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1. Introduction 
A large number of schemes exist around the world to conserve or establish target 
vegetation communities.  Examples include the USA Conservation Reserve Program and 
the Wetlands Reserve Program (Hanrahan and Zinn 2005), as well as the UK Countryside 
Stewardship Scheme and Environmental Stewardship (NE 2006).  Typically schemes 
contract with farmers to take actions which increase the probability of establishing or 
conserving the target vegetation community.  A regulator who is paying farmers 
compensation for retiring land and/or undertaking revegetation actions is expected to 
measure the output of the scheme by monitoring the vegetation succession.  To do this 
they must decide on monitoring frequency and monitoring accuracy.  For instance 
monitoring may be by satellite images such as Landsat, aerial photographs, or a ground 
survey. Reviews of agri-environmental policy monitoring in the UK and elsewhere 
(Hooper 1992, National Audit Office 1997, World Bank 1998) conclude that monitoring 
to assess ecosystem change incurs significant costs and is prone to inaccuracy in the form 
of mis-classifications of vegetation types. 
The aim of this paper is to assess the problem faced by the regulator in terms of the 
optimal frequency of monitoring , the best monitoring technique and, on the basis of the 
results of monitoring, should a contract be initiated, stopped or continued.  The unit of 
analysis is an area of land which either had or has the potential to establish the target 
vegetation community.  This analysis draws upon the ecology literature on how 
vegetation successions are modelled, the economic analysis of monitoring and 
irreversible environmental change and the operations research analysis of dynamic 
monitoring and control problems.  Each of these strands is discussed. 
In ecology, Markov chains have been proposed as a representation of vegetation 
successions (Usher 1979).  Anderson and Goodman (1957) developed methods for 
estimating transition probabilities from observations of the states of a system through 
time.  Their methods have been widely developed and applied (Cox 1972, Kalbfleisch 
and Lawless 1985).  This has led to applications in vegetation succession, see for 
instance, Rushton et al. (1996), Balzar (2000) and Logofet and Lesnaya, (2000). 
Monitoring and decision making in ecology and natural resource management is the 
focus of the adaptive control literature reviewed by Walters and Holling (1990) and 
White (2000).  However, this literature focuses on the control of state variables, such as 
biomass which can be represented by continuous variables, for instance Williams’ (1996) 
model of wildfowl harvesting.  Williams acknowledges the problems of solving general 
stochastic control problems with parameter updating and monitoring.  The adaptive 
control literature, in ecology, does not explicitly deal with the case where the states are 
categorical rather than continuous variables.  
Operations research has approached monitoring as part of a general stochastic control 
literature, see for instance, Bertsekas and Shreve (1978).  The partially observed Markov 
decision process (POMDP) model (Monahan 1982, Smallwood and Sondik 1973) is a 
tractable approach to stochastic control when the states follow a Markov chain, but the 
decision maker is unable to observe the current state of the system.  To date POMDP has 
had relatively few applications in environmental and natural resource economics, 
although the paper on salmon fishing by Lane (1989) is a notable exception. 
The economics of environmental monitoring has its origins with Becker’s (1968) model 
of crime and punishment which predicts that the decision to offend depends upon a 



