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ABSTRACT

Over the past fifteen years, the agricultural biotechnology industry has exhibited cyclical behavior
in concentration and consolidation.  This paper provides a theoretical model of endogenous R&D,
in which industry concentration exhibits cyclical behavior.  The model also generates additional
testable hypotheses, and policy implications.
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2Artuso argues that “the consolidation underway in the industry is simply a reflection of
the increasing costs of developing and obtaining regulatory approval for transgenic crops (p. 1).”
Johnson and Melkonian examine “technology and policy factors responsible for consolidation” (p.
2), and go on to argue that the relatively high level of ‘incompleteness’ in agri-biotech contracts
makes M&A cost-effective relative to partnering.  Graff, Rausser and Small argue that “at least
one key driver behind the recent restructuring of the agronomic systems industry is the desire to
exploit complementarity between intellectual assets (p. 2)” of previously independent firms. 
Rausser, Scotchmer and Simon merge the incomplete contracts and complementary assets
arguments to explain the use of M&A rather than other restructuring options.

Cyclical Concentration and Consolidation in 
Biotech R&D:  A Neo-Schumpeterian Model

Since 1995, the outstanding feature of the agricultural biotech industry structure is its

increasing concentration.  Consolidation in this industry is accomplished primarily through

mergers and acquisitions (M&A).  In 1996 and 1997, Monsanto alone acquired 16 biotech or

related companies.  Several explanations of this M&A activity have been offered (Artuso, 1999;

Johnson and Melkonian, 1999; Graff, Rausser and Small, 1999; Rausser, Scotchmer and Simon,

1999).2      Each of these articles provides meaningful examination of forces contributing to

industry consolidation, but focuses on the M&A activity of the past five years.  In other words,

these explanations focus on explaining the recent flurry of M&A activity. 

Kalaitzandonakes (1999) contends that a longer-term perspective on the agricultural

biotech industry shows that the recent flurry of M&A is neither unprecedented nor sustainable.  

In his view M&A activity exhibits  a natural cyclical pattern, with the previous cyclical peak

corresponding to the 1988-92 consolidation in the seed industry, and the most recent peak

corresponding to the 1996-1997 purchasing of seed companies or divisions by biotech companies,

most notably Monsanto and DuPont.  Limited empirical evidence to date provides crude support

for this explanation (Figure 1).  Particularly noticeable are the peak levels of M&A activity in the
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late 1980s and in 1996-97; the valley in the early 1990s is also conspicuous due to the absence of

M&A activity.  The recent spate of M&A activity has led to an increase in industry concentration:

there are now four agricultural firms with significant revenues from seed and enhanced genetic

traits (Monsanto, 1999).

This paper provides a theoretical model of the cyclical concentration pattern as the

outcome of endogenous R&D investment decisions.   The development of a rigorous theory of

cyclical biotech concentration, with accompanying empirical and policy implications, are unique

contributions of this paper to the literature.

The next section of the paper develops the neo-Schumpeterian model of R&D, innovation,

and industry structure.  The third section derives implications on R&D activity and industry

concentration.  Empirical implications are presented in the fourth section.  The paper concludes

with policy implications.

A Model of Innovation and R&D-Industry Structure

The model is built around neo-Schumpeterian endogenous innovation fueled by investment

in R&D. The defining characteristics of the neo-Schumpeterian approach are that R&D is

inherently a risky investment, that products are made obsolete and replaced by the next generation

of higher-quality products, that successful researchers obtain some degree of monopoly power

and rents from their discovery of the next generation of products, and that the lure of monopoly

profits draws firms into the R&D process (Dinopoulos, 1994).  Each of these assumptions

accurately represents a part of the agricultural biotechnology industry.  
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The representation of R&D and innovation in this paper follows the neo-Schumpeterian

approaches of Segerstrom, Anant and Dinopoulos, Grossman and Helpman, Aghion and Howitt

(1992, 1998) and Barro and Sala-i-Martin, in modeling R&D as a sequence of stochastic

innovation races.  In each race, firms conduct R&D in an effort to be the first to discover the

next-generation product.  The winner is granted an exclusive patent on this product, and earns

monopoly rents.  Schumpeter’s ‘creative destruction’ occurs as the ‘creation’ of each successive

product ‘destroys’ the competitive advantage held by the previous-generation product.

