in Column 6 

13. One subject draws Group Random Number � Record in Column 2 

14. Each subject draw Individual Random Number � Record in Column 3 

15. Add numbers in Columns 1, 2 and 3 � Record in Column 4 

16. If your sum is:  

a. Greater than or equal to 41 � Circle $0.85 as your payment 

b. Less than 41 � Circle $0.43 as your payment 

17. Subtract your ‘Decision Cost’ from your payment � Record in Column 7 

18. If this is a paying round then � Update running total (Col. 8) 
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Auction Instructions 
 
In the second half of today’s session you will have the opportunity to earn more money 
by participating in two more experiments identical to the two experiments played in the 
first half of today’s session only without the initial, non-paying practice rounds.  That is, 
the rules and the number of paying rounds for the experiments played in the second half 
will be exactly like those played in the first half.   
 
For each experiment, however, only 10 of you will be allowed to participate.  Which 10 
of you will participate in each experiment will be decided as follows.   
 
For Experiment A you will fill out a Experiment A bid card.  On this card you will place 
your chair number and the maximum number of dollars you would be willing to pay from 
your experimental earnings today in order to participate.  You will then fill out a similar 
card for Experiment B.  The total amount of your bids for Experiment A and Experiment 
B combined cannot exceed the running total of dollars you have earned so far in the 
experiment. 
 
We will collect the Experiment A and Experiment B bid cards from all participants and 
rank them from highest to lowest for each experiment.  The top 10 bids for each 
experiment will be allowed to play in that additional experiment.   
 
Each participant that gains entry into an additional experiment will have his/her running 
dollar total decreased by the amount of the 10th place bid for that experiment.  Note: if 
your bid is higher than the 10th place bid, you will pay less than the amount you bid.  In 
other words, you will gain no advantage by bidding less than your true value for entry to 
the additional experiment, since it is unlikely you would have to pay the full amount you 
bid. 
 
The two people with the lowest bids for each experiment will not be allowed to play in the 
additional experimental session and will not have any dollars deducted from their 
running total.  They must sit quietly as the additional experiment is played. 
 
 
 
 
 
 

Review of Instructions 

19. Write maximum amount you are willing to pay to play an additional round of Experiment A 
on the Experiment A Bid Card 

20. Write maximum amount you are willing to pay to play an additional round of Experiment B 
on the Experiment B Bid Card 

21. Verify the sum of bids for Experiment A and B are not greater than your net running total. 
22. The top 10 bidders for each experiment will play in an additional experiment. 
23. Your net running totals will be reduced by the amount of the 10th place bid if you were one 

of the top 10 bidders for that experiment. 
24. Your net running total will not be reduced if you are not in the top 10 bidders, but you can’t 

play in the additional experiment. 
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Effort-Cost Table Used by Subjects During the Symmetric Cost Experiments. 
 
 

Table 1.  Decision Numbers and Associated Point Deductions 
Column A: 
Decision 
Number 

Column B: 
Decision Cost  

Column A: 
Decision 
Number 

Column B: 
Decision Cost  

Column A: 
Decision 
Number 

Column B: 
Decision Cost  

Column A: 
Decision 
Number 

Column B: 
Decision Cost 

0 0.0000  25 0.0625  50 0.2500  75 0.5625 
1 0.0001  26 0.0676  51 0.2601  76 0.5776 
2 0.0004  27 0.0729  52 0.2704  77 0.5929 
3 0.0009  28 0.0784  53 0.2809  78 0.6084 
4 0.0016  29 0.0841  54 0.2916  79 0.6241 
5 0.0025  30 0.0900  55 0.3025  80 0.6400 
6 0.0036  31 0.0961  56 0.3136  81 0.6561 
7 0.0049  32 0.1024  57 0.3249  82 0.6724 
8 0.0064  33 0.1089  58 0.3364  83 0.6889 
9 0.0081  34 0.1156  59 0.3481  84 0.7056 
10 0.0100  35 0.1225  60 0.3600  85 0.7225 
11 0.0121  36 0.1296  61 0.3721  86 0.7396 
12 0.0144  37 0.1369  62 0.3844  87 0.7569 
13 0.0169  38 0.1444  63 0.3969  88 0.7744 
14 0.0196  39 0.1521  64 0.4096  89 0.7921 
15 0.0225  40 0.1600  65 0.4225  90 0.8100 
16 0.0256  41 0.1681  66 0.4356  91 0.8281 
17 0.0289  42 0.1764  67 0.4489  92 0.8464 
18 0.0324  43 0.1849  68 0.4624  93 0.8649 
19 0.0361  44 0.1936  69 0.4761  94 0.8836 
20 0.0400  45 0.2025  70 0.4900  95 0.9025 
21 0.0441  46 0.2116  71 0.5041  96 0.9216 
22 0.0484  47 0.2209  72 0.5184  97 0.9409 
23 0.0529  48 0.2304  73 0.5329  98 0.9604 
24 0.0576  49 0.2401  74 0.5476  99 0.9801 
         100 1.0000 
Note. This table allows subjects to calculate the cost of each effort level.  For example, if 
a subject chooses an effort (decision) level of “60”, it would cost her $0.36 or 36 cents.  
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Example of Instructions for the Asymmetric Cost Tournament 
 
Introduction 
 
This is an experiment about decision making.  The instructions are simple, and if you 
follow them carefully and make good decisions, you could earn a considerable amount of 
money, which will be paid in cash to you at the end of today’s session. 
 
