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ABSTRACT

A wave of recent research has studied the predictability of foreign currency returns. A wide variety
of forecasting structures have been proposed, including signals such as carry, value, momentum, and
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of a general model encompassing all these signals. We find very strong evidence of forecastability
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risk factors.
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1 Introduction

One of the oldest and most frequently recurring questions in international finance concerns the
efficiency of the foreign exchange market. Indeed it is one of the most durable and intriguing
questions in the field of finance as a whole since the market for major currencies is one of the
largest, most liquid, and most actively-traded asset markets in existence. Thus, treated as a
laboratory, this market more than any other may have the potential to reveal how close actual
financial markets are to attaining their textbook idealized form: are asset returns essentially
random or do they have systematically predictable elements?1

For several decades a long literature has sought to explore whether currency returns are fore-
castable, and the simple “carry trade” logic of trading based on the interest differential has been
very widely studied. Here, systematic ex-post profits are widely observed, a phenomenon which is
merely a manifestation of the long-studied forward discount puzzle (see, e.g., Frankel 1980; Fama
1984; Hodrick 1987; Froot and Thaler 1990; Bekaert and Hodrick 1993; Engel 1996). Notwith-
standing this broadly accepted puzzle, a number of metrics have been used to evaluate the pre-
dictability and profitability of exchange rate forecasts and the results have by no means created
consensus. Researchers have asked whether such forecasting power delivers statistically significant
fit relative to random walk, and if the forecast can generate economically significant profits for a
risk-neutral investor after transaction costs (Meese and Rogoff 1983; Kilian and M. Taylor 2003).
Researchers have also sought to account for the possibility of time varying risk premia—but must
then navigate between the inevitably circular reasoning that ex-post risk premia could be found
that in principle explain any ex-post returns observed, and the problem that observable so-called
risk factors are (apart from consumption growth) often atheoretic and ad hoc regressors vulnerable
to a “ketchup” critique.2

Carry trades are now under scrutiny again. In conjunction with a dramatic rise in real-world
currency trading in the last decade, a recent wave of research on exchange rate forecastability
has appeared in the last few years asking new questions and sharpening new tools. Much of this
literature has continued to focus on strategies based on the näıve carry signal, where investors go
long high-yield currencies, and short low-yield currencies (e.g., Brunnermeier, Nagel, and Pedersen
2008; Burnside, Eichenbaum and Kleshchelski 2006, 2008ab). These pre-financial-crisis studies also
often found attractive residual profits, with moderately impressive Sharpe ratios. However, the
strategies often came with unattractive third moments, with high negative skew resulting from
the occasional tendency of target currencies to crash, or conversely funding currencies to suddenly
appreciate (e.g., the well-known Japanese yen events of 1998). Whilst one could in principle
truncate the downside risks by augmenting the strategy with put options (Burnside et al. 2008b;
Clarida, Davis and Pedersen, 2009; Jurek 2008), these insurance mechanisms are not inexpensive,
and entail the further complication of making assumptions concerning liquidity and counterparty
risk in derivative markets.

1 For a full survey of foreign exchange market efficiency see Chapter 2 in Sarno and M. Taylor (2002).
2 The critique is due to Summers (1985), who downplayed the usefulness of approaches which show that the prices

of all risky assets move up and down in unison—like the prices of different sized bottles of tomato ketchup—without
offering either theoretical insights or empirical evidence as to the fundamental shocks behind such comovements.
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The working of the foreign exchange market during the financial crisis challenged some of these
findings. Investors using pure carry strategies fared very poorly indeed. Moreover, at key mo-
ments derivative markets malfunctioned and counterparty risks could no longer be ignored, raising
questions about options-based insurance strategies. However, alternative strategies with attrac-
tive returns and crash protection have come to light. These could be described as “augmented
carry” models, as they exploit additional conditioning information. In some recent research that
is directly antecedent to the current paper, Jordà and A. Taylor (2009, 2010) developed new tools
to study directional trading strategies based on a set of three signals: carry, momentum, and value
(CMV). They applied the receiver operating characteristic (ROC) curve to evaluate the directional
performance of these signals one at a time, and jointly. They also extended the ROC techniques
by constructing a return-weighted ROC? curve, with analogous properties, which could be used
to evaluate the profitability of various signals when used for trading.

In this paper, we refine and extend the ROC techniques and apply them to a broader set
of signals which includes information on the forward curve, and we examine the robustness of
our results when confronted with explanations based on the so-called risk factors. We focus on
methods which are based on the fact that ROC analysis is equivalent to the analysis of a correct
classification frontier (CC), a concept which we think has a more natural economic interpretation
and which extends easily to the return-weighted case. And we are interested in exploring whether
the Jordà-Taylor CMV signals still contain useful predictive information even when one includes
forward-curve data following the insights of Clarida and M. Taylor (1997), Clarida, Davis and
Pedersen (2009), Chen and Tsang (2009), and Ang and Chen (2010).

Using our new tools we are able to show that the CMV signals and the forward curve signals
each contain independent and valuable predictive information. We find very strong evidence of
forecastability using the full set of signals, both in sample and out-of-sample. Our preferred
model generates economically meaningful returns on a portfolio of G-10 currencies, with favorable
Sharpe and skewness characteristics. From an efficiency standpoint, a risk-neutral investor would
find these trades profitable even allowing for transaction costs. The returns are also uncorrelated
with the microfounded consumption growth risk factor. And although explanations based on
unobservable time-varying risk premia are not testable, we find no relationship between our returns
and a long menu of so-called risk factors either, casting doubt on the potential objection that our
currency trade profits could reflect beta rather than alpha.

2 Statistical Design

Uncovered interest rate parity (UIP) in an ideal, risk-neutral, frictionless world is a condition that
suggests that nominal excess returns to currency speculation, based on arbitraging differences in
nominal interest rates across countries, are expected to be zero. Let xt+1 denote the ex-post,
monthly excess returns (in logarithms) given by:

xt+1 = ∆et+1 + (i?t − it) (1)
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where et+1 is the logarithm of the nominal exchange rate in U.S. dollars per foreign currency unit;
and i?t and it denote the one month London interbank offered rates (LIBOR) abroad and in the
U.S. respectively. Therefore, standard arbitrage arguments suggest that Etxt+1 = 0.

Excess returns can be easily expressed in real terms, offering a natural link to the purchasing
power parity (PPP) condition. Let πt+1 denote the inflation rate calculated as the log-difference
of the price level, i.e., πt+1 = ∆pt+1 (and similarly for π?t+1). Adding and subtracting π?t+1−πt+1

to the right-hand side of expression (1) and defining the real exchange rate as qt+1 = q + et+1 +(
p?t+1 − pt+1

)
then

xt+1 = ∆qt+1 +
[(
i?t+1 − π?t+1

)
− (it+1 − πt+1)

]
. (2)

Since ∆qt+1, i
?
t , it, π

?
t+1 and πt+1 are I(0) variables, qt+1 can be most naturally thought of as a

cointegrating vector under PPP where q is the fundamental equilibrium exchange rate (FEER)
toward which qt+1 reverts to in the long-run.

A speculator trying to take advantage of condition (1) say, will be interested in constructing a
forecast ∆êt+1 = Et∆et+1 since at time t, (i?t+1− it+1) is known. A linear forecast that articulates
the underlying UIP and PPP conditions captured in expressions (1) and (2) is best formulated by
considering the stochastic process for the I(0) random vector

∆yt+1 =

 ∆et+1

π?t+1 − πt+1

i?t+1 − it+1

 ,
where qt is a natural (and unique) cointegrating vector due to PPP. Therefore, it is appropriate to
entertain that the stochastic process for ∆yt+1 is a vector error correction model (VECM), where,
for example, the first-order expression for ∆et+1 is easily seen to be:

∆et+1 = β0 + βe∆et + βπ (π?t − πt) + βi(i
?
t − it) + γ(qt − q) + ut+1. (3)

Expression (3) nests four popular approaches to currency trading: carry, value, and momentum
signals used singly, and a composite based on a mix of all three CMV signals. For example, the
CMV approach underlies each of the three popular tradable ETFs created by Deutsche Bank,
where in each case a nine-currency portfolio is sorted into equal-weight long-neutral-short thirds
based on the relative strength of each of the three signals, and regularly rebalanced. In addition
Deutsche Bank offers a composite rebalancing portfolio split one third between each of the CMV
portfolios. Similar tradable indices and ETF products have since been launched by other financial
institutions (e.g., Goldman Sachs’ FX Currents, and Barclays Capital’s VECTOR).