 4

comparison of the expected benefits with the expected costs (Heyes 2000).  Becker’s 
model predicts that regulators will fix fines as high as possible, monitor infrequently to 
reduces costs (if fines are punitive) and always prosecute transgressors. Harrington 
(1988) uses a dynamic model to explain why the stylized facts of observed environmental 
monitoring practice are at odds with Becker’s model.  These facts are first that firms are 
rarely fined and fines are small, second monitoring frequency is low and third most firms 
comply most of the time.  Harrington’s model, which is based on a model of tax 
regulation (Greenberg 1984), analyses a dynamic game between the regulator and the 
firm where the regulator places firms in different groups in response to observed 
behaviour.  These groups determine the frequency of monitoring with a non-compliant 
firm, if detected, being moved to a group where they are subject to more frequent 
monitoring.  Heyes and Rickman (1999) attribute Harrington’s stylised facts to the need 
for regulators to control a range of pollutants, thus non-compliance for one pollutant is 
offset by compliance in another pollutant or at another plant.  Malik (1990) considers the 
problem of monitoring a stochastic pollutant where firms can reduce their probability of 
detection by costly activities.  The result from this model is that it is not always optimal 
to have high fines for non-compliance as this increases the amount spent on activities 
which avoid detection. 
The monitoring problem described here differs from most previous contributions to the 
literature in a number of fundamental respects.  First the variable monitored is a 
categorical variable classifying the state of the vegetation community into a finite number 
of classes.  Most previous economic studies describe monitoring an emission variable 
where standards are in terms of quantities or concentrations.  The monitoring problem 
here is dynamic and extends from 2 periods up to an infinite time horizon.  Given this 
added complexity the strategic interaction between the firm and the regulator is not 
modelled explicitly, instead it is characterised as ‘nature’ which determines if a 
conservation scheme succeeds or fails. 
The decision to conserve is similar to the decision to delay development in the Arrow-
Fisher-Henry quasi-option value model (Arrow and Fisher 1974, Fisher 2000, Henry 
1974) and the optimal stopping model of Batabayal (1998).  The Arrow-Fisher-Henry 
model calculates the value (quasi-option value) of delaying a development decision on 
the basis that more precise information will become available on the value of 
conservation.  POMDP may be viewed as a generalisation of this model in that it allows 
for imperfect information and costly monitoring instead of information arriving 
‘passively’ through time.  The aim of this paper is to explore, through a simplified case 
study, how POMDP might be applied to ecological monitoring.  The remainder of the 
paper is organised as follows.  The next section introduces the POMDP model.  Section 3 
describes the case study for the conservation and restoration of Salmon Gum woodland in 
the Western Australian Wheatbelt.  Section 4 Concludes. 

2. Methods 
A regulator wishes to maximise the private and public value of a piece of land where 
vegetation communities are described by N discrete states 1,...,is N= .  The vegetation 
community changes through time according to a Markov process and the (NxN) matrix of 
transition probabilities are a function of the level of conservation effort, for instance for 
three vegetation states we have: 



 5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)()()(
)()()(
)()()(

)(

333231

232221

131211

ttt

ttt

ttt

t

epepep
epepep
epepep

eP        (1) 

The elements ( )ij tp e  give the probability of the land in state i being in state j after a 

single period t.  Conservation effort, te , is a measure of resources allocated to 
conservation, in the example it is based on the work of Yates and Hobbs (1997) and 
Gibbons and Freudenberger (2006).  The regulator offers a contract that stipulates 
conservation effort te .  Conservation effort increases or decreases the probability of a 
transition to the target vegetation community. 
The regulator has a prior probability of the current vegetation community given by the 
(1xN) vector π  known in the POMDP literature as the belief state.  For many ecosystems 
this is a realistic assumption:  vegetation classifications are uncertain or the vegetation 
may be a mosaic of different vegetation classes.  Often the high cost of a definitive 
vegetation survey means that conservation schemes are initialised with incomplete 
knowledge of the initial vegetation community across the whole area. The observation 
matrix, which is a function of monitoring effort tu determines the accuracy of monitoring.  
For three states the (NxN) observation matrix is given by: 
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where the element ( )j tr uθ  is the probability that if state θ  is observed the vegetation at 
the end of period t is j.  If ( )tuΘ  is an identity matrix then monitoring is perfectly 
accurate, if it is uniform it is uninformative.  Increased monitoring effort raises the 
probability of a correct observation. 
Monitoring reduces the uncertainty about which state the land is in and updates the prior 
probability to a posterior probability by Bayes rule: 
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The new belief state is a 1 N×  vector of probabilities. In vector form, (3) can be rewritten 
as: 
 1( | , , )t t t tT e uπ π θ−=         (4) 
where T(.) is the belief transformation function.  The belief state captures the history of 
all past observations and actions. 

Monitoring costs 
Heyes (2002) draws a useful distinction between inspecting an environmental variable 
which generates a noisy signal and an environmental audit which is definitive. Methods 
for monitoring vegetation community change range from low cost remote sensing 
methods such as aerial photographs and satellite images, to relatively high cost field 
surveys (World Bank 1998). We assume that from past ‘ground truthing’, these methods 
have established observation matrices.  For instance remote sensing methods are known 
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for relatively high probabilities of misclassification (Hooper 1992), while intensive field 
surveys are accurate.  
We assume that the cost of monitoring depends on the observation matrix thus the quasi-
convex monitoring cost function ( )v

tc u is at a maximum when ( )uΘ is an identity matrix, 
that is the state is observed with perfect accuracy, and ( ) 0v

tc u =  when 0tu =  and 
( )uΘ is a uniform matrix with all elements equal to 1/N. 

