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Abstract— In this paper, a continuous version of the 
Markov Chain Model (MCM) is proposed to project the 
number and the population structure of farms. It is then 
applied to the population of professional French farms. 
Rather than working directly with transition 
probabilities as in the traditional, discontinuous, MCM, 
this approach relies on the close but not identical 
concept of growth rate probabilities and exploits the 
Gibrat’s law of proportionate effects which appears to 
be supported by the French data. It is shown that the 
proposed continuous MCM is a more general approach, 
since it enables to derive more in-depth detail on the 
distrubtion of the projected population and the 
traditional MCM transition probability matrix can be 
easily reconstructed from the estimated growth rate 
probabilities. Though the continuous MCM is presented 
in this paper in a stationary framework, it should be 
possible to develop a non-stationary version in a similar 
way traditional MCMs are now made non-stationary. 

Keywords— Farm size distribution, Gibrat’s law, 
Markov Chain Model. 

I. INTRODUCTION 

The so-called Markov chain model (MCM) is 
becoming a more and more popular tool to predict the 
number and the distribution of a population of 
agricultural firms. Soon after the pioneering 
applications to iron and steel industries [1], the MCM 
has been widely applied to food industries [2, 3] and to 
farm units [4-8]. 

Early researches such as [9] showed that it is 
possible, with the use of econometric estimation, to 
build a robust MCM from aggregate (cross-sectional) 
data only, alleviating the difficulty of individual 
(panel) data availability (see also [10]). Since then, 
most, if not all, the available literature on the use of 
the MCM approach in agricultural economics employs 
aggregate data (see Table 1 in the next section). 

Though the issue of building a non-stationary1 MCM 
was early addressed to take into account the dynamic 
nature of the underlying microeconomic processes [3], 
one has to wait for the works of Chavas and Magand 
[11] and Disney et. al [12] to see such a feature 
introduced in a MCM of farm size and number 
evolution. By this time, only market variables, 
especially prices or input/output price ratios, were 
used as explanatory variables of the underlying non-
stationary model parameters. Though not really non-
stationary per se, the work by Keane [13] introduced 
the influence of a policy variable, namely the 
introduction of milk quotas in the Irish dairy sector, by 
building a MCM for each of the two periods, before 
and after quotas. In the last decades, following von 
Massow et al. [14], Zepeda [15, 16] or Rahelizatovo 
and Gillespie [17], an increasing number of market 
(prices), macroeconomic (interest rates), policy (price 
support, direct payments, diversion or termination 
programs…) and individual farm financial (debt-
equity ratio) or technical (productivity indices) 
variables have been introduced into explicitly non-
stationary models. 

With years and experience, we can see from above 
that the models used in the MCM literature applied to 
agricultural economics have become more 
sophisticated. Still, there is one aspect that, to our 
knowledge, modellers have not addressed so far. As 
will be shown in the next section, the underlying 
transition matrix of a MCM is built by discretizing the 
whole population of farms into a (limited) number of 
classes on the basis of some particular size criterion. 
In other words, a traditional MCM implements a 
“histogram” approach rather than a truly “distribution” 
point of view. We intend to tackle here this issue of 
continuity. Our results show that the continuous 
approach we propose is much more informative, as far 
as the evolution of the structural distribution of farms 

                                                           
1 See section II for a definition of this term. 
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is concerned, than the traditional, discontinuous, 
approach. 

The rest of the paper is structured as follows. In the 
next section, we describe the traditional MCM 
approach and its most common features, showing why 
its discrete nature may constitute an issue. Section III 
presents the continuous version of the MCM we 
propose, and section IV applies it to the case of French 
professional farms. Section VI discusses some key 
elements and concludes. 