For our purposes, we will define four model-based strategies of this form for use in this paper.
We shall assume that, at time t, the currency trader determines which currency to go long with
and which to short depending on

d̂t+1 = sign(x̂t+1) ∈ {−1, 1}; x̂t+1 = ∆êt+1 + (i?t − it);
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where ∆êt+1 is the one-period ahead forecast of ∆et+1 and where x̂t+1 is determined as follows
for each of the four strategies considered.

• Carry: ∆êt+1 = 0;

• Momentum: ∆êt+1 = β̂e∆êt;

• Value: ∆êt+1 = γ̂ (qt − q);

• VECM: ∆êt+1 = β̂0 + β̂e∆et + β̂π (π?t − πt) + β̂i(i?t − it) + γ̂(qt − q).

We make a few asides about these candidate strategies. First, the pure carry strategy as
written is somewhat simplified. It could be recast in more general, or less restrictive terms. For
a pure directional bet using a single strategy, it needn’t be the case that the exchange rate has
a zero expectation; it is enough for this strategy to work that the interest differential predict the
direction of profitable trade; i.e., that ∆êt+1 = βi(i?t − it) with βi > −1, such that predicted profit
∆x̂t+1 = (βi+1)(i?t − it) is still forecast to be positive on the carry-based directional bet. Second,
one might also consider the inflation differential (π?t − πt) as providing a possible fifth signal for
traders, which might be referred to as the “monetary policy” or “Taylor rule” signal. The logic for
this signal is that if central banks are inflation targeting and are using some kind of feedback rule,
then “bad news” about inflation could be “good news” for the exchange rate. See for example,
Clarida and Waldman (2007), who find evidence for this in some cases where policy regimes shifted
in the 1990s. Third, one could obviously envisage many other candidate strategies which we do
not consider here for reasons of space. One obvious candidate would be to use measures of implied
FX volatility as additional conditioning variables, or as interacted variables with the above signals.
Another set of signals could be built around measures that capture financial market distress, as
in Melvin and M. Taylor (2009).

Focusing henceforth on the main four strategies that we have identified above, ex-post returns
realized by a trader engaged in any of these strategies are therefore:

µ̂t+1 = d̂t+1xt+1. (4)

Notice that the trader need not be particularly accurate in predicting ∆et+1 (which has been
known to be a futile task at least since Meese and Rogoff, 1983), as long as d̂t+1 correctly selects
the direction of the carry trade. Recent work by Cheung, Chinn, and Garćıa Pascual (2005)
and Jordà and A. Taylor (2010a) suggests that directional forecasts of exchange rate movements
perform better than a coin-toss, leaving the door open for us to evaluate the economic value of a
carry trade investment.

The carry trade is a zero net-investment strategy. As such, fundamental models of consumption-
based asset pricing in frictionless environments with rational agents would suggest that, if mt+1

denotes the stochastic discount factor (see e.g. Cochrane, 2001), then

Et(mt+1xt+1) = 0.
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Thus, in order to explain the observation that the carry trade enjoys long periods of persistently
positive net returns, one has to examine how good a hedge against consumption-growth risk the
carry trade is relative to other investments and risk factors. For example, Burnside et al. (2008a,
b) argue that the correlation of carry trade returns with conventional risk factors is insufficient to
justify carry trade returns but that these could be reconciled with standard results by interpreting
carry trade returns as compensation for large tail risk (dubbed “peso events” in their paper).

Recent theoretical work (e.g. Shleifer and Vishny, 1997; Jeanne and Rose, 2002; Baccheta and
van Wincoop, 2006; Fisher 2006; Brunnermeier, Nagel and Pedersen, 2008; and Ilut 2008) try to
explain what generates this tail risk using a combination of market microstructure mechanisms,
such as models of noise traders, heterogeneous beleifs, rational inattention, liquidity constraints,
herding, “behavioral effects,” and other factors that may serve to limit arbitrage.

Our empirical strategy follows a two-pronged approach that differs from what is usually done.
In the first prong, we extend the four basic carry trade strategies outlined above with country-
specific yield curve factors extracted using Nelson and Siegel’s (1987) approach. There are some
obvious and intuitive reasons for doing this. Firstly, because the Nelson-Siegel factors are natural
predictors of relative cyclical positions between two countries and hence of relative UIP and PPP;
and secondly, because yield curves are natural candidates as risk factors in many asset markets,
and so it makes sense to examine their covariation with carry trade returns. More formally, as
Clarida and M. Taylor (1997) have shown, in a model with persistent short-run deviations from
the risk neutral efficient markets hypothesis, expectational errors can induce a nonzero correlation
between information in the forward yield curve and the future path of the exchange rate. However,
even if one chooses to be agnostic about the theoretical channel, and even if Nelson-Siegel yield
curve factors do not necessarily serve to justify carry trade returns, it might still be the case that
they could predict carry trade direction and help dilute tail risk. To make the link explicit to prior
work, Jordà and A. Taylor (2010a) found FEER to provide a superior hedge (in terms of Sharpe
ratio) against this tail risk than the options-based hedge proposed in Burnside et al. (2008). Here
we are interested in comparing the FEER hedge with a Nelson-Siegel hedge, and a combination
of the two.

The second prong examines how country-specific carry trade returns with respect to the U.S.
covary with U.S. risk factors such as value-weighted excess returns in the U.S. stock market
(CAPM); three Fama-French (1993) factors (excess returns to another measure of value weighted
U.S. stock market; the size premium; and the value premium; U.S. industrial production growth;
the federal funds rate; the term premium (measured by the spread between 10-year Treasury
bonds and 3-month Treasury bills); the liquidity premium (measured as the spread between the 3-
month Eurodollar rate and the 3-month Treasury bill rate); the Pastor-Stambaugh (2003) liquidity
measures; and four measures of market volatility: VIX, VXO, the change in VIX, and the change
in VXO.3 Covariation with any of this long list of conventional risk factors can help us understand
why it appears that there are excess returns to be made with the carry trade. Before investigating
these questions, we discuss some important methodological issues.

3 We thank Craig Burnside for sharing the quarterly version for most of these data. We constructed (from
sources described in the appendix) monthly frequency data, updated for the sample that we examine.
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3 Evaluating Realized Carry Trade Returns

Before we present the main results of our empirical strategy, two novel approaches to out-of-sample
investment performance evaluation from a trader’s perspective are discussed in this section (Jordà
and A. Taylor 2009). Recall that ex-post realized returns for a given carry trade strategy are given
by expression (4), repeated here for convenience:

µ̂t+1 = d̂t+1xt+1

where d̂t+1 = sign(x̂t+1). Moreover, we are interested in investigating the decisions a typical trader
makes given the information available to him at time t and for this reason we are less interested
in model fit and more interested in out-of-sample evaluation. That is, our objective is to assess
carry trade returns from an investor’s point of view.

From this perspective, the natural loss functions required for out-of-sample predictive eval-
uation are determined by investor-performance measures rather than by the more habitual root
mean-squared error (RMSE) metric. In addition and because we are interested in examining
one-period ahead forecasts from a rolling sample of fixed length (where estimation uncertainty
never disappears regardless of the sample size), it is appropriate to rely on conditional predictive
ability tests á la Giacomini and White (2006), rather than unconditional predictive ability tests à
la Diebold and Mariano (1995).

