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Abstract 

The principle motivation for using price-discriminating conservation auctions is that they 

are expected to be significantly more cost-effective than fixed-price mechanisms.  This 

paper measures cost effectiveness for tenders from two rounds of the Auction for 

Landscape Recovery in Western Australia relative to counterfactual fixed-price 

mechanisms.  If we assume that the bid equals the compliance cost, the auction gives a 

significant cost saving over fixed-price mechanisms.  If instead we assume that bids 

include an element of rent, fixed-price mechanisms can be more cost effective than the 

auction.  The significance of these results is that a fixed price scheme may achieve a 

similar level of cost effectiveness to a conservation auction, when one or more of the 

following apply:  compliance costs do not vary significantly between producers, auction 

bids have a significant element of rent and the auction incurs a significant additional 

administrative cost. 

Keywords: Auctions, conservation, bio-diversity 

 

 

1. Introduction1 

Current interest in auctions as policy mechanisms is based on theoretical models (Latacz-

Lohmann and van der Hamsvoort, 1997) and empirical evidence (Stoneham et al. 2003) 

that price-discriminating auctions are more cost-efficient than fixed-price mechanisms 

including fixed payments rates for conservation actions and environmental benefit.  The 

                                                 
1 This paper is derived from work for the Auction for Landscape Recovery MBI project.  Particular 
acknowledgement is made to Cheryl Gole (WWF), Andrew Huggett and Kristen Williams (CSIRO) and 
Dan Faith (Australian Museum) who led the on ground assessment work and development of the ecological 
evaluation metrics, which provide the underlying data on which this paper is based. 
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estimated cost efficiency of an auction relative to a counterfactual fixed price mechanism 

depends upon the fixed-price mechanism selected as a comparator and the assumption 

made about the rent component of the bid.  Stoneham et al (2003), used a fixed payment 

per unit of environmental benefit and assumed that bids did not include a rent as their 

counterfactual comparator mechanism.  To our knowledge, there are no conservation 

schemes which use an environmental benefit metric as a basis for calculating fixed 

payments.  However numerous schemes, including those run by The Department of 

Conservation and Land Management in Western Australia (Wallace et al. 2003), pay 

fixed amounts per unit of conservation inputs such as per kilometers of fencing and per 

hectare of revegetion. 

 

The policy significance of the analysis presented here is that it measures the cost-savings 

from an auction compared to a set of alternative mechanisms.  In particular, there is some 

evidence (Stoneham, 2003; Gole et al.  2005) that auctions incur additional 

administrative costs relative to fixed-price mechanisms, if the cost-saving is greater than 

the additional administrative cost, the auction is efficient.  

 

The paper is organized as follows.  The next section presents a theoretical model of 

tender selection.  Section 3 applies the model to discrete project choice using integer 

programming and non-linear integer programming for the auction plus five counterfactual 

fixed-price mechanisms.  Section 4 outlines the Auction for Landscape Recovery Market 

Based Instrument Pilot, and Section 5 presents results on cost-efficiency and the rent 

component of auction bids. Section 6 concludes. 
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2. Theoretical Model for Selection from a Continuum of Projects 

With perfect information on compliance costs, the regulator receives tenders from 

producers which are scored using an Environmental Benefit Index (EBI) (calculated by 

the regulator), bids and conservation inputs.  For a continuum of very small producers 

tendering their compliance costs for small fixed projects the problem of selecting bids is 

summarized by Figure 1, where bids ranked by EBI per dollar are plotted against the 

cumulative EBI.  Given a budget constraint, the total cumulative EBI is J* and the total 

cost of the auction, the area under the ‘supply curve’ S, is given by 0abJ*.  If the auction 

is compared to a fixed-price scheme where a fixed-amount g* is paid per unit of the EBI. 

The total cost of the fixed payment is 0g*bJ* and the area ag*b gives the efficiency gain 

from the auction. 

 

Figure 1: The supply curve for Environmental Benefit 
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The ‘supply curve’ differs from a conventional supply curve in that it is not given as the 

horizontal sum of individual firm’s marginal cost curves, instead it gives the marginal 

cost of a sequence of projects which are ordered from the lowest marginal cost to the 

highest.  Thus the firm is not adjusting the ‘output’ of EBI to equate the marginal cost 

with the fixed payment per unit of EBI.  Instead, the firm’s natural capital means that 

each firm tenders a single project with a given marginal cost. 