II. THE TRADITIONAL MCM APPROACH 
AND THE “HISTOGRAM” ISSUE 

In the traditional MCM, the studied population, a 
population of farms in our case, is broken down into a 
finite number J  of classes, the so-called “states-of-
nature”. Denoting the number of individuals (farms) in 
the j th−  state (with { }1..j J= ) at time t  by ,j tn , the 
demography of the population follows a Markov chain 
process of degree 1 if, between two dates t  and t τ+ , 
the following relation holds: 

 , ,
1

J

j t kj k t
k

n p nτ+
=

= ∑  (1) 

where kjp  is the probability for a farm to move from 

state k  to state j  in one time-period τ , with 0kjp ≥  

and 
1

1
J

kj
j

p
=

=∑ . In the MCM approach, kjp  are the 

model’s parameter to be determined. In most 
economic and social sciences studies, the states-of-
nature of the MCM correspond to groupings on the 
basis of some size variable, whatever the definition of 
size according to the type of population studied. 

Equation (1) expresses the fact that the structure of 
the population (the number of farms lying in each 
category) at one date only depends on the structure of 
the (whole) population at the previous date.2 In order 

to ensure that 
1

1
J

kj
j

p
=

=∑ , an “exit” state-of-nature is 

                                                           
2 Higher degree MCMs allow for the structure of the population at 
one date to depend on the structure of the population at several 
previous dates [18]. 

usually included among the J  classes, stating that 
farms may disappear between to dates; similarly, an 
“entry” category usually allows to account for new 
comers. All together, the set of probabilities kjp  define 

a square matrix ( )kjp=P  which is called the 
transition probability matrix (TPM) so that equation 
(1) may be re-written in a matricial form: 

 ( ) ( )' 1 't t+ = ×N P N  (2) 

where ( )tN  is the vector representing the structure of 
the population at time t . 

Table 1 presents in a synthetic way some of the key 
features characterizing MCMs applied to populations 
of farms from a (non-exhaustive) literature review. It 
first shows that the MCM approach has been used in 
several national or sub-national contexts and for 
studying various types of farms (of which the relative 
frequency of dairy farms is worth noticing). Second, it 
is striking that the vast majority of studies use 
aggregate data to determine the transition 
probabilities: though it is relatively straightforward to 
compute such probabilities from the survey of a panel 
of individual farms, such data are usually not or too 
costly available, therefore precluding the direct 
calculation of the TPM. As it was mentioned in the 
introduction of the paper, Lee et al. [9] (and later [10]) 
made a seminal contribution showing how to retrieve 
the elements of the TPM from aggregate data only. 
Third, the models used are more and more often non-
stationary: in the stationary MCM, the transition 
probabilities kjp  are assumed to be constant 
parameters over time; if this can seem a fairly 
reasonable first approximation, there are many good 
reasons for which it should not be so, and recent works 
have tried to show some evidence of the impact of 
various variables such as input and/or output prices, 
technical efficiency, and increasingly political 
variables. In the non-stationary framework, transition 
probabilities are no longer supposed fixed but vary 
over time (either because of time itself or because 
explanatory variables vary). 

The last feature listed in Table 1 that is worth 
shedding light on, as it is related to the motivation for 
this paper, is the number of classes used, i.e., the 
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Table 1 Synthetic review of the literature on the use of the Markov chain model 

Ref. Year Country/State Type of farms Type of data Type of model Number of 
classes a Size variable(s) Transition 

[6] 1961 Illinois (USA) Hog Individual Stationary 7 Litters of hogs produced Annual 
[7] 1964 North Dakota (USA) All Aggregate Stationary 7 Acres 5 years 
[4] 1967 Northwest region of England Dairy Individual Stationary 6 Herd size in heads Annual 
[8] 1967 New York State (USA) Dairy Individual Stationary 4 Herd size in heads 4 years 
[5] 1969 Ireland All Aggregate Stationary 6 Standard man-days 6 years 
[19] 1974 Canadian Prairie Provinces All Aggregate Stationary 7 Gross receipts 5 years 
[20] 1976 North Ireland All Aggregate Stationary 5 Acres Annual 
[21] 1983 Scotland Dairy Both Stationary 7 Herd size in heads 3 years 
[22] 1985 USA All Individual Stationary 9 Acres 4 years 
[11] 1988 Five regions of the USA Dairy Aggregate Non-stationary 4 Herd size in heads Annual 
[12] 1988 South Atlantic Census 

division of the USA 
Hog Aggregate Non-stationary 5 Number of hogs marketed 4-5 years 

