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1 Introduction

Instrumental variable (IV) methods are widely used in economics and other fields to an-

alyze the effect of a treatment on an outcome. These methods exploit exogenous variation in

the treatment coming from exogenous variation in another variable, called the instrument. A

widely used framework for studying IV methods was developed in Imbens and Angrist (1994)

and Angrist, Imbens and Rubin (1996) (hereafter IA and AIR, respectively). They show that in

the presence of heterogeneous effects and under some assumptions, IV estimators point identify

the local average treatment effect (LATE), defined as the average treatment effect for those

individuals whose treatment status is changed because of the instrument. A critical assump-

tion of IV methods is the exclusion restriction, which in the LATE framework requires that the

instrument affects the outcome only through its effect on the treatment. Since this assumption

is not testable, it is debatable in many applications whether the instrument employed is valid

(i.e., satisfies the exclusion restriction). In this paper, we derive analytic nonparametric bounds

for LATE without imposing the exclusion restriction assumption or requiring an outcome with

bounded support. Instead, we employ assumptions requiring weak monotonicity of mean poten-

tial outcomes within or across subpopulations defined by the values of the potential treatment

status under each value of the instrument. In practice, the assumptions we consider can be

substantiated with economic theory, combined with each other depending on their plausibility,

and some of them can be falsified from the data employing their testable implications.

There is a growing literature on partial identification of treatment effects in IV models. A

strand of this literature constructs nonparametric bounds on average treatment effects assuming

the availability of a valid instrument (Manski, 1990, 1994; Balke and Pearl, 1997; Heckman and

Vytlacil, 1999, 2000; Shaikh and Vytlacil, 2005; Bhattacharya et al., 2008). This paper is

different in that our partial identification results do not require a valid instrument. Another

strand of the literature considers invalid instruments and develops bounds on average treatment

effects. Conley et al. (2008) use information on a parameter summarizing the extent of violation

of the exclusion restriction along with distributional assumptions in the form of deterministic or

probabilistic priors. Nevo and Rosen (2008) derive analytic bounds on average treatment effects

by employing assumptions on the sign and extent of correlation between the instrument and the

error term in a linear model. In contrast to these two papers, our approach is nonparametric

in nature and does not require modeling the extent of invalidity of the instrument nor its

correlation with an error term.

Our paper is closer in spirit to Manski and Pepper (2000) in the sense that both papers study

nonparametric partial identification of average treatment effects without assuming the validity

of an instrument. Manski and Pepper (2000) introduced the monotone instrumental variable

(MIV) assumption and analyzed its identifying power. This assumption relaxes the traditional

1



IV assumption, which requires equality of mean responses for subpopulations with different

values of the IV, by replacing the equality with a weak inequality. Our paper differs from their

work in several ways. First, we focus on deriving bounds for LATE, while they focus (as does

most of the literature on partial identification in IV models) on the population average treatment

effect. Deriving bounds for LATE is important because it is a widely used parameter in applied

work and its bounds can be employed as a robustness check when estimating it. Second, our

bounds do not require the outcome to have a bounded support while, in general, the bounds in

Manski and Pepper (2000) are uninformative without a bounded outcome.1 Third, in contrast

to Manski and Pepper (2000) and the rest of the literature on partial identification in IV

models, our bounds are derived within the principal stratification framework (Frangakis and

Rubin, 2002). Principal stratification provides a framework for analyzing causal effects when

controlling for a variable that has been affected by the treatment. This framework permits us

to analyze causal effects when allowing the IV to causally affect the outcome through channels

other than the treatment. Finally, as we later discuss, the assumptions considered in this paper

are related to but different from those in Manski and Pepper (2000).

The setup considered in this paper, which follows the original setup in AIR, consists of

a randomly assigned binary instrument and a binary treatment. This case sets the basis for

extensions to other settings and it allows us to focus on the main ideas behind our partial

identification results. This setting is also important in practice. Most of the program evalua-

tion literature focuses on the binary treatment case (e.g., Imbens and Wooldridge, 2009), and

binary instruments are common in empirical applications (e.g., Rosenzweig and Wolpin, 1980;

Angrist, 1990; Oreopoulous, 2006). Moreover, randomized experiments have gained importance

in many fields in economics as a way of estimating average causal effects, such as in labor (e.g.,

Heckman et al., 1999) and development economics (e.g., Duflo et al., 2008). The randomized

variable in those experiments can be employed as an instrumental variable to derive bounds

for relevant treatment effects even if it does not satisfy the exclusion restriction, as illustrated

in our empirical application. Thus, the tools developed in this paper are also useful in the de-

sign of experiments in instances where it is difficult to randomize a treatment of interest. In

such cases, one could randomize a variable that affects the treatment instead, and employ the

methods herein to bound the effect of interest.

The basis for our bounds is the recent results on partial identification of mechanism and

net average treatment effects (MATE and NATE, respectively) in Flores and Flores-Lagunes

(2010, hereafter FF).2 MATE and NATE provide an intuitive decomposition of the population

1Manski and Pepper (2000) show that in the special case when the IV is the realized treatment, informative
bounds can be constructed even if the outcome has unbounded support under the MIV assumption (in this
special case called “monotone treatment selection”) and the monotone treatment response assumption of Manski
(1997).

