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ABSTRACT 
 

Detecting Discrimination in Audit and Correspondence Studies* 
 
Audit studies testing for discrimination have been criticized because applicants from different 
groups may not appear identical to employers. Correspondence studies address this criticism 
by using fictitious paper applicants whose qualifications can be made identical across groups. 
However, Heckman and Siegelman (1993) show that group differences in the variance of 
unobservable determinants of productivity can still generate spurious evidence of 
discrimination in either direction. This paper shows how to recover an unbiased estimate of 
discrimination when the correspondence study includes variation in applicant characteristics 
that affect hiring. The method is applied to actual data and assessed using Monte Carlo 
methods. 
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I. Introduction  

In audit or correspondence studies, fictitious individuals who are identical except for race, sex, or 

ethnicity apply for jobs.  Evidence of group differences in outcomes – for example, blacks getting fewer job 

offers than whites – is generally viewed as compelling evidence of discrimination.  Across a wide array of 

countries and demographic groups, audit or correspondence studies conclude that there is evidence of 

discrimination, including, for example, discrimination against blacks, Hispanics, and women in the United 

States (Mincy, 1993; Neumark, 1996; Bertrand and Mullainathan [BM], 2004), Moroccans in Belgium and 

the Netherlands (Smeeters and Nayer, 1998; Bovenkerk et al., 1995), and lower castes in India (Banerjee et 

al., 2008).  These “field experiments” for testing for discrimination are widely viewed as providing the 

most convincing evidence on discrimination (Pager, 2007; Riach and Rich, 2002), and U.S. courts allow 

organizations that conduct audit or correspondence studies to file claims of discrimination based on the 

evidence they collect (U.S. Equal Employment Opportunity Commission, 1996).1   

Nonetheless, audit or correspondence studies have been subjected to scrutiny and criticism, most 

notably from Heckman and Siegelman [HS] (HS, 1993; Heckman, 1998).  Most important, audit studies – 

which use “live” job applicants – have been criticized for failing to ensure that applicants from different 

groups appear identical to employers.  Many of these criticisms can be countered by using correspondence 

studies, which use fictitious applicants on paper, or more recently the internet, whose qualifications can be 

made identical across groups.  However, Heckman and Siegelman (1993) show that even in the ideal 

correspondence study in which both observed and unobserved group averages are identical, group 

                                                 
1 EEOC (1996) discusses the case history regarding the use of testers in labor market and housing discrimination, as 
well as the Commission’s conclusions.  The EEOC refers to case law from the early civil rights movement when 
groups’ only motivation was to test the law.  For example, the EEOC cites Pierson v. Ray, 386 U.S. 547 (1967), in 
which the Supreme Court “held that a group of Black clergymen who were removed from a segregated bus terminal in 
Jackson, Mississippi had standing to seek redress,” ruling that the plaintiffs “had been discriminated against by being 
ejected from the terminal, despite the fact that the plaintiffs’ sole purpose was to test the law rather than to actually 
use the terminal” (U.S. EEOC, 1996, p. 2).  The EEOC cites similar case law regarding plaintiffs testing the legality of 
segregation laws on buses.  The document discusses the well-established standing of testers in housing discrimination 
cases under Title VIII, based on Havens Realty Corp. v. Coleman, 455,  U.S. 363, 373 (1982), the parallels to 
employment discrimination under Title VII, and cases in which damages have been awarded in employment testing.  
Finally, it discusses Fair Employment Council of Greater Washington, DC v. BMC Marketing Corporation, 28 F 3d 
1268 (D.C. Circuit 1994), in which standing was limited because individual testers could not show future harm, as 
well as the implications of Civil Rights Act of 1991, which allows for damages; according to the EEOC, the 1991 act 
would have given the testers in this case standing had the testing occurred after its passage (p. 4). 
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differences in the variances of unobservable determinants of productivity can lead to substantial spurious 

evidence of discrimination or of reverse discrimination; in other words, discrimination is unidentified.  This 

critique is inherently difficult to address because it emphasizes factors outside the control of the researcher.  

This critique has been ignored in the literature, and researchers have continued to carry out additional field 

experiments of discrimination without regard to the strong possibility of highly misleading results.  In fact, 

however, the HS critique poses a significant challenge to the audit/correspondence study method.   

This paper explicitly addresses the HS “unobservable variance” critique.  In particular, it develops 

and implements a general method of using data from correspondence studies that accomplishes two goals.  

First, it provides a statistical test of whether this HS critique applies to the data from any particular study.  

Second, and more important, it develops a statistical estimation procedure that identifies the effect of 

discrimination.2  It is a simple matter to collect the requisite data in future correspondence studies, and the 

method is implemented using data from a correspondence study (BM, 2004) that has the requisite data.  

Finally, the estimation procedure is assessed via Monte Carlo simulations.   

II. Background on Audit and Correspondence Studies  

Earlier research on labor market discrimination focused on individual-level employment or 

earnings regressions, with the estimate of discrimination inferred from the race, sex, or ethnic differential 

that remains unexplained after including a wide array of proxies for productivity.  These analyses suffer 

from the obvious criticism that the proxies do not adequately capture group differences in productivity, in 

which case the “unexplained” differences cannot be interpreted as detecting discrimination.   

Audit or correspondence studies are a response to this inherent weakness of the regression 

approach to discrimination.3  These studies are based on comparisons of outcomes (usually job interviews 

or job offers) for matched job applicants differing by race, sex, etc. (see, e.g., Turner, et al., 1991; 

Neumark, 1996; BM, 2004).  Audit or correspondence studies directly address the problem of missing data 

                                                 
2 To clarify, it uncovers an unbiased estimate of discrimination in hiring (or callbacks for interviews) for the 
applicants in the study.  There are other criticisms of audit and correspondence studies related to how generalizable 
the results are to the population, and what the results tell us about the existence of discrimination at the level of the 
market.  See HS (1993) and Heckman (1998) for more details.  This paper does not address those issues.   
3 Another approach is to try to incorporate data in which productivity is observed or can be estimated (e.g., Foster and 
Rosenzweig, 1993; Hellerstein et al., 1999).  
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on productivity.  Rather than try to control for variables that might be associated with productivity 

differences between groups, these studies instead create an artificial pool of job applicants, among which 

there are intended to be no average differences by race, for example.  By using either applicants coached to 

act alike, with identical-quality resumes (an audit study), or simply applicants on paper who have equal 

qualifications (a correspondence study), the method is largely immune to criticisms of failure to control for 

important differences between, for example, black and white job applicants.  As a consequence, this 

strategy has come to be widely used in testing for discrimination in labor markets (as well as housing 

markets).  Thorough reviews are contained in Fix and Struyk (1993), Riach and Rich (2002), and Pager 

(2007).   

Despite the widely-held view that audit or correspondence studies are the best way to test for labor 

market discrimination, critiques of these studies challenge their conclusions (HS, 1993; Heckman, 1998).  

Some of these criticisms have been readily acknowledged by researchers as potentially valid, and 

subsequent research has adapted.  For example, HS noted that in the prominent audit studies carried out by 

the Urban Institute (e.g., Mincy, 1993), white and minority testers sent out to apply for jobs were aware of 

the purpose of the test, and even – in their training – informed about “the pervasive problem of 

discrimination in the United States,” raising the possibility that testers subconsciously took actions in their 

job interviews that led to the “expected” result (HS, 1993).  A constructive response to this criticism has 

been the move to correspondence studies, which focus on applications on paper and whether they result in 

job interviews, thus cutting out the influence of the individual job applicants used in the test. 

However, a fundamental critique of audit or correspondence studies is one that has not been 

addressed by researchers.  In particular, HS consider what most researchers view as the ideal conditions for 

an audit or correspondence study – when not only are the observable average differences between groups 

eliminated, but in addition the observable characteristics used in the applications are sufficiently rich that it 

is reasonable to assume that potential employers believe there no average differences in unobservable 

characteristics across groups.  HS show that, even in this case, audit or correspondence studies can generate 

evidence of discrimination (in either direction) when there is none, and can also mask evidence of 
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discrimination when it in fact exists.  Given the pervasive use of audit and correspondence studies, the 

failure of any research to address this critique is a significant gap in the social science and legal literature.   

III. The Heckman-Siegelman Critique  

Set-up with Continuous “Treatment” Decision 

Suppose that productivity depends on two individual characteristics, X’ = (XI,XII).  Let R be a 

dummy for race, with R = equal to 1 for minorities and 0 for non-minorities (which I will refer to as 

“black” and “white” for short).  Allow productivity also to depend on a firm-level characteristic F, so that 

productivity is P(X’,F).  Let the treatment of a worker depending on P and possibly R (if there is 

discrimination) be denoted T(P(X’,F),R).  For now, think of this treatment as continuous, even though that 

is not the usual outcome for an audit or correspondence study; suppose the treatment is, for example, the 

wage offered, set equal to a worker’s productivity minus a possible discriminatory penalty for blacks as in 

Becker’s (1971) employer taste discrimination model.   

Define discrimination as 

(1) T(P(X’,F)|R = 1) ≠ T(P(X’,F)|R = 0). 
 