[13] 1991 Ireland Dairy Aggregate Stationary 8 Herd size in heads 6 years 
[14] 1992 Ontario (USA) Hog Aggregate Both 6 Number of hogs marketed Annual 
[23] 1994 Minnesota and Wisconsin 

(USA) 
Dairy Aggregate Stationary 6 Herd size in heads 5 years 

[15] 1995 Wisconsin (USA) Dairy Aggregate Non-stationary 5 Herd size in heads Annual 
[16] 1995 Wisconsin (USA) Dairy Aggregate Non-stationary 4 Herd size in heads Annual 
[24] 1997 Ireland Dairy, cattle, hogs, 

sugar beet and cereals 
Aggregate Stationary 5 to 7 Herd size in heads, hectares 12 years 

[17] 1999 Louisiana (USA) Dairy Individual Non-stationary 5 Number of lbs/day 
produced 

7 years 

[25] 2002 Denmark Hog Aggregate Non-stationary 19 Number of hogs marketed Annual 
[26] 2004 Ireland Dairy Aggregate Stationary 7 Herd size in heads 12 years 
[27] 2005 France All Individual Stationary na b Standard Gross Margin 9 years 
[28] 2005 The Netherlands, Germany, 

Poland and Hungary 
Dairy Aggregate Non-stationary 8 Herd size in heads Annual 

[29] 2006 Midi-Pyrénées (France) Cash crops Aggregate Non-stationary 7 Hectares 2-3 years 
[30] 2006 Pennsylvania (USA) Dairy Aggregate Non-stationary 7 Herd size in heads Annual 
[31] 2007 France Dairy Aggregate Non-stationary 8 Herd size in heads Annual 
[32] 2007 Poland Dairy Aggregate Non-stationary 9 Herd size in heads Annual 
a: when appropriate, “entry” and/or “exit” states-of-nature are included in the counting. 
b: the exact number of classes is not given since the transition matrix is built as a multidimensional one, crossing such variables as hectares, region, type of farming, economic size measured 
in ESU (European Size Unit), legal status of the farm (individual or corporate), etc. 
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Table 2 A typical “traditional” MCM transition probability matrix a (adapted from Stokes [30]) 
1t +  

t  1 to 29 30 to 49 50 to 99 100 to 199 200 to 499 500+ Exit 

1 to 29 0.8051 0.0478 0.0314 0.0051 0.0014 0.0001 0.1092 

30 to 49 0.0295 0.8312 0.0735 0.0020 0.0008 0.0002 0.0628 

50 to 99 0.0000 0.0593 0.8696 0.0254 0.0006 0.0003 0.0449 

100 to 199 0.0000 0.0000 0.0612 0.8975 0.0068 0.0000 0.0344 

200 to 499 0.0000 0.0000 0.0000 0.0146 0.9853 0.0000 0.0000 

500+ 0.0000 0.0000 0.0000 0.0000 0.0000 0.9999 0.0000 

Entry 0.2459 0.1712 0.0601 0.0003 0.0001 0.0000 0.5224 

a: intervals are for herd size in number of cow heads; the probabilities correspond to annual transitions and have been estimated over the 1980-2002 period; 
only the shaded cells significantly differ from zero. 

number of states-of-nature considered.3 Table 1 shows 
that this number is usually limited: it rarely exceeds 
10, the 19 classes used by Karantininis [25] appearing 
to be an unusual maximum, the average being 7. Apart 
from keeping the model tractable, the mathematical 
stability issue of the TPM is an important reason for 
keeping such a small number of classes [18]. 
Nevertheless, this characteristic of the traditional 
MCM presents the main drawback that the resulting 
TPM is strongly diagonal: the size intervals defining 
the states-of-nature are so wide that the highest 
probability for a farm is by large to stay in the same 
class; complementarily, the probability for a farm to 
actually experience a change in size corresponding to 
one or more categories rapidly falls to zero; of course, 
the TPM is less diagonal when the transition period 
over which it is estimated is longer. 