The Regulator’s problem 
The regulator maximises the expected present-value of the welfare function in relation to 
conserving an area of land by choosing conservation effort and monitoring effort.  The 
regulator’s problem can be represented by the following POMDP problem represented in 
a mathematical programming problem 

 ,
[ ] [ ( ) ( ) ( )]

t t

v t
t it i t i t tt iwrt e u

V Maximise g e c e c uπ π δ= − −∑ ∑     (5a) 

Subject to 
1( | , , )t t t tT e uπ π θ−=          (5b) 

0π π= %            (5c) 
The first term ( )i tg e  in (5a) gives the non-market net benefits of vegetation community i, 
it is given as a function of et as conservation effort may enhance the benefits of a 
particular state.  The term ( )i tc e gives the resource cost to the farmer of conservation 
effort in state et.  The farmer may be compensated by the regulator for these costs, but as 
these are transfer payments they do not appear in the objective function.  Monitoring 
costs depend upon the monitoring effort and are given by ( )v

tc u .  The term tδ is the 
discount factor which converts net benefits generated at time t to their present-value at 
t=0, g is the discount rate.  Equation (5b) gives the updating equation for the belief state 
(4) and (5c) gives the belief state (prior probabilities of states) at the start of the planning 
horizon when t=0 as π% .  To simplify the notation in later sections we define net-benefit 
as 

( , ) ( ) ( ) ( )v
i t t i t i t tw e u g e c e c u= − −        (6) 

Dynamic optimisation 
Unlike a Markov Decision Problem (MDP) which has a standard dynamic programming 
solution (Puterman, 1994), the solution to a POMDP problem is more difficult because 
the probability of the system being in a particular state depends upon past monitoring and 
the resulting observations.  The original solution by Smallwood and Sondik (1973) 
introduces the notion of a belief state where the conventional states of MDP, namely is , 
are replaced by a belief state tπ  which is the vector of probabilities of being in the states.  
The solution entails finding a set of actions which are optimal across the belief state 
(Cassandra 1995).  In a simplified form the optimisation problem is to solve the 
following version of Bellman’s equation: 

1i,
[ ] maximise  { ( , ) ( ) ( ) [ ( | , , )]}

t t
t t it i t t ij t j t t t t tje u

V w e u p e r u V T e uθθ
π π π θ+= +∑ ∑ ∑ . (7) 
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where ( )t tV π  is the optimal value from optimizing across the time horizon from t to T 
starting in belief state tπ .  The optimal value comprises two components, the first term is 
the expected immediate reward and the second term is the expected reward for the 
remaining periods, the term ( ) ( )ij t j tp e r uθ  gives the joint probability of observing state θ  
when the previous state is i and the current state j. Equation (7) is similar in construction 
to a standard stochastic dynamic programming model the only difference is in the 
presence of the belief state.  For instance if the initial state was known with certainty and 
there was no monitoring, optimization would proceed by maximizing the current net-
benefit whilst accounting for the effect the action has on the expected value across the 
remaining periods.  This principle of optimality still holds in POMDP except it has to 
solve the problem for all possible belief states.  This involves defining the optimal 
solution as a set of action vectors which are optimal in some belief state.  This is 
illustrated and discussed in greater detail in the contest of the case study. 
Solving the dynamic optimization presented in (7) is not trivial due to the problems of 
determining [ ]t tV π .  However, if we restrict te and tu  to a discrete set of values we can 
make use of the result that [ ]t tV π  is always piecewise linear and convex (Smallwood and 
Sondik 1973), thus a modified dynamic programming algorithm can determine [ ]t tV π  as 
a set of vectors generated from different actions.  This allows us to rewrite (7) as: 

( , , , )
i,

[ ] maximise  { ( , ) ( ) ( ) ( 1)}t t t

t t

e u
t t it i t t ij t j t jje u

V w e u p e r u tι π θ
θθ

π π α= + +∑ ∑ ∑   (8) 

where ( )k
j tα is a (1xN) policy vector which gives the expected payoff from an action 

across all the states. The superscript on the policy vector gives the optimal vector for a 
particular belief state and is formally defined as follows: 
( , , , ) arg max ( ) ( ) ( 1)k

t t t it ij t j t ji jk
e u p e r u tθι π θ π α⎡ ⎤= +⎣ ⎦∑ ∑     (9) 

that is it selects the vector, by the superscript k, which gives the highest expected value 
for the belief state resulting from the prior probability, action and observation.  
 