Assume that P(.,.) and T(P(.,.)) are additive, so 

(2) P(X’,F) = XI + XII + F  

(3) T(P(X’,F),R) = P + γ’R.4 

Thus, discrimination against blacks implies that γ’ < 0, so that blacks are paid less than equally-

productive whites at the same firm. 

In an audit or correspondence study, two testers (or applications) or multiple pairs of testers (one 

with R = 1 and one with R = 0 in each pair) are sent to firms to apply for jobs.  The researcher attempts to 

standardize their productivity based on observable productivity-related characteristics.  Denote expected 

productivity for blacks and whites, based on what the firm observes, as PB
* and PW

*; note that I have not 

specified that these are necessarily based on both XI and XII, as we may want to treat XII as unobserved by 

                                                 
4 For now, I treat the productivity variables in the abstract, and therefore without loss of generality can assume them to 
be scaled such that their coefficients equal one. When I turn to the data and relate productivity-related characteristics 
to expected productivity, I will introduce coefficients multiplying the productivity-related characteristics. 
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firms.  The goal of the audit or correspondence study design is to set PB
* = PW

*.  Given these observables, 

the outcome T is observed for each tester.  So based on equation (3), each test – thought of as the outcome 

of applications to a firm by one black and one white tester – yields an observation  

(4) T(PB
*,1) − T(PW

*,0) = PB
* + γ’ − PW

*. 
 

If PB
* = PW

*, then averaging across tests yields an estimate of γ’.  Alternatively, γ’ can be estimated 

from the regression 

(5) T(Pij
*) = α’ + γ’Ri + µj + εij   

where T(Pij
*) is the outcome for worker i at firm j, Ri is a dummy variable for the race of worker i, and µj is 

a vector of firm fixed effects.5   

Now consider explicitly the two observable components of productivity, XI and XII.  Suppose the 

audit study controls only one of these; so think of XI as the schooling level, which is controlled in the 

resumes/interviews, and XII as another characteristic not controlled in the study and unobserved by 

employers.  Denote by XB
j and XW

j the values of XI and XII for blacks and whites, j = I, II.  Suppose that the 

audit or correspondence study, as is usually done, sets XB
I = XW

I; this is later denoted as XI*, the level at 

which XI is “standardized” across applicants.  Then for the test resulting from the application of a pair of 

black and white testers to a firm, PB
* and PW

*, the firm’s expected productivity for workers in each group, 

are 

(6) PB
* = XB

I + E(XB
II) + F 

(7) PW
* = XW

I  + E(XW
II) + F. 

In this case, each individual test provides an observation equal to  

(8) T(PB
*,1) − T(PW

*,0) = PB
* + γ − PW

* = XB
I + E(XB

II) + γ’ − (XW
I + E(XW

II))  

 = γ + E(XB
II) − E(XW

II). 

                                                 
5 The inclusion of the firm fixed effects should have no implications for the estimate of γ’, since the firm fixed effects 
are uncorrelated with race. Furthermore, when we introduce productivity-related characteristics X below, as long as 
testers’ characteristics are randomly assigned to employers, which is typically the case in audit and correspondence 
studies, the estimated differentials associated with X do not depend on the inclusion of firm fixed effects. Thus, they 
are ignored in what follows. (Their inclusion does, however, affect the standard errors of the estimates, as the firm 
fixed effects may explain substantial amounts of variation in the outcome, and may also capture non-independence of 
the outcomes across testers at the same firm.)  
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Mean Differences 

To set the stage, I first discuss issues regarding mean differences across groups in observed and 

unobserved variables.  Clearly observations from a sample of the tests described above provide an unbiased 

estimate of γ’ only if E(XB
II) = E(XW

II).  Thus, a key assumption in an audit or correspondence study is that 

all productivity-related factors not controlled for in the test have the same mean for blacks and whites.  

Heckman (1998) and HS (1993) point out, however, that researchers have limited information about what 

determines productivity within firms.  When there are uncontrolled productivity-related differences 

between black and white testers, not only will the audit or correspondence study produce a biased estimate 

of discrimination, but it can produce a more biased estimate than using randomly-matched pairs of testers.  

Suppose that, in addition to the preceding assumptions, XI and XII are statistically independent, and further 

assume that mean productivity is the same for blacks and whites,  

(9) E(PB) = E(XB
I + XB

II) = E(PW) = E(XW
I + XW

II),  

but that the mean of each characteristic differs by race, e.g., E(XW
I) ≠ E(XB

I).  Coupled with equation (9), 

these assumptions imply that whites are more productive on one characteristic, and blacks on the other.   

If an audit study controls for XI but not XII, the audit study estimates  

(10) γ’ + E(XB
II − XW

II), 

The bias here can be upward or downward, depending on whether workers are matched on 

characteristics on which blacks are more or less productive than whites.  If the characteristic on which they 

are matched, XI, is on average higher for blacks than for whites, then E(XB
II − XW

II) < 0 and the audit study 

overstates discrimination, and conversely (discrimination against blacks implies γ’ < 0).6  In this case, 

given the assumption that the expected sum of the productivity components is equal for blacks and whites 

(equation (9)), if we sent randomly-matched pairs of testers we would get an unbiased estimate of 

discrimination, because such an audit study would yield estimates of 

                                                 
6 The converse case is emphasized by Darity and Mason (1998), who suggest that while whites have higher values of 
some of the usual productivity controls included in statistical studies of discrimination (such as schooling and AFQT), 
blacks have higher values of psychological variables such as self-esteem or locus of control, and of effort.  
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(11) γ’ + E(XB
I − XW

I) + E(XB
II − XW

II) = γ’ + E(XB
I + XB

II) − E(XW
I + XW

II) = γ’.7 

The previous case might be viewed as unrealistic, since its starting point is that blacks and whites 

are equally productive.  Certainly much of the discrimination literature is premised on the likelihood that 

blacks are less productive and have lower values of most productivity-related characteristics (which is why 

simple comparisons of outcomes between blacks and whites likely overstate discrimination).  In this case, 

under the other assumptions outlined above, the audit study leads to less bias than using randomly-matched 

pairs, because the two expected differences in the first expression in equation (11) are no longer equal to 

zero.  Controlling for a larger number of productivity-related characteristics in an audit study will reduce 

the difference in uncontrolled productivity, and the remaining difference might be made sufficiently small 

that the bias in equation (11) becomes negligible.   

However, that reasoning can break down if XI and XII are not statistically independent.  Suppose, 

as before, that XI and XII each have different means for blacks and whites, with E(XB
II − XW

II) < 0, but that 

they are not independent.  The problematic case is when XI and XII are negatively correlated, in which case  

(12) E(XB
II − XW

II) < E(XB
II − XW

II| XB
I = XW

I),  

so that standardizing on XI can accentuate the bias in an audit study, possibly leading to more bias from 

controlling for XI rather than using randomly-matched testers – and possibly generating evidence of 

discrimination when γ’ is in fact zero.8  This depends on the relative magnitudes of {E(XB
I − XW

I) + E(XB
II 

− XW
II)} – the bias with randomly-matched testers – and E(XB

II − XW
II| XB

I = XW
I) – the bias with testers 

matched on XI.  The case where XI and XII are positively correlated may be more realistic, in which case 

standardizing on XI implies that the expected difference in XII between the black and white tester is on 

                                                 
7 This helps to demonstrate one of the main points of the HS critique with regard to mean differences between testers 
– that “Nowhere in the published literature on the audit pair method will you find a demonstration that matching one 
subset of observable variables necessarily implies that the resulting difference in audit-adjusted treatment between 
blacks and whites is an unbiased measure of discrimination – or indeed, that it is even necessarily a better measure of 
discrimination than comparing random pairs of whites and blacks applying at the same firm …” (Heckman, 1998, p. 
108). 
8 Moreover, in this case the role of factors that are unimportant but still weakly related to productivity can be 
accentuated. HS discuss some examples in the context of the Urban Institute audit studies using Hispanic-white pairs.  
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average smaller than for a randomly-selected pair.9  Regardless, the test is still biased.   