 

While the theoretical model represented in Figure 1 is for a continuum of small producers 

and projects, in practice projects can be ‘discrete’ that is large relative to the budget, 

therefore the optimal selection is a knapsack problem (Martello and Toth, 1990).  Projects 

are selected to maximize the total EBI within the budget.  The knapsack problem arises 

because the choice of tenders is binary and their total cost must be less than the budget 

constraint. 

3.  Optimal Project Selection under Alternative Institutional Arrangements  

Once the successful tenders have been selected, the auction can be implemented by a pay-

as-bid mechanism.  However, the information in the tenders can also be used to estimate 

the costs of a set of counterfactual mechanisms.  These are useful in that they measure the 

relative cost efficiency of the auction.  A number of possible price discriminating and 

fixed-price mechanisms can be considered, to allow a comparison of cost efficiency the 

total EBI is set so that it is at least as high as for the optimal tenders for the auction.  
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Mechanism 1 is the auction itself where successful tenders are paid their bid.  Mechanism 

2, is where a fixed-price per unit of environmental benefit (EBI) is paid (Stoneham et al, 

2003).  Mechanism 3 is where fixed-prices per unit of environmental inputs are paid, 

these payments ensure compliance by being greater than or equal to the bid in sum. 

If the regulator is restricted to fixed price mechanisms, the optimal subset of tenders 

selected from the price discriminating auction will be optimal.  In particular, because the 

price paid under a fixed price scheme usually depends on one marginal bid (or a small 

number of bids for a multiple input based scheme), it may be optimal to drop that tender 

in favour of an alternative which reduces the fixed payment.  Mechanism 4 is where the 

regulator makes an optimal selection of successful bids and pays a fixed-price per unit of 

EBI, Mechanism 5 is where the regulator selects bids on the basis of fixed payment rates 

for environmental inputs.  Mechanism 6 is where the regulator optimally divides the 

successful bids into two groups with different payment rates based on inputs.  

Mechanisms 7 and 8 are environmental benefit and input based fixed-price schemes 

which account for the possibility that bids include an element of rent. 

 

For Mechanism 1 the environmental benefit across the N firms tendering projects is 

identified as the integer programming (knapsack) problem 

1 1
max { ( , )};    Subject to: ;    0,1;    1,..., .

i

N N

i i i i i i ii iI
I B e k I b M I i N

= =
≤ ∈ =∑ ∑  (1) 

The term Ii is a binary indicator variable where a value of 1 indicates a tender is included 

and zero excluded, îI is the optimal solution to (1).  If bids are ‘lumpy’ then overall 

conservation benefits may be increased by swapping cheaper bids for higher cost ones, if 
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the resulting solution is closer to the budget (Hajkowicz et al., 2005).  In addition, 

),( iii keB is the EBI for farm i using a (1xL) vector of environmental inputs ei in return 

for bid bi.   The variable ki measures ‘environmental capital’ and can be measured, for 

instance, by the existing area of bush on a farm. The benefit function is strictly increasing 

and concave in all element of ei and ki .  Variations in ki lead to differing environmental 

benefits from a given level of environmental inputs.  The first constraint is the regulators 

budget constraint, whereby the sum of bids must not exceed the total budget, M. The 

solution to problem (1) is ̂B  that is the maximum total EBI. 

 

Mechanism 2 takes the optimal subset of tenders from (1) îI , and determines a payment g 

applied to environmental benefit to minimize costs by solving the linear programming 

problem 

 
1
ˆ ˆ( , );    subject to:   ( , )

N

i i i i i i iig
Min I gB e k I b gB e k

=
≤∑     (2) 

The constraint ensures, for the successful firms, the transfer payment is at least as much 

as the bid.  This constraint approximates the individual rationality constraint and, if the 

bid equals the compliance cost, is the farm’s individual rationality constraint.  A 

individual rationality constraint ensures that a firm has an incentive to participate. 

 

Mechanism 3 defines a (1xL) vector of fixed prices per unit of inputs t as: 

 
1
ˆ ˆ;    subject to:   

N

i i i i iit
Min I te I b te

=
≤∑      (3) 
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The constraint again ensures the transfer payment is at least as much as the bids for the 

successful firms.  The fact that the successful subset of firms are fixed and the effort is 

given means that the total benefit under Mechanisms 2 and 3 remains at B̂ .  

 

Mechanism 2 and Mechanism 3 give the same cost-efficiency when: 

 

 
1 1
ˆ ˆ ( , )

N N

i i i i ii i
t I e g I B e k

= =
=∑ ∑  

 

this can be interpreted further as stating that  

 

 
1 1
ˆ ˆ/ ( , )

N N

i i i i ii i
t I e I B e k g

= =
=∑ ∑       (4) 

 

that is the average cost per unit of EBI must equal the fixed transfer from Mechanism 3.  