Specific Instructions 
 
As you read these instructions you will be in a room with a number of other subjects.  
One of these subjects has been chosen to be paired with you by a random drawing of 
subject numbers conducted before you arrived.  This subject will be called your pair 
member.  The identity of your pair member will never be revealed to you and your pair 
member will never know your identity. 
 
In the experiment you will perform a simple task.  In each round of the experimental 
game you will choose a number between 0 and 100 – this is called your ‘Decision 
Number’.  Associated with each Decision Number is decision cost, which is listed in 
Column B of Table 1.  Note that the higher the Decision Number you choose, the higher 
is the associated decision cost.  Also, for each decision number, costs are lower in Table 
1A and higher in Table 1B.  Whether you have been assigned Table 1A or Table 1B 
depends on the seat you were assigned.  Those that arrived early were randomly assigned 
to either seat 1, 3, 9, or 2, 4, 10 and will have Table 1A.  If you are in seats 5, 7, 11, or 6, 
8, 12 you will have Table 1B.  If you have Table 1A, then your pair member will have 
Table 1B and vice versa.  
 
At the beginning of each round of the experimental game you and your pair member will 
each select a Decision Number separately.  Write your number in Column 1 of Sheet 1.  
Also, record the decision cost associated with your decision number in Column 6 of 
Sheet 1. 
 
When all subjects have selected their decision numbers, an experimenter will have one 
subject choose a penny from a bucket with a large number of pennies in it.  Each penny 
in the bucket has a number written on it and the set of all possible numbers range from –
35 to + 35.  The sheet “Distribution of the Random Number Draw” contains the 
frequency (number of pennies for each specific number).  You will note that more 
pennies feature numbers closer to zero and the fewer pennies feature numbers close to –
35 and +35.  In other words, there is a higher probability of drawing numbers closer to 
zero than numbers far from zero.  The penny chosen will be called the ‘Group Random 
Draw Number’.  Everyone in the room will enter this number in Column 2. 
 
Then the experimenters will bring buckets around to each of you.  You will draw a penny 
from the bucket and the number on this penny will be called your ‘Individual Random 
Draw Number’.  Record your Individual Random Draw Number in column 3 of Sheet 1 
and then return the penny to the bucket.  
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Calculation of Payments  
 
The amount of money you earn in each round will be determined as follows.  You will 
add your Decision Number (column 1) to the Group Random Draw Number (column 2) 
and to your Individual Random Draw Number (column 3)  – write this total in Column 4 
of Sheet 1.  Your pair member will do the same.  The experimenter will also record this 
information after you receive your Individual Random Draw Number. 
 
Since all subjects have worked in privacy, the experimenter will then compare the totals 
of you and your pair member.  If your total in Column 4 is greater than your pair 
member, you receive the high payment of $0.95; if your point total is smaller than your 
pair member, you receive the low payment of $0.33.  Whether you receive $0.95 or $0.33 
depends only on whether your point total is greater than or less than the point total of 
your pair member.  It does not depend on how much bigger or smaller it is.  If there is a 
tie in total points, the Table 1B pair member gets the high payment. 
 
The experimenter will announce whether you have received a high or low payment.  
Circle the appropriate payment in Column 5 and subtract the decision cost associated 
with your decision number, which is in Column 6.  Record this difference in Column 7.  
The amount in Column 7 is your earnings in dollars for the round unless this is a practice 
round.  If this is a paying round, this amount will be added to your running total, which is 
tabulated in Column 8.  Your running total at the end of the 10th paying round is then 
carried forward to the next experiment. 
 
Before we get started, make sure that you write your chair number on “Sheet 1”.   
 
You may also take a minute to look at your  pair member’s decision cost sheet.  
Once you have looked at it, please pass it to one of the experimenters and work 
strictly off of your own decision cost sheet.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Review of Instructions 

26. Beginning of Round Announced 

27. Choose Decision Number   � Record in Column 1 

28. Locate associated Decision Cost from Table 1  � Record in Column 6 

29. One Subject Draws Group Random Number � Record in Column 2 

30. Each subject draw Individual Random Number � Record in Column 3 

31. Add Numbers in Columns 1, 2 and 3 � Record in Column 4 

32. If your sum is:  

a. Higher than your ‘pair member’ � Circle $0.95 as your payment 

b. Lower than your ‘pair member’ � Circle $0.33 as your payment 

33. Subtract your ‘Decision Cost’ from your payment � Record in Column 7 

34. If this is a paying round then � Update running total (Col. 8) 
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Example of Fixed Standard Contract Instructions (“Experiment B”) 
Example of Instructions for the Asymmetric Cost Fixed Performance Session 
 
This experiment is identical to Experiment A in all aspects except the following. 
 