The discussion to here focuses on the problems that arise because audit or correspondence studies 

may not control for all characteristics that differ by race.  Good audit studies attempt to meet this criterion, 

but there are limits to how successfully they can do so.10  Correspondence studies are a response to this 

potential problem, because, in contrast to audit studies, they do not entail face-to-face interviews that might 

convey mean differences on uncontrolled variables between blacks and whites.11       

 Even in a correspondence study, though, differences in employer estimates of mean unobserved 

characteristics for blacks and whites can affect the results, as in equation (10).  The difference, in this case, 

is in part one of legal interpretation.  In particular, because employers are not allowed to make assumptions 

about race (sex, etc.) differences in characteristics unobserved in the job application or interview process,12 

any role of assumed mean differences in characteristics in affecting the outcomes from a correspondence 

study can be interpreted as statistical discrimination.  Consequently, we can interpret the estimate of the 

expression in equation (10) from a correspondence study as capturing the combined effects of taste 

discrimination (γ’) and statistical discrimination (E(XB
II − XW

II)).13  That is, on legal grounds one might 

argue that correspondence studies, as opposed to audit studies, provide unbiased estimates of 

discrimination.  According to this view, correspondence studies still do not, however, necessarily do any 

better at isolating taste discrimination – i.e., the discrimination that would remain if the means of all 

                                                 
9 The argument is analogous to omitted variable bias in OLS regression.  Suppose we are estimating the relationship 
between being black (B) and some outcome Y, and there are two omitted variables W and Z; ignore other covariates. 
Suppose W and Z are positively correlated with Y conditional on B (parallel to the example in the text, where the 
variables of interest, XI and XII, are positively related to productivity), but they have opposite-signed correlations with 
B.  Then omitting both can lead to a less-biased estimate of the coefficient of B than including one but not the other.  
However, if all else is the same but W and Z have the same-signed correlation with B, then including one of them in 
the regression will unambiguously reduce the bias.  
10 As such, the statement in Hellerstein and Neumark (2006), that “The audit study approach … creates an artificial 
pool of labor market participants among whom there are no average differences by race or sex …” (p. 34) should be 
tempered. An audit study attempts to do this.  
11 This is a common argument in favor of correspondence studies, although they pose other disadvantages (e.g., BM, 
p. 994; Riach and Rich, 2002, p. F485). In addition, an audit study can explicitly compare results based on the 
application and interview stage, to see whether there is less discrimination at the application stage when face-to-face 
contact has been avoided (e.g., Neumark, 1996).   
12 See http://www.eeoc.gov/facts/fs-race.pdf (viewed March 23, 2009). 
13 This is noted in the literature. See, for example, Heckman and Siegelman (1993), Riach and Rich (2002), BM, and  
Lahey (2008).  The latter three studies discuss the use of other information to try to distinguish between the two 
hypotheses.    
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productivity-related characteristics were the same for blacks and whites.  Moreover, economists are 

inherently interested in whether employers discriminate against groups with equal observed and equal 

expected unobserved characteristics, and the preceding discussion implies that correspondence studies may 

not provide an unbiased estimate of this more fundamental type of discrimination.  Nonetheless, when a 

correspondence study includes a rich set of applicant characteristics, it becomes less likely that statistical 

discrimination plays much of a role in group differences in outcomes.14 

Distributional Differences in the Context of Hiring 

A more troubling result emerges once we take account of the fact that, in audit or correspondence 

studies, the relevant treatment is not linear in productivity as it might be for a wage offer – like in equation 

(3) – but instead is non-linear.  That is, we think that in the hiring process firms evaluate a job applicant’s 

productivity relative to a standard, and offer the applicant a job (or an interview) if the standard is met.  In 

this case, HS show that, even when there are equal group averages of both observed and unobserved 

variables, an audit or correspondence study can generate biased estimates, with spurious evidence of 

discrimination in either direction, or of its absence – or, in other words, discrimination is unidentified.  

Because this critique applies even to correspondence studies, which meet higher standards of validity – and 

applies even in the ideal case where there is no difference in the means of unobserved productivity 

measures – the remainder of the discussion refers exclusively to correspondence studies. 

The intuitive basis of the HS critique is as follows.  Consider the simplest case in which the only 

difference between blacks and whites is that the variance of unobserved productivity is higher for whites 

than for blacks, for example.  That is, we assume E(XB
j) = E(XW

j), j = I, II.  Imagine a correspondence 

study that controls for one productivity-related characteristic, XI, and standardizes on a quite low value of 

XI (that is, the study makes the two groups equal on characteristic XI, but at a low value XI*).  The 

correspondence study does not convey any information on a second, unobservable productivity-related 

                                                 
14 This is more problematic in correspondence studies of age discrimination, because even with many other 
qualification on the resumes, if researchers give older applicants the same amount of experience as younger applicants 
employers are likely to make adverse assumptions about older applicants whose resumes reflect limited work 
experience.  See Lahey (2008) and Riach and Rich (2007) for suggestions for addressing this problem in age 
discrimination studies.     
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characteristic, XII.  Because employers will offer a job interview only if the expected sum of XI + XII is 

high, when XI* is set at a low level, the employer has to believe that XII is quite high in order to offer an 

interview.  Even though the employer does not observe XII, if the employer knows that the variance of XII is 

higher for whites, the employer correctly concludes that whites are more likely than blacks to have a 

sufficiently high sum of XI + XII, by virtue of the simple fact that fewer blacks have very high values of XII.  

Employers will therefore be less likely to offer jobs to blacks than to whites, even though the observed 

average of XI is the same for blacks and whites, as is the unobserved average of XII.  The opposite holds if 

the standardization is at a high value of XI; in the latter case the employer only needs to avoid very low 

values of XII, which will be more common for whites.   

It is worth pointing out that the idea that the variances of unobservables differ across groups has a 

long tradition in research on discrimination, stemming from early models of statistical discrimination.  For 

example, Aigner and Cain (1977) discuss these models and suggest that a higher variance of unobservables 

for blacks compared to whites is plausible, and Lundberg and Startz (1983) study how such an assumption 

can lead to an equilibrium with lower investment in human capital by blacks.  On the other hand, Neumark 

(1999) finds no evidence that employers have better labor market information about whites than blacks; if 

anything, the point estimates go in the opposite direction, although the estimates are imprecise.  

To see the bias result formally in our simple framework, suppose that a job offer or interview is 

given if a worker’s expected productivity exceeds a certain threshold c’.  As before, suppose that P is 

determined as a linear sum of XI, XII, and F (equation (2)), with XII (and F) statistically independent of XI,15 

and the correspondence study controls for XI.  The hiring rules for blacks and whites (with the possibility of 

discrimination) are  

(13) T(P(X’,F)|R = 1) = 1 if βI’XB
I + XB

II + γ’ + F > c’ 
 

(13’)     T(P(X’,F)|R = 0) = 1 if βI’XW
I + XW

II + F > c’. 

Note that now XI is now multiplied by a coefficient βI’, because this discussion pertains to 

                                                 
15 Again, we can treat F as statistically independent because resume characteristics are, or should be, assigned 
randomly (e.g., Lahey and Beasley, 2009).  And we can always think about XII as the variation in the uncontrolled 
characteristic that is orthogonal to XI. 
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estimating models corresponding to equations (13) and (13’) using data on an observable productivity 

variable XI.  But given that XII is unobserved, its coefficient can be standardized to equal one.16  

Discrimination leads employers to “discount” the productivity of a black worker, as captured in γ’.   

Assume that the correspondence study controls for XI, with XB
I = XW

I = XI*.  Assume further that 

XB
II and XW

II are normally distributed, with equal means (set to zero, without loss of generality), and 

standard deviations σB
II and σW

II.  Finally, as long as the firm-specific productivity shifters F are normally 

distributed and independent of XII, and have the same distribution for blacks and whites, then we can ignore 

them and focus solely on the variation in XII.17  Under these assumptions, the probabilities that the left-hand 

expressions in (13) and (13’) equal one (blacks and whites get hired) are 

(14)     Pr[T(P(XI*,XB
II)|R = 1) = 1] = 1 − Φ[(c’  − βI’XI* − γ’)/σB

II] =  Φ[( βI’XI* + γ’ – c’)/σB
II] 

(14’)   Pr[T(P(XI*,XW
II) |R = 0) = 1] = 1 − Φ[(c’  −  βI’XI*)/σW

II] =  Φ[( βI’XI* − c’)/σW
II],  

where Φ denotes the standard normal distribution function.   

The difference between the two expressions in equations (14) and (14’) – the success rates for 

black and white job applicants – is intended to be informative about discrimination.  However, even if γ’ = 

0, so there is no discrimination, these two expressions need not be equal because σB
II and σW

II, the standard 

deviations of XB
II and XW

II, can be unequal.  It is possible to say something more precise.  In particular, 

consider the earlier case with γ’ = 0, but σW
II > σB

II – that is, the “uncontrolled” productivity-related 

variable has a larger variance for whites than for blacks – and XI* is set at a low level – i.e., the 

standardization level is low.  Then the study will generate spurious evidence of discrimination against 

blacks.  In particular, when βI’XI* < c’, then σW
II > σB

II and γ’ = 0 imply that the probability that blacks are 

hired is lower than the probability that whites are hired, and conversely when βI’XI* > c’.18   

                                                 
16 Following HS, I assume that the coefficient on XI is the same for blacks and whites, so the discrimination is 
reflected only in an intercept difference.  I return to this issue later.    
17 That  is, one can redefine the random variable in what follows as XII + F, and the same reasoning goes through.  
18 Heckman (1998, footnote 7) suggests that the case with a low level of standardization and higher dispersion for 
whites “seems to rationalize” audit study evidence consistent with discrimination against blacks.  It is not clear, 
however, that we know much about either the level of standardization or the relative dispersion of unobserved 
productivity.  Even though the first issue relates to observables, there is no obvious way to compare the distributions 
of qualifications of testers in an audit study to the relevant population of job applicants.  In fact, there are two 
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Thus, even if the means of the unobserved productivity-related variables are the same for each 

group, and firms use the same hiring standard for each group (i.e., γ’ = 0), correspondence studies can 

generate evidence consistent with discrimination against blacks (or, alternatively, in their favor).19  

Different combinations of the relative magnitudes of σW
II and σB

II, and whether the standardization value of 

XI* is high or low, can generate similar or opposite results.  This is the basis for HS’s claim that even under 

ideal conditions correspondence (or audit) studies are uninformative about discrimination.   