Note that g is the maximum bid per unit of EBI.   

 

The importance of the result can be shown by considering a limiting case, where the 

compliance cost of effort is constant across all producers, while the EBI varies across 

tenders.  In this case, using a fixed-price per unit of EBI mechanism will lead to a lower 

estimate of auction efficiency gains because those landholders who hold land of higher 

environmental benefits will earn rents under a fixed-price EBI mechanism. However, a 

fixed-price input mechanism does not give an efficiency gain from the auction because 

the individual rationality constraint is binding for all landholders at the fixed price.  In 
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general it is not possible to state if the fixed-price input mechanism will give higher or 

lower cost efficiency for the auction: it depends on the relative degree of heterogeneity in 

the opportunity costs, the environmental benefit, and the covariance between them. 

 

Optimal fixed price Mechanisms 

The selected set of tenders from the auction may not be the optimal set when the 

regulator is restricted to a fixed price Mechanisms.  Mechanism 4 is EBI based, and 

Mechanism 5 is input based.  Mechanism 4 requires the solution of the following 

problem: 

1 1,

ˆ( , );   subject to:   ( , ); ( , )
N N

i i i i i i i i i ii iI g
Min I gB e k b I gB e k I B e k B

= =
≤ ≥∑ ∑  (5) 

Mechanism 4 is optimized over both the transfer payment g and the indicator variable Ii.  

This means that the problem is a mixed integer nonlinear programming problem.  The 

first constraint ensures that those farms selected receive transfer payments in excess of 

their bids.  The second constraint ensures that the total environmental benefit is at least 

the same as that for Mechanism 1, B̂ .  Mechanism 5 is given by 

 
1 1,

ˆ;    subject to: ; ( , )
N N

i i i i i i i ii iI t
Min I te b I te I B e k B

= =
≤ ≥∑ ∑    (6) 

and is the environmental input-based equivalent of (5).  
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Price discrimination 

Mechanism 6 splits the fixed-price environmental input based Mechanism Mechanism 5 

into two groups.  It therefore explores the gains from partial price discrimination. 

 

2 2 1 2

1 1 1 1,

ˆ;subject to: ( ) ; ( , ) ; 1
j

i

N Nj j j j j
i i i i i i i i i ij i j iI t

Min I t e b I t e I B e k B I I
= = = =

≤ ≥ + ≤∑ ∑ ∑ ∑  (7) 

These schemes depend on the regulator having sufficient information to divide the 

tenders into two groups.  If they depend on the farmers self-selecting this scheme may be 

subject to adverse selection. 

 

Accounting for rent in bids 

Producers are assumed to have an unobserved compliance cost ( )iC e which is increasing 

and convex in elements of ie .  Bids can be decomposed as follows 

( )i i ib C e r= +          (8) 

That is the bid from firm i equals the compliance cost plus a rent term ri.  The problem 

with this approach to estimating an adjusted efficiency is that the firms compliance cost 

function is unobserved.  However, it may be possible to determine an efficient bid 

frontier on the basis of the environmental inputs and the bid. 

 

Given the small size of the samples and expectation that the stochastic component of bids 

will be low given that actions are straightforward it was decided to establish the cost 

frontier using Corrected Ordinary Least Squares first proposed in the efficiency literature 

by Winsten (1957).  This procedure involves first estimating the bid function 
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0 ( , )i i ib f e uβ β= + +  

by OLS, where 0β  is the constant term, β  is a vector of parameters, f(.) is a function and 

iu  is a iid residuals.  In a second stage, the smallest (largest negative) residual adjust the 

OLS constant term by 

 }{minˆ
00 i

i
u+= ββ  

The residual is adjusted in the opposite direction and measures the distance between the 

cost frontier and the actual bid thus, the residual is a measure of the firms type 

min{ )i i i
i

u uθ = − .  Thus (8) can be given as: 

 0
ˆ ˆ( ( , ))i i ib f e rβ β= + +  

The term in brackets gives the compliance cost and the estimate of rent is given by 

 ){minˆ i
i

ii uur −=  

In practice the rent term may account for variations in the opportunity cost of labour and 

private benefits of conservation.  However, it is not possible to separate these 

components, so the rent is treated as a single term. 