The current model has a single agricultural life-science product, which faces inelastic

demand.  The cost of producing this output is constant at each instant in time.  Firms invest real

resources in R&D to discover innovations which reduce production costs.  R&D activity is

modeled as a race, in which the winner of the race discovers and becomes the sole owner of the

next-generation production technology.  This firm is able to earn a degree of monopoly rents from

its discovery, but the price which the firm can charge is limited by the availability of the previous-

generation technology.  Immediately at the end of one R&D race a new race starts, to find the

next innovation.  The discoverer of this new innovation becomes the new monopolist.  The prior

winner’s market power is effectively destroyed.  The number of firms entered in each R&D race is

determined endogenously by a zero-expected-profit condition.  Each firm’s level of R&D activity

is the outcome of an optimization process.  The evolution of R&D activity over time is driven by

an inter-temporal arbitrage equation, which relates firm value to the level and expected duration

of monopoly rents.  The summation of this modeling process is the derivation of a difference

equation which governs the evolution of R&D activity–and hence the evolution of R&D industry

concentration–over time.  The remainder of this section formalizes the model.
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The Output Market

Assume the demand for the single agricultural life-science output is given by the constant

elasticity demand function

Q   =    P    0 < < 1-δ εε ,

where Q is the quantity demanded, P is the price, 
, is a parameter, and J is the absolute elasticity

of demand.  The assumption that  J<1 means that demand is inelastic, which corresponds to many

agricultural and pharmaceutical products.

The total cost of producing Q is defined for all technologies by

C Q   =   A Q ,

where A is the unit cost of production, and will be influenced by R&D and innovation.  The

evolution of unit costs is governed by the stochastic differential equation

dA  =    A ds,   > 1λ λ−1

where s is a stochastic variable that takes the value of unity with instantaneous probability 0dt

and the value of zero with probability (1-0)dt (t represents time).  The case s=1 denotes the

discovery of an innovation which decreases unit costs by a factor �.  In other words, the

probability that an innovation is discovered in any time interval (t, t+dt) is 0dt.  Equation 3

describes a memory-less Poisson process for the arrival of innovations, with intensity 0 (see

Tolley, Hodge, Thurman and Oehmke for a discussion of the Poisson process with respect to

R&D).  This particular Poisson specification is borrowed from Dinopoulos and Oehmke, and is
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consistent with empirical work conducted by Graff, Rausser and Small).  Thus, after the jth

innovation is applied, the cost function can be rewritten as

 C Q   A QQ , , j j
- j  =   A =   λ 0

where CQ,j represents the production costs using the jth innovation, A0 is an initial unit-cost figure

and Aj represents unit costs when using the jth innovation in production.  

The innovating firm earns monopoly rents by charging a price in excess of production

costs (equivalently, the firm licenses the technology to farmers for a technology fee).  However,

the price which the monopolist can charge is limited by the availability of the previous generation

of technology.  Bertrand competition between the current and previous monopolists thus

determines the limit-price to be

P   A=   
C

Q
  =   Q ,  j-1 - j+ 1∂

∂
λ 0

The price which the innovator charges is thus limited by the degree of competitive advantage

afforded by the innovation, �.  This result is standard in neo-Schumpeterian growth models (see

Dinopoulos).

Equations 1, 4, and 5 can be combined to determine an expression for the instantaneous

profits earned by the winner of the jth race:

Π j
j  =   ( - 1 ) A  .0λ δλε ε ε1 1− − −( )
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R&D and Innovation

For each firm i, the cost of research activity Ri, j directed to discovering innovation j is:

C RR i( ),  j i ,  j   =    F   +    R  ,      >  1 .γ αα

F represents fixed costs,  is a productivity parameter, and � is a parameter that representsδ

decreasing returns to scale as the level of research activity gets large relative to the fixed costs

(for low levels of Ri,j , amortizing fixed costs over Ri,j results in increasing returns to scale), so that

the firm has the usual U-shaped average cost curve.  The fixed costs represent the costs of

maintaining physical plant, starting and maintaining research activities, etc.

For each R&D race, the instantaneous probabilities of innovation for the firm and the

industry are

ϕ( ) ),R i  j
i ,  j

j
j

j

j

    
R

K + R
 ,     and     (R   =   

R

K + R
 ,≡ Φ

respectively, where  is the aggregate level of R&D activity in the industry. R j  =  R i,  j
i

∑

Equation 8 implies increasing but diminishing returns of research activity on innovation

probabilities (Dinopoulos (1994) and Segerstrom(1995) provide alternative specifications of

instantaneous diminishing returns to R&D. ).  At the industry level, the instantaneous probability

of innovation approaches unity as the level of research activity approaches infinity, but there is a
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( )r  +  (R  V   =    .j+ 1 j jΦ Π)

nonzero probability of failure (not discovering the next-generation product) for any finite level of

R&D. 