IV. Detecting Discrimination  

With the right data from a correspondence study, the framework from the preceding section can be 

used to recover an unbiased estimate of discrimination.  The intuition is as follows.  The HS critique rests 

on differences between blacks and whites in the variances of unobserved productivity.  The fundamental 

problem, as equations (14) and (14’) illustrate, is that we cannot separately identify the effect of race (γ’) 

and a difference in the variance of the unobservables (σB
II/σW

II).  But a higher variance for one group (say, 

whites) implies a smaller effect of observed characteristics on employment for that group.20  Thus, 

information from a correspondence study on how variation in observable qualifications is related to 

employment outcomes can be informative about the relative variances of the unobservables, and this, in 

turn, can identify the effect of discrimination.   

More formally, consider a correspondence study with the assumptions from the previous section 

holding.  Equations (14) and (14’) imply that the difference in outcomes between blacks and whites is  

(15)    Φ[( βI’XI* + γ’ – c’)/σB
II] − Φ[( βI’XI* − c’)/σW

II].   

In a standard probit, we can only identify the coefficients relative to the standard deviation of the 

unobservable, so we normalize by setting the variance of the unobservable to equal one.  In this case, 
                                                                                                                                                                

conflicting tendencies in setting standards for audit studies.  Setting a low standard implies that call-back rates will be 
low, reducing the statistical power of the evidence.  But setting a standard too high raises concerns about 
“overqualification” of candidates (e.g., BM, 2004, p. 995), which in an economic context presumably means that the 
employee will get a better job offer and hence will not take a job at the employer included in the test, in turn deterring 
the employment from making an offer.   
19 This argument does not depend on normality.  It will hold for symmetric distributions (Heckman, 1998).  
20 In the limit, if the variance of unobserved XII were infinite for whites, then XI, the observed productivity-related 
variable, would have no effect on whether or not an employer thinks a white applicant meets the standard for hiring, 
given by equation (13’).   
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impose the normalization for whites only, or σW
II = 1.  The parameter σB

II is then the variance of the 

unobservable for blacks relative to whites.  To make this clear, replace σB
II with σBR

II  = σB
II/σW

II.  The 

normalization σW
II = 1 is equivalent to defining all of the coefficients in equation (15) as their ratios relative 

to σW
II.  Dropping the prime subscripts to indicate that the coefficients are now defined in relative terms, 

with this normalization equation (15) becomes  

(15’)    Φ[(βIXI* + γ − c)/σBR
II] − Φ[ βIXI* − c]. 

Although this normalization does not solve the identification problem, it helps illustrate the 

solution.  As equation (15’) shows, without knowing σBR
II we cannot tell whether the intercepts of the two 

probits differ because γ ≠ 0 or because σBR
II ≠ 1.  However, if there is variation in the level of qualifications 

used as controls (XI*), and these qualifications affect hiring outcomes, then we can identify βI/σBR
II and βI 

in equation (15’), and the ratio of these two estimates provides an estimate of σBR
II.21  And if we do 

inference on this ratio, we can test the hypothesis of equal standard deviations (or variances) of the 

unobservables.  Finally, identification of σBR
II implies identification of γ.  Note that without meaningful 

variation in XI* this is not possible, since in that case all we have in the model are different intercepts with 

different parameters in both the numerators and the denominators ((γ − c)/σBR
II and c).   

The critical assumption to identify σBR
II and hence γ is that βI is the same for blacks and whites.  

Otherwise, the ratio of the two coefficients of XI* for blacks and whites does not identify σBR
II.  As HS 

point out, the constancy of βI is assumed in the Urban Institute studies that they critique, with 

discrimination entering through an intercept shift in the evaluation of a worker’s productivity, depending on 

their race.  In the real world it is not hard to come up with reasons why the coefficients relating XI to 

productivity might differ by race.  For example, blacks and whites on average attend different schools, and 

if white schools are higher quality, a given number of years of schooling may do more to increase white 

productivity than black productivity.  But in a correspondence or audit study, it should be possible to 

                                                 
21 The discussion here is in terms of probit estimates of callbacks.  It could just as well be couched in terms of logit 
estimation.  Although typically (e.g., Maddala, 1983) the logit model is not written with the standard deviation of the 
error term appearing, it is possible to rewrite it in this way, in which case the difference in coefficients would again be 
informative about the ratio of the variances of the unobservable (Johnson and Kotz, 1970, p. 5).  
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control for these kinds of differences; for example, in this case one can control for the area where 

applicants live, and hence hold school district constant (e.g., BM, 2004).   

HS raise other possibilities.  One is that there is discrimination in evaluating particular attributes of 

a group.  For example, employers may discriminate against high-education blacks but not low-education 

blacks.  It is not possible to rule out differences in coefficients arising for these reasons.  Finally, HS also 

suggest that differences in coefficients may reflect “statistical information processing,” given incomplete 

information about productivity, as in statistical discrimination models.  Of course this is the idea underlying 

the identification strategy suggested above, as the difference in βI for blacks and whites is assumed to 

reflect precisely the accuracy with which XI signals productivity for each race.  However, as discussed 

below, when there is data on multiple productivity-related characteristics, there is more one can do to test 

whether there is homogeneity in the coefficients that allows identification of σBR
II and hence γ.   

The estimation of βI/σBR
II and βI, and inference on their ratio (σBR

II = σB
II/σW

II), can be done via a 

heteroskedastic probit model (e.g., Williams, 2009), which allows the variance of the unobservable to vary 

with race.  To do this, pool the data for blacks and whites.  Similar to equation (5), there is a latent variable 

for perceived productivity assumed to be generated by 

(16) T(Pij
*) = − c + βIXij

I* +  γRi + εij. 

As is standard, it is assumed that E(εij) = 0.  But the variance is assumed to follow 

(17) Var(εij) = [exp(µ + ωRi)]2. 

This model can be estimated via maximum likelihood.  The observations should be treated as 

clustered on firms to obtain a variance-covariance matrix that is robust to the dependence of observations 

across firms.  The normalization µ = 0 can be imposed, given that there is an arbitrary normalization of the 

scale of the variance of one group (in this case whites, with Ri = 0).  And the estimate of exp(ω) is exactly 

the estimate of σBR
II. 

In this heteroskedastic probit model, maintaining the assumption that βI is the same for blacks and 

whites, γ is identified.  Observations on whites identify –c and βI, and observations on blacks identify (–c + 
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γ)/exp(ω) and  βI/exp(ω).  Thus, the ratio of βI/{βI/exp(ω)} identifies exp(ω), which, from equation (17), is 

the ratio of the standard deviation of the unobservable for blacks relative to whites and is, as before, 

identified from the ratio of the effect of XI* on blacks relative to its effect on whites.22  With the estimate of 

exp(ω) (or equivalently σBR
II), along with the estimate of c identified from whites, the expression (–c + 

γ)/exp(ω) identified from blacks identifies γ as well.23 

Note that evidence on σBR
II is itself informative.  If it equals one, then there is no bias from 

differences in the distribution of unobservables.  This would imply that a correspondence study, at least, is 

free from bias (under the other maintained assumptions).  Alternatively, if σBR
II is not equal to one, but if 

we had some evidence on how the level of standardization XI* compares to the relevant population of job 

applicants, we could determine the direction of bias.  For example, if the study detects discrimination and 

there is a bias against this finding – based on the estimate of the ratio of variances and information about 

XI*, then the evidence of discrimination is not spurious, because it would be even stronger absent this bias.  

But because we can identify γ directly under the assumptions above, we can recover an estimate of 

discrimination that is not biased by the difference in the variances of the unobservables.  And we can do 

this without having to make a determination as to whether XI* used in the study is a high or low level of 

standardization; this is important because it may be impossible to establish the latter. 

Thus, given the right data, we can determine whether a race difference in outcomes in a 

correspondence study in fact reflects discrimination.  No doubt those assumptions are restrictive, and there 

are almost surely ways to relax these assumptions and render the data uninformative about γ.  But the 

approach is structural, and therefore of necessity rests on restrictions regarding parameters and functional 

forms. 

                                                 
22 The fact that the estimate of σBR

II is inversely related to the relative effect of XI* on the probability that blacks are  
hired makes sense.  For example, when the variance of the unobservable is larger for blacks, a given change in XI* has 
a smaller effect on the probability that a black is hired than on the probability that a white is hired, because this change 
in XI* is less informative about black productivity, which is the sum XI + XII.   This also clarifies why the availability 
of data with multiple values of XI* is essential to estimating the relative variance of the unobservables. 
23 Consistent with the earlier discussion of statistical discrimination, we might want to allow for the possibility that 
E(XB

II − XW
II) ≠ 0.  In this case, we can normalize by assuming E(XW

II) = 0 and defining E(XB
II − XW

II) = µBW
II.  We 

can then replace γ in the preceding identification argument with γ + µBW
II, and it is this sum of parameters, reflecting 

the combination of taste discrimination and the expected mean difference in the unobservable, that is identified.   
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The assumption that βI is the same for blacks and whites cannot be tested if there is only one 

productivity control.  With more controls, however, there is a testable restriction.  In particular, if the 

coefficients of multiple productivity controls differ between blacks and whites only because of the 

difference in the variance of the unobservable, the ratio of the coefficients between blacks and whites, for 

each variable, should be the same.24  Consider the case with two observables XI and ZI, modifying equation 

(15’) to be  

(15’’)    Φ[( βI
BXI* +  δI

BZI* +  γ − c)/σBR
II] − Φ[( βI

WXI* +  δI
WZI* − c)].  