Notice that the key ingredient in expression (4) is d̂t+1 ∈ {−1, 1}, which is a binary variable.
Here conventional methods for evaluating predicted probability outcomes are not useful. Instead,
we are interested in evaluating the ability to predict directional outcomes for the purposes of
maximizing return and this distinction turns out to be quite important: such an evaluation requires
tools that take into account differences in risk attitudes across different investors. In the next
sections we explain each of these evaluation tools in detail.

3.1 Trading-Based Predictive Ability Tests

Given a sample of size T, suppose we reserve the first R observations to produce a forecast for
t = R+1 and then roll the sample by one observation. This generates P = T −(R+1), one period
ahead forecasts obtained with rolling samples of size R. Accordingly, let {Lt+1}T−1

t=R denote the
sequence of loss functions associated with a given forecasting model. The Giacomini and White
(2006) test statistic that evaluates the out-of-sample, conditional marginal ability between two
models is:

GW =
∆L

σ̂L/
√
P
→ N(0, 1),

with

∆L =
1
P

T−1∑
t=R

(
L1
t+1 − L0

t+1

)
; σ̂2

L =
1
P

T−1∑
t=R

(
L1
t+1 − L0

t+1

)2
.

where the superscripts 0 and 1 refer respectively to the null and alternative models under con-
sideration. The loss functions that we consider for each model include the traditional MSE given
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by
∆Lt+1 =

(
x̂1
t+1 − xt+1

)2 − (x̂0
t+1 − xt+1

)2
and the following three investment-performance measures:

• Return:

∆Lt+1 = µ̂1
t+1 − µ̂

0
t+1

• Sharpe Ratio:

∆Lt+1 =
µ̂1
t+1

σ̂1
−
µ̂0
t+1

σ̂0

where σ̂i are calculated for each country individually over the predictive sample.

• Skewness:

∆Lt+1 =

(
µ̂1
t+1

σ̂1

)3

−

(
µ̂0
t+1

σ̂0

)3

We remark that σ̂2
L is estimated with a cluster robust option to account for country-specific

effects. Briefly, the return loss function compares the relative returns between a given carry trade
strategy (carry, momentum, value, and VECM) relative to a coin-toss null model; the Sharpe
Ratio loss function examines the Sharpe ratio instead so as to down-weigh carry trade returns by
country-specific risk; and the skewness loss function examines a country-specific skewness proxy
of carry trade returns that keeps the general format of the other investment-performance loss
functions and puts more weight on returns that are positively skewed and hence avoid left tail
risk.

3.2 Trading-Based Classification Ability Tests

Realized returns µ̂t+1 depend critically on d̂t+1 ∈ {−1, 1}, a binary prediction on the profitable
direction of the carry trade, i.e. dt+1 = sign(xt+1). It would seem natural to construct d̂t+1

using a prediction x̂t+1 in a latent probability model. However, notice that we do not require a
probability prediction but an actual decision on the direction that the investor should take. In
general such a prediction will be based on a single index that appropriately combines information
up to time t, say δ̂t+1 of which a special case is δ̂t+1 = x̂t+1. Given δ̂t+1, then we determine
d̂t+1 = sign(δ̂t+1 − c), where c is a threshold whose value depends critically on an investor’s
preferences and attitudes toward risk, as well as the distribution of returns. We will explain this
issue in more detail momentarily. Notice that in this set-up, δ̂t+1 need not be bounded between
0 and 1, as is customary in a logit or a probit model.

It is useful to define the following classification table associated to this binary prediction
problem:

7



Prediction

Negative Positive

Outcome Negative TN(c) = P
(
δ̂t+1 < c|dt+1 = −1

)
FP (c) = P

(
δ̂t+1 > c|dt+1 = −1

)
Positive FN(c) = P

(
δ̂t+1 < c|dt+1 = 1

)
TP (c) = P

(
δ̂t+1 > c|dt+1 = 1

)

where TN and TP (true negative and true positive) refer to the correct classification rates of
negatives and positives respectively; FN and FP (false negative and false positive) refer to the
incorrect classification rates of negatives and positives respectively; and clearly TN(c)+FP (c) = 1
and FN(c)+TP (c) = 1. Customarily, TP (c), the true positive rate, is called sensitivity and TN(c),
the true negative rate, is called specificity.

The space of combinations of TP (c) and TN(c) for all possible values of c such that −∞ < c <

∞ summarizes a sort of production possibilities frontier (to use the microeconomics nomenclature
for the space for two goods, in our case the two correct classification rates that we contemplate)
for a classifier δ̂t+1, i.e., the maximum TP (c) achievable for a given value of TN(c). We will call
this curve the correct classification (CC) frontier. In statistics and other scientific fields, it is more
common to represent the curve associated with the combinations of TP (c) and FP (c), called the
receiver operating characteristics curve (ROC), but since FP (c) = 1− TN(c), the CC frontier is
equivalent to the ROC curve if one reverses the horizontal axis. Because economists may prefer
the manner in which the CC frontier is constructed, we maintain the different nomenclature to
avoid confusion.

In (TN, TP ) space, let the abscissa represent TN and the ordinate TP . Notice that for any
classifier, as c→ −∞, then TN(c)→ 1 but TP (c)→ 0 and vice versa, as c→∞, TN(c)→ 0 as
TP (c)→ 1.

Let us first consider an uninformative classifier as a benchmark. Imagine we have a classifier
which randomly calls P with probability p and N with probability n = 1 − p, like a biased
coin. These calls are independent of the true state. The true positive rate is TP = p and
the true negative rate is TN = n = 1 − p, and these satisfy TN + TP = 1 by construction.
Thus, an uninformative classifier that is no better than a coin toss is one with frontier given by
TN(c) = 1−TP (c) ∀ c, i.e. the diagonal or 1-simplex which runs from (0, 1) to (1, 0) in (TN, TP )
space. In contrast, a perfect classifier instead hugs the North-East corner of the [0, 1]×[0, 1] square
subset of (TN, TP ) space.

An example of a typical CC frontier is shown in Figure 1. We also show CC frontiers for the
cases of a perfect classifier and for a coin-toss classifier.

How does an investor put to use a binary classifier of this type? Faced with a CC frontier of
this kind he could chose to operate his trading strategy at any one of the points on the frontier,
by choosing a particular threshold parameter c. What, then, is the optimal choice of c?
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Figure 1: The Correct Classification Frontier
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A risk neutral investor will choose the value of c where the slope of the CC frontier is equal to
his utility’s marginal rate of substitution (MRS) between the utility of TP (c) and TN(c) outcomes.
When xt+1 is symmetrically distributed, then this MRS is −1, and the distance between the CC
frontier at this point and the coin-toss diagonal turns out to be the Kolmogorov-Smirnov (KS)
statistic (see Jordà and A. Taylor, 2010b for an explanation of this result).

Intuitively, the KS statistic is a nonparametric test based on the distance given by the average
correct classification rates of the classifier under investigation and those for a coin-toss classifier.
In the latter case, recall that TN(c) = 1 − TP (c) ∀c, and hence the average is 0.5. The formula
for the KS statistic is:

KS = max
c

2
∣∣∣∣(TN(c) + TP (c)

2

)
− 1

2

∣∣∣∣→ sup
τ∈[0,1]

|B(τ)| , (5)

where B(τ) is a Brownian bridge and KS ∈ [0, 1] (see Conover 1999). KS can also be interpreted
as identifying the operating point that maximizes the Youden (1950) index for medical diagnostic
testing, or Peirce’s (1884) “science of the method.”
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An estimate of KS can be obtained non-parametrically by realizing that:

T̂P (c) =

∑
dt+1=1 I(δ̂t+1 > c)∑

dt+1=1 1
; T̂N(c) =

∑
dt+1=−1 I(δ̂t+1 ≤ c)∑

dt+1=−1 1
.