2Mechanism and net effects are also known in other fields as indirect and direct effects, or mediation effects
(Robins and Greenland, 1992; Robins, 2003; Pearl, 2001; Imai et al., 2010).
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total average treatment effect that enables learning about the part of the effect of a treatment on

an outcome that works through a given mechanism. Our partial identification results for LATE

exploit the close relationship between IV models and mechanism and net effects by explicitly

allowing the instrument to have a causal effect on the outcome net of its effect through the

treatment variable. Hence, in lieu of assuming that all the effect of the instrument on the

outcome works through the treatment (i.e., the exclusion restriction assumption), we let the

instrument have a mechanism and a net average effect on the outcome, where the mechanism

is the treatment of interest.

More specifically, to derive bounds for LATE, we show that it can be written as a function

of MATE and the average effect of the instrument on the treatment. Since the second term

is point identified, we use the bounds for MATE in FF to derive bounds for LATE. The

approach followed to derive bounds for MATE consists of writing it as a function of the mean

potential outcomes in each of the subpopulations or strata where all individuals have the same

values of the potential treatment status under each value of the instrument, and then imposing

assumptions relating the (partially or point) identified mean potential outcomes of the different

strata in the population to those that are unidentified. In particular, we consider two sets of

assumptions that impose weak-inequality restrictions on the mean potential outcomes of the

different strata. These sets of assumptions may be used together or separately. The first set

imposes weak monotonicity of different mean potential outcomes within a given strata, while

the second set imposes weak monotonicity for the same mean potential outcome across strata.

In the first part of Section 2, we define our LATE and relate it to MATE. The LATE

we analyze differs from the one in IA and AIR in that in our setting, it is necessary to specify

whether or not the effect of the treatment on the outcome is under exposure to the instrument.

The reason for this is that we allow the instrument to have an effect on the way the treatment

affects the outcome, so that the treatment effect for the same individual can be different de-

pending on whether or not she was exposed to the instrument. In the second part of Section 2,

we present the main partial identification results. Section 3 illustrates the identifying power of

our bounds on LATE by analyzing the effect of obtaining a general educational development

(GED), high school, or vocational degree on labor market outcomes using randomization into a

training program (Job Corps) as an instrument. This application relates to the large empirical

literature on the effect of education and degrees (i.e., credentials) on labor market outcomes

(e.g., Card, 1999; Hungerford and Solon, 1987; Cameron and Heckman, 1993; Jaeger and Page,

1996; Flores-Lagunes and Light, 2010). In this application, assignment into training is not

likely to satisfy the exclusion restriction assumption to point identify the effect of interest be-

cause it may affect the outcomes through channels other than the attainment of a degree (e.g.,

through the use of the other components of the training program, such as job search services

or social skill training). Hence, we construct bounds on the LATE of obtaining such a degree
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on employment and weekly earnings regarding assignment into training as an invalid instru-

ment. Our results suggest that the average effect of attaining such a degree on employment

(weekly earnings) when assigned to training for those individuals whose attainment of a degree

is affected by this assignment is at most 10 percentage points ($53.62).

2 Partial Identification of LATE

2.1 Setup and Preliminary Results

Assume we have a random sample of size n from a large population. For each unit i in the

sample, let Di ∈ {0, 1} indicate whether the unit received the treatment of interest (Di = 1)

or the control treatment (Di = 0). The focus is on analyzing the effect of the treatment on

an outcome Y . Let Yi (1) and Yi (0) denote the two potential outcomes as a function of the

treatment. They represent the outcome individual i would get if she received the treatment or

not, respectively. We consider employing exogenous variation in a binary variable Z to learn

about the effect ofD on Y , with Zi ∈ {0, 1}. LetDi(1) andDi(0) denote the potential treatment

status; that is, the treatment status individual i would receive depending on the value of Zi.

Similarly, we need to include Z in the definition of the potential outcomes. Let Yi (z, d) denote

the potential outcome individual i would obtain if she received a value of the instrument and

the treatment of z and d, respectively. For each unit i, we observe the vector (Zi,Di, Yi), where

Di = ZiDi (1)+ (1− Zi)Di (0) and Yi = DiYi (1)+ (1−Di)Yi (0). To simplify notation, in the

rest of the paper we write the subscript i only when deemed necessary.3

AIR partition the population into groups such that, within each group, all individuals have

the same values of the vector {Di (0) ,Di (1)}. Frangakis and Rubin (2002) call such a partition
a “basic principal stratification” and note that comparisons of potential outcomes within these

strata yield causal effects because the strata an individual belongs to is not affected by the value

of the instrument received. Our setting gives rise to four principal strata: {1, 1}, {0, 0}, {0, 1}
and {1, 0}. These strata are commonly referred to as always takers, never takers, compliers,
and defiers, respectively.