The value of the firm that wins race j is determined by the arbitrage equation

Equation 9 states that the profits earned by the winner of the jth race equal the risk-free rate of

return, r, plus a risk premium (per unit) equal to the probability that the next-generation

innovation will be discovered and make the current technique obsolete.

Firm i will invest in race j until the expected marginal return from R&D–the probability

that firm i will innovate successfully times the value of being the innovator–equals the marginal

cost of R&D:

′ ′ϕ ( ) ( ), ,R Ri ij j R  j V   =   C

The zero-profit condition for the R&D industry is 

ϕ(R ) V   =  C (Ri,  j j i ,  j )

The zero-profit condition is that for each firm i participating in race j, the expected returns equal

the costs.

Equations 7, 8, 10 and 11 are sufficient to ensure that each firm engaged in the R&D race

is producing R&D activity at the minimum of their average cost curve.    The average-cost

minimizing level of R&D and the associated total cost are

R R Fi j i j,
*

,
*( ) , =   

F
( - 1 )

   and     C   =  
- 1Rα γ

α
α

α







1
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where the superscript * denotes the optimized value of the variable.  

Algebraic manipulation of Equations 9, 11 and 12 results in a relationship between current

R&D activity and firm value,

V j    =     ( - 1 )   F  (K + R  ,
1- 1 -1

jα α γ
α

α α
α
α )

and between R&D activity in the next race and current-race firm value,

R

K + R
   =    

V
 -  r .j+ 1

j+ 1

j

j

Π

Substituting for Vj from equation 13 reveals that equation 14 is a nonlinear difference equation in

R&D, for which it is at best extremely difficult to find a closed form solution.  We pause only to

note that there is no non-zero, steady-state solution to 14, since inelastic demand causes $j

decrease with each subsequent R&D race.

Since it is difficult to find closed form solutions to equation 14, results are generated by

solving the equation numerically.   

Results

Results on R&D activity, firm value, and time to innovate

Solving the difference equation 14 for varying parameter values and initial conditions

yields results on R&D activity and expected duration of the innovation race (Figures 2 and 3).
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Figure 2 depicts a numerical solution to the difference equation 14 with monotonically

declining R&D activity (parameter and initial values: r = 0.1, F = 50, � = 1.1, � = 3, K = 1000,

� = 1.5, $0 = 10,000, R0 = 1040).  This solution has very intuitive characteristics.  Since profits

decrease each race (due to the inelastic demand), it seems likely that firms would have less

incentive to engage in R&D, so that R&D activity would also decline monotonically.  Lower

levels of R&D activity in turn imply that the expected time at which the innovation is discovered

increases with each race.

Figure 3 depicts a numerical solution which exhibits large cyclic swings in R&D activity

(parameter and initial values: r = 0.1, F = 100, � = 1.1, � = 0.75, K = 1000, � = 2, $0 = 10,000,

R0 = 2000).  These swings are also caused by firms’ expectations about profits (which in this

model are always correct), but both the level and duration of instantaneous profits are important. 

Even though the level of profits is declining, if the firm is able to capture those profits for a longer

period of time, then the present value of the profit stream may increase.  The duration of the profit

stream for the jth innovator is determined by the time to innovate in race j+1.  If it takes longer to

innovate in race j+1, then the present value of the jth innovator increases, ceteris paribus. 

Consequently, the level of R&D rises in race j.  This in turn has a feedback effect, through

equation 14, which further decreases the R&D level in race j+1.  

It is quite easy to find parameter values which generate cycles.  As the above intuition

suggests, under- or over-investment in any race (relative to the trend) generates cyclic behavior. 

For example, changing the initial level of R&D activity in Figure 2 by as little as ±5% generates a

cyclic pattern centered around the downward trend depicted in Figure 2.  For all parameter values

the authors tried, it is more difficult to find an initial value for R&D activity that results in
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smoothly declining levels of R&D activity than to find some degree of cyclic behavior.  The

parameter values represented in Figure 3 were chosen to provide what is likely an exaggerated

cycle.

Results on industry concentration

The simplest measure of R&D industry concentration is the number of firms in the

industry.  Ignoring the integer problem, the number of firms in R&D race j is determined by

n�Rj/Ri, j
*.  