Table 2 is a typical example of such a diagonal 
TPM, corresponding to annual transitions, taken from 
the recent study by Stokes [30]: for a farm lying in the 
size interval [50;99], staying in the same class means 
experiencing, in one year, a relative change in size 
(both increasing or decreasing) by as large a factor as 
two; as for moving two categories upward, that is to 
say reaching the size class [200;499], it means, again 
in one year, at least doubling, at most growing by a 
factor of about ten! Figuring explicitly those 
underlying relative changes makes the diagonal nature 
of the transition probabilities no longer surprising. 

Adopting such a limited discretization of the 
population structure must not be viewed as a problem 

                                                           
3 In particular, though an interesting issue, we shall not discuss 
here the question of the variable used to define the size of a farm. 

per se, since the primary objective of a MCM is to 
predict the total number of farms in the population. 
But by doing so, this model fails to give useful 
information on the fine structure of the projected 
population or a precise indication of, among other 
interesting indicators, the future average size of 
farms.4 Also, such a discretization may lead to the 
spurious conclusion that the distribution of the farm 
population is, or is becoming, bimodal, a feature that 
may only represent an artefact due to the definition of 
the size interval bounds (a classic issue when dealing 
with histograms). To avoid these problems, we 
propose in the next section a continuous version of the 
MCM, and then apply it to the population of 
professional French farms in section IV. 

III. A CONTINUOUS MARKOV CHAIN MODEL 

Table 3 shows that the cumulated distributions with 
respect to the utilised agricultural area (UAA), used as 
the size variable, of the population of professional 
farms represented in the French sample of the Farm 
 

                                                           
4 The study by Butault and Delame [27] appears as a worth 
noticing exception: using large scale panel data, the authors 
worked with a large number of states-of-nature which are not only 
defined upon the size in hectares but also the region, the type of 
farming, the economic size, the legal status of the farm or the age 
of the operator; thought they thus obtained a fine picture of the 
structure of the population regarding these politically interesting 
variables, neither can they directly recover indicators such as the 
projected average size of farms. 
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Table 3 Lognormal parameter estimations on cumulative FADN distributions for France a 

Parameter 
t

μ  Parameter 
t

σ  Model 
t

N  Year 
Coef. Std. Err. Coef. Std. Err. Adj. R²  

1980 3.3153 0.00021 0.6931 0.00045 0.9998 752,583 
1981 3.3233 0.00023 0.6765 0.00047 0.9998 745,775 
1982 3.3668 0.00025 0.6947 0.00051 0.9997 660,105 
1983 3.3734 0.00030 0.6734 0.00062 0.9996 659,024 
1984 3.3605 0.00024 0.6870 0.00054 0.9997 660,644 
1985 3.4064 0.00024 0.6953 0.00057 0.9996 633,959 
1986 3.4146 0.00025 0.6879 0.00060 0.9996 634,388 
1987 3.4424 0.00030 0.7153 0.00068 0.9995 584,772 
1988 3.5089 0.00034 0.7461 0.00082 0.9994 559,420 
1989 3.5239 0.00040 0.7436 0.00087 0.9993 563,657 
1990 3.5900 0.00044 0.7607 0.00099 0.9991 521,644 
1991 3.5965 0.00045 0.7662 0.00100 0.9991 526,123 
1992 3.6118 0.00044 0.7702 0.00096 0.9992 526,521 
1993 3.7226 0.00048 0.8215 0.00109 0.9991 461,250 
1994 3.7329 0.00050 0.8218 0.00106 0.9992 461,241 
1995 3.8013 0.00049 0.8338 0.00108 0.9992 428,844 
1996 3.8129 0.00054 0.8413 0.00116 0.9991 429,093 
1997 3.8774 0.00053 0.8449 0.00116 0.9991 405,632 
1998 3.8810 0.00055 0.8374 0.00116 0.9991 404,651 
1999 3.8948 0.00058 0.8311 0.00119 0.9990 404,203 
2000 3.9143 0.00067 0.8690 0.00141 0.9988 384,728 
2001 3.9219 0.00082 0.8731 0.00163 0.9985 383,675 
2002 3.9540 0.00082 0.8570 0.00159 0.9985 371,248 
2003 3.9375 0.00080 0.8648 0.00157 0.9987 382,942 
2004 3.9460 0.00083 0.8707 0.00166 0.9986 383,069 
2005 4.0613 0.00085 0.8483 0.00180 0.9978 346,219 