IA and AIR impose the following assumptions:

Assumption 1 (Randomly Assigned Instrument). {Y (1, 1) , Y (0, 0) , Y (0, 1) , Y (1, 0) ,D (0) ,
D (1)} is independent of Z.

Assumption 2 (Nonzero Average Effect of Z on D). E [D (1)−D (0)] 6= 0.

Assumption 3 (Individual-Level Monotonicity of Z on D). Di (1) ≥ Di (0) for all i.

3Our notation implicitly imposes the stable unit treatment value assumption (SUTVA) in AIR. This as-
sumption implies that the individual potential outcomes are not affected by the treatment received by other
individuals.
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Assumption 2 requires the instrument to have an effect on the treatment status, while

Assumption 3 rules out the existence of defiers.

In addition, IA and AIR impose the following assumption to point identify a local average

treatment effect of D on Y :

Exclusion Restriction Assumption (AIR): Yi (0, d) = Yi (1, d) for all i and d ∈ {0, 1}. (1)

This assumption requires that any effect of the instrument on the potential outcomes is through

the treatment status only. Vytlacil (2002) shows that the IV assumptions imposed in the

framework of IA and AIR are equivalent to those imposed in nonparametric selection models.

IA and AIR show that if the exclusion restriction holds, along with Assumptions 1, 2 and 3,

we can point identify the average causal effect of D on Y for the compliers:

E [Y (1)− Y (0) |D (1)−D (0) = 1] =
E [Y |Z = 1]−E [Y |Z = 0]
E [D|Z = 1]−E [D|Z = 0] . (2)

IA and AIR refer to the effect in (2) as the local average treatment effect, or LATE. It gives

the average effect of D on Y for those individuals whose treatment status is affected by the

instrument (compliers).

In this paper, we allow the instrument to have a causal effect on the outcome through

channels other than the treatment status. To this end, we use the definitions of mechanism

and net average treatment effects in FF.4 We introduce some additional notation. Let Y z
i (1)

and Y z
i (0) denote the potential outcomes as a function of the instrument, so that they give

the outcome individual i would obtain if she were or were not exposed to the instrument,

respectively. Hence, the (total) average treatment effect of the instrument on the outcome,

which we denote as ATEZY , is given by ATEZY = E[Y z (1)− Y z (0)]. Note that by definition

Y z
i (1) = Yi (1,Di (1)) and Y z

i (0) = Yi (0,Di (0)). Also, let the potential outcome Yi (1,Di (0))

represent the outcome individual i would obtain if she were exposed to the instrument but the

effect of the instrument on the treatment status were blocked by keeping her treatment status

at the value she would have received had she not been exposed to the instrument. Intuitively,

Yi (1,Di (0)) is the potential outcome from an alternative counterfactual experiment in which

the instrument is the same as the original one but blocks the effect of Z on D by holding Di

fixed at Di (0). Following FF, the mechanism average treatment effect, or MATE, is given by

MATE = E[Y z (1)− Y (1,D(0))], (3)

and the net average treatment effect, or NATE, is given by

NATE = E[Y (1,D(0))− Y z (0)]. (4)

4There are several definitions of mechanism and net (or indirect and direct) average effects in the literature.
For a review of some of these definitions, including those used in this paper, see Pearl (2001) and Flores and
Flores-Lagunes (2010).
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By construction, ATEZY =MATE +NATE. Hence, MATE and NATE decompose the

total average effect of the instrument on the outcome into the part that works through the

treatment status (MATE) and the part that is net of the treatment-status channel (NATE).

Since Y z (1) = Y (1,D(1)), MATE gives the average effect on the outcome from a change in

the treatment status that is due to the instrument, holding the value of the instrument fixed

at one. Similarly, since Y z (0) = Y (0,D(0)), NATE gives the average effect of the instrument

on the outcome when the treatment status of every individual is held constant at Di (0). Note

also that ATEZY = MATE if all the effect of Z on Y works through D (i.e., if the exclusion

restriction in (1) is satisfied), and ATEZY = NATE if none of the effect of Z on Y works

through D (either because Z does not affect D or because D does not affect Y ).

FF derive nonparametric bounds for MATE and NATE in a setting analogous to the one

presented here. Since our goal is to partially identify relevant average effects of D on Y while

allowing Z to have a net or direct effect on Y , our first step consists of relating an average effect

of D on Y to MATE. Note that we can write MATE in (3) as:

MATE = E[Y (1,D(1))− Y (1,D(0))] (5)

= E {[D(1)−D(0)] · [Y (1, 1)− Y (1, 0)]}

= Pr (D(1)−D(0) = 1) ·E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1]

−Pr (D(1)−D(0) = −1) ·E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = −1] .

The second line in (5) writes MATE as the expected value of the product of the individual

effect of the instrument on the treatment status times the individual effect from a change in

the treatment status on the outcome, holding the value of the instrument fixed at one. The

third line uses iterated expectations and sets the basis for the following proposition.