Case study 

Background 
The western Australian wheatbelt, and particularly the Northeastern Wheatbelt Regional 
Organisation of Councils (NEWROC), has received attention recently due to its 
agricultural and environmental importance. The area is of agricultural significance as 
well as biodiversity and under threat from salinity and large scale clearing. The 
NEWROC comprises the shires of Koorda, Mount Marshall, Mukinbudin, Nungarin, 
Trayning, Westonia and Wyalkatchem. The area was 75% zoned for clearing, with 12% 
of the cleared area remnant vegetation in 2002. Within each shire the area of remnant 
vegetation in cleared areas ranged from 5% in the south west shirt of Wyalkatchem to 
21% in the eastern most shire of Westonia. 
Yates and Hobbs (1997) detail the state of Eucalyptus woodlands in southeast and 
southwest Australia. Woodlands have been extensively cleared and are often badly 
degraded due to livestock grazing. Currently it is estimated only 10% of Eucalyptus 
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loxophleba (York gum) and 20% of Eucalyptus salmonophloia/Eucalyptus salubris 
(salmon gum/gimlet) woodlands remain. A similar situation exists on the east coast of 
Australia, where 0.01% of eucalyptus albens (white box) woodland remains relatively 
unmodified.  
The removal of degrading factors such as grazing and weeds may be insufficient to 
restore the woodland, with revegetation action required. Yates and Hobbs (1997) go on to 
identify the stable woodland states that exist in Eucalyptus salmonophloia woodlands 
currently and the transitions required to shift the woodland areas from one state to 
anotherFigure 1. Remnant vegetation in the NEWROC area is highly fragmented due to 
agricultural clearing, and degraded due to weeds, livestock grazing and firewood 
collection. Together with the impact of dryland salinity this means high levels of habitat 
loss, with the remaining vegetation severely degraded. The works required and 
probability of their success is largely determined by the current state of the woodland and 
its ability to shift to another state. The fencing of remnant vegetation to remove livestock 
and feral grazing may be insufficient to return a degraded woodland to an undegraded 
state. Extensive revegetation and weed control would likely be required to achieve this 
shift. 
This case study uses POMDP methodology to investigate the optimal conservation action 
for growers, regulators and wider society in the NEWROC area in light of the stable 
woodland states and transitions approach of Yates and Hobbs (1997) and to the Auctions 
for Landscape Recovery project findings XX.  

Data 
The states and transitions for salmon gum woodland as defined by Yates and Hobbs 
(1997) are simplified to the diagram given in Figure 1 for this case study. Agriculture 
(Agric) refers to a stable state of annual rotations of crop or livestock production on the 
land. Degraded Woodland (Degwood) is a woodland with few perennial understory 
species, a ground layer of annual weeds and compacted soil. Undegraded Woodland 
(Undegwood) has an intact understory of shrubs, a layer of plant litter across the ground 
and good soil. The transition from Undegwood to Degwood and Degwood to Agric 
through the action Sheep consists of periodic grazing by livestock or wild animals such as 
rabbits. Revegetation is the fencing of the area to exclude livestock and other animals, 
and the planting of woodland species. No Action refers to abandonment or not using the 
land for any specific purpose. Changing the action has two effects, first it changes the net 
benefit ( , )i t tw e u  and second it changes the transition probabilities. The probable impact 
of these actions on a specific state is given in Table 1. 
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Figure 1 Transition and stable states of salmon gum woodland (based on Yates and Hobbs, 1997) 

The action, state of the land and monitoring determine the net benefit to the grower, 
regulator and wider society of the land for each period of the analysis. The benefit of  
sheep grazing on any given land type (Sheep) is assumed to be $5 per hectare per year 
(DAFWA 2005). The cost of revegetation (Reveg) is $935 per hectare (Gole et al. 2005). 
While not undertaking any activity (No Action) does not incur a cost or provide a benefit. 
Land being in the state of Undegwood provides a benefit to the grower, regulator and 
wider society or non-market value. The community willingness to pay for teatree 
woodland in Queensland is used as an estimate of the benefit to the grower, regulator and 
wider society of salmon gum woodland, $18 per hectare (Mallawaarachchi et al. 2001). 
Monitoring the land to determine its current state requires engaging a local expert and is 
initially estimated to cost (cm) $8 per hectare (Gole et al. 2005). 
The grower or regulator is able to engage an expert to monitor the land and estimate its 
current state to inform their future decisions. The probability this monitoring correctly 
estimates the current state of the land for each action is given in Table 2. Increasing 
monitoring effort makes the observation matrix ‘more informative’ no monitoring gives a 
uniform observation matrix.  Combinations of conservation effort and monitoring effort 
give six different actions in all.  
 