a: all the reported parameters are significant at the 1% level. 

Accounting Data Network (FADN)5 may be adjusted, 
each year from 1980 to 2005, by a lognormal density 
function of the form:6 

 ( )
( )( )2

2

ln1
2

2

t

t

h

t
t

t

N
n h e

h

μ

σ

πσ

−
−

=  (3) 

for 0h >  and where tμ  and tσ  are the log-normal 
distribution parameters and tN  is the total number of 

                                                           
5 These FADN cumulative distributions are obtained by taking into 
account the extrapolation factor attached to each farm in the 
sample. 
6 Actually, these distributions are best fitted by a 3-parameter log-
normal density function, rather than the (standard) 2-parameter 
log-normal density function used here. At the time of writing, 
calculations with such 3-parameter distributions are still in 
progress. 

farms in the population; in the rest of the paper, we 
will denote this ditribution as: 

 ( ) ( )ln
t

tt

t

n h
hN

h
φ

μ
σ

=
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 (3’) 

with φ  the probability density function of the standard 
normal distribution. 

It can be shown that the lognormal nature of a size 
distribution might be related to the so-called Gibrat’s 
law of proportionate effects [33]. Schematically, this 
empirical law states that the probability for, say, firms 
to experience a certain relative growth between two 
dates is independent of the initial size of the firm and 
is the same for all firms exhibiting the same initial 
size. Some authors have shown that this law does not 
hold in the agricultural context they studied, e.g. 
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Canada [34] or upper Austria [35]; inversely, the 
analysis reported by Butault and Delame for France 
[27] does not lead to a full rejection of the Gibrat’s 
law hypothesis. 

Here, the persistence of the lognormal nature of the 
size distributions of the FADN farm population across 
time inclines to assume the Gibrat’s law assumption as 
sufficiently plausible. Then, it can be written that the 
probability for farm i , with initial size ,i th  at time t , 

to exhibit a size of ( ), ,1i t i th h hτ δ+ = +  at time t τ+  
(i.e., to experience a relative growth at rate hδ  with 

1 h− < ∂ < +∞ ), is constant whatever the initial size: 

 ( )( ) ( ), ,1 constanti t i tP h h h p hτ τ
δ δ+ = + = =  (4) 

Under the further assumption that the growth of a 
particular farm between two dates is independent of 
the growth of other farms7, the total number of farms 
that will have a size h  at time t τ+ , ( )t

n h
τ+
, is given 

by the following convolution over hδ : 

 ( ) ( ) ( )
1

.
1t

t

h
n h p h n d h

hτ τ
δ δ

δ

+∞

+
−

=
+

⎛ ⎞
⎜ ⎟
⎝ ⎠∫  (5) 

where 
1 t

h
n

hδ+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the number of farms that 

exhibited a size 
1

h
hδ+

 a time t . 