However, the above choice of operating point is clearly very special. In general, an investor’s
preferences are unknown and the distribution of returns may not be symmetric, and so it is
customary and sensible to construct a different test statistic based on the area under the entire
CC frontier, rather than its height at any point. This area we shall denote with the acronym AUC
for area under the curve. This area is equivalent to the area under the ROC curve. The AUC for
a coin-toss classifier is clearly 0.5 (the area under the simplex), whereas AUC = 1 for a perfect
classifier. In most practical scenarios, the AUC will fall between these two extreme values.

The AUC turns out to have a convenient interpretation as a Wilcoxon-Mann-Whitney rank-
sum statistic, and inference is simplified by the fact that its distribution is well approximated
by the Gaussian distribution in large samples (see Hsieh and Turnbull, 1996). This distribution
is centered at 0.5 and hence provides an easy way to test a classifier’s mettle against the null
of no-classification ability given by the coin-toss, a natural null in an investment problem (for a
discussion about the properties of AUC see Jordà and A. Taylor, 2010b). Let NP =

∑
dt+1=1 1

and similarly, NN =
∑
dt+1=−1 1 and define two subsidiary random variables as follows {φi}

NP

i=1 ={
δ̂t+1|dt+1 = 1

}
, and

{
ηj
}NN

j=1
=
{
δ̂t+1|dt+1 = −1

}
, then the AUC can be calculated as:

AUC =
1

NPNN

NN∑
j=1

NP∑
i=1

I(φi > ηj),

where I(.) is an indicator function that takes the value of one when the condition is true, zero
when false. To find asymptotic formulae for the variance the reader is referred to Obuchowski
(1994), which also includes a discussion on bootstrap procedures.

There is one final refinement we need to apply these binary classification methods to a broad set
of economics and finance problems. Thus far we have weighted all correct (+1) and incorrect (−1)
calls the same, but in reality, traders face nonuniform and stochastic returns from directional bets.
More precisely, the AUC assesses classification ability but does not take into account the returns
associated with each trade. Thus, using the simple AUC metric above, a model that correctly
classifies many trades worth pennies but misses a few trades worth dollars, will turn out to be
a poor investment strategy even if its classification ability appears to be very good. Conversely,
by correctly picking the direction in a few trades with large returns, even while missing many
possibly small-return trades, an investment strategy will be very attractive, even if it is poor in
the strict classification sense.

To address this issue, Jordà and A. Taylor (2009, 2010) introduce variants of the KS and AUC
statistics to evaluate return-weighted classification ability and these are called respectively KS?

and AUC?. Both of these statistics turn out to have the same asymptotic distributions as their
unweighted counterparts so inference is still straightforward. To proceed, consider the calculation
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of the return-weighted versions of TP ?(c) and TN?(c) denoted with a star superscript, both of
these being key ingredients in a calculation of KS? and AUC?. Define the maximum profits
attainable in each trading direction as

Bmax =
∑
d=1

xt+1; Cmax =
∑
d=−1

|xt+1| ;

and hence define

TP ?(c) =

∑bd(c)=1|d=1 xt+1

Bmax
; TN?(c) =

∑bd(c)=−1|d=−1 |xt+1|
Cmax

.

Each of these expressions represents the ability of the trading rule to extract trading gains, since
each represents the ratio of actual profits to maximum potential profits in each type of bet.

It is now readily apparent how to compute KS? using these expressions along with the definition
in (5). Similarly, define weights

wi =
φi

Bmax
; wj =

ηj
Cmax

,

then:

AUC? =
NN∑
i=1

wi

NP∑
j=1

wjI(φi > ηj).

For a more detailed explanation of the properties of these statistics the reader is referred to Jordà
and A. Taylor (2009, 2010). These techniques form the basis of the empirical analysis which
follows.

4 A Trading Laboratory for the Carry Trade

We now begin our empirical analysis by examining the first of the two prongs outlined in section 2,
that is, we investigate whether Nelson-Siegel factors improve the ability of carry trade portfolios
to generate positive returns with less risk and fewer “peso events.” The data used for this part
of the analysis consists of a panel of nine countries (Australia, Canada, Germany, Japan, Norway,
New Zealand, Sweden, Switzerland, and the United Kingdom) relative to the United States, with
the sample period being monthly observations between January 1986 and December 2008 (that
is, the G-10 currency set).

The observed variables include end-of-month nominal exchange rates expressed in foreign cur-
rency units per U.S. dollar; government debt yields of the following maturities: 3, 6, 12, 24, 36, 60,
84, and 120 months (when available); the one-month London interbank offered rates (LIBOR); and
the consumer price index. Exchange rate data and consumer price indices are obtained from the
IFS database, LIBOR data are from the British Banker’s Association, and yields of government
debt were obtained from Global Financial Data.
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4.1 Four Benchmark Carry Trade Strategies

Section 2 discussed four carry trade strategies labeled as carry, momentum, value, and VECM
that we now investigate. The carry strategy is a näıve trading model in which a trader borrows
in the low interest currency and invests in the high yield currency, that is, it is entirely based on
the sign of (i?t − it) (in our simplified model version it assigns ∆êt+1 = 0). For this reason, this
strategy is a natural benchmark against which to compare the other strategies that we examine.

Table 1 reports the panel based estimates of our four models over the entire sample of data
from January 1986 to December 2008 (top panel), where we omit fixed effects estimates for brevity.
Table 2 then examines the out-of-sample performance over the sample January 2004 to December
2008 using fixed-window rolling samples starting with January 1986 to December 2003. We remark
that for the value strategy, FEER is also calculated using the appropriate rolling sample rather
than relying on the entire sample to avoid any look-ahead advantage.

In-sample estimates appear to give credence to the well-worn practice of momentum trading
since the coefficient on lagged changes of exchange rates is positive and significant. Similarly,
estimates for the value strategy also confirm the wisdom that currencies eventually return to their
long-run fundamental value, although the speed of reversion is relatively slow (about 1.4% per
month). The more sophisticated VECM strategy encapsulates these two observations, although
the results on the speed of reversion to long-run FEER are to be interpreted differently, here with
a long-run equilibrium speed of adjustment of about 2.3%.

These results are reassuring to economists but a currency speculator prefers an assessment
based on out-of-sample performance in a realistic trading setting and this is done in Table 2. Note
that the results of this exercise include the period of financial turbulence that started in the fall

Table 1. Four benchmark carry trade strategies 
In-sample estimates, January 1986 – December 2008 

Dep. V: ¢et+1¢et+1 Carry Trade Strategy 
 Carry Momentum Value VECM 
¢et¢et  - 0.114**

(0.031) 
- 0.128**

(0.032) 
i¤t ¡ iti¤t ¡ it  - - - 0.864**

(0.358) 
¼¤

t ¡ ¼t¼¤
t ¡ ¼t  - - - 0.230*

(0.122) 
qt ¡ ¹qqt ¡ ¹q   - - -0.014**

(0.003) 
-0.023**

(0.003) 
R2R2 - 0.013 0.004 0.025 
Currencies 9 9 9 9 
Periods 276 276 276 276 
Total Obs. 2484 2466 2466 2455 
Notes: Panel estimates with country fixed effects (not reported). Heteroskedasticity-robust standard errors 
reported in parenthesis. **/* indicates significance at the 95/90% confidence level. Slight differences in the 
total number of observations are due to differences in data lags. 