Proposition 1 Under Assumptions 2 and 3 we can write

LATE ≡ E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] =
MATE

E [D(1)−D(0)]
. (6)

Proposition 1 follows directly from (5) by ruling out the existence of defiers. As in IA

and AIR, we refer to the parameter E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] as the local average

treatment effect (LATE). It gives the average treatment effect for compliers under exposure to

the instrument. Proposition 1 writes LATE as a function of MATE and the average effect of

the instrument on the treatment status. Given that the denominator in (6) is point identified

under random assignment of the instrument, the bounds derived for MATE in FF can be used

to derive bounds for LATE.

To gain intuition on the result in Proposition 1, it is helpful to relate it to the correspond-

ing results in IA (Theorem 1) and AIR (Proposition 1). Imposing the exclusion restriction
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assumption in (1) has two important effects. First, assuming that all the effect of the in-

strument on the outcome works through the treatment implies that MATE = ATEZY , with

ATEZY being point identified under Assumption 1. Hence, the result in (6) reduces to those in

IA and AIR under the exclusion restriction assumption. Second, the exclusion restriction im-

plies that E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] = E [Y (0, 1)− Y (0, 0)|D (1)−D (0) = 1] =

E [Y (1)− Y (0)|D (1)−D (0) = 1]. Intuitively, it implies that the instrument does not affect

how the treatment affects the outcome. Therefore, specifying whether the effect of the treat-

ment on the outcome is under exposure of the instrument is irrelevant. In our setting, however,

this distinction is important because we allow the instrument to have a net or direct effect on

the outcome, so average treatment effects can be different depending on whether or not the

individuals are exposed to the instrument. As a result, the LATE in (6) is not the same as

that in IA and AIR without further assumptions.5

Just as in the IV model studied in IA and AIR, the specific instrument employed is crucial

in interpreting the LATE in (6). For instance, consider a case where individuals are randomly

assigned to either enroll (group A) or not enroll (group B) into a training program but there is

imperfect compliance; that is, some of the individuals in group A do not enroll in the program

while some in group B do. If we use random assignment into groups A and B as an instrument to

learn about the effect of a given treatment D on an outcome, LATE in (6) would be interpreted

as the average effect of D on the outcome for compliers when assigned into group A (a type

of “intention to treat”), and not as the average effect of D on the outcome for compliers when

enrolled into the training program.

Finally, we note that it is also possible to define LATE as the average treatment effect

for compliers under no exposure to the instrument, E [Y (0, 1)− Y (0, 0)|D (1)−D (0) = 1], by

using the potential outcome Yi (0,D (1)) instead of Yi (1,D (0)) in the definition of MATE and

NATE above. The same approach used in this paper could be used to bound that parameter.

2.2 Bounds on LATE

In this subsection, we derive bounds on LATE in (6) based on Proposition 1 and the bounds on

MATE derived by FF within a principal stratification framework. We start by discussing partial

identification of MATE because, once combined with point identification of E [D(1)−D(0)],

partial identification of LATE follows directly from Proposition 1.

Partial identification of MATE is attained from the level of the strata up, and thus we

define local versions of MATE and NATE as the corresponding average effects within strata.

5One assumption that would make LATE in (6) equal to the LATE in IA and AIR (see equation (2)) is
that E[Y (1, 1)− Y (1, 0)|D(1)−D(0) = 1] = E[Y (0, 1)− Y (0, 0)|D(1)−D(0) = 1]. A stronger assumption, but
still weaker than the exclusion restriction, is that Yi (1, 1) − Yi(1, 0) = Yi (0, 1) − Yi(0, 0) for all i. These two
assumptions allow the instrument to have an effect on the outcome but not on the effect of the treatment status
on the outcome.
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To simplify notation, we write at, nt, c and d to refer to the strata of always takers, never

takers, compliers and defiers, respectively. Let

LMATEk = E[Y z(1)|k]−E[Y (1,D (0))|k], for k = at, nt, c, d (7)

and

LNATEk = E[Y (1,D (0))|k]−E[Y z(0)|k], for k = at, nt, c, d. (8)

The fact that Di (0) = Di (1) for the always and never takers implies that for these two

strata Y z(1) = Y (1,D (0)), so LMATEk = 0 and LNATEk = E[Y z(1) − Y z(0)|k] for k =
at, nt. It also implies that the observed data contains information on Yi(1,D (0)) only for

those treated individuals in the nt and at strata. In addition, note that LATE in (6) equals

the local mechanism average treatment effect for compliers (LMATEc), since LMATEc =

E[Y (1,D(1))−Y (1,D (0))|c] = E{[D(1)−D(0)]·[Y (1, 1)−Y (1, 0)]|c} = E [Y (1, 1)− Y (1, 0)|c].
Under Assumptions 1 and 3, it is possible to point identify the proportion of each of the

strata in the population and to point or partially identify the mean potential outcomes and local

effects of certain strata. Consider the following table summarizing the relationship between the

“compliance behavior” of the individuals in the sample and their observed treatment status

(Di) and instrument exposure (Zi) under Assumption 3:

Table 1
Zi

0 1
Di 0 nt, c nt

1 at at, c

Let πnt, πat, πc, and πd be the population proportions of each of the principal strata nt,

at, c and d, respectively, and let pd|z ≡ Pr (Di = d|Zi = z) for d, z = 0, 1. Then, Assumptions