Table 1 Probability of transition between states given selected action 

 Sheep  End state  
  Undegwood Degwood Agric 
 Undegwood 0.8 0.2 0 
Start state Degwood 0 0.8 0.2 
 Agric 0 0 1 
     
 Reveg  End state  
  Undegwood Degwood Agric 
 Undegwood 1 0 0 
Start state Degwood 0.8 0.2 0 
 Agric 0.5 0.5 0 

Undegraded Woodland 

Degraded Woodland 

Agriculture 

Sheep or No Action

Sheep or No Action  

Revegetation or 
No Action 

Revegetation or 
No Action 
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 No Action  End state  
  Undegwood Degwood Agric 
 Undegwood 0.9 1 0 
Start state Degwood 0 0.9 0.1 
 Agric 0 0 1 

 
Table 2 Observation probabilities when monitoring occurs 

 Sheep Start State 
  Undegwood Degwood Agric 
 Undegwood 0.85 0.15 0 
Observation Degwood 0 0.85 0.15 
 Agric 0 0 1 
     
 Reveg Start State 
  Undegwood Degwood Agric 
 Undegwood 1 0 0 
Observation Degwood 0.1 0.8 0.1 
 Agric 0 0.2 0.8 
     
 No Action Start State 
  Undegwood Degwood Agric 
 Undegwood 0.9 1 0 
Observation Degwood 0.05 0.9 0.05 
 Agric 0 0.1 0.9 

 

Results  
The POMDP analysis was run over a specified number of periods to compare the optimal 
decision for grower, regulator and wider society in the short term and the long term. A 
discount factor of 95.0=δ  is assumed for all analysis. The estimated cost of monitoring 
agricultural land in the NEWROC area was $8 per ha (Gole et al. 2005). However, as this 
monitoring cost proved too high for growers or regulators to undertake monitoring, a 
reduced cost $2 per ha was also analysed 

2 Period Example 
If the scheme based on the above runs for just 2 periods the only expected action for both 
periods is Sheep. The policy graph in Figure 2 shows how after the first period of taking 
the action Sheep & No Monitoring is complete, Sheep & No Monitoring is repeated as 
the next action in the sequence. Sheep & No Monitoring for 2 periods gives a net benefit 
of $38.26 were the land Undegwood, and $9.75 if it were Degwood or Agric. The 
solution to the 2 period problem follows from two dynamic programming iterations using 
the Smallwood and Sondik algorithm (1973) as developed by Cassandra (1995). The 
expected payoff is calculated from the term in brackets on the right hand side of equation 
(7).  For instance the net benefit of sheep when the initial state of the land is Undegwood 
is calculated as (0.8*23+0.2*14+0*14) + [0.8*(0.8*23+0.2*14+0*14) + 
0.2*(0*14+0.8*5+0.2*5) + 0*(0*14+0*5+1*5)]*0.95. 
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Altering the cost of monitoring does not alter the action decision of the grower/regulator, 
undertaking Sheep & No Monitoring in both period (Figure 2). The net benefit of this 
action is the same as with a monitoring cost of $8 per ha, $39.16 were the land 
Undegwood, and $10.00 if it were Degwood or Agric. 
 

 
Figure 2 Policy graph when monitoring costs $8 per ha or $2 per ha, and the time horizon is 2 
periods. 
 

5 Period Example 
Extending the number of time periods to 5 periods alters the actions of the 
grower/regulator under certain prior probabilities of the land state. When the probability 
of land being Undegwood is higher the action No Action & No Monitoring becomes 
optimal. Figure 3 shows how with a monitoring cost of $8 per ha and 5 period horizon the 
grower or regulator would undertake either (1) act as in the 2 period example, beginning 
with Sheep & No Monitoring or (2) begin with a period of No Action & No Monitoring 
prior to continuous Sheep & No Monitoring. The net benefit of 5 periods of Sheep & No 
Monitoring is $73.01 for Undegwood and $22.62 for Degwood or Agric. An initial period 
of No Action and No Monitoring increases the net benefit when the land is Undegwood 
to $73.18 but decreases it if the land is Degwood or Agric to $17.62. 
A lower monitoring cost of $2 per ha does not alter the grower/regulator’s actions in a 5 
period to those with an $8 per ha monitoring cost. The net benefit of the actions is the 
same as with an $8 per ha monitoring cost also. 
 