In Experiment A you received the high payment if the sum of your Decision Number, the 
Group Random Draw Number and your Individual Random Draw Number was greater 
than your pair member’s sum.  If your sum was lower than your pair member, you would 
receive the low payment. 
 
In this Experiment, you will receive a high payment of $0.95 if the sum of your Decision 
Number, the Group Random Draw Number and your Individual Random Draw Number 
is greater than or equal to 41.  If this sum is less than 41, you will receive a low payment 
of $0.40.  Whether you receive $0.95 or $0.40 as your payment depends only on whether 
your point total is greater than or equal to 41 – it does not depend on how much bigger or 
smaller. 
 
All instructions for recording your Decision Number, Decision Cost, Group Random 
Number, Individual Random Number and payment amount and all instructions for 
calculating your per round earnings are the same as before.   
 
You will resume tabulating your running total after the one practice round.  Please 
remember to carry forward your net running total from the bottom of Sheet 1 to the top of 
Column 7 on Sheet 2 so that you can correctly tabulate your running total for this 
experiment.  That is, your running total builds upon your net earnings from the previous 
experiment and will be carried forward to the next experiment. 
 
Are there any questions? 
 
 
 
 
 

Review of Instructions 

35. Beginning of Round Announced 

36. Choose Decision Number   � Record in Column 1 

37. Locate associated Decision Cost from Table 1  � Record in Column 6 

38. One subject draws Group Random Number � Record in Column 2 

39. Each subject draw Individual Random Number � Record in Column 3 

40. Add numbers in Columns 1, 2 and 3 � Record in Column 4 

41. If your sum is:  

a. Greater than or equal to 41 � Circle $0.95 as your payment 

b. Less than 41 � Circle $0.40 as your payment 

42. Subtract your ‘Decision Cost’ from your payment � Record in Column 7 

43. If this is a paying round then � Update running total (Col. 8) 
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Effort-Cost Table for the Low Cost Subjects. 
 

Table 1A.  Decision Numbers and Associated Point Deductions (Seats 1, 2, 3, 4, 9, 10) 
Column 

A: 
Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost 

0 0.0000  25 0.0625  50 0.2500  75 0.5625 
1 0.0001  26 0.0676  51 0.2601  76 0.5776 
2 0.0004  27 0.0729  52 0.2704  77 0.5929 
3 0.0009  28 0.0784  53 0.2809  78 0.6084 
4 0.0016  29 0.0841  54 0.2916  79 0.6241 
5 0.0025  30 0.0900  55 0.3025  80 0.6400 
6 0.0036  31 0.0961  56 0.3136  81 0.6561 
7 0.0049  32 0.1024  57 0.3249  82 0.6724 
8 0.0064  33 0.1089  58 0.3364  83 0.6889 
9 0.0081  34 0.1156  59 0.3481  84 0.7056 
10 0.0100  35 0.1225  60 0.3600  85 0.7225 
11 0.0121  36 0.1296  61 0.3721  86 0.7396 
12 0.0144  37 0.1369  62 0.3844  87 0.7569 
13 0.0169  38 0.1444  63 0.3969  88 0.7744 
14 0.0196  39 0.1521  64 0.4096  89 0.7921 
15 0.0225  40 0.1600  65 0.4225  90 0.8100 
16 0.0256  41 0.1681  66 0.4356  91 0.8281 
17 0.0289  42 0.1764  67 0.4489  92 0.8464 
18 0.0324  43 0.1849  68 0.4624  93 0.8649 
19 0.0361  44 0.1936  69 0.4761  94 0.8836 
20 0.0400  45 0.2025  70 0.4900  95 0.9025 
21 0.0441  46 0.2116  71 0.5041  96 0.9216 
22 0.0484  47 0.2209  72 0.5184  97 0.9409 
23 0.0529  48 0.2304  73 0.5329  98 0.9604 
24 0.0576  49 0.2401  74 0.5476  99 0.9801 
         100 1.0000 
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Effort-Cost Table for the High Cost Subjects. 
 