 

12



Table 2.  Four benchmark carry trade strategies 
Out-of-sample performance, January 2004 – December 2008 

Realized Returns to 
an Equally-
Weighted Portfolio 

Carry Trade Strategy 

 Carry Momentum Value VECM 
Mean (monthly) -0.0024 0.0027 -0.0022 0.0025 
S.D. 0.018 0.018 0.015 0.018 
Skewness -2.97 1.59 -0.69 1.44 
Coeff. of Variation -7.35 6.74 -6.77 7.35 
Avg. Ann. Ret (%) 2.9 3.3 -2.6 3.0 
Sharpe Ratio (ann.) -0.47 0.51 -0.51 0.47 
 

 Giacomini-White (2006) p-values 
Loss Function Carry Momentum Value VECM 
MSE - 0.00 0.31 0.40 
Return - 0.05 0.93 0.01 
Sharpe Ratio - 0.05 0.92 0.01 
Skewness - 0.15 0.86 0.00 
Notes: Null model is the naïve carry model. To correct for cross-sectional dependence, a cluster-robust 
covariance correction is used. 

 Directional Performance 
 Carry Momentum Value VECM 
KS 0.07 

[0.52] 
0.08

[0.35] 
0.07 

[0.55] 
0.13

[0.02] 
KS* 0.02 

[0.83] 
0.16

[0.00] 
0.02 

[0.89] 
0.17

[0.00] 
AUC 0.52 

(0.025) 
0.53 

(0.025) 
0.51 

(0.025) 
0.57**

(0.025) 
AUC* 0.44** 

(0.025) 
0.60**

(0.024) 
0.46 

(0.025) 
0.59**

(0.024) 
Obs. 540 540 540 540 
Notes: KS and KS* p-values are shown in square brackets. Standard errors for AUC statistics are 
reported in parenthesis. **/* indicates significance at the 95/90% confidence level.  

of 2007. We deliberately chose to include this in our window since it is the occurrence of “peso
events” or flight-to-safety during such crash episodes which helps ensure that we are not stacking
the deck in the direction of favorable trading profits by only looking at tranquil times.

In contrast to other recent work on the carry trade, we find that when the crash period is
included in the sample the results of this evaluation provide quite sobering reading. Realized
profits are on average negative over the out-of-sample evaluation period for the carry and value
strategies. Momentum and VECM strategies enjoy low but positive returns of around 3% annually
with a Sharpe ratio of about 0.5 but with relatively low and positive skew (the skewness is negative
for the carry and value portfolios).

Giacomini and White (2006) statistics are reported in the middle panel of Table 2. Note that
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the carry strategy is our null model against which all the others are compared. With a traditional
MSE loss function, only the momentum strategy appears to perform significantly better (in the
statistical sense) than the näıve carry. However, when we switch to investment performance
loss functions then it becomes clear that the VECM strategy dominates all others, although
the momentum strategy is successful in generating significant improvements in terms of realized
returns and Sharpe ratio, but not in terms of skewness.

The bottom panel of Table 2 examines the out-of-sample performance of these trading strategies
using the classification statistics that we discussed in section 3. The unweighted KS and AUC
statistics suggest that the marginal classification abilities of the carry, momentum, and value
signals are not significantly different than that of a coin-toss, although this null is firmly rejected
for the VECM strategy.

However, as we argued previously, what is important is to classify the trades with high re-
turns/losses correctly. Here the differences are clear: carry and value attain AUC? values below
the 0.5 coin-toss benchmark (indicating that it is best to do the opposite of what the strategy
proposes!), whereas the momentum and VECM strategies have a relatively high AUC? value (near
0.6) and statistically significant. A similar picture arises if one uses KS and KS? statistics instead.

Where do we stand at this juncture? On the one hand, the näıve carry strategy appears to
have been blown out of the water by the turbulent period at the end of our sample. In some
sense this is reassuring as it suggests that the persistent carry trade profits observed prior to the
recent downturn are compensation for (tail) risk. On the other hand, the momentum and VECM
strategies appear to have weathered the storm rather well and so we may ask whether an even
more sophisticated trader could obtain higher returns.

The next step in our analysis therefore relies on a piece of information that we have so far
neglected to use – that contained in the relative term structure of government yields between
countries. The next section begins by constructing Nelson-Siegel term structure factors and then
extends our four trading models to examine this proposition.

4.2 Relative Nelson-Siegel Yield Factors

In principle, there are many ways to measure the term structure, e.g., from the parsimonious
method of taking differences between 10-year and 3-month government debt, using a vector of
forward rates (Clarida and M. Taylor 1997; Clarida et al. 2009; Ang and Chen 2010), or fitting
non-parametric or spline-based curves. We choose to impose a parametric form on the yield curve
that is concise and simple to implement, yet flexible enough to capture the relevant shapes of yield
curves. In particular, we estimate factors of the yield curve following Nelson and Siegel (1987).
Because our interest lies in movements in foreign yield curves relative to that in the U.S., we follow
Chen and Tsang (2009) and estimate the following relative yield curve as:

i?mt − imt = Lt + St

(
1− e−λm

λm

)
+ Ct

(
1− e−λm

λm
− e−λm

)
(6)
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Table 3. Summary statistics for relative Nelson-Siegel factor estimates 

Country Level Slope Curve 
AUS    
  Mean 1.98 1.49 -0.48 
   (1.55) (1.91) (1.97) 
CAN    
  Mean -0.62 0.84 -0.53 
   (0.76) (1.65) (1.64) 
CHE    
  Mean -1.89 0.77 -0.21 
   (0.43) (2.35) (1.81) 
DEU    
  Mean -0.47 0.36 -0.44 
   (0.80) (2.09) (3.03) 
JPN    
  Mean -2.83 0.58 -1.96 
   (0.78) (1.88) (2.48) 
NOR    
  Mean 1.20 1.73 -0.57 
   (1.62) (2.48) (2.34) 
NZD    
  Mean 1.93 2.71 0.40 
   (1.92) (2.27) (2.46) 
SWE    
  Mean 1.20 0.96 -0.11 
   (1.63) (2.51) (2.53) 
UK    
  Mean 1.09 1.86 -1.40 
   (1.14) (1.74) (2.52) 
Notes: refer to the text for an explanation of how the Nelson-Siegel factors are estimated. 

where i?m is the return of a foreign government bond with maturity m, and im is the return of a
U.S. government bond of the same maturity. The parameter λ controls the speed of exponential
decay, and here is set to 0.0609, as recommended by Nelson and Siegel (1987).

The Nelson-Siegel setup is straightforward to estimate—Lt, St, and Ct are estimated for each
country-period pair with standard regression techniques. Summary statistics for the estimates of
these factors are reported in Table 3. An additional benefit of the Nelson-Siegel yield curves is
that the three factors have intuitive interpretations. The level factor, Lt, has a constant impact
across the entire yield curve and is closely associated with the general direction of profitable
carry as foreseen at all horizons, while factor loadings for slope, St, and curvature, Ct vary across
the maturity spectrum of the yield curve and give an indication on future movements in näıve
carry. The slope factor has a loading of 1 at maturity m = 0 that decreases monotonically to
zero as the maturity increases. Consequently, movements at the short end of the yield curve are
mostly reflected by this factor, so that, e.g., conditional on a long-term yield, a higher slope factor
indicates a flatter relative yield curve. The curvature factor captures movements in the middle
of the yield curve – its loading is zero at maturities of zero and very long maturities, with the
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maximum loading in the middle of the spectrum. We should note that, to a significant extent,
the short-weighted slope factor S moves in tandem with the traditional carry signal, which may
explain why of all the NS factors, this one seems to add little in the way of enhancement to the
trading models in what follows: in general we find that it is mainly the L and C factors which
contribute incremental value as signals.