1 and 3 imply that the proportions of each of the strata in the population are point identified

as πnt = p0|1, πat = p1|0, πc = p1|1 − p1|0 = p0|0 − p0|1 and πd = 0. In addition, note that

E[Y z (0) |at] = E[Y |Z = 0,D = 1] and E[Y z (1) |nt] = E[Y |Z = 1,D = 0], so they are point

identified. Furthermore, under Assumptions 1 and 3, it is possible to construct bounds on

E[Y z (1) |at], E[Y z (0) |nt], E[Y z (0) |c] and E[Y z (1) |c] by employing a trimming procedure
similar to that used in Lee (2009) and Zhang et al. (2008) in a different context. For instance,

consider constructing bounds for E[Y z (0) |nt]. The average outcome for the individuals in the
(Z,D) = (0, 0) group can be written as:

E[Y |Z = 0,D = 0] =
πnt

πnt + πc
·E[Y z (0) |nt] + πc

πnt + πc
·E[Y z (0) |c]. (9)

The proportion of never takers in the observed group (Z,D) = (0, 0) is point identified as

πnt/ (πnt + πc) = p0|1/p0|0. Thus, E[Y z (0) |nt] can be bounded from above by the expected

value of Y for the p0|1/p0|0 fraction of largest values of Y for those in the observed group
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(Z,D) = (0, 0). Similarly, it can be bounded from below by the expected value of Y for the

p0|1/p0|0 fraction of smallest values of Y for those in the same observed group. Following this

approach, bounds on E[Y z (0) |c] can also be constructed from (9), and bounds on E[Y z (1) |at]
and E[Y z (1) |c] can be derived similarly based on the observed group (Z,D) = (1, 1). Finally,
note that the bounds on E[Y z (0) |nt] and E[Y z (1) |at] can be used to construct bounds on
LNATEnt and LNATEat, respectively, as the other term in the definition of each of these

LNATEs is point identified (see equation (8)).

An important step in deriving bounds for MATE consists of writing it in different ways as

a function of terms that are point or partially identified under Assumptions 1 and 3. Under

Assumption 3, MATE in (3) can be written as:

MATE

= πcLMATEc (10)

= πntE [Y
z (0) |nt] + πatE [Y

z (0) |at] + πcE [Y
z (1) |c]− πcLNATEc −E [Y z (0)] (11)

= E [Y z (1)]− πatE [Y
z (1) |at]− πntE [Y

z (1) |nt]− πcE [Y (1,D (0)) |c] (12)

= E [Y z (1)]−E [Y z (0)]− πatLNATEat − πntLNATEnt − πcLNATEc. (13)

Each of the equations in (10)-(13) exploits different information in the data and, depending

on the additional assumptions imposed below, may generate different bounds onMATE. Equa-

tion (10) is the simplest form of MATE and uses the fact that LMATEnt = LMATEat = 0.

Equation (11) exploits the fact that E [Y z (0)] and E [Y z (0) |at] are point identified by adding
and subtracting E [Y z (0) |k] for k = nt, at to equation (10). It also adds and subtracts

E [Y z (1) |c] to take advantage of the information available in the data about it and of some as-
sumptions on LNATEc to be considered below. Equation (12) adds and subtracts E [Y z (1) |k]
for k = nt, at to (10) to exploit the point identification of E [Y z (1)] and E [Y z (1) |at]. The
last equation uses the fact that MATE = ATEZY − NATE. It exploits point identification

of ATEZY , E [Y z (0) |at] and E [Y z (1) |nt], as well as information about E [Y z (1) |c] and some
assumptions on the LNATEs to be considered below.6 Note that it is not possible to derive

bounds for MATE without further assumptions because the data contain no information on

the potential outcome Y (1,D(0)) for compliers, so the term E [Y (1,D (0)) |c] appearing either
explicitly or implicitly in equations (10)-(13) is not identified.

We next consider two sets of assumptions relating the unidentified terms in equations (10)-

(13) to the point or partially identified terms. The specific approach followed to derive bounds

on MATE consists of obtaining bounds for each of the non point-identified terms in equations

6 It does not make a difference if we write separately each of the terms in LNATEat and LNATEnt in
equations (10)-(13) since, as previously discussed, only one of the terms in each of the effects is point identified.
Conversely, it is convenient not to brake up LNATEc and LMATEc into each of their terms because none of
them is point identified and below we consider assumptions about the signs of LNATEc and LMATEc.
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(10)-(13), plugging them in the corresponding equations above, and then comparing the result-

ing bounds to rule out lower (upper) bounds that are always smaller (greater) than the others.

The first set of assumptions we consider to derive bounds on MATE and LATE involves weak

monotonicity of mean potential outcomes within strata.

Assumption 4. (Weak Monotonicity of Mean Potential Outcomes Within Strata).

4.1. E[Y z (1) |c] ≥ E[Y (1,D (0)) |c]. 4.2. E[Y (1,D (0)) |k] ≥ E[Y z (0) |k], for k =

nt, at, c.