Since the difference equation 14 is solved numerically, the number of firms in any given

R&D race must also be determined numerically.  Rij
* does not depend on the industry-wide level

of R&D, so that the behavior of n is similar to the behavior of Rj.  That is, when Rj declines

monotonically, so does n; when Rj cycles, so does n.  For illustrative purposes, extreme cycles are

depicted in Figure 4, generated by the same parameter values which generate the cyclical R&D

activity depicted in Figure 3.  In these extreme cycles, the number of participants in an R&D race

can fluctuate between several hundred firms and only a handful.  This extreme fluctuation is

presented only for illustrative purposes: a range of parameterizations lead to more believable

cyclic patterns of industry concentration.

Interpretation of Results

Cyclical Concentration

The driving force behind the cyclical pattern in the model is initial over- or under-

investment in biotech R&D.  There is some casual evidence of over-investment.  For example,



3The Fidelity Biotechnology Fund is the oldest biotechnology fund or stock index.  Data
on the NASDAQ biotechnology index are unavailable prior to January, 1995.
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since its inception on Dec. 16, 1985, the Fidelity Select Biotechnology Fund has performed about

at par with the Standard and Poor’s 500 index (S&P 500).3  The S&P 500 is more diversified and

so presumably less risky than the Biotechnology Fund.  Thus, in a risk-adjusted sense, biotech

stock prices are underperforming (at least by this measure).  This is consistent with the idea of

historical over-investment.

Over-investment occurs, within the context of the model, when profits are lower than

expected, or when R&D costs are higher than expected.  A primary reason why profits may be

lower than expected is consumer resistance to genetically engineered products.  For example, In

1990, “Monsanto executives believe[d] the combined sales and royalties [from bovine and porcine

growth hormone and 13 other genetically engineered products] could approach $1 billion a year

by the end of the decade” (Schneider, 1990).  However, in fiscal 1998 Monsanto had revenues of

only $209 million from their biotech ‘traits’ businesses (Monsanto, 1999).  The current European

Union proscription on all genetically engineered products is placing a further damper on potential

profits. For example, Monsanto projects ‘trait’ revenues to be $760 million in 2002, all from the

U.S. and Latin America, substantially less than the $1 billion originally projected by 2000.  

A second, key reason why profits may be lower than expected is that companies have not

been able to extract the expected level of monopoly rents from producers.  “Seed companies have

captured less than 25% of the value of yield increases attributable to genetic improvement

(Artuso, p. 3) .” 
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Profits also may be lower than expected if R&D and commercialization costs exceed

expectations.

Technological difficulties may lengthen the duration of the R&D process, increasing costs. 

In 1990, Monsanto’s Robert Fraley was quoted as saying “Two years from now every crop in the

world will be easily manipulated.  Ten years from now, in some plant we’ll know every gene,

every protein, every function.  There are no longer any technical restraints” (Schneider, 1990). 

Despite the long time lag involved in biotechnology R&D (Fraley created the first transgenic plant

in 1983), R&D firms appear to have forecast this time lag more accurately than some of their

scientists.  For example, in 1990 Monsanto chairman Richard Mahoney projected that the first of

Monsanto’s genetically engineered plants would appear on the market by 1994 or 1995

(Schneider); the first transgenic plants (bT corn and cotton and Roundup-ready soybeans) were

planted commercially in 1996 (Kalaitzandonakes).  However, the vision of unrestricted

technology has clearly not been realized to date. 

Commercialization costs are also higher than might have been anticipated.  Arutso

contends that  “it is quite likely that cost considerations are also influencing consolidation of the

agricultural biotechnology industry.   ...Regulatory oversight of transgenic crop varieties has also

undoubtedly added new product development costs by requiring closely monitored field trials,

environmental assessment, and food safety analyses” Artuso, (p. 10).  John Stafford, chairman of

American Home Products, has been quoted as saying “It is becoming more and more costly to

take advantage of the new technologies” (The Financial Times Limited, 1998).  The result is likely

commercialization costs higher than were expected even a few years ago.
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M&A Activity

The model exhibits cyclical behavior in industry R&D levels, which leads to cyclical

behavior in industry concentration.  Although the model does not make this assumption explicitly, 

it is reasonable to interpret concentration to be accomplished in part through M&A activity.  This

is certainly the case in the agricultural biotech industry.  Allowing this interpretation, the model

suggests that M&A activity also exhibits a cyclical pattern.  The relationships among the various

cyclical patterns allow the derivation of empirically testable hypotheses.

Implications for empirical work

  The model exhibits behavior in which industry R&D activity moves counter-cyclically to

industry concentration.   This is a testable hypothesis, given a good data set on private agricultural

biotech R&D.