As descriptions of the term structure, Nelson-Siegel models are known to fit the data well with
very high R2 values. This turns out be the case also for the relative Nelson-Siegel factors that
we calculate with average R2 values above 0.90 for each country-U.S. pair. Over the sample, the
estimates on the level factor in Table 3 essentially represent the average interest rate differential
in the short term, for example, the almost the 3% difference between Japan and the U.S. which
was the source of considerable interest in the carry in Japan. Table 3 also reveals the considerable
variation in the slope and curvature factors across countries. It is to be expected that such variation
is particularly useful to construct clever carry trade strategies. Table 4 reports regression estimates
for the same forex trading strategies analyzed in Table 1, only now augmented with the level, slope,
and curvature Nelson-Siegel relative factors and thus denoted with a suffix “+” to differentiate
them form the four benchmark strategies in Table 1.

Broadly speaking, we can see that compared to the four benchmark strategies, the fit almost
doubles in all cases and that level and curvature factors are significant for the four strategies (and

Table 4. Four carry trade models with Nelson-Siegel factor 
In-sample estimates, January 1986 – December 2008 

Dep. V: ¢et+1¢et+1 Carry Trade Strategy 
 Carry+ Momentum+ Value+ VECM+
¢et¢et  - 0.10**

(0.03) 
- 0.11**

(0.03) 
i¤t ¡ iti¤t ¡ it  -3.00** 

(1.2) 
- - -3.24**

(1.11) 
¼¤

t ¡¼t¼¤
t ¡¼t  - - - 0.20

(0.14) 
qt ¡ ¹qqt ¡ ¹q   - - -0.018**

(0.003) 
-0.023**

(0.003) 
Level -0.003** 

(0.001) 
-0.001**

(0.000) 
-0.002**

(0.000) 
-0.004**

(0.001) 
Slope -0.002* 

(0.001) 
0.000 

(0.000) 
0.000 

(0.001) 
-0.002** 
(0.001) 

Curve -0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

R2 0.018 0.027 0.024 0.039 
Currencies 9 9 9 9 
Periods 276 276 276 276 
Total Obs. 2416 2408 2408 2397 
Notes: Panel estimates with country fixed effects (not reported). Heteroskedasticity-robust standard errors 
reported in parenthesis. **/* indicates significance at the 95/90% confidence level. Slight differences in the 
total number of observations are due to differences in data lags. 
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Table 5.  Four carry trade models with Nelson-Siegel factors 
Out-of-sample performance, January 2004 – December 2008  

Realized Returns to 
an Equally-Weighted 
Portfolio 

Carry Trade Strategy 

 Carry+ Momentum+ Value+ VECM+
Mean (monthly) 0.0029 0.0029 0.0017 0.0026 
S.D. 0.014 0.017 0.014 0.013 
Skewness -0.73 0.49 -0.95 -0.53 
Coeff. of Variation 4.84 5.96 8.29 5.03 
Avg. Ann. Ret (%) 3.5 3.6 2.0 3.1 
Sharpe Ratio (ann.) 0.72 0.58 0.42 0.69 
 

 Giacomini and White (2006) p-values 
Loss Function Carry+ Momentum+ Value+ VECM+
MSE 0.71 0.30 0.44 0.13 
Return 0.01 0.02 0.00 0.00 
Sharpe Ratio 0.01 0.02 0.00 0.00 
Skewness 0.01 0.22 0.00 0.00 
Notes: The null model is the naïve carry model. To correct for cross-sectional dependence, a cluster-
robust covariance correction is used.  

 Directional Performance 
 Carry+ Momentum+ Value+ VECM+
KS 0.14 

[0.01] 
0.12

[0.05] 
0.14 

[0.01] 
0.15

[0.01] 
KS* 0.16 

[0.00] 
0.16

[0.00] 
0.15 

[0.00] 
0.20

[0.00] 
AUC 0.56** 

(0.025) 
0.58** 

(0.025) 
0.56** 

(0.025) 
0.59**

(0.025) 
AUC* 0.55** 

(0.025) 
0.60**

(0.024) 
0.55** 

(0.025) 
0.60**

(0.024) 
Obs. 540 540 540 540 
Notes: KS and KS* p-values are shown in square brackets. Standard errors for AUC statistics are 
reported in parenthesis. **/* indicates significance at the 95/90% confidence level.  

for VECM+, all three factors enter significantly). Out-of-sample performance improves across the
board as well. For example, the top panel of Table 5 shows that now all four carry strategies
have strictly positive returns ranging from 2.1% to 3.5% annually, with annualized Sharpe ratios
around 0.6–0.7. Giacomini and White (2006) statistics reported in the middle panel of Table 5
suggest that although none of the four Nelson-Siegel augmented strategies would be significantly
better than a näıve carry trade by the MSE metric, the same is not true when the loss function is
selected on the basis of investment performance of realized returns. Moreover, the Nelson-Siegel
factors now make all four strategies significantly better over all, regardless of the loss function
(returns, Sharpe or skewness).

A natural explanation of these results is that to secure good returns all that is needed is a
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good directional forecast and the bottom panel of Table 5 confirms this observation. KS and
KS* statistics improve uniformly for all strategies; a similar picture arises from the AUC and
AUC* statistics. Overall, looking across these metrics, the VECM+ still stands out as a preferred
strategy although the differences across models have narrowed. One intuition for this finding is
that the shape of forward curve may capture some of the same composite information embedded
in the CMV factors; for example, future yields may be informative concerning the forward-looking
path of an exchange rate towards its FEER value. Our results are consistent with Ang and Chen
(2010), who find that there is significant information in the yield curve to predict excess foreign
exchange returns. Clarida et al. (2009) find that this correlation is robust to inclusion of the
recent financial crash.

5 Do Risk Factors Explain Carry Trade Profits?

The carry trade is a zero-net investment strategy. If traders had perfect foresight then we would
expect the carry trade to have zero-net returns (abstracting from transaction costs). Traders do
not have perfect foresight and markets have frictions so that average, non-zero net returns are not
necessarily surprising—they could be justified as compensation for risk in the sense that the carry
trade provides an inadequate hedge against so-called risk factors which proxy for the stochastic
discount factor in a typical asset pricing model.

The question that we explore in this section is whether the carry trade strategies that we have
analyzed are correlated with any of a long list of so-called risk factors that have been extensively
analyzed elsewhere in the literature (e.g. Burnside et al. 2008ab). If they are, then we are
interested in determining whether the “risk adjusted” returns are still positive. This so-called
alpha is calculated as the intercept from a regression of realized return on the demeaned risk
factor variable(s). If alpha remains positive, and/or if the slope coefficients on the risk factors are
not significant, then it makes it difficult to explain what could justify the sort of returns that we
have reported here.

The risk factors that we explore are all from the perspective of the U.S. and include: the
excess return to the value-weighted U.S. stock market (CAPM); the three Fama and French
(1993) factors, namely excess return to value-weighted U.S. stock market, the size premium, and
the value premium; U.S. industrial production growth; the federal funds rate; the term premium
measured as the spread between the 10-year Treasury Bond and the 3-month Treasury Bill; the
Pastor and Stambaugh (2003) two liquidity measures; and four measures of market volatility,
that is, the Chicago Board Options Exchange Volatility indexes VIX and VXO as well as their
differences. An appendix to this paper contains a detailed description of how each risk factor was
constructed.

Formally, we proceeded as follows. Using out-of-sample realized returns from the four bench-
mark portfolios and the Nelson-Siegel augmented versions, we then construct equally-weighted
(across countries) portfolio returns, one for each strategy (for a total of eight cases). We then
regress these portfolio returns against each of the factors listed above, one-at-a-time (except for
the three Fama-French factors which are entered jointly).
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Specifically, portfolio returns are constructed as:

µ̂EWt+1 =
1
J

J∑
j=1

µ̂jt+1

where j ∈ {Australia, Canada, Germany, Japan, Norway, New Zealand, Sweden, Switzerland,
U.K.} so that J = 9. Next, we regress

µ̂EWt+1 = αk + βkfk,t+1 + uk,t+1 (7)

for k = 1, ...,K where fk,t+1 denotes the kth risk factor out of the K risk factors listed above
and where the sample begins in January 2004 and ends in December 2008, as in Tables 2 and 5.
Therefore, the regressions in (7) are essentially those reported in Tables 4 and 5 in Burnside et al.
(2008), except that we focus on out-of-sample realized returns rather than on in-sample results
and we use monthly rather than quarterly data.