The coefficients on the observables now have B and W superscripts to denote possible differences 

by race.  But if the coefficients differ by race only because σBR
II ≠ 1, then  

(18) βI
B/βI

W = δI
B/δI

W. 

 Thus, the restrictions implied by homogeneity of effects but unequal variances of the 

unobservables can be tested.  Of course failure to reject the restrictions does not decisively rule out the 

possibility that σBR
II = 1, with the coefficients differing by race for other reasons but equation (18) still 

holding.  With a larger number of control variables, however, it seems unlikely that this alternative scenario 

would explain failure to reject the restrictions in equation (18).  It is also possible to choose – as an 

identifying assumption – a subset of the observable characteristics for which equation (18) holds, and to 

identify σBR
II only from the coefficients of this subset of variables, or to test the restriction on the other 

coefficients as overidentifying restrictions.   

 A final issue concerns the interpretation of the coefficients from the heteroskedastic probit model.  

For probits, coefficient estimates are translated into estimates of the marginal effects of a variable using  

 (19) ∂P(hire)/∂Zk = βkφ(Zβ), 

where, using more general notation, Zk is the variable of interest with coefficient βk, and Z is the vector of 

controls with coefficients β); φ(.) is the standard normal density and the standard deviation of the 

unobservable is normalized to one.  Typically this is evaluated at the means of Z.  When Zk is a dummy 
                                                 
24 The possibility of differences in coefficients owing to statistical discrimination could also generate differences in 
coefficients between blacks and whites, and this could vary for different characteristics to the extent that the signal 
content of these characteristics varies.  The argument below applies to this case as well.    
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variable such as race, the difference in the cumulative normal distribution functions is often used instead, 

although the difference is usually trivial.   

The marginal effect is more complicated in the case of the heteroskedastic probit model, because if 

the variances of the unobservable differ by race, then when race “changes” both the variance and the level 

of the latent variable that determines hiring can shift.  As long as we use the continuous version of the 

partial derivative to compute marginal effects from the heteroskedastic probit model, there is a natural 

decomposition of the effect of a change in Zk into these two components.  In particular, when the notation 

of equation (17) is generalized to  

(17’) Var(εij) = [exp(Wω)]2,25 

where the vector of variables W includes Z (from equation (19)), with coefficient ωk, then the overall 

partial derivative of P(hire) with respect to Zk is   

(20) ∂P(hire)/∂Zk = φ(Zβ/exp(Wω))·{(βk – Zβ·ωk)/exp(Wω)}.26    

 This expression can be broken into two pieces.  First, the partial derivative with respect to changes 

in Zk affecting only the level of the latent variable – corresponding to the counterfactual of Zk changing the 

valuation of the worker without changing the variance of the unobservable – is equal to  

(20’)  φ(Zβ/exp(Wω)) ·{βk/exp(Wω)}.   

Second, the partial derivative with respect to changes via the variance of the unobservable is equal 

to 

(20’’) φ(Zβ/exp(Wω))·{(– Zβ·ωk)/exp(Wω)}. 

 In the analysis below, these two separate effects are reported as well as the overall marginal effect, 

and standard errors are calculated using the delta method.  However, the whole point of the HS critique is 

that differential treatment of blacks and whites based only on differences in variances of the unobservable 

should not be interpreted as discrimination.27  Hence, what we are interested in comparing with the standard 

marginal effect from the probit is the expression in equation (20’) – the effect of race via the latent variable 

                                                 
25 Recall that µ in equation (17) is normalized to zero.  
26 See Cornelißen (2005). 
27 This issue is discussed in greater detail following the empirical analysis. 
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– which captures how race affects employers’ evaluation of worker productivity.   

V. Evidence, Implementation, and Assessment 

Existing Evidence  

 As the preceding discussion shows, we need information on the effects of productivity-related 

characteristics on hiring or callbacks, estimated separately for blacks and whites (or other groups), to 

identify discrimination in a correspondence study, or even to assess likely biases.  Reporting of such 

evidence is rare in the literature, because correspondence studies typically create one “type” of applicant.  

However, BM’s well-known correspondence study of race discrimination is unusual in that – for reasons 

unrelated to the concerns of this paper – it uses two types of applicants.28 

 Part of their analysis studies studying callback differences by race for resumes that they 

constructed to be low versus high quality. 29  White callback rates are higher for both types of resumes.  But 

although white callback rates increase significantly with resume quality (from 8.5 to 10.8 percent), black 

callback rates increase only slightly (from 6.2 to 6.7 percent), and the change is not statistically significant, 

leading them to conclude that, “African-Americans experience much less of an increase in callback rates 

for similar improvements in their credentials” (pp. 1000-1).  Similar qualitative conclusions are reached 

based on an analysis that measures resume quality for one part of the sample by using an equation for the 

probability of callbacks estimated from another part of the sample.  In this analysis, both groups experience 

an increase in callback rates from higher-quality resumes, but the effect is larger for whites.   

Similarly, BM report probit models estimated for whites and blacks separately (their Table 5).  

These estimates reveal substantially stronger effects of measured qualifications for whites than for blacks.  

Among the estimated coefficients that are statistically significant for at least one group, this is true for 

experience,30 having an email address, working while in school, academic honors, and other special skills 

                                                 
28 BM actually study differences in treatment between applicants with black-sounding names and names that do not 
sound black.  For simplicity, I discuss the results as if they capture differences between blacks and whites, which is 
certainly a plausible interpretation of their findings.    
29 Their analysis is motivated by the question of whether blacks and whites have different incentives to invest in skills, 
as in the Lundberg and Startz (1983) model.     
30 This variable enters as a quadratic, and the effect of experience is stronger for whites up to about 16 years of 
experience, more than twice the mean in their sample.   



 
19 

 

(such as language).  The only exception is for computer skills, which inexplicably have a negative effect on 

callback rates for whites.31   

As the present paper suggests, an alternative interpretation of smaller estimated probit coefficients 

or marginal effects for blacks than for whites is a difference in the variance of the unobservables.  In 

particular, the lower coefficients for blacks are consistent with a larger variance for blacks, i.e., σBR
II > 1.  If 

it is also true that BM standardized applicants at low levels of the control variables, then the HS analysis 

would imply that there is a bias towards finding discrimination in favor of blacks; that is, the evidence of 

discrimination against blacks would be even stronger absent the bias from differences in the distribution of 

unobservables.  BM explicitly state that they tried to avoid overqualification even of the higher-quality 

resumes (p. 995).  But it is very difficult to assess whether the characteristics of applicants were low, since 

there is no way to identify the population of applicants.  Hence, implementation of the estimation procedure 

proposed in this paper is likely the only way even to sign the bias, let alone to recover an unbiased estimate 

of discrimination.   

Implementation Using Bertrand and Mullainathan Data 

Because BM’s data include applicants with different levels of qualifications, and the qualifications 

predict callbacks, their data can be used to implement the methods described earlier.  Table 1 begins by 

simply presenting probit estimates for the probability of a callback.  Marginal effects are reported for 

specifications with no controls except a dummy variable for females (in columns (1)-(3)), adding controls 

for the individual characteristics included on the resumes, and finally adding also neighborhood 

characteristics for the applicant’s zip code; the specific variables are listed in the footnote to the table.  

Estimates are shown for males and females combined, and for females only; as the sample sizes indicate, 

the male sample is considerably smaller.32  Aside from the estimated effects of race, estimates are shown 

for a few of the resume characteristics capturing applicants’ qualifications.   

                                                 
31 Also, the effect of gaps in employment is inexplicably positive, but not significant for estimates disaggregated by 
race. 
32 Probits estimated for males only yielded similar results for the effects of race, although the estimated coefficients of 
some of the productivity-related characteristics were quite imprecise or had unexpected signs.  In estimating the 
heteroskedastic probit model for males, in some cases there were computational problems, likely reflecting these other 
issues regarding the estimates for males, and perhaps also the much smaller sample for males.     
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Echoing BM’s conclusions, there is a sizable and statistically significant difference between the 

callback rates for blacks and whites, with the rate for blacks lower by 3-3.3 percentage points (or about 33 

percent relative to the white callback rate of 9.65 percent).  The estimated race differences are robust to the 

inclusion of the different sets of control variables, which is what we should expect in a correspondence 

study in which the resumes are assigned randomly.   

Interestingly, in light of the results of other audit and correspondence studies, there is no evidence 

of lower (or higher) callback rates for females than for males.33  However, BM’s study was to a large extent 

focused on jobs typically held by females, and was not designed to test for sex discrimination.34  At the 

same time, the table also shows that a number of the resume characteristics have statistically significant 

effects on the callback probability; this, of course, is an essential input for using the methods described 

above to recover an unbiased estimate of discrimination.  