Table 1B.  Decision Numbers and Associated Point Deductions (5, 6, 7, 8, 11, 12) 
Column 

A: 
Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost  

Column 
A: 

Decision 
Number 

Column 
B: 

Decision 
Cost 

0 0.00000  25 0.09375  50 0.37500  75 0.84375 
1 0.00015  26 0.10140  51 0.39015  76 0.86640 
2 0.00060  27 0.10935  52 0.40560  77 0.88935 
3 0.00135  28 0.11760  53 0.42135  78 0.91260 
4 0.00240  29 0.12615  54 0.43740  79 0.93615 
5 0.00375  30 0.13500  55 0.45375  80 0.96000 
6 0.00540  31 0.14415  56 0.47040  81 0.98415 
7 0.00735  32 0.15360  57 0.48735  82 1.00860 
8 0.00960  33 0.16335  58 0.50460  83 1.03335 
9 0.01215  34 0.17340  59 0.52215  84 1.05840 
10 0.01500  35 0.18375  60 0.54000  85 1.08375 
11 0.01815  36 0.19440  61 0.55815  86 1.10940 
12 0.02160  37 0.20535  62 0.57660  87 1.13535 
13 0.02535  38 0.21660  63 0.59535  88 1.16160 
14 0.02940  39 0.22815  64 0.61440  89 1.18815 
15 0.03375  40 0.24000  65 0.63375  90 1.21500 
16 0.03840  41 0.25215  66 0.65340  91 1.24215 
17 0.04335  42 0.26460  67 0.67335  92 1.26960 
18 0.04860  43 0.27735  68 0.69360  93 1.29735 
19 0.05415  44 0.29040  69 0.71415  94 1.32540 
20 0.06000  45 0.30375  70 0.73500  95 1.35375 
21 0.06615  46 0.31740  71 0.75615  96 1.38240 
22 0.07260  47 0.33135  72 0.77760  97 1.41135 
23 0.07935  48 0.34560  73 0.79935  98 1.44060 
24 0.08640  49 0.36015  74 0.82140  99 1.47015 
         100 1.50000 
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Maple Code and Output Example: Risk Neutral F Contract Simulations1 

> #note: this is the Maple program for the fixed 
performance contract under symmetric costs, risk neutrality 
and no inequality aversion.  This is essentially the 
benchmark case.  Note: it is straightforward to get the 
asymmetric cost simulations using this file.  Just do the 
following: (1) change "alpha" from 1 to 1.5, (2) change 
payment parameters.  That is, let m=.40 and "spread" be 
.55, and (3) once you have the new optimal effort levels, 
be sure to plug them into the equations that simulate 
expected profits, expected utility, variance of profits 
etc.  These equations are near the bottom of this program.  
If these substitutions are not made, results can be 
misleading.   
> restart; 

 

> sigmac:=0;sigma :=500;#sigmac is common shock variance, 
sigma is idiosyncratic variance, although for fixed 
performance contracts, it is irrelevant so long as total 
variance is equal to 500. 
> alpha:=1;  #for symmetric costs, set this equal to "1".  
For asymmetric, set this equal to "1.5" 
> m:=.43;spread:=.42; M:=m+spread;  #m is "r" in the paper.  
M is "R".  Note M>m. For the fixed performance contract, 
these payoffs change across symmetric and asymmetric cost 
experiments.  See paper. 
>  

sigmac := 0
 

� := 500
 

� := 1
 

m := 0.43
 

spread := 0.42
 

M := 0.85
 

>  

                                                 
1 We only include MAPLE code for the risk neutral F contract simulations and the risk averse-inequality 
averse T (with a common shock variance of 250) simulations.  Maple code and output for the remaining 
simulations are available upon request from the authors.  Email wu.412@osu.edu for the MAPLE 
programs. 
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> n1:=(1/((2*3.14*(sigma+sigmac))^(1/2)))*exp((-
1/2)*(((u)^2)/(sigma+sigmac))); #This is the normal 
probability density function for agent 1. 

n1 := 0.01784576526 e
- 1

1000
 u2�

�
�
�

 
>  
> n2:=(1/((2*3.14*(sigma+sigmac))^(1/2)))*exp((-
1/2)*(((u2)^2)/(sigma+sigmac))); #This is the normal 
probability density function for agent 2. 

n2 := 0.01784576526 e
- 1

1000
 u22�

�
�
�

 
>  
>  UM:=M-alpha*(e1^2)/10000; #This agent 1's "utility" 
under high performance. Note utility=profit under risk 
neutrality. 

UM := 0.85 - 1
10000

 e1 2

 
> UMa:=M-alpha*(e1^2)/10000;#This is agent 1's utility 
under high performance. 

UMa := 0.85 - 1
10000

 e1 2

 
> Um:=m-alpha*(e1^2)/10000;#This is agent 1's utility under 
low performance. 

Um := 0.43 - 1
10000

 e1 2

 
> Umd:=m-alpha*(e1^2)/10000;#This is agent 1's utility 
under low performance. 

Umd := 0.43 - 1
10000

 e1 2

 
> cdf1:=int(n1,u=-infinity...(41-e1));#This is agent 1's 
cumulative distribution function. 

cdf1 := 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )
 

> UM2:=M-(e2^2)/10000;# Repeat above for agent 2 (next 5 
lines). 