We again remind the reader that our sample includes the turbulent period that begins in early
2007 and ends in our sample in December 2008. This period saw the a major crash of G-10 carry
trades with significant appreciation of funding currencies such as the JPY and CHF, and major
declines in high-yield targets such as AUD, NZD, and GBP. There was also a sharp concentration
of risk as evinced by the high observed correlation of risk factors during this period, with observers
noting the unusual and unprecedented comovement of risk assets driven by daily risk-on/risk-off
shifts in market sentiment. (For example, the almost overnight emergence of a strong correlation
between JPYUSD and SPY right after the “Shanghai Surprise” event in 2007.4)

The regression estimates are reported in Tables 6–9. An estimate for αk corresponds to the
risk-adjusted return to that particular carry trade strategy relative to the risk factor considered
in that regression. Therefore, we are looking for cases in which estimates of βk enter significantly,
in which case we need to check if αk → 0, thus suggesting that excess carry trade returns can be
explained as compensation for the risk described by the risk factor considered.

The results of this exercise can be broadly summarized as follows. The four benchmark port-
folios appear to be consistently correlated with measures of market volatility (VIX, VXO, and
their first differences). This result is striking. But for the simple carry strategy it is consistent
with Brunnermeier et al. (2008) who argue that during volatile periods, traders prefer to liquidate
carry trade positions to generate a cash cushion against domestic market instability. Even so, this
result warrants a few caveats.

First, Jordà and A. Taylor (2009) find that such risk-factor correlations are not present in
the pre-crash sample period actually studied by Brunnermeier et al. (2008) once one employs
trading strategies which include the CVM factors; thus, it may be that the extreme events of the
2008 crash period indicate that it is only in very extreme “crisis” events that such risk factors
play a major role, and can overwhelm even the more sophisticated hedging techniques built in to
augmented carry models

4 John Authers, “The Fearful Rise of Markets,” Financial Times, May 22, 2010.
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Table 6. Risk Factor Regressions 
Out-of-sample risk-adjusted returns of equally weighted portfolios using the carry strategy 
January 2004 – December 2008 

Factor Carry Carry+ 

 Intercept Betas Intercept Betas 
CAPM -0.0017 

(0.0018) 
0.0029** 
(0.0009) 

  0.0031 
(0.0020) 

0.0007* 
(0.0004) 

  

Fama-
French 

-0.0015 
(0.0017) 

0.0032** 
(0.0010) 

-0.0014 
(0.0010) 

0.0014 
(0.0010) 

0.0033* 
(0.0018) 

0.0012** 
(0.0004) 

-0.0017* 
(0.0009) 

-0.0012 
(0.0009) 

IP Growth -0.0022 
(0.0027) 

0.3097 
(0.3175) 

  0.0032* 
(0.0018) 

0.5068** 
(0.2335) 

  

Fed Funds 
Rate 

-0.0016 
(0.0020) 

0.0016 
(0.0020) 

  0.0036* 
(0.0020) 

0.0014 
(0.0011) 

  

Term 
Premium 

-0.0028 
(0.0030) 

-0.0026 
(0.0028) 

  0.0026 
(0.0021) 

-0.0019 
(0.0014) 

  

Liquidity 
Premium 

-0.0015 
(0.0017) 

-0.0146** 
(0.0043) 

  0.0031 
(0.0020) 

-0.0032 
(0.0021) 

  

Pastor-Stambaugh Liquidity Measures 
Level -0.0022 

(0.0025) 
0.0747* 
(0.0433) 

  0.0030 
(0.0020) 

0.0211 
(0.0166) 

  

  
Innovation 

-0.0024 
(0.0027) 

0.0482 
(0.0356) 

  0.0029 
(0.0020) 

0.0247 
(0.0289) 

  

Market Volatility 
VIX -0.0031 

(0.0019) 
-0.0013** 
(0.0004) 

  0.0027 
(0.0020) 

-0.0003 
(0.0002) 

  

VXO -0.0036* 
(0.0019) 

-0.0013** 
(0.0004) 

  0.0026 
(0.0021) 

-0.0002 
(0.0002) 

  

¢¢VIX  -0.0022 
(0.0022) 

-0.0021** 
(0.0009) 

  0.0029 
(0.0020) 

-
0.0007** 
(0.0003) 

  

¢¢VXO  -0.0022 
(0.0022) 

-0.0018** 
(0.0008) 

  0.0030 
(0.0020) 

-0.0006* 
(0.0003) 

  

Notes: See text for details on risk factors and risk factor regressions. Standard errors robust to 
autocorrelation and heteroskedasticity are in parentheses. **/* indicates significance at the 95/90% 
confidence level. 
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Table 7. Risk Factor Regressions 
Out-of-sample risk-adjusted returns of equally weighted portfolios using the momentum strategy 
January 2004 – December 2008 

Factor Momentum Momentum+ 

 Intercept Betas Intercept Betas 
CAPM 0.0023 

(0.0024) 
-0.0016 
(0.0012) 

  0.0026 
(0.0023) 

-0.0011 
(0.0010) 

  

Fama-
French 

0.0020 
(0.0022) 

-0.0020 
(0.0012) 

0.0018 
(0.0013) 

-0.0013 
(0.0012) 

0.0026 
(0.0022) 

-0.0010 
(0.0009) 

0.0000 
(0.0013) 

-0.0021* 
(0.0013) 

IP Growth 0.0027 
(0.0027) 

-0.0428 
(0.3239) 

  0.0033 
(0.0024) 

0.5855** 
(0.1843) 

  

Fed Funds 
Rate 

0.0013 
(0.0020) 

-0.0024 
(0.0019) 

  0.0028 
(0.0020) 

-0.0002 
(0.0017) 

  

Term 
Premium 

0.0031 
(0.0028) 

0.0033 
(0.0025) 

  0.0030 
(0.0026) 

0.0004 
(0.0023) 

  

Liquidity 
Premium 

0.0021 
(0.0022) 

0.0091* 
(0.0052) 

  0.0027 
(0.0022) 

0.0004 
(0.0053) 

  

Pastor-Stambaugh Liquidity Measures 
Level 0.0027 

(0.0026) 
-0.0026 
(0.0453) 

  0.0030 
(0.0023) 

0.0157 
(0.0400) 

  

  
Innovation 

0.0027 
(0.0027) 

0.0124 
(0.0452) 

  0.0030 
(0.0024) 

0.0406 
(0.0316) 

  

Market Volatility 
VIX 0.0031 

(0.0024) 
0.0009** 
(0.0004) 

  0.0031 
(0.0024) 

0.0004 
(0.0004) 

  

VXO 0.0035 
(0.0024) 

0.0008** 
(0.0004) 

  0.0033 
(0.0025) 

0.0004 
(0.0004) 

  

¢¢VIX  0.0025 
(0.0023) 

0.0016** 
(0.0006) 

  0.0028 
(0.0023) 

0.0011** 
(0.0005) 

  

¢¢VXO  0.0025 
(0.0023) 

0.0015** 
(0.0006) 

  0.0028 
(0.0023) 

0.0010* 
(0.0005) 

  

Notes: See text for details on risk factors and risk factor regressions. Standard errors robust to 
autocorrelation and heteroskedasticity are in parentheses. **/* indicates significance at the 95/90% 
confidence level. 
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Table 8. Risk Factor Regressions 
Out-of-sample risk-adjusted returns of equally weighted portfolios using the value strategy 
January 2004 – December 2008 

Factor Value Value+ 

 Intercept Betas Intercept Betas 
CAPM -0.0018 

(0.0020) 
0.0014** 
(0.0005) 