The main analysis is reported beginning in Table 2, for the specifications with the full set of 

individual resume controls, and then adding as well the full set of neighborhood controls.  Panel A simply 

repeats the estimated race effects from Table 1, for comparison.  Panel B begins by reporting the estimated 

overall marginal effects of race from the heteroskedastic probit model (equation (20)).  As the table shows, 

these estimates are slightly smaller (in absolute value) than the estimates from the simple probits, but 

trivially so.  They remain statistically significant, and indicate callback rates that are lower for blacks by 

about 2.4-2.5 percentage points (or about 25 percent).   

However, these effects represent the effects on both the level of the latent variable (the valuation of 

the worker’s productivity) and the variance of the unobservable. Decomposing the marginal, the effect via 

the level of the latent variable is larger than the marginal effect from the probit estimation, ranging from 

−0.054 to −0.086.  The effect of race via the variance of the unobservable, in contrast, is positive, ranging 

from 0.028 to 0.062.  (This latter effect is not statistically significant.)  The implication is that race 

discrimination is more severe than indicated by the analysis that ignores the role of differences in the 
                                                 
33 And although not reported in the tables, this was true if the same methods used below to recover unbiased estimates 
of race discrimination were applied to the estimation of sex discrimination.   
34 They study sales, administrative support, clerical, and customer service jobs.  The male applicants were used almost 
exclusively for the sales jobs, so the sex difference is identified mainly from the sales jobs.   
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variances of the unobservables.  Note that this evidence that the probit estimates understate discrimination 

against blacks is consistent with a low level of standardization of XI*, coupled with a higher estimated 

variance of the unobservable for blacks, as conjectured earlier based on BM’s results.  And as reported in 

the next row of the table, the estimated ratio of the standard deviation of the unobservable for blacks to the 

standard deviation for whites always exceeds one, although the difference is not statistically significant.  

Note that the positive effect of being black via the variance is what we expect if XI* is low, since then a 

larger relative variance for blacks increases the relative probability that they are hired (called back).35 

The next two rows of the table report some diagnostic test statistics.  First, the p-values from the 

test of the restrictions in equation (18) are shown, based on probit specifications interacting all of the 

controls with race.  Recall that this restriction implies that the ratios of coefficients of blacks to whites are 

equal for all productivity-related characteristics, which is consistent with the differences between the 

coefficients for blacks and whites reflecting simply a difference in the variances of the unobservables.  In 

all four cases this restriction is not rejected, with p-values ranging from 0.17 to 0.62, implying that the 

restrictions necessary to identify an unbiased estimate of discrimination from the heteroskedastic probit 

model are not rejected.  Nonetheless, the lower end of this range of p-values suggests that the restrictions 

sometimes might be fairly inconsistent with the data.  As a consequence, below some alternative estimates 

are discussed that use only a subset of variables for which equation (18) is more consistent with the data.   

Finally, the subset of control variables for which the absolute value of the estimated coefficient for 

whites exceeded that for blacks – consistent with the larger standard deviation of unobservables for blacks 

– was identified.  Then the heteroskedastic probit model was estimated leaving the race interactions of the 

other variables in the model – so that the restrictions from equation (18) that were less consistent with the 

data were not imposed – and the joint significance of these latter variables was tested.  Despite this latter 

subset of variables having estimated coefficients less consistent with the restrictions in equation (18), the p-

values indicate that these interactions can also be excluded from the model.  This can be viewed as an 

overidentifying test of the restriction that there are no differences in the effects of any of the control 
                                                 
35 Note that this mirrors the standard result in the statistical discrimination literature.  When a group has a higher 
variance of the unobservable, then at low levels of qualifications that group will be favored, and vice versa.   
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variables by race, for the specifications for which the estimates are reported in the first row of Panel B.  

Although technically it is only necessary to assume that there is a single variable for which the coefficient 

is the same for blacks and whites, there is no obvious variable to choose for the purposes of identification; 

here, instead, I let the data select a set of variables more consistent with the identifying restriction.   

Table 3 follows up on the last procedure, by instead simply dropping from the analysis the control 

variables for which the absolute value of the estimated coefficient for whites was less than for blacks.  As 

we would expect, the p-values for the tests of this set of restrictions are now much closer to one, ranging 

from 0.68 to 0.92, compared with a range of 0.17 to 0.62 in Table 2.  However, as the table shows, the 

estimated effects of race are similar to those in Table 2 and do not point to any different conclusions.     

Monte Carlo Assessment  

This subsection provides Monte Carlo evidence on how well the estimation procedure proposed in 

this paper work in terms of removing the bias in estimates of discrimination from correspondence study 

evidence.  First, results similar to those in HS and Heckman (1998) are generated, illustrating the potential 

bias when using probit analysis.  Then the performance of the heteroskedastic probit in eliminating the bias 

is evaluated.   

 The upper left-hand panel of Figure 1 replicates the basic result from Heckman (1998), showing 

that probit analysis of the data from a correspondence study can generate substantial bias in either direction.  

Paralleling Heckman, this is done for the case in which c = 0, βI = 1, Var(XW
II)/Var(XB

II) = (σW
II)2/(σB

II)2 = 

2.25,36 and there is no discrimination (γ = 0).  So for the Monte Carlo simulations, the assumed data 

generating process is XI* ~ N(0,1), XB
II ~ N(0,1), XW

II ~ N(0,2.25).  Paralleling the standardization of 

correspondence study applicants, the data are generated by sampling XI* from a truncated normal 

distribution, in steps of 0.1 + 0.1·SD(XI*).  The simulation is done 100 times at each value of XI* shown in 

the graph, with samples of 2,000 blacks and 2,000 whites in each simulation (roughly BM’s sample sizes), 

and a probit model is estimated for each simulated data set.37  The figures show – for both the estimates of γ 

                                                 
36 This is the ratio of the variances of the unobservables.  Note that a larger value for whites is the opposite of the 
common assumption in models of statistical discrimination.     
37 Given that the probit estimates were very robust, only a small number of simulations was used.  
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and the marginal effects – the means of the true values based on the assumed parameters, and the means 

based on the estimates.38   

The figure clearly illustrates that, despite the absence of discrimination in the data generating 

process (the true effect is constant at 0), the evidence can either point to discrimination against blacks or 

discrimination in favor of blacks, depending on the level of standardization of XI*.  The marginal effects 

show that even though there is no discrimination in the data generating process, quite strong evidence of 

discrimination in either direction can emerge, with a marginal effect of −0.1 (0.1) for low (high) values of 

XI*.  Finally, as we would expect, only at XI* = 0 is the estimate of γ (and the marginal effect) unbiased.  

The lower two panels of Figure 1 report the same kind of evidence in this case with γ = −0.5, consistent 

with discrimination.  A similar result is apparent, with substantial bias relative to the true γ or the true 

marginal effect.  

The heteroskedastic probit estimation requires data with multiple levels of the value of XI* at which 

applicants are standardized.  As an intermediate step to separate out the consequences of generating the 

data this way, and the consequences of implementing the heteroskedastic probit estimator, Figure 2 shows 

results with such generated data, but continuing to use the probit specification.  (Following this, the 

heteroskedastic probit results with the same type of data are reported.)  XI* is now sampled from two 

truncated normal distributions, one using XI*in steps of 0.1 + 0.1·SD(XI*), as before, and the second using 

instead XI* + 0.5, again in steps of 0.1 + 0.1·SD(XI*).  Figure 2 shows qualitatively similar results to Figure 

1, so simply using data with variation in productivity-related characteristics does not, in itself, eliminate the 

bias.  Nonetheless, the biases in both the no discrimination and discrimination cases are a bit smaller than 

in Figure 1 because of the larger range covered by XI*.39    

                                                 
38 The true marginals are based on the heteroskedastic probit specification (equation (20’), because the simulated data 
are heteroskedastic.  The true marginal effect is reported as a mean because it is computed once using each simulated 
data set, holding the parameters fixed, and then averaged. 
39 Note also that in this case the unbiased estimate occurs at the value of −0.25 (for XI*) on the horizontal axis, where 
the average of the upper and lower standardization levels equals zero.  The reduction in bias is little less clear in the 
discrimination case.  To clarify, the bias in Figures 1 and 2 should be contrasted at comparable value of XI*, given that 
Figure 2 shows the mean estimates at the lower level of standardization of XI*.  For example, for the discrimination 
case, the mean estimate of γ at XI* = 1 in Figure 1 should be compared to the mean estimate at XI* = 0.75 in Figure 2 
(in which case this is the lower standardization level and the average is 1); the latter estimate is in fact closer to zero.   



 
24 

 

Figure 3 reports results for the heteroskedastic probit estimation, using the same data generating 

process for simulating data as in Figure 2, although in this case 5,000 simulations are run for each pair of 

values of XI*, because the heteroskedastic probit estimation is less precise than the simple probit estimation.  