UM2 := 0.85 - 1
10000

 e2 2

 
> UM2a:=M-(e2^2)/10000; 
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UM2a := 0.85 - 1
10000

 e2 2

 
> Um2:=m-(e2^2)/10000; 

Um2 := 0.43 - 1
10000

 e2 2

 
> Um2d:=m-(e2^2)/10000;  

Um2d := 0.43 - 1
10000

 e2 2

 
> cdf2:=int(n2,u2=-infinity...(41-e2)); 

cdf2 := 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )
 

>  
> EU1:=(1-cdf1)*(1-cdf2)*UM+(1-cdf1)*cdf2*UMa+cdf1*(1-
cdf2)*Umd+cdf1*cdf2*Um;  #Agent 1's expected utility 
(profit). 
EU1 := 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

 + (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

 + (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

 + (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

 
> DEU1:=diff(EU1,e1);#Derivative of expected utility with 
respect to e1. 

DEU1 := 1

	
 
�
�
�
�

0.03163079536 e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123
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 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 + 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 - 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 - 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1
 

> EU2:=(1-cdf1)*(1-cdf2)*UM2+cdf1*(1-cdf2)*UM2a+(1-
cdf1)*cdf2*Um2d+cdf1*cdf2*Um2;#Agent 2's expected utility.  
EU2 := 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e2 2�
�
�

�
�
�

 + (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e2 2�
�
�

�
�
�

 + (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e2 2�
�
�

�
�
�

 + (0.5001267877
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 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e2 2�
�
�

�
�
�

 
> DEU2:=diff(EU2,e2);#Derivative of agent 2's expected 
utility with respect to e2.  

DEU2 := 1

	
 
�
�
�
�

0.03163079536 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.85 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 + 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) e
- -1.296533841 + 0.03162277660 e2( )2( )

 ��
�

0.85

 - 1
10000

 e2 2�
�
�

�
�
�
�

 - 1
5000

 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 - 1

	
 
�
�
�
�

0.03163079536 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.43 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 - 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) e
- -1.296533841 + 0.03162277660 e2( )2( )

 ��
�

0.43

 - 1
10000

 e2 2�
�
�

�
�
�
�

 - 1
5000

 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

(0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2
 

> focEU1:=DEU1=0;focEU2:=DEU2=0;#First order conditions 
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focEU1 := 1

	
 
�
�
�
�

0.03163079536 e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 + 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 - 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 - 1

	
 
�
�
�
�

0.03163079536 

e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e1 = 0
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focEU2 := 1

	
 
�
�
�
�

0.03163079536 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.85 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 + 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) e
- -1.296533841 + 0.03162277660 e2( )2( )

 ��
�

0.85

 - 1
10000

 e2 2�
�
�

�
�
�
�

 - 1
5000

 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 - 1

	
 
�
�
�
�

0.03163079536 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.43 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 - 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) e
- -1.296533841 + 0.03162277660 e2( )2( )

 ��
�

0.43

 - 1
10000

 e2 2�
�
�

�
�
�
�

 - 1
5000

 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

(0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) e2 = 0
 

> fsolve({focEU1,focEU2},{e1=0..100,e2=0..100});#solving 
first order conditions for optimal efforts.  

e2 = 36.83010387, e1 = 36.83010387{ }
 

> DDEU1:=diff(DEU1,e1); DDEU2:=diff(DEU2,e2);#second order 
derivative of expected utility 
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DDEU1  := 1

	
 
�
�
�
�

0.03163079536 0.08200000002 - 0.002000000000 e1( ) e
- -1.296533841 + 0.03162277660 e1( )2( )

 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 

(0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) + 1

	
 
�
�
�
�

0.03163079536 (0.08200000002

 - 0.002000000000 e1) e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.85 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) - 1

	
 
�
�
�
�

0.03163079536 (0.08200000002

 - 0.002000000000 e1) e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) - 1

	
 
�
�
�
�

0.03163079536 (0.08200000002

 - 0.002000000000 e1) e
- -1.296533841 + 0.03162277660 e1( )2( )

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) 0.43 - 1
10000

 e1 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( ))
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DDEU2  := 1

	
 
�
�
�
�

0.03163079536 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) 

(0.08200000002 - 0.002000000000 e2) e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.85 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 

1
5000

 0.4998732123 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) + 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) 0.08200000002 - 0.002000000000 e2( ) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.85 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) - 1

	
 
�
�
�
�

0.03163079536 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) 0.08200000002 - 0.002000000000 e2( ) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.43 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( )) - 1

	
 
�
�
�
�

0.03163079536 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) 0.08200000002 - 0.002000000000 e2( ) 

e
- -1.296533841 + 0.03162277660 e2( )2( )

 0.43 - 1
10000

 e2 2�
�
�

�
�
�

�
�
�
�

 - 1
5000

 (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )) (0.5001267877

 - 0.5001267877 erf -1.296533841 + 0.03162277660 e2( ))
 