Equation (5) may be regarded as a continuous 
Markov model which gives the population at time 
t τ+  from the observed population at time t , and the 
probability ( )p h

τ
δ  for farms to grow at rate hδ  

between these two dates. This continuous Markov 
model is not directly equivalent to the traditional 
MCM, since the probabilities ( )p h

τ
δ  do not exactly 

correspond to the transition probabilities of the 

                                                           
7 This is obviously not true at the individual scale: the actual 
growth possibilities of a particular farm will depend on its growing 
opportunities, that is, on the quantity of land made available by the 
reduction in size or exit of neighbouring farms and on its 
competitiveness acquiring such land. But, at a macro, aggregate 
scale, this assumption may be thought reasonable, in the sense that 
the growth of a particular farm in one region is independent of the 
growth of farms in other (remote) regions. 

traditional MCM. One can however easily turn back to 
a traditional MCM, since the probability of transition 
to state-of-nature j , defined by the size interval 
[ ],X Y  (with 0 X Y< < ), over a period τ  for farms 
initially in state-of-nature k , defined by the size 
interval [ ],x y  (with 0 x y< < ), is given by: 

 
[ ] [ ]

( ) ( ) ( )

( )
, , ,

.
Y h

h
X h

h

y

t
x

k x y j X Y y

t
x

p h n h d h dh

p
n h dh

τ

τ

δ δ
−

−

= → = =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫∫

∫
 (6) 

with the notations of equation (5). 
The interesting point is that, while the traditional 

MCM only derives a limited number of transition 
probabilities, the continuous approach that we propose 
allows to calculate any of these probabilities from 
equation (6), especially by making size intervals 
[ ],x y  and/or [ ],X Y  as small as desired. 

In other words, the continuous MCM proposed here 
outperforms by far the traditional MCM in terms of 
the richness of the structural information it allows to 
bring into light. As in the traditional MCM, it remains 
to determine, for a given transition period τ , the value 
of the probability ( )p h

τ
δ  for any growth rate hδ . 

We examine this issue in the next section on the 
example of French professional farms. 

IV. AN APPLICATION 
TO THE DISTRIBUTION OF FRENCH FARMS 

In this section, we present the results of estimating 
the probabilities ( )p h

τ
δ  from French FADN data for 

transition periods τ  ranging from 1 year to 15 years, 
using data over the 1980-2005 period.8 Estimations 
were obtained by using the lognormal parameters 
displayed in Table 3 and the following equation 
derived from equations (3’) and (5): 

                                                           
8 When dealing with a particular τ  year transition, some of the 
combinations of the available years could not be used in the 
estimation process; the reason lies in the fact that the extrapolation 
coefficients attached to farms in the FADN sample are not re-
evaluated each year but only every two or three years, when the 
results of the most recent survey on farm structures are made 
available. 
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a: dashed lines represent the estimated probability density function for each 
of the twelve studied 10-year transitions when considered individually; the 
bold line represent the estimated probability density function for the twelve 
10-year transitions considered altogether [the two outlying distributions 
correspond to the most recent studied transitions, 1994-04 and 1995-05]. 

Fig. 1 Estimated probability density function of a relative 
change in area in a decade for France a 
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where hε  are error terms. 
It appears that a parametric approach may be used 

to derive the ( )p h
τ

δ  probabilities since assuming that 
they follow a 3-parameter log-normal distribution 
leads to satisfying results, especially in maintaining 
the log-normal distribution of the projected farm 
population distribution. Thus, we suppose that the 
( )p h

τ
δ  probabilities that we want to estimate are of 

the form: 

 ( ) ( )
( )ln 1

1
h

p h
h

ττ
τ

τ

δ ηαδ φ
δ ν

+ −⎛ ⎞
= ⎜ ⎟+ ⎝ ⎠

 (8) 

for 1 hδ− < < +∞  and where τα , τη  and τν  are the 
parameters that we finally want to estimate from 
equation (7). These estimations were obtained using 
the nonlinear least-squares estimation procedure 
available in the Stata 10.0 software. 