 

Mechanisms 7 and 8 are equivalent to Mechanisms 4 and 5, but adjust bids for the rent 

component to determine the optimal fixed price schemes.  Mechanism 7 is given by the 

mixed integer nonlinear programming problem: 

1 1,

ˆˆ( , );    subject to: ( ) ( , ); ( , )
N N

i i i i i i i i i i ii iI g
Min I gB e k b r I gB e k I B e k B

= =
− ≤ ≥∑ ∑   (9) 

Mechanism 8 is environmental input-based equivalent: 
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1 1,

ˆˆ;    subject to: ( ) ; ( , )
N N

i i i i i i i i ii iI t
Min I te b r I te I B e k B

= =
− ≤ ≥∑ ∑    (10) 

 

4. Auction for Landscape Recovery 

The Auction for Landscape Recovery (ALR) is a voluntary land and nature conservation 

program for landholders in the wheatbelt agricultural region of the Avon River basin 

(Gole et al.  2005).   It is one of a number of pilot market based instrument schemes run 

in Australia (National Heritage Trust, 2004).  The ALR was conducted as a sealed-bid 

price discriminating auction, similar to the Bushtender Program.  Landholders were 

encouraged to submit a tender giving their proposed management activities, anticipated 

environmental outcomes and a bid.  The process was communicated as rewarding those 

who deliver the greatest environmental benefit per dollar. Producers were also reminded 

that the scheme is competitive.  In terms of auction theory the auction type is complex in 

that the seller sets the bid and defines the good over a multivariate set of attributes which 

determine the environmental benefit index.  This type of procurement auction has been 

identified as a scoring auction (Asker and Cantillon, 2004), similar auction designs are 

used in road construction and electricity Mechanisms (Bushnell and Oren, 1994; Wilson, 

2002) 

 

The auction was conducted over two rounds.  Round One closed at the end of April 2004:  

a total of 56 bids were received from 38 landholders – some landholders submitted 

multiple bid.  Round Two closed at the end of February 2005 and generated 33 bids from 

29 landholders. Here we focus exclusively on the group of tenders proposing revegetation 
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and fencing in order to achieve some degree of homogeneity in the tenders, reducing the 

sample to 27 in Round One and 32 in Round Two.  Tenders were evaluated using a 

Environmental Benefit Index which is discussed in detail in Gole et al (2005, p21).  The 

Environmental Benefit Index used was predominantly a measure of biodiversity and was 

based on the index used in the Victorian Bushtender trial (Parkes, et al., 2003). 

 

 

5.  Measuring the Cost-effectiveness for Auction for Landscape Recovery 

 

In Round One, the mixed integer programming solution to the knapsack problem selects 

tenders with a relatively low cost per unit of environmental benefit (EBI), but as the 

budget constraint is approached then the solution switches to higher cost bids to satisfy 

the budget as closely as possible.2  In Round One 12 tenders are selected, and the 

marginal tender in the selected set has a cost per EBI of $5.353.  Two, relatively small 

tenders with lower costs are not selected.  The total EBI preserved is 58,540 and the 

selected tenders cost $99462.  In Round Two 15 tenders were selected with a total cost of 

$98,878 and the marginal tender had a cost per EBI of $2.403. Full results are given in 

Table 1. 

 

                                                 
2 All problems were solved using GAMS solvers for linear programming, mixed integer programming and 
mixed integer nonlinear programming. 
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Table 1  Mechanisms Costs 
     Transfer payments $: 
Mechanism Round Total 

Cost $ 
EBI Cost 

Effectivenes
s as per cent 
of 
Mechanism 
1 

Per 
EBI 

Per Fence 
km 

Per 
Revegetation 
ha 

1.  Firms paid bids to maximize environmental 
benefit subject to budget constraint. 

1 99462 58540 100 -   
2 98878 60854 100 -   

2. Fixed payment per unit of environmental 
benefit  

1 313368 58540 315 5.353 - - 
2 163129 60854 165 2.680 - - 

3. Fixed payments per unit of environmental 
inputs 
  

1 206197 58540 207 - 3659.87 266.;66 
2 183672 60854 

186 
- 1888.89 874.87 

4. Optimal fixed payment per unit of 
environmental benefit 

1 313368 58540 315 5.353 - - 
2 142207 61584 144 2.309   

5. Optimal fixed payments per unit of inputs 1 206197 58540 207 - 3659.87 266.;66 
2 143327 60965 145 - 2329.41 198.71 

6.  Two-tier input pricing 1 tier 1 
1 tier 2 

148370 58566 
149 

- 3911.53 
2212.92 

37.88 
266.67 

2 tier 1 
2 tier 2 

135348 60956 
137 

- 2207.09 
1513.94 

376.86 
1.50 

7.  Efficient frontier fixed-payment per unit of 
environmental benefit.. 

1 282494 58540 284 4.826   
2 69892 61323 71 1.139   

8.  Efficient frontier fixed-payments per unit 
of inputs 

1 86016 58540 86  2009.52 52.08 
2 85159 61160 86  1195.29 123.52 
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First we consider the efficiency of the auction over the two rounds relative to the output 

based Mechanism 2 and input based Mechanism 3.  In Round One Mechanism 2 has a 

low level of efficiency compared to the auction while Mechanism 3 fares better.  In 

Round Two this result is reversed.   