> 
soc1:=eval(DDEU1,{e1=36.83010387,e2=36.83010387});soc2:=eva
l(DDEU2,{e1=36.83010387,e2=36.83010387});#evaluating second 
order conditions to ensure maximum.  Note: make sure you 
plug in the right numbers for effort level when you change 
other parameters.  For example, changing variance and 
payments will affect optimal effort and these new optimal 
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efforts will have to be plugged into this and the next few 
formulas below. 

soc1 := 0.0001088837600

	
 - 0.0002000000000

 

soc2 := 0.0001088837600

	
 - 0.0002000000000

 
> winprob1:=eval((1-
cdf1),e1=36.83010387);winprob2:=eval((1-
cdf2),e2=36.83010387);#probabilities of achieving the high 
payment M for both agents at optimal effort levels. 

winprob1 := 0.4258872942
 

winprob2 := 0.4258872942
 

> 
Eutility1:=eval(EU1,{e1=36.83010387,e2=36.83010387});#Indir
ect utility 

Eutility1 := 0.4732270085
 

> 
Eutility2:=eval(EU2,{e1=36.83010387,e2=36.83010387});#Indir
ect utility 

Eutility2 := 0.4732270085
 

>  
> eprofit:=(1-cdf1)*(M)+cdf1*(m)-(e1^2)/10000;#same as 
indirect utility because this is the risk neutral case.  
For the risk averse and inequality aversion cases, 
separating expected profit from expected utility is more 
meaningful. 

eprofit := 0.6399467492 + 0.2100532508 erf -1.296533841 + 0.03162277660 e1( ) - 1
10000

 e1 2

 
> vprofit:=cdf1*(1-cdf1)*(spread)^2;#variance of expected 
profit. 
vprofit := 0.1764 0.5001267877 - 0.5001267877 erf -1.296533841 + 0.03162277660 e1( )( ) (0.4998732123

 + 0.5001267877 erf -1.296533841 + 0.03162277660 e1( ))
 

> eval(eprofit,{e1=36.83010387,e2=36.83010387}); #expected 
profit at optimal effort 

0.4732270085
 

> eval(vprofit,{e1=36.83010387,e2=36.83010387});#variance 
of profit evaluated at optimal effort.  
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0.04313108892
 

 
Maple Code and Output Example: Risk Averse-Inequality Averse T Simulations 
 
> #This is a tournament simulation where the common shock 
variance is 250.   Agents are risk averse and inequality 
averse. Costs are symmetric. Note: it is straightforward to 
get the asymmetric cost simulations using this file.  Just 
do the following: (1) change "alpha" from 1 to 1.5, (2) 
change payment parameters.  That is, let m=.40 and "spread" 
be .41, and (3) once you have the new equilibrium effort 
levels, be sure to plug them into the equations that 
simulate expected profits, expected utility, variance of 
profits etc.  These equations are near the bottom of this 
program.  If these substitutions are not made, results can 
be misleading.   
> #Also note that it is straightforward to generate the 
other tournament simulations with different common shock 
variances.  For example, if you wanted to generate the 
experiment where the common shock variance is 350, do the 
following: (1) Change "Sigma" from 250 to 150 (note that 
sigma is the idiosyncratic shock variance and the sum of 
the variances need to be 500), (2) Change payments so that 
m =.45 and spread=.32, and (3) once you have the new 
equilibrium effort levels, be sure to plug them into the 
equations that simulate expected utility, expected profits, 
variance of profits etc.  These equations are near the 
bottom of this program.  If these substitutions are not 
made, results can be misleading.  Experiments for common 
shock variance equaling 0 and 50 by following a similar 
sequence of steps (make sure payments m and M are adjusted 
accordingly.  See paper for specific values). 
>  
> restart; 
> sigma :=250;alpha:=1;evalf(sigma^(0.5));#sigma is 
idiosyncratic variance, common shock variance is filtered 
away by the tournament. 

� := 250
 

� := 1
 

15.81138830
 

> m:=.40;spread:=.41; M:=m+spread; #m is "r" in the paper.  
M is "R".  Note M>m.   See paper. 

m := 0.40
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spread := 0.41
 

M := 0.81
 

> w:=1;  #this is initial wealth.  Because our utility 
function exponentiates payments, we had to ensure that 
total payments exceeds 1.  We did this by giving the agent 
an initial wealth of 1 which guarantees that total payment 
under each state of nature exceeds 1.  While we set w = 1, 
it can be arbitrarily set at any value greater than 1.  We 
conducted sensivity analysis by setting w = 20 to make sure 
that our qualitative predictions did not change.  This was 
important to check because our utility funciton exhibits 
decreasing absolute risk aversion.  We found that no 
qualitative results changed. You can verify this be 
changing w = 20 and running the program. 

w := 1
 

 
� := 250

 

� := 1
 

15.81138830
 

> n1:=(1/((2*3.14*sigma*(2))^(1/2)))*exp((-
1/2)*(((u1)^2)/(sigma*(2))));#This is the normal 
probability density of the agents. 

n1 := 0.001128665296 250  e
- 1

1000
 u12�

�
�
�

 
> A:=0.731;beta:=0.029;theta:=5;  #These are the parameters 
for the utility function. 