Figure 1 shows the estimated log-normal probability 
density functions of a relative change in area for the 
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Fig. 2 Evolution of the estimated probability density 
function of a relative change in area for France 

twelve 10-year transitions considered, both when they 
are studied individually and when they are used 
altogether. Figure 2 represents the evolution of this 
probability density function for transitions ranging 
from 1 year to 15 years; the corresponding parameters 
are given in Table 4. As could be expected, the curve 
shifts to the right and flattens when the transition 
period increases, meaning that the probability of larger 
growth rates (both negative and positive) also 
increases. 

We have then used these results to project the 
population of professional French farms at the horizon 
of 2015. To do so, we used the 10-year probability 
 

 

Table 4 Parameters of the estimated probability density 
functions depicted on Fig. 2 a 

Transition 
τ

α  
τ

η  
τ

ν  2R  
Nb. of trans. 

studied 
1-year 0.8671 0.0482 0.1330 0.9979 11 

2-year 0.8552 0.0503 0.1551 0.9972 11 

5-year 0.7687 0.0755 0.2523 0.9939 15 

7-year 0.6631 0.1026 0.3675 0.9953 12 

10-year 0.5717 0.1442 0.4209 0.9926 12 

15-year 0.4239 0.2477 0.4928 0.9961 9 

a: all the parameters are significant at the 1% level.
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Table 5 An example of reconstructed transition probability matrix for the 10-year transition period for France a 
10t +  

t  ≤9 10 to 24 25 to 49 50 to 99 100 to 149 150 to 199 200+ Exit 

≤9 0.3406 0.3629 0.0180 0.0001 0.0000 0.0000 0.0000 0.2785 

10 to 24 0.0229 0.3483 0.3028 0.0467 0.0008 0.0000 0.0000 0.2785 

25 to 49 0.0001 0.0479 0.3131 0.3126 0.0418 0.0051 0.0009 0.2785 

50 to 99 0.0000 0.0011 0.0554 0.3280 0.2142 0.0812 0.0416 0.2785 

100 to 149 0.0000 0.0000 0.0020 0.0858 0.2069 0.1869 0.2400 0.2785 

150 to 199 0.0000 0.0000 0.0001 0.0164 0.0914 0.1534 0.4602 0.2785 

200+ 0.0000 0.0000 0.0000 0.0018 0.0198 0.0593 0.6407 0.2785 

a: with the starting year 2005 ( t ) and using the 10-year transition probability density function defined by the parameters shown in Table 4; intervals are for 
size in hectares of UAA. 

density function estimated above (with 10 0.5717α = , 

10 0.1442η =  and 10 0.4209ν = , see Table 4) and used 
the 2005 population as a starting point. This leads to a 
projected 2015 population of 2015 249,812N =  farms, 
with 2015 4.3826μ =  and 2015 0.9470σ = . The average 
farm size in 2015 is then easily obtained as 

2
2015

2015
2

2015 125.34 haeh
σ

μ +
= =% . 

It can be shown that, thanks to the log-normal 
distribution of the projected population, other 
interesting indicators such as quantiles can also easily 
be computed by: 

 ( ) ( )1.1 ueF u μ σ −
Φ− +=  (9) 

where u  is the desired quantile (with 0 1u< < ) and 
Φ  is the cumulative density function of the standard 
normal distribution[33]. In our case, with the figures 
above, we can then compute that: 

• 10% of the population will operate less than 
23.78 ha (1st decile); 

• 50% of the population will operate less than 
80.05 ha (median); 

• 10% of the population will operate more than 
269.41 ha (10th decile). 