The top panel covers the no discrimination case (γ = 0).  The left-hand graph shows the means of the true 

and estimated values of the marginal effects for each value of XI*.  These are largely indistinguishable in 

the figure, indicating no bias.  The right-hand panel provides evidence on the distribution of the estimates, 

showing the distance between the 25th and 75th percentiles of the estimates and between the 2.5th and 97.5th 

percentile at each value of XI*.  The distribution of estimates is quite tight at levels of standardization near 

the center of the distribution of XI*, but becomes wider at more extreme values, when hiring rates in the 

generated data move towards zero or one.  The discrimination case (γ = −0.5) similarly demonstrates that 

the heteroskedastic probit estimation eliminates the bias.   

The last analysis, reported in Figure 4, considers the implications of the data generating process 

violating the identifying assumption that the coefficient(s) on the productivity-related characteristics are 

equal for blacks and whites.  Results are presented for two cases: mild violation in which the coefficient on 

XI* (βI) is slightly larger for whites than for blacks (1.1 versus 1); and strong violation in which it is much 

larger (2 versus 1).  As Figure 4 shows, in the case of no discrimination – the left-hand panels – the results 

are indistinguishable from when the identifying assumption is not violated.  In contrast, in the 

discrimination case the estimated marginal effects become more negative than the true effects over much of 

the range, only slightly with mild violation of the identifying assumption, but more so when the violation is 

more pronounced.   

The qualitative implications of what happens when the identifying assumption is violated make 

sense, thinking about how γ is identified.  Using estimates of the separate probits in equations (14) and 

(14’), the ratio of the standardized white probit coefficient (setting σW
II = 1) to the black probit coefficient 

(βI/σB
II) identifies σBR

II (which, recall, equals σB
II/σW

II).  When the true value of βI is larger for whites than 
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for blacks, but it is assumed that they are equal, σBR
II is overestimated.40  Recall from the earlier discussion 

that the probit for blacks identifies (–c + γ)/exp(ω) = (–c + γ)/σBR
II.  Because c = 0 in the simulations, we 

identify γ by multiplying the estimate of this expression by the estimate of σBR
II; the upward bias in the 

estimate of σBR
II therefore implies that the estimate of γ is biased away from zero.  In the no discrimination 

case, when γ = 0, this is irrelevant; multiplying an estimate that averages zero by the upward-biased 

estimate of σBR
II has no effect.  But when the true γ is non-zero (and negative), this bias leads to an estimate 

of γ that is more negative.  When γ is more negative, we get exactly the “bending” of the estimated 

marginal effects that the right-hand panels of Figure 4 illustrate.  In the standard marginal effect – γφ(Zβ) – 

nearer the center of the distribution the larger estimate of γ dominates the marginal effect, whereas nearer 

the tails the larger estimate of γ lowers φ(Zβ) enough that the product γφ(Zβ) is closer to zero.  Of course 

this latter result depends on the direction in which the identifying assumption is violated.  Clearly a 

violation of the assumption in the opposite direction (βI larger for blacks) would lead to biases in the 

opposite direction.  Nonetheless, it follows from this reasoning that the bias is multiplicative, and hence 

does not generate the wrong sign for the estimate of γ.  Moreover, it does not generate spurious evidence of 

discrimination when there is no discrimination.  

VI. The Meaning of Discrimination 

The simplest case depicted in the top panels of Figure 1, in which a correspondence study generates 

evidence of discrimination when γ = 0, raises the question of whether the evidence reflects a different kind 

of discrimination.  In this case, the productivity of blacks and whites are regarded equally by employers (or 

equivalently there is no taste discrimination).  Moreover, employers are not making any assumption about 

mean differences in unobservables between blacks and whites.  However, they are making assumptions 

about distributional differences with regard to the variance of unobservables, and it is these assumptions 

that lead them – given the level of standardization of the study applicants – to prefer one race over the 

other.  This could be thought of as “second-moment” statistical discrimination.   

                                                 
40 For example, in the case in the top panel of Figure 4, the ratio of coefficients is (βI·1.1)/(βI/ σBR

II) = 1.1·σBR
II. 
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To the best of my knowledge, differential treatment based such assumptions (true or not) about 

variances have never been viewed as discriminatory in either the economics or the legal literature.  

Nonetheless, the HS critique could be recast as showing that the analysis of data from a standard audit or 

correspondence study cannot distinguish between discrimination as it usually interpreted, and 

discrimination based on different variances of unobservables.  Similarly, the method proposed in this paper 

to collect and analyze data from a correspondence study can be viewed precisely as distinguishing between 

what is typically viewed as discrimination (stemming from tastes or, as noted earlier, from standard 

statistical discrimination) and discrimination stemming from differences in variances of the unobservable.   

Arguably, however, what we are interested in is correspondence study evidence on taste 

discrimination (or “first-moment” statistical discrimination) – which affects the valuation of the worker’s 

productivity in the latent variable model for expected productivity.  In contrast, evidence of second-

moment statistical discrimination is largely irrelevant, because it is simply an artifact of how a 

correspondence study is done – in particular, standardization of applicants to particular, and similar, values 

of the observables.  That is, only because applicants come from a narrow range of the distribution of 

observables does the variance of the unobservable affect the hiring decision, and as Figure 1 shows, 

depending on the standardization value, the evidence could point to discrimination against either group.  In 

the real economy, in contrast, applicants – tautologically – would be representative of actual applicants to a 

job, in which case – as Figure 1 suggests – the differential treatment of blacks and whites depending on 

their level of qualifications and the variances of the unobservable would likely balance out, leading to no 

average difference in treatment.  In contrast, when a correspondence study detects discrimination that 

comes through the latent variable – which can be interpreted as the relative valuation of a worker’s 

productivity à la Becker (1971) – that evidence will also carry over to the real economy.   

VII. Conclusions and Discussion 

Many researchers view audit and correspondence studies as the most compelling way to test for 

labor market discrimination.  And research applying these methods to many different types of groups 

nearly always finds evidence of discrimination.  The use of audit studies to test for labor market 
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discrimination has been criticized on numerous grounds having to do with whether applicants from 

different groups appear identical to employers.  Many of these criticisms can be countered by using 

correspondence studies in which fictitious applicants on paper are substituted for fictitious applicants in 

person.   

However, Heckman and Siegelman (1993) show that even in correspondence studies in which 

group averages are identical conditional on the controls, group differences in the variances of unobservable 

dimensions of productivity can invalidate the empirical tests, leading to spurious evidence of discrimination 

in either direction, or spurious evidence of an absence of discrimination.  This is an important criticism of 

correspondence studies, as it implies that evidence regarding discrimination from even the best-designed 

correspondence study can give misleading evidence about discrimination.  Nonetheless, the criticism has 

been ignored in the literature.  

This paper shows that if the correspondence study includes observable measures of variation in 

applicants’ quality that affect hiring outcomes, an unbiased estimate of discrimination can be recovered 

even when there are group differences in the variances of the unobservable.  The method is applied to 

Bertrand and Mullainathan’s (2004) correspondence study, and leads to stronger evidence of race 

discrimination that adversely affects blacks than is obtained when differences in the variances of the 

unobservable are ignored.  Moreover, this conclusion is bolstered by Monte Carlo simulations suggesting 

that the estimation procedure performs well, eliminating the problems highlighted by Heckman and 

Siegelman that could otherwise lead to badly misleading conclusions from the analysis of data from 

correspondence (or audit) studies. 

Finally, it should be recognized that the method proposed here can be easily implemented in any 

future correspondence study.  All that is needed is for the resumes or applications to include some variation 

in characteristics that affect the probability of being hired.  This is different from what is sometimes done in 

designing correspondence studies, where researchers try to create a bank of resumes of essentially equally-

qualified candidates.  Clearly researchers sometimes inadvertently create resumes of different quality.  All 

that needs to be done, however, is to intentionally do this.  Once a researcher confirms that a set of 
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productivity-related characteristics on the resumes affected hiring outcomes, it is then possible to test for 

bias from different variances of the unobservables for the two groups, and more importantly to detect  

actual discrimination.   
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Table 1 
Probit Estimates for Callbacks: Basic Results 
 Males and females  Females 
 (1) (2) (3)  (4) (5) (6) 
Black  -.033 

(.006) 
-.030 
(.006) 

-.030 
(.006) 

 -.033 
(.008) 

 -.030 
(.007) 

-.030 
(.007) 

Female .009 
(.012) 

-.001 
(.011) 

.001 
(.011) 

 … … … 

Selected individual  
resume controls 

       

Bachelor’s degree  .009 
(.009) 

.009 
(.009) 

  .019 
(.010) 

.019 
(.010) 

Experience ·10-1  .080 
(.029) 

.076 
(.028) 

  .080 
(.034) 

.076 
(.033) 

Experience2 ·10-2  -.022 
(.011) 

-.021 
(.010) 

  -.019 
(.013) 

-.018 
(.012) 

Academic honors  .039 
(.015) 

.040 
(.015) 

  .026 
(.017) 

028 
(.017) 

Special skills  .056 
(.009) 

.055 
(.009) 

  .060 
(.010) 

.059 
(.010) 

        
Other controls:        
Individual resume 

characteristics 
 X X   X X 

Neighborhood 
characteristics 

  X    X 

        
Mean callback rate .080 .080 .080  .082 .082 .082 
N 4,784 4,784 4,784  3,670 3,670 3,670 
Notes: Marginal effects using equation (19) are reported.  Standard errors are computed clustering 
on the ad to which the applicants responded, and are reported in parentheses; the delta method is 
used to compute standard errors for the marginal effects.  Individual resume characteristics 
include bachelor’s degree, experience and its square, volunteer activities, military service, having 
an email address, gaps in employment history, work during school, academic honors, computer 
skills, and other special skills.  Neighborhood characteristics include the fraction high school 
dropout, college graduate, black, and white, as well as log median household income, in the 
applicant’s zip code.    