Assumption 4.1 implies that LMATEc(= LATE) ≥ 0, so that the treatment has a non-
negative average effect on the outcome for the compliers. When combined with Assumption 3,

it also implies that MATE = πcLMATEc ≥ 0. Assumption 4.2 states that for each strata,
the instrument has a non-negative average effect on the outcome net of the effect that works

through the treatment status. It requires that LNATE ≥ 0 for all strata, which implies that
NATE ≥ 0. Hence, under Assumptions 3 and 4, we have ATEZY ≥ 0, and the instrument is
assumed to have a non-negative average effect on the outcome. We note that although assuming

that LNATEnt and LNATEat are non-negative is not strictly necessary to derive bounds on

MATE, it is helpful in tightening the bounds. For example, under Assumptions 1, 3 and 4, the

upper bound for E[Y z (0) |nt] is the minimum of the upper bound derived using the trimming

procedure described above and E[Y |Z = 1,D = 0], which comes from Assumption 4.2 since

E[Y (1,D (0)) |nt] = E[Y z (1) |nt] = E[Y |Z = 1,D = 0].

Assumptions similar to those in Assumption 4 have been considered for partial identification

of average treatment effects in IV models (e.g., Manski and Pepper, 2000, 2009) and in other

settings (Manski, 1997; Cai et al., 2008; Sjölander, 2009). For instance, Manski and Pepper

(2000, 2009) consider the “monotone treatment response” (MTR) assumption, which states

that the potential outcome is a monotone function of the treatment, or Yi (1) ≥ Yi (0) for all i.

In contrast to the MTR assumption, note that Assumption 4.1 allows some individual effects

of the treatment on the outcome to be negative by imposing this monotone restriction on the

mean potential outcomes for the compliers.

Let yzdr be the r-th quantile of Y conditional on Z = z and D = d, or yzdr = F−1Y |Z=z,D=d (r),

with F· (·) the conditional density of Y given Z = z and D = d. The following proposition

presents bounds on LATE under Assumptions 1 through 4.

Proposition 2 If Assumptions 1 through 4 hold, then

0 ≤ LATE ≤
min

©
U1, U2, U3, U4

ª
E [D|Z = 1]−E [D|Z = 0] ,
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where

U1 =
¡
p1|1 − p1|0

¢ ¡
U1,c − L0,c

¢
U2 = p0|1min

©
E [Y |Z = 1,D = 0] , U0,nt

ª
+ p1|0E [Y |Z = 0,D = 1]

+
¡
p1|1 − p1|0

¢
U1,c −E [Y |Z = 0]

U3 = E [Y |Z = 1]− p1|0max{E [Y |Z = 0,D = 1] , L1,at}− p0|1E [Y |Z = 1,D = 0]

−
¡
p1|1 − p1|0

¢
L0,c

U4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0max
©
0, L1,at −E[Y |Z = 0,D = 1]

ª
−p0|1max

©
0, E[Y |D = 1,D = 0]− U0,nt

ª
U0,nt = E[Y |Z = 0,D = 0, Y ≥ y001−(p0|1/p0|0)]

U1,c = E[Y |Z = 1,D = 1, Y ≥ y11(p1|0/p1|1)]

L1,at = E[Y |Z = 1,D = 1, Y ≤ y11(p1|0/p1|1)]

L0,c = E[Y |Z = 0,D = 0, Y ≤ y001−(p0|1/p0|0)].

Proof. See Appendix.

The bounds in Proposition 2 imply that under Assumptions 1 to 4 the upper bound on

LATE is at most equal to the IV estimator in (2), since U4 ≤ E[Y |Z = 1]−E[Y |Z = 0]. Each
of the upper bounds for LATE in Proposition 2 comes from one of the equations in (10)-(13),

while the lower bound comes directly from Assumption 4.1 and equation (10).

In contrast to Assumption 4, the second set of assumptions we consider does not impose

restrictions on the sign of LATE. It involves weak monotonicity of mean potential outcomes

across strata.

Assumption 5. (Weak Monotonicity of Mean Potential Outcomes Across Strata).

5.1. E [Y (1,D (0)) |c] ≥ E [Y z (1) |nt]. 5.2. E [Y z (1) |at] ≥ E [Y (1,D (0)) |c]. 5.3.

E [Y z (0) |c] ≥ E [Y z (0) |nt]. 5.4. E [Y z (0) |at] ≥ E [Y z (0) |c]. 5.5. E [Y z (1) |c] ≥
E [Y z (1) |nt]. 5.6. E [Y z (1) |at] ≥ E [Y z (1) |c].