Finally, as indicated in the previous section, a 
traditional transition probability matrix can be 
reconstructed from these estimations, according to 
equation (6). Table 5 reproduces such a TPM obtained 
starting from year 2005 and using the 10-year 
probability density function defined by the parameters 

of Table 4. Here, the bounds defining the size classes 
have been chosen arbitrarily but, once again, our 
approach enables us to set them at whatever value we 
want (except zero). Globally, this “reconstructed” 
TPM reproduces both the diagonal nature of the 
traditional MCM matrix and the fact that farms rarely 
move by more than one or two categories (upward or 
downward). Here, the probability of reaching 
neighboring categories is however quite high 
compared to what was shown in Table 2; this is just 
because the transition period is longer (10 years 
instead of 1 year). It would be easy to show that the 
transition probabilities of such a matrix intrinsically 
depend on the bounds used to defined the size 
intervals: a supporting evidence of this in the example 
of Table 5 is that the diagonal element of the matrix 
becomes smaller as the relative width of the size 
interval with respect to the central value reduces 
(compare diagonal elements for classes [ ]50;99 , 

[ ]100;149  and [ ]150;199 ). We can notice the poor 
information that would be derived from such a TPM 
on the evolution of the sub-population of larger farms 
in a traditional MCM setting, as the last category 
([ ]200;+ ) definitely acts as an “absorbing” class. On 
the other hand, Table 5 also demonstrate that our 
approach has the major drawback that the exit 
probability is constant whatever the size class, as it is 
simply given by: 

 ( 1) 1 t

t

N
p

N
τ

τ
+− = −  (10) 

This issue will be discussed in the next section. 
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V. DISCUSSION 
AND CONCLUDING REMARKS 

In this paper, we presented a continuous version of 
the traditional MCM. Rather than working directly 
with transition probabilities, this approach relies on 
the close but not identical concept of growth rate 
probabilities. We have shown that this is a more 
general approach since it brings more in-depth detail 
on the distribution of the projected population and the 
traditional MCM can be easily reconstructed from the 
estimated growth rate probabilities. 

Just like any other model, the traditional MCM 
relies on a set of assumptions: these were strong and 
quite arbitrary in the early implementations of the 
MCM to agriculture (like in [7]); recent approaches, 
especially those using a Generalised Cross Entropy 
method to estimate the model’s parameters (e.g. [15, 
25, 36]), are more flexible and insist on the use of 
prior information rather than rigid a priori 
assumptions. Here, the model is only based on two 
assumptions, the strongest of which being the Gibrat’s 
law of proportionate effects.9 Nonetheless, it appears 
to be quite well supported by data in the French case 
and can be seen as a plausible first approximation. 

This assumption may be seen as quite strong though 
in the general case, especially as far as exit is 
concerned: it is usually accepted that the probability of 
exiting the agricultural sector is higher far smaller 
farms, especially because exit often occurs after a 
“decapitalization” phase [27].10 It should be noted 
though that the model developed here does not deal 
with entry: “exit” should thus be seen as net exit. 
While this might not totally compensate, it could 
happen that entries are also more frequent at smaller 
sizes, that is at the size where farms are made 
available for takeover by exits. Anyway, it is an on-
going research to study if and how this continuous 
version of the MCM could be refined by releasing the 

                                                           
9 Recall that the second assumption is that the growth of a 
particular farm between two dates is independent of the growth of 
other farms (see supporting elements in footnote 7). 
10 In fact, this might be true especially in field crops, dairy and 
cattle production; farms specialised in horticulture are usually 
relatively small in terms of operated area and still they are viable; 
in their case, an economic indicator would be better adapted to 
represent their size. Again, the discussion regarding the definition 
of size in agriculture is beyond the scope of this paper. 

Gibrat’s law assumption for some or all sizes and/or 
growth rates and how to better account for both entries 
and exits. 

Finally, we would like to stress that the discrete 
approach developed in the traditional MCM does not 
constitute a “problem” per se as far as predicting the 
total number of farms is concerned: this is a powerful 
and relatively easy tool to implement to do so. But it 
gives little information on the fine structure of the 
projected population. The continuous MCM developed 
here overcomes this lack of information and is no less 
efficient in forecasting the total number of farms. We 
presented here a stationary version, but there is no 
doubt it could be made non-stationary, in the same line 
as the one used in the recent developments made to the 
traditional MCM; it could then bring into light 
valuable information regarding the impact of policy 
instruments and other market and/or technical 
variables. This is also our current direction for further 
research. 
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