If the model’s predicted cyclical pattern of industry concentration is correct, the next few

years should witness a reversal of the current pattern of increasing industry concentration.

Assuming that M&A moves pro-cyclically with concentration and counter-cyclically to industry

R&D activity, M&A activity in the industry should diminish significantly over the next few years,

also reversing the behavior of the past few years.  As time unfolds, these implications will be

testable.

The pro- or counter-cyclicity of R&D investment distinguishes among competing

explanations of concentration.  For example, the complementary asset argument suggests that as

M&A activity increases, so too would the productivity of R&D assets, because they are now

paired with complementary assets (Graf, Rausser and Small; Rausser, Scotchmer and Simon). 
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This suggests that investment in R&D would move with M&A activity .  A pure transactions cost

approach (without complementary assets) would suggest that if the purpose of the M&A is to

reduce transactions costs in linked R&D activities (Artuso, Johnson and Melkonian,

Kalaitzandonakes), then M&A activity would move contrary to R&D.  The current model is

consistent with the latter explanation.    Brennan, Pray and Courtmanche have examined

empirically whether M&A activity increases or decreases R&D activity, but were unable to reach

conclusive results.

Conclusions: Policy Implications

Increasing industry concentration typically raises concerns about monopoly power and

non-competitive behavior.  Such is the case with the agricultural biotech industry.  For example,

the EU afforded patent protection to biotech innovations starting only in 1998,  18 years after the

US Federal Court of Appeals allowed patents of living tissue in Diamond v. Chakrabarty.  A large

part of this delay was due to environmental opposition, which in 1995 prevented passage of a

similar act and opposed the 1998 act:  “The Green lobby claims that it will give industry

monopoly rights over genes, cells, plant, animal and human body parts” (BBC, 1998).

The policy implications stemming from the cyclical model mitigate concerns about

concentration for two reasons.  First, the availability of monopoly rents motivates investment in

R&D.  Hence there is a tradeoff between static efficiency in the sense of pure competition, and

dynamic efficiency in the sense of an ongoing flow of welfare-improving innovation (see Aghion

and Howitt for a more general discussion of this issue).  Second, the cyclical nature of

concentration suggests that policy makers need not be overly concerned with the high level of



4  This result is not specific to the current model.  Similar findings in different contexts
date from Barzel, 1968 and Kitti, 1985.
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M&A and increasing industry concentration, because as the cycle is completed the increases in

concentration may be reversed.

The policy implication is not a complete laissez-faire attitude, however.  The potential

existence of negative externalities from agricultural biotechnology, particularly on human health

and/or the environment, has been raised by many environmental, consumer and health groups.

Coupled with the need to ‘win’ the R&D race by being the first to discover a new technology,

potential negative externalities raise the possibility that, in the rush to innovate, firms may

commercialize agricultural bio-technologies before taking proper (socially optimal) precautions

against negative externalities.  That is, firms acting solely from a private profit motive will

commercialize technologies before the socially optimal time.4  This suggests the need for

regulation or other policy which reduce the potential for negative externalities.  Naturally,

determination of ‘the socially optimal time’ is a complex issue.  This issue is at the heart of the

biotechnology debate between the U.S. and the European Union (EU).  The U.S. essentially takes

the position that biotechnologies which meet certain bio-safety requirements are legitimate

candidates for commercialization; whereas the EU takes a position based on the precautionary

principle, namely that biotechnologies are suspect until proven safe over a long period (Caswell). 

The current model is consistent with the need for bio-safety protocols.  A thorough discussion of

the socially optimal nature and level of bio-safety standards remains a topic for future research.
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Figure 1.  Mergers and Acquisitions by Diversified Biotech Companies and Seed/Biotech
Companies (Source: Kalaitzandonakes).



20

0 

200 

400 

600 

800 

1000 

1200 
R

&
D

 A
ct

iv
ity

0 

10 

20 

30 

40 

50 

60 

T
im

e 
P

er
io

ds

0 4 8 12 16 20 24
Innovation race

R&D Time to Innovate

Figure 2.  Monotonically declining R&D activity, with monotonically increasing time to
innovate (source: numerical solution to equation 14).
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Figure 3.  Cyclical pattern of R&D activity, with counter-cyclical time to innovate (source:
numerical solution to equation 14).
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Figure 4.  Cyclical Pattern of Industry Concentration, as Measured by Number of Firms in Each
R&D Race (source: calculations based on the numerical solution to equation 14, as represented in
Figure 3).