 
Figure 3 Policy graph when monitoring costs $8 per ha and the time horizon is 5 periods, and when 
monitoring is $2 per ha and the time horizon is 5 periods. 
 

10 Period Example 
The action decision does not alter when the monitoring cost is $8 per ha and the analysis 
is for 10 periods, Figure 1. The net benefit of continuous Sheep and No Monitoring 
Action 1 in Figure 4, for 10 periods is $103.29 for Undegwood and $40.13 for Degwood 

(1) Sheep &  
No Monitoring 

(2) No Action & 
No Monitoring 

Sheep &  
No Monitoring 

Action 

next Action 
in sequence 
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or Agric. An initial period of No Action & No Monitoring prior to continuous Sheep & 
No Monitoring (Action 2), has a net benefit of $105.06 for Undegwood and $35.13 for 
Degwood and Agric. Two periods of No Action & No Monitoring prior to continuous 
Sheep & No Monitoring (Action 3), has a net benefit of $105.95 for Undegwood and 
$30.38 for Degwood and Agric. While three periods of No Action & No Monitoring prior 
to continuous Sheep & No Monitoring (Action 4), has a net benefit of $106.10 for 
Undegwood and $25.86 for Degwood and Agric. The number of initial periods of No 
Action & No Monitoring is higher the greater the probability of the land being 
Undegwood. 
With a monitoring cost of $2 per ha the grower/regulator may undertake Sheep or No 
Action, with Monitoring or No Monitoring, depending on the probability of the initial 
state of the land being Undegwood, Degwood or Agric, Figure 5. The five actions 
optimal at the various combinations of the probability of land being Undegwood, 
Degwood and Agric are; (1)continuous Sheep & No Monitoring, (2) Sheep & Monitoring 
followed by continuous Sheep & No Monitoring if Degwood or Agric is observed or No 
Action & No Monitoring if Undegwood is observed, (3) No Action & Monitoring 
followed by continuous Sheep & No Monitoring if Degwood or Agric is observed or No 
Action & No Monitoring if Undegwood is observed, (4) and (5) continuous No Action & 
No Monitoring. The net benefit of Actions 1 to 5 is given in Table 1. Monitoring is 
undertaken when uncertainty is high, when the current state is believed to be Agric Sheep 
is the action, while when it is believed to be Undegwood No Action is taken. 
 

 
Figure 4 Policy graph when monitoring costs $8 per ha and the time horizon is 5 periods. 
 

(1) Sheep &  
No Monitoring 

(2 )No Action &  
No Monitoring 

(3) No Action & 
No Monitoring 

(4) No Action & 
No Monitoring 
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Figure 5 Policy graph when monitoring costs $2 per ha and the time horizon is 10 periods. 

 
Table 3 Net benefit of Actions 1 to 5 depending on the initial state of the land, when monitoring is 
$2/ha and the horizon is 10 periods. 
  Initial State  
 Undegwood Degwood Agric 
Action 1 $122.30 $50.00 $50.00 
Action 2 $123.55 $48.00 $48.00 
Action 3 $128.01 $42.33 $43.00 
Action 4 $128.01 $35.00 $35.00 
Action 5 $128.02 $30.00 $30.00 
 

20 Period Example 
With a monitoring cost of $8 per ha the only change to the action choice of the 
grower/regulator when analysed over 20 periods, from that of the 5 or 10 period example, 
is an increase in the number of periods of No Action & No Monitoring prior to 
continuous Sheep & No Monitroing at high probabilities of Undegwood, Figure 6. The 
net benefit of continuous Sheep & No Monitoring (Action 1) is $131.37 if Undegwood 
and $64.15 if Degwood or Agric, refer to Table 4. One initial period of No Action & No 
Monitoring (Action 2) increases the net benefit when Undegwood to $133.65 and 
decreases to $59.15 if Degwood or Agric. The net benefit of further increasing the 
number of periods of No Action and No Monitoring prior to continuous Sheep & No 
Monitoring for Undegwood/Degwood and Agric (Actions 3, 4 and 5) are shown in Table 
4. 
 

(1) Sheep &  
No Monitoring 

(3) No Action &  
No Monitoring 

(2) Sheep & 
Monitoring 

Degwood 
or Agric 

Undegwood 

(4) (5) No Action 
& Monitoring 

Degwood or 
Agric 

Undegwood 

Action next Action 
in sequence Observation
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Figure 6 Policy graph when monitoring costs $8 per ha and the time horizon is 20 periods. 