 

In Figure 2 shows the relationship between the cumulative EBI and the bid per EBI 

ranked in ascending order for successful bids.  Mechanism 1 pays each firm their bid, 

Mechanism 2 pays the highest Bid per EBI and Mechanism 3 pays each firm according to 

their inputs.  From equation (4) if average cost for Mechanism 3 is less (more) than the 

highest Bid per EBI, Mechanism 2 (Mechanism 3) is relatively cost-effective.  From 

Figure 2a Mechanism 3 is relatively cost-effective for Round One, thus the auction 

should be compared with a fixed input price scheme.  From Figure 2b in Round Two, 

Mechanism 2 is relatively cost-effective 

 

Mechanisms 4 and 5 show the efficiency gain to fixed price schemes of allowing a 

reselection of successful tenders.  In Round One reselection had no effect, in Round Two 

it reduced costs by 40 per cent of the auction cost. Mechanism 6 gave significant cost 

savings over the fixed price schemes over both rounds 
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Figure 2a Bids Ranked by Bid per EB Round One 
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Figure 2b Bids Ranked by Bid per EB Round Two 
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Cost Effectiveness with Rent 

Estimates for the bid cost function ( )iC e are given in Table 2.  The preferred functional 

form is a quadratic.  The parameters indicate that the bid cost function is convex in both 

inputs.  This can be explained by an increasing marginal shadow price for labour and land 

diverted from other productive activities.   

 

Mechanism 7 shows a cost less than the auction for the fixed price per unit of 

environmental benefit scheme in round 2 and Mechanism 8 shows a cost less than the 

auction over both rounds.  These results depend critically on the bid adjustment being a 

rent payment, implying that a rational producer would be willing to accept a total transfer 

payment which is less than their bid. 

 

Table 2 Estimates of the bid function 
 
 Round 1 Round 2 
Variable  Parameter t -statistic Parameter T -statistic 
Revegetation (squared) 0.4343 8.47 7.289843 6.13 
Fence (squared) 126.7323 8.64 120.8808 3.12 
Constant β0 5014.526 6.75 6478.127 1245.13 

Adjusted Constant 0β̂  608.165  1667.247  

F(2, N-k) 68.44  26.98  
){min i

i
u  -4406.361  -4810.88  

2R  0.8384  0.626  
Observation (N) 27  32  
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6.  Conclusions 

The choice of a comparator fixed-price scheme to measure auction efficiency should be 

guided by what is available as a pragmatic alternative.  In Western Australia an input-

based scheme is widely applied in conservation schemes but an environmental benefit 

basis has, to our knowledge, never been considered.    The importance of this analysis is 

that auctions are expensive to administer, over time a regulator may decide, on the basis 

of the results of past auctions, to switch to a fixed-price scheme.  This analysis will 

indicate whether an environmental benefit or input based fixed price scheme will be cost-

efficient.  It also indicates the extent to which bids should be discounted to eliminate the 

rental component. 

 

The first conclusion from this analysis is that the data drawn from the ALR pilot auction 

scheme report a significant increase in efficiency over an environmental benefit-based 

and an input-based fixed price scheme of between 315 and 207 per cent respectively in 

Round One and 165 and 186 per cent in Round Two.  Although not as large a gain as 

reported for the Bush Tender project of 700 per cent , this may reflect the pilot nature of 

the ALR, and the relatively small level of funding for on ground works, such that the 

project operates in a zone where the marginal cost of purchasing benefits is not rising 

steeply. 

 

Designing tiered Mechanisms where different producer groups are paid different rates 

increases efficiency for Round One by 56 per cent and Round Two 49 per cent compared 

with the single fixed input price alternative. 
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If the bids are adjusted to eliminate the rent component, the percent gains from the 

auction fall to 284 per cent for the environmental-benefit based scheme and 86 per cent 

for the input-based scheme in Round One and 71  per cent and 86 per cent respectively in 

Round Two.  
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