Assumption 5 states that the mean potential outcomes of the always takers are greater

than or equal to those of the compliers, and that these in turn are greater than or equal to

those of the never takers. Assumption 5 formalizes the notion that some strata are likely to

have more favorable characteristics and thus better mean potential outcomes than others. For

example, in the context of the empirical application presented in Section 4, Assumption 5 states

that the mean potential earnings of those who attain a high school, GED, or vocational degree

only if assigned to enroll in a training program are greater (less) than or equal to the mean

potential earnings of those who never (always) receive a degree whether or not assigned to

enroll in training. Two attractive features of Assumption 5 are (1) it may be substantiated

11



with economic theory in practice and (2) it contains testable implications. The combination of

Assumptions 1, 3 and 5 imply that E[Y |Z = 0,D = 1] ≥ E[Y |Z = 0,D = 0] and E[Y |Z =

1,D = 1] ≥ E[Y |Z = 1,D = 0]. These two inequalities follow from equation (9) and the

corresponding equation for the observed group (Z,D) = (1, 1), respectively. These inequalities

can be used in practice to falsify the assumptions, as will be illustrated in Section 3.

Assumption 5 is related to, but different from, the monotone instrumental variable (MIV)

assumption in Manski and Pepper (2000). The MIV assumption states that mean potential

outcomes as a function of the treatment vary weakly monotonically across subpopulations

defined by specific values of the instrument: E[Y (d) |Z = 1] ≥ E[Y (d) |Z = 0] for d =

{0, 1}. It relaxes the traditional mean independence assumption in IV models that requires

the previous inequality to hold with equality, by requiring the direction of the endogeneity of

Z to be known. Assumption 5 differs from the MIV assumption in at least two important

ways. First, Assumption 5 refers to potential outcomes that explicitly allow the instrument

to have a causal effect on the outcome (through D and other channels) by writing them as a

function of the treatment and the instrument. Second, Assumption 5 imposes weak inequality

of the different mean potential outcomes across subpopulations defined by specific values of the

potential treatment status (principal strata).

Assumptions 5.1 and 5.2 provide a lower and an upper bound for E [Y (1,D (0)) |c], respec-
tively. Assumptions 5.3-5.6 are not strictly necessary to derive bounds for MATE, but they

are helpful in tightening the bounds. For example, combining Assumption 5.3 with equation

(9) yields E[Y |Z = 0,D = 0] ≥ E[Y z (0) |nt], where by definition E[Y |Z = 0,D = 0] is less

than or equal to U0,nt, the upper bound for E[Y z (0) |nt] derived using the trimming proce-
dure described above and formally defined in Proposition 2. The following proposition presents

bounds on LATE employing Assumption 5.

Proposition 3 If Assumptions 1, 2, 3 and 5 hold, then

max{L1, L2}
E[D|Z = 1]−E[D|Z = 0] ≤ LATE ≤ U

E[D|Z = 1]−E[D|Z = 0] ,

where

L
1
= −

¡
p1|1 − p1|0

¢
·
¡
U1,at −max

©
L1,c, E [Y |Z = 1,D = 0]

ª¢
L
2
= −p1|1

¡
U1,at −E [Y |Z = 1,D = 1]

¢
U =

¡
p1|1 − p1|0

¢
(E [Y |Z = 1,D = 1]−E [Y |Z = 1,D = 0])

U1,at = E[Y |Z = 1,D = 1, Y ≥ y111−(p1|0/p1|1)]

L1,c = E[Y |Z = 1,D = 1, Y ≤ y111−(p1|0/p1|1)].

Proof. See Appendix.
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The lower bounds L
1
and L

2
come from equations (10) and (12), respectively, and they are

always greater than or equal to those derived using equations (11) and (13). The upper bound

in Proposition 3 comes from the bounds derived using equations (10) and (12), which under the

assumptions in Proposition 3 are equal to each other, and are always less than or equal to those

based on equations (11) and (13). The fact that none of the bounds in Proposition 3 comes

from equations (11) and (13) is intuitive because these two equations exploit assumptions on

the sign of the LNATEs, which are not imposed in Proposition 3. The lower bound on LATE

in Proposition 3 is always less than or equal to zero because p1|1 − p1|0 = πc ≥ 0 and U1,at

is always greater than or equal to E [Y |Z = 1,D = 1], L1,c, and E[Y |Z = 1,D = 0] (from the

testable implications discussed above). Thus, the bounds in Proposition 3 cannot be used to

rule out a negative LATE. Nevertheless, as illustrated in our empirical application, the upper

bound on LATE in this proposition can be informative.

Finally, we combine Assumptions 1 through 5 to construct bounds on LATE. Combining

Assumptions 4 and 5 yields an additional testable implication: E[Y |Z = 1,D = 1] ≥ E[Y |Z =
0,D = 0].7 The following proposition presents the bounds on LATE for this case.

Proposition 4. If Assumptions 1 through 5 hold,

0 ≤ LATE ≤ min{eU1, eU2}
E[D|Z = 1]−E[D|Z = 0] ,

where

eU1 = E [Y |Z = 1]− p1|0max{E [Y |Z = 1,D = 1] , E [Y |Z = 0,D = 1]}

−
¡
p1|1 − p1|0

¢
max{E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]}

−p0|1E [Y |Z = 1,D = 0]eU2 = E [Y |Z = 1]−E [Y |Z = 0]

−p1|0max{0, E [Y |Z = 1,D = 1]−E [Y |Z = 0,D = 1]}

−p0|1max{0, E [Y |Z = 1,D = 0]−E [Y |Z = 0,D = 0]}−
¡
p1|1 − p1|0

¢
·

max{0, E [Y |Z = 1,D = 0]− U0,c, E [Y |Z = 1,D = 0]−E [Y |Z = 0,D = 1]}

U0,c = E[Y |Z = 0,D = 0, Y ≥ y00(p0|1/p0|0)].