 
Table 4 Net benefit of Actions 1 to 5 depending on the initial state of the land when the monitoring 
cost is $8 per ha and the time horizon is 20 periods. 
  Initial State  
 Undegwood Degwood Agric 
Action 1 $131.37 $64.15 $64.15 
Action 2 $133.65 $59.15 $59.15 
Action 3 $135.11 $54.40 $54.40 
Action 4 $135.90 $49.89 $49.89 
Action 5 $136.14 $45.60 $45.60 
 
Figure 7 shows the action sequence for the 20 period example when the monitoring cost 
is $2 per ha. There are nine initial actions which match to the various probabilities of the 
land being initially Undegwood, Degwood or Agric; (1) continuous Sheep & No 
Monitoring, (2) Sheep & Monitoring followed by continuous Sheep & No Monitoring if 
Degwood or Agric is observed or Action 7 if Undegwood is observed, (3) Sheep & 
Monitoring followed by continuous Sheep & No Monitoring if Agric is observed, Action 
2 if Degwood or Action 8 if Undegwood, (4) No Action & Monitoring followed by 
continuous Sheep & No Monitoring if Degwood or Agric is observed or Action 7 if 
Undegwood is observed, (5) No Action & Monitoring followed by continuous Sheep & 
No Monitoring if Agric is observed, Action 2 if Degwood or Action 8 if Undegwood, (6) 
No Action & No Monitoring followed by Action 4, (7) No Action & No Monitoring 
followed by Action 6, (8) No Action & No Monitoring followed by Action 5, (9) No 
Action & No Monitoring followed by Action 8. The net benefit of each action with each 
initial land state is given in Table 5. 

(1) Sheep &  
No Monitoring 

(2 )No Action &  
No Monitoring 

(3) No Action & 
No Monitoring 

(5) No Action & 
No Monitoring 

(4) No Action & 
No Monitoring 
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Figure 7 Policy graph when monitoring costs $2 per ha and the time horizon is 20 periods. 
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Table 5 Net benefit of Actions 1 to 9 depending on the initial state of the land when the monitoring 
cost is $2 per ha and the time horizon is 20 periods. 
  Initial State  
 Undegwood Degwood Agric 
Action 1 $180.07 $100.00 $100.00 
Action 2 $188.03 $98.00 $98.00 
Action 3 $188.59 $96.64 $98.00 
Action 4 $193.73 $92.21 $93.00 
Action 5 $194.22 $90.57 $92.80 
Action 6 $194.90 $87.29 $88.00 
Action 7 $195.13 $85.79 $87.80 
Action 8 $195.38 $82.36 $83.00 
Action 9 $195.40 $80.99 $82.80 
 

Infinite Horizon Problem  
The infinite horizon solution is generated by running the POMDP algorithm until the 
solution converges to a steady state solution, where [ ]t tV π  is constant and the sequence 
of actions is the same in each period.  Convergence occurs when the discount factor is 
less than one, in this case 0.95δ = .  An infinite time horizon mimics entering into a 
covenant or permanent agreement. 
Assuming monitoring costs $8 per ha the optimal action is Sheep & No Monitoring when 
the probability of Agric is high. when the probability of Undegwood is higher an initial 
period(s) of No Action & No Monitoring occur, to a maximum of 4 (Figure 8). The net 
benefit of each action for Undegwood, Degwood and Agric is given in Table 6. 
 

 
Figure 8 Policy graph when monitoring costs $8 per ha and the time horizon is infinite. 

 
Table 6 Net benefit of Actions 1 to 5 depending on the initial state of the land when monitoring costs 
$8 per ha and the time horizon is infinite. 
  Initial State  
 Undegwood Degwood Agric 

(1) Sheep &  
No Monitoring 

(2 )No Action &  
No Monitoring 

(3) No Action & 
No Monitoring 

(5) No Action & 
No Monitoring 

(4) No Action & 
No Monitoring 
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Action 1 $167.50 $100.00 $100.00 
Action 2 $169.81 $95.00 $95.00 
Action 3 $171.31 $90.25 $90.25 
Action 4 $172.15 $85.74 $85.74 
Action 5 $172.43 $81.45 $81.45 
 