A := 0.731
 


 := 0.029
 

� := 5
 

> adv:=0; disadv:=.15;  #these are the inequality aversion 
parameters.   

adv := 0
 

disadv := 0.15
 

> spread1:=theta-exp(-beta*(w+M)^A)-(theta-exp(-
beta*(w+m)^A));#This is  "inequality" in utility terms.  
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spread1 := 0.0073529735
 

> UM1:=(theta-exp(-beta*(w+M-alpha*(e1^2)/10000)^A))-
adv*spread1;#Agent 1's utility when he "wins".  

UM1 := 5. - e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

 
> Um1:=(theta-exp(-beta*(w+m-alpha*(e1^2)/10000)^A))-
disadv*spread1;#Agent 1's utility when he "loses". 

Um1 := 4.998897054 - e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

 
 
> UM2:=(theta-exp(-beta*(w+M-(e2^2)/10000)^A))-
adv*spread1;#Agent 2's utility when he "wins"  

UM2 := 5. - e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

 
> Um2:=(theta-exp(-beta*(w+m-(e2^2)/10000)^A))-
disadv*spread1;#Agent 2's utility when he "loses". 

Um2 := 4.998897054 - e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

 
 
> cdf:=int(n1,u1=-infinity...(e2-e1));# the cumulative 
distribution function. 

cdf := 0.5001267876 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )
 

> EU1:=(1-cdf)*UM1+cdf*Um1; EU2:=cdf*UM2+(1-
cdf)*Um2;#Expected utilities for the two agents. 

EU1 := 0.4998732124 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )( ) 

�
�
�
�
� 5.

 - e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  + (0.5001267876
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 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

 

EU2 := 0.5001267876 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )( ) 

�
�
�
�
� 5.

 - e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  + (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

 
> DEU1:=diff(EU1,e1); DEU2:=diff(EU2,e2);#First order 
derivatives of expected utilities. 

DEU1 := 
0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 5. - e

-0.029 1.81 - 1
10000

 e12���
���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

	
 - 

1

1.81 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 
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1

	
 

�
�
�
�
� 0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�  - 1

1.40 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 

(0.5001267876 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 

e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

 

DEU2 := 
0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 5. - e

-0.029 1.81 - 1
10000

 e22���
���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

	
 - 

1

1.81 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

	
 

�
�
�
�
� 0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�  - 1

1.40 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 
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(0.4998732124 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 

e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

 
> foc1:=DEU1=0; foc2:=DEU2=0;#First order conditions for 
both agents. 

foc1 := 
0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 5. - e

-0.029 1.81 - 1
10000

 e12���
���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

	
 - 

1

1.81 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

	
 

�
�
�
�
� 0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�  - 1

1.40 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 

(0.5001267876 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 

e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  = 0
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foc2 := 
0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 5. - e

-0.029 1.81 - 1
10000

 e22���
���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

	
 - 

1

1.81 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

	
 

�
�
�
�
� 0.03163079535 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 

�
�
�
�
� 4.998897054

 - e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�  - 1

1.40 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 

(0.4998732124 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 

e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  = 0

 
> fsolve({foc1,foc2},{e1=0..100,e2=0..100});#solving first 
order conditions for equilibrium efforts. 

e1 = 41.77893461, e2 = 41.77996031{ }
 

> DDEU1:=diff(DEU1,e1); DDEU2:=diff(DEU2,e2); #Second order 
derivatives. 
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DDEU1  := 1

	
 

�
�
�
�
� 0.03163079535 0.002000000000 e2 - 0.002000000000 e1( ) 

e
- 0.03162277660 e2 - 0.03162277660 e1( )2( )

 5. - e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

 - 
2.682164922 10-7 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 e1 e

-0.029 1.81 - 1
10000

 e12���
���

0.731�
�
�

�
�
�

	  1.81 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 - 

1

1.81 - 1
10000

 e1 2�
�
�

�
�
�

1.269
 

�
�
�
�
� 2.281012400 10-10 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 2 e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.81 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.81 - 1
10000

 e1 2�
�
�

�
�
�

0.538
 

�
�
�
�
� 1.797590404 10-11 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 2 e
-0.029 1.81 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 
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1

	
 

�
�
�
�
� 0.03163079535 0.002000000000 e2 - 0.002000000000 e1( ) 

e
- 0.03162277660 e2 - 0.03162277660 e1( )2( )