 
 

Table 2 
Heteroskedastic Probit Estimates for Callbacks: Full Specifications 
 Males and females  Females 
 (1) (2)  (3) (4) 
A. Estimates from basic probit (Table 1)      
Black -.030 

(.006) 
-.030 
(.006) 

  -.030 
(.007) 

-.030 
(.007) 

      
B. Heteroskedastic probit model      
Black (unbiased estimates) 
 

-.024 
(.007) 

-.026 
(.007) 

 -.026 
(.008) 

-.027 
(.008) 

      
Marginal effect of race through level   -.086 

(.038) 
-.070 
(.040) 

 -.072 
(.040) 

-.054 
(.040) 

Marginal effect of race through variance .062 
(.042) 

.045 
(.043) 

 .046 
(.045) 

.028 
(.044) 

      
Standard deviation of unobservables, 

black/white 
 

1.37 
 

1.26 
  

1.26 
 

1.15 
      
Wald test statistic, null hypothesis that ratio of 

standard deviations = 1 (p-value) 
 

.22 
 

.37 
  

.37 
 

.56 
      
Wald test statistic, null hypothesis that ratios of 

coefficients for whites relative to blacks  are 
constant, fully interactive probit model (p-
value) 

 
 
 

.62 

 
 
 

.42 

  
 
 

.17 

 
 
 

.35 
      
Test overidentifying restrictions: include in 

heteroskedastic probit model interactions for 
variables with |white coefficient| < |black 
coefficient|, Wald test for joint significance of 
interactions (p-value) 

 
 
 
 

.83 

 
 
 
 

.33 

  
 
 
 

.34 

 
 
 
 

.56 
Number of overidentifying restrictions 3 6  2 6 
      
Other controls:      
Individual resume characteristics X X  X X 
Neighborhood characteristics  X   X 
      
N 4,784 4,784  3,670 3,670 
Notes: See notes to Table 1.  In the first row of Panel B the marginal effects in equation (20) are reported, 
with the decomposition in equations (20’) and (20’’) immediately below; the marginal effects are evaluated 
at sample means.  The standard errors for the two components of the marginal effects are computed using 
the delta method.  Test statistics are based on the variance-covariance matrix clustering on the ad to which 
the applicants responded.  Individual resume characteristics also include the variables listed separately in 
Table 1.   
 



 
 

Table 3 
Heteroskedastic Probit Estimates for Callbacks: Restricted Specifications Using only Controls with 
Absolute Value of Estimated Effect Larger for Whites than Blacks in Fully Interactive Probit Model 
 Males and females  Females 
 (1) (2)  (3) (4) 
A. Estimates from basic probit       
Black -.030 

(.006) 
-.030 
(.006) 

  -.030 
(.007) 

-.030 
(.006) 

      
B. Heteroskedastic probit model      
Black (unbiased estimates) 
 

-.024 
(.007) 

-.025 
(.007) 

 -.024 
(.009) 

-.025 
(.008) 

      
      
Effect of race through level   -.090 

(.037) 
-.080 
(.036) 

 -.086 
(.040) 

-.077 
(.038) 

Effect of race through variance .066 
(.041) 

.056 
(.039) 

 .062 
(.044) 

.052 
(.042) 

      
Standard deviation of unobservables, 

black/white 
 

1.41 
 

1.33 
  

1.37 
 

1.30 
      
Wald test statistic, null hypothesis that ratio of 

standard deviations = 1 (p-value) 
 

.19 
 

.23 
  

.25 
 

.29 
      
Wald test statistic, null hypothesis that ratios of 

coefficients for whites relative to blacks  are 
constant, fully interactive probit model (p-
value) 

 
 
 

.84 

 
 
 

.92 

  
 
 

.68 

 
 
 

.74 
      
Other controls:      
Individual resume characteristics X X  X X 
Neighborhood characteristics  X   X 
      
N 4,784 4,784  3,670 3,670 
Notes: See notes to Tables 1 and 2.  



 
 

Figure 1 
Replication of Heckman (Figure 1, 1998), and Monte Carlo Simulations of Estimates of Marginal Effects from Simple 
Probit Estimation  
 

No discrimination (γ = 0)  
 

Probit estimates of γ                           Probit estimates of marginal effect of black 

          
        
 

Discrimination (γ = -.5) 
 

Probit estimates of γ                          Probit estimates of marginal effect of black 

          
Notes: Left-hand graph shows true γ and mean estimates of γ.  Right hand graphs show marginal effects, evaluated at 
sample means for simulated data.  The marginal effects shown correspond to the effect of race on the latent variable, 
as in equation (20’).  In the data generating process, XI* ~ N(0,1), XB

II ~ N(0,1), XW
II ~ N(0,2.25), so 

Var(XW
II)/Var(XB

II) = 2.25 (XW
II and XB

II are unobservable); βI = 1 and c = 0 for both blacks and whites.  Estimates 
are generated by Monte Carlo simulation, drawing 4,000 observations (2,000 white and 2,000 black) from truncated 
normal distribution at each value of XI* (in steps of 0.1 + 0.1·SD(XI*)) and estimating probit model.  Simulation is 
done 100 times at each value of XI*.  



 
 

Figure 2 
Monte Carlo Simulations of Marginal Effects from Simple Probit Estimation, Bias in Estimate of Discrimination with 
Two Types of Applicants 
 

No discrimination (γ = 0)  
 

Probit estimates of γ                          Probit estimates of marginal effect of black 

                
        
 

Discrimination (γ = -.5) 
 

Probit estimates of γ                        Probit estimates of marginal effect of black 

        
Notes: Left-hand graph shows true γ and mean estimates of γ.  Right hand graphs show marginal effects, evaluated 
at sample means for simulated data.  The marginal effects shown correspond to the effect of race on the latent 
variable, as in equation (20’).  In the data generating process, XI* ~ N(0,1), XB

II ~ N(0,1), XW
II ~ N(0,2.25), so 

Var(XW
II)/Var(XB

II) = 2.25 (XW
II and XB

II are unobservable); βI = 1 and c = 0 for both blacks and whites.  Estimates 
are generated by Monte Carlo simulation, drawing 4,000 observations (2,000 white and 2,000 black) observations 
from two truncated normal distributions (one at each value of XI* (in steps of 0.1 + 0.1·SD(XI*)), and one at each 
value of XI* + .5 (again in steps of 0.1) + 0.1·SD(XI*)), and estimating probit model.  Simulation is done 100 times at 
each value of XI*. 



 
 

Figure 3 
Monte Carlo Simulations of Heteroskedastic Probit Estimation, Estimates of Marginal Effects and Distributions 
 

No discrimination (γ = 0) 
 

Estimates of marginal effects of black                                   Distribution of estimates 

         
 

Discrimination (γ = -.5) 
 

Estimates of marginal effects of black                                  Distribution of estimates 

         
Notes: Left-hand graph shows true marginal effects of being black and marginal effects, evaluate at sample means 
for simulated data.  Right-hand graphs show distributions of estimates.  The marginal effects shown correspond to 
the effect of race on the latent variable, as in equation (20’).  Estimates are generated by Monte Carlo simulation, 
drawing 4,000 observations (2,000 white and 2,000 black) observations from two truncated normal distributions 
(one at each value of XI* (in steps of 0.1 + 0.1·SD(XI*)), and one at each value of XI* + .5 (again in steps of 0.1 + 
0.1·SD(XI*)), and estimating heteroskedastic probit model.  Simulation is done 5,000 times at each value of XI* 
shown in graph.  As in Figure 1, the data generating process has XI* ~ N(0,1), XB

II ~ N(0,1), XW
II ~ N(0,2.25), so 

Var(XW
II)/Var(XB

II) = 2.25 (XW
II and XB

II are unobservable); and βI = 1 and c = 0 for both blacks and whites. 



 
 

Figure 4 
Monte Carlo Simulations of Heteroskedastic Probit Estimation, with Model Misspecification Masking Higher 
Unobserved Variance for Whites, Estimates of Marginal Effects  
  

Mild violation of identifying assumption in data generating process (β1 for whites = 1.1) 
 
No discrimination (γ = 0)                          Discrimination (γ = -.5) 

                    
     

Strong violation of identifying assumption in data generating process (β1 for whites = 2) 
 
No discrimination (γ = 0)                          Discrimination (γ = -.5) 

                       
Notes: See notes to Figure 3.  The only differences are that β1 is unequal for blacks and whites; it is always equal to 1 
for blacks, and as indicated in the graph headings for whites.     

  
 