When the time horizon is infinite, reducing the monitoring cost from $8 per ha to $2 per 
ha increases the number of actions possibly undertaken, but to the same quantity as when 
the analysis is for 20 period. Figure 9 shows the seven possible initial actions undertaken 
depending on the probability of Undegwood, Degwood and Agric; (1) continuous Sheep 
& No Monitoring, (2) Sheep & Monitoring followed by continuous Sheep & No 
Monitoring if Degwood or Agric is observed or Action 7 if Undegwood is observed, (3) 
Sheep & Monitoring followed by continuous Sheep & No Monitoring if Agric is 
observed, Action 2 if Degwood or Action 8 if Undegwood, (4) No Action & Monitoring 
followed by continuous Sheep & No Monitoring if Degwood or Agric is observed or 
Action 7 if Undegwood is observed, (5) No Action & Monitoring followed by continuous 
Sheep & No Monitoring if Agric is observed, Action 2 if Degwood or Action 8 if 
Undegwood, (6) No Action & No Monitoring followed by Action 5, (7) No Action & No 
Monitoring followed by Action 6. the net benefit of these action sequence is given in 
Table 7. The optimal action for each probability of Undegwood, Degwood and Agric is 
shown in Figure 10. Growers/regulators are choose do Sheep & No monitoring when the 
probability of Undegwood is 0 or very low. Sheep & Monitoring occurs when the 
possibility of the land being Undegwood increases, with grower/regulators distinguishing 
a separate following action for all three states when the probability of Degwood is higher. 
No Action & Monitoring occurs when the grower/regulator is very uncertain about the 
initial state of the land. No Action & No Monitoring occurs when the probability of 
Undegwood is very high, meaning the probability of Degwood or Agric is very low. 
When the probability of Undegwood approaches 1 the number of period of No Action & 
No Monitoring increases. 
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Figure 9 Policy graph when monitoring costs $2 per ha and the time horizon is infinite. 

 
Table 7 Net benefit of initial Actions 1 to 7 depending on the initial state of the land when the 
monitoring cost is $2 per ha and the time horizon is infinite. 
  Initial State  
 Undegwood Degwood Agric 
Action 1 $5,081.00 $5,000.00 $5,000.00 
Action 2 $5,094.18 $4,998.00 $4,998.00 
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Action 3 $5,095.42 $4,996.64 $4,998.00 
Action 4 $5,100.98 $4,992.14 $4,993.00 
Action 5 $5,101.99 $4,990.50 $4,992.80 
Action 6 $5,102.94 $4,985.73 $4,987.80 
Action 7 $5,103.32 $4,980.94 $4,982.80 
Action 8 $5,081.00 $5,000.00 $5,000.00 
Action 9 $5,094.18 $4,998.00 $4,998.00 
 

 
Figure 10 Decision of grower/regulator to undertake Actions 1 to 7 at given probabilities of 
Undegwood, Degwood and Agric. 
 

Concluding comments 
Monitoring is an essential component of schemes designed to conserve an ecosystem and 
such schemes are now a central part of environmental policy.  A characteristic of these 
policies is that they offer generally short term contracts to farms to conserve or reinstate a 
particular vegetation community.  To date the literature has had relatively few 
contributions on the subject of optimal dynamic monitoring.  The original Arrow-Fisher-
Henry quasi-option value model is concerned with information gathering, but as a passive 
function of time passing.  The POMDP framework presents a flexible approach to 
determine optimal actions where the stochastic process is represented by a Markov chain. 
In this paper we propose a POMDP as a tractable framework for analysing optimal levels 
of monitoring accuracy and frequency at varying contract lengths.  The results show that 
monitoring decision depend upon the prior probabilities of the states of the system and 
cost of monitoring.  A general result is that monitoring tends to be optimal where there is 
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more uncertainty about the target state and repeated monitoring might be used before 
making an irreversible decision.  Reducing monitoring cost increases the quality and 
frequency of monitoring. 
The fact that the Smallwood and Sondik (1973) algorithm is reasonably robust and that 
Markov chains are familiar to ecologists as a method for modelling environmental change 
means that this approach has the potential to contribute to the analysis of monitoring 
systems and may lead to significant savings in monitoring costs.  Currently monitoring is 
often undertaken as a matter of routine rather than relating monitoring to the actual 
predicted rates of vegetation change. 
This paper has only presented a small set of results on the impact on optimal monitoring 
of different assumptions.  One avenue for further research is to include a POMDP 
analysis for ecological studies of conservation schemes so that the monitoring decisions 
can be based on costs and the rates of vegetation change.  Further research will address 
the main focus of the economic literature on monitoring, namely the incentives for 
compliance and cheating to reflect the reality that conservation schemes fail due to both 
non-compliance and natural variation. 
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