 4.998897054 - e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

 + 
2.682164922 10-7 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 e1 e

-0.029 1.40 - 1
10000

 e12���
���

0.731�
�
�

�
�
�

	  1.40 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 - 

1

1.40 - 1
10000

 e1 2�
�
�

�
�
�

1.269
 

�
�
�
�
� 2.281012400 10-10 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 2 e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.40 - 1
10000

 e1 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.40 - 1
10000

 e1 2�
�
�

�
�
�

0.538
 

�
�
�
�
� 1.797590404 10-11 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e1 2 e
-0.029 1.40 - 1

10000
 e12���

���

0.731�
�
�

�
�
�

�
�
�
�
�

 



 39 

DDEU2  := 1

	
 

�
�
�
�
� 0.03163079535 -0.002000000000 e2 + 0.002000000000 e1( ) 

e
- 0.03162277660 e2 - 0.03162277660 e1( )2( )

 5. - e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

 - 
2.682164922 10-7 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 e2 e

-0.029 1.81 - 1
10000

 e22���
���

0.731�
�
�

�
�
�

	  1.81 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 - 

1

1.81 - 1
10000

 e2 2�
�
�

�
�
�

1.269
 

�
�
�
�
� 2.281012400 10-10 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 2 e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.81 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.81 - 1
10000

 e2 2�
�
�

�
�
�

0.538
 

�
�
�
�
� 1.797590404 10-11 (0.5001267876

 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 2 e
-0.029 1.81 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 
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1

	
 

�
�
�
�
� 0.03163079535 -0.002000000000 e2 + 0.002000000000 e1( ) 

e
- 0.03162277660 e2 - 0.03162277660 e1( )2( )

 4.998897054 - e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

 + 
2.682164922 10-7 e

- 0.03162277660 e2 - 0.03162277660 e1( )2( )
 e2 e

-0.029 1.40 - 1
10000

 e22���
���

0.731�
�
�

�
�
�

	  1.40 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 - 

1

1.40 - 1
10000

 e2 2�
�
�

�
�
�

1.269
 

�
�
�
�
� 2.281012400 10-10 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 2 e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.40 - 1
10000

 e2 2�
�
�

�
�
�

0.269
 

�
�
�
�
� 0.000004239800000 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�  - 

1

1.40 - 1
10000

 e2 2�
�
�

�
�
�

0.538
 

�
�
�
�
� 1.797590404 10-11 (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )) e2 2 e
-0.029 1.40 - 1

10000
 e22���

���

0.731�
�
�

�
�
�

�
�
�
�
�
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> soc1:=eval(DDEU1,{e1=41.77893461,e2=41.77996031});#Agent 
1's second order condition evaluated at equilibrium efforts 

soc1 := 
8.41573050 10-7

	
 - 0.000003998452331

 
> soc2:=eval(DDEU2,{e1=41.77893461,e2=41.77996031});#Agent 
2's second order condition evaluated at equilibrium 
efforts.  

soc2 := 
8.40469084 10-7

	
 - 0.000003998354336

 
> winprob1:=eval((1-
cdf),{e1=41.77893461,e2=41.77996031});#Agent 1's 
probability of winning the tournament 
> 
winprob2:=eval(cdf,{e1=41.77893461,e2=41.77996031});#Agent 
2's probability of winning the tournament 

winprob1 := 0.4998549083
 

winprob2 := 0.5001450917
 

>  
> Eprofits1:=(1-cdf)*M+cdf*m-
alpha*(e1^2)/10000;eval(Eprofits1,{e1=41.77893461,e2=41.779
96031});#expected profit for agent 1 

Eprofits1 := 0.6049480170 - 0.2050519830 erf 0.03162277660 e2 - 0.03162277660 e1( ) - 1
10000

 e1 2

 
0.4303925746

 
> Eprofits2:=cdf*M+(1-cdf)*m-
(e2^2)/10000;eval(Eprofits2,{e1=41.77893461,e2=41.77996031}
);#expected profit for agent 2 

Eprofits2 := 0.6050519830 + 0.2050519830 erf 0.03162277660 e2 - 0.03162277660 e1( ) - 1
10000

 e2 2

 
0.4305029793

 
>  
> 
EUtility1:=eval(EU1,{e1=41.77893461,e2=41.77996031});#indir
ect expected utility for agent 1 

EUtility1 := 4.036339882
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> 
EUtility2:=eval(EU2,{e1=41.77893461,e2=41.77996031});#indir
ect expected utility for agent 2 

EUtility2 := 4.036342251
 

 

 

> vprofit:=cdf*(1-cdf)*(spread)^2;#variance of profit 
vprofit := 0.1681 0.5001267876 + 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( )( ) (0.4998732124

 - 0.5001267876 erf 0.03162277660 e2 - 0.03162277660 e1( ))
 

>  
> eval(vprofit,{e1=41.77893461,e2=41.77996031});#variance 
of profit evaluated at the equilibrium efforts. 

0.04202499645
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