  0.0018 
(0.0019) 

0.0006 
(0.0004) 

  

Fama-
French 

-0.0017 
(0.0020) 

0.0015** 
(0.0006) 

-0.0003 
(0.0010) 

0.0008 
(0.0010) 

0.0019 
(0.0018) 

0.0009** 
(0.0004) 

-0.0011 
(0.0011) 

-0.0011 
(0.0011) 

IP Growth -0.0019 
(0.0021) 

0.3755* 
(0.2355) 

  0.0020 
(0.0018) 

0.5231** 
(0.2029) 

  

Fed Funds 
Rate 

-0.0020 
(0.0021) 

0.0002 
(0.0016) 

  0.0024 
(0.0019) 

0.0013 
(0.0010) 

  

Term 
Premium 

-0.0022 
(0.0024) 

-0.0004 
(0.0020) 

  0.0014 
(0.0020) 

-0.0018 
(0.0013) 

  

Liquidity 
Premium 

-0.0016 
(0.0018) 

-0.0087** 
(0.0019) 

  0.0019 
(0.0019) 

 -0.0036** 
 (0.0018) 

 

Pastor-Stambaugh Liquidity Measures 
Level -0.0020 

(0.0021) 
0.0455** 
(0.0228) 

  0.0017 
(0.0020) 

0.0120 
(0.0156) 

  

  
Innovation 

-0.0021 
(0.0022) 

0.0269 
(0.0237) 

  0.0017 
(0.0020) 

0.0159 
(0.0290) 

  

Market Volatility 
VIX -0.0026** 

(0.0018) 
-0.0008** 
(0.0001) 

  0.0015 
(0.0019) 

 -0.0003** 
 (0.0001) 

 

VXO -0.0028** 
(0.0018) 

-0.0007** 
(0.0001) 

  0.0013 
(0.0019) 

 -0.0003** 
 (0.0001) 

 

¢¢VIX  -0.0021 
(0.0022) 

-0.0008 
(0.0006) 

  0.0017 
(0.0019) 

 -0.0007** 
 (0.0003) 

 

¢¢VXO  -0.0021 
(0.0022) 

-0.0006 
(0.0006) 

  0.0017 
(0.0019) 

 -0.0007** 
 (0.0003) 

 

Notes: See text for details on risk factors and risk factor regressions. Standard errors robust to 
autocorrelation and heteroskedasticity are in parentheses. **/* indicates significance at the 95/90% 
confidence level. 
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Table 9. Risk Factor Regressions 
Out-of-sample risk-adjusted returns of equally weighted portfolios using the VECM strategy 
January 2004 – December 2008 

Factor VECM VECM+ 

 Intercept Betas Intercept Betas 
CAPM 0.0020 

(0.0022) 
-0.0019 
(0.0012) 

  0.0025 
(0.0017) 

-0.0005 
(0.0004) 

  

Fama-
French 

0.0016 
(0.0021) 

-0.0025** 
(0.0011) 

0.0027** 
(0.0011) 

-0.0017 
(0.0013) 

0.0024 
(0.0017) 

-0.0004 
(0.0003) 

-0.0003 
(0.0009) 

-0.0015 
(0.0010) 

IP Growth 0.0024 
(0.0027) 

-0.1011 
(0.2417) 

  0.0026 
(0.0017) 

0.0011 
(0.1504) 

  

Fed Funds 
Rate 

0.0030 
(0.0021) 

-0.0039** 
(0.0019) 

  0.0026 
(0.0016) 

0.0000 
(0.0012) 

  

Term 
Premium 

0.0031 
(0.0028) 

0.0044 
(0.0027) 

  0.0025 
(0.0018) 

-0.0003 
(0.0016) 

  

Liquidity 
Premium 

0.0019 
(0.0022) 

0.0098* 
(0.0053) 

  0.0025 
(0.0017) 

0.0021 
(0.0022) 

  

Pastor-Stambaugh Liquidity Measures 
Level 0.0023 

(0.0026) 
-0.0310 
(0.0392) 

  0.0026 
(0.0017) 

0.0180 
(0.0186) 

  

  
Innovation 

0.0024 
(0.0027) 

-0.0194 
(0.0377) 

  0.0026 
(0.0017) 

0.0179 
(0.0269) 

  

Market Volatility 
VIX 0.0030 

(0.0022) 
0.0010** 
(0.0004) 

  0.0027 
(0.0017) 

0.0003 
(0.0002) 

  

VXO 0.0033 
(0.0023) 

0.0009** 
(0.0003) 

  0.0028 
(0.0017) 

0.0002 
(0.0002) 

  

¢¢VIX  0.0023 
(0.0025) 

0.0012 
(0.0010) 

  0.0026 
(0.0017) 

0.0001 
(0.0002) 

  

¢¢VXO  0.0024 
(0.0025) 

0.0010 
(0.0009) 

  0.0026 
(0.0017) 

0.0002 
(0.0002) 

  

Notes: See text for details on risk factors and risk factor regressions. Standard errors robust to 
autocorrelation and heteroskedasticity are in parentheses. **/* indicates significance at the 95/90% 
confidence level. 
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Second, in Tables 6–9, the correlation with the volatility measures serves only to eliminate
alpha for the carry and value strategies; for momentum and VECM it serves to enhance alpha;
thus the returns for these strategies still cannot be explained away. Moreover, the risk-factor
explanation for returns completely evaporates for the momentum+ and VECM+ strategies (and
to a large extent for the carry+ and value+ strategies as well). Out of the former two, momentum+
appears to have only some mild covariation with industrial production growth, whereas VECM+
appears to be uncorrelated with all the risk factors that we consider and in fact, the risk-adjusted
returns shown in Table 9 (right panel alphas) are relatively constant and equal to the raw returns
seen in Table 5 (3% per annum with a Sharpe Ratio of 0.69). Finally, although the alphas in
Table 9 have wide standard errors, the point estimate is consistent with our no-risk-factor model,
and the sample size is small, and we consider that our Giacomini-White and Correct Classification
statistics (AUC and KS) provide the compelling out-of-sample evidence of unweighted- and return-
weighted predictive ability against the null.

Thus our VECM+ (a CMV vector model augmented by information from the forward curve)
appears to stand tallest among all the augmented carry models we have considered. It significantly
beat a coin-toss as a directional forecast, its return-weighted performance also delivers statistically
significant profits, its profits avoid negative skew, and they have no correlation with a standard
set of risk factors.

6 Conclusion

This paper has presented new data and methods to explore an ongoing debate about the currency
carry trade. We find that many widely-used carry trade strategies failed during the recent financial
crisis, but those augmented by additional hedging signals have fared better. Building on prior
work that identified the carry, momentum, and value (CMV) signals as jointly important (Jordà
and A. Taylor 2009), in this paper we also find a complementary role for information drawn from
the forward yield curves (Ang and Chen, 2009; Clarida and M. Taylor 1997; and Clarida et al.
2009). When this full set of signals are employed, the resulting portfolios of trades are profitable,
exhibit attractive Sharpe and skewness properties, and cannot be rationalized away using any
standard risk factors.
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Appendix

The list of sources we used to construct risk-factors is as follows:

• Fama-French Factors: Kenneth French data library

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html)

• Industrial Production Growth: Federal Reserve Board release G.17

• Federal funds rate: Federal Reserve Board; Table H.15.

• Term Premium: Federal Reserve Board, Table H.15; 10-year T-Bill (Constant Maturity) less

3-month T-Bill (Secondary Market Rate).

• Liquidity Premium: Federal Reserve Board, Table H.15; 3-month Eurodollar rate less 3-month

T-Bill.

• Pastor and Stambaugh: Pastor website

(http://faculty.chicagobooth.edu/lubos.pastor/research/liq data 1962 2008.txt).

• VIX: Yahoo! Finance.

• VXO: Yahoo! Finance.
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