Proof. See Appendix.

The upper bound eU1comes from equation (12), while eU2 comes from equation (13). Similar

to Proposition 2, eU2 implies that the upper bound on LATE in Proposition 4 is at most equal

7Note that Assumptions 4 and 5 imply E[Y z (1) |at] ≥ E[Y z (0) |at] ≥ E[Y z (0) |c] ≥ E[Y z (0) |nt] and
E[Y z (1) |c] ≥ E[Y z (0) |c] ≥ E[Y z (0) |nt]. The result follows from combining these inequalities with equation
(9) and the corresponding equation for the observed group (Z,D) = (1, 1).
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to the IV estimator in (2), and Assumptions 4.1 and equation (10) imply that the lower bound

on LATE is zero.

It is important to note that the particular conditions imposed in Assumptions 4 and 5 can

be changed depending on their plausibility, identifying power and the economic theory behind

any particular application. First, some particular assumptions can be dropped if they are not

plausible or needed in a given application. For instance, as previously mentioned, Assumptions

5.3-5.6 and 4.2 for the nt and at strata are not strictly necessary to derive bounds on LATE.

Similarly, some assumptions can be dropped if interest lies only on a lower or upper bound for

LATE. Second, the direction of the weak inequalities, including that in Assumption 3, can be

reversed depending on the empirical setting. Third, some specific potential outcomes can be

changed. For instance, Assumption 5.1 could be changed to E [Y (1,D (0)) |c] ≥ E [Y z (0) |nt],
which may be easier to justify in some empirical settings. Finally, we also note that it is possible

to construct bounds for LATE without Assumptions 4 and 5 if we assume that the support of

Y (·) is bounded, so that E [Y (1,D (0)) |c] is also bounded. In any of these instances, the same
approach employed here to derive the bounds in Propositions 2 to 4 can be followed to derive

bounds on LATE.

3 Empirical Application

There is a large empirical literature analyzing the effect of education on labor market

outcomes (e.g., Card, 1999), as well as the effects of degree attainment upon earnings (e.g.,

Hungerford and Solon, 1987; Cameron and Heckman, 1993; Jaeger and Page, 1996; Flores-

Lagunes and Light, 2010). In this section, we illustrate the identifying power of the bounds

presented above by analyzing the effect of attaining a GED, high school, or vocational degree

on labor market outcomes using randomization into a training program as an instrument.

The program we consider is Job Corps (JC), the largest and most comprehensive job training

program for economically disadvantaged youth aged 16 to 24 years old. In addition to academic

and vocational training, JC provides its participants a variety of services such as health services,

counseling, job search assistance, social skills training and a stipend during program enrollment,

as well as room and board for those residing at the JC centers during program enrollment. We

concentrate on the estimation of the returns to attaining any combination of GED, high school,

or vocational degrees on labor market outcomes because many JC participants attain at least

two degrees (a GED or high school degree plus a vocational degree), and thus breaking up the

effects of the different degrees would require additional assumptions. As a reference, JC has

been found to have impacts on participants’ earnings that are roughly equivalent to a year of

regular schooling (Schochet et al., 2001; Lee, 2009). Similarly, Flores et al. (2010) find that

the estimated impact of the amount of academic and vocational instruction received in JC on
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earnings implies annualized returns that are similar to those of IV estimates of the returns to

an additional year of regular schooling for people with comparably low educational attainment.

We use data from the National Job Corps Study (NJCS), a randomized experiment per-

formed in the mid-1990s to evaluate the effectiveness of JC. A random sample of all pre-screened

eligible applicants in the 48 contiguous states and the District of Columbia was randomly as-

signed into treatment and control groups, with the second group being denied access to JC

for three years. Both groups were tracked with a baseline interview immediately after ran-

domization and thereafter at 12, 30 and 48 months.8 The specific sample we use consists of

all individuals with non-missing values on the randomized treatment status, the variables re-

garding the attainment of a GED, high school or vocational degree, and the outcome variables

considered. We focus on the outcomes measured twelve quarters after random assignment,

which corresponds to the time the embargo from the program ended for the control group. The

treatment and control groups employed consist of 5,045 and 2,975 individuals, respectively.9

We use as an instrumental variable the randomized indicator for whether or not the in-

dividual was assigned to participate in JC. For simplicity, we also refer to the instrument as

the “program status”.10 Table 2 presents point estimates for some relevant quantities. The

ATE of the program status on the probability of being employed twelve quarters after random

assignment is 4 percentage points, while the ATE on weekly earnings is $18.1. The ATE of

the program status on the probability of attaining a high school, GED, or vocational degree is

21 percentage points. All three effects are highly statistically significant.

The large effect of the program status on the attainment of a degree suggests that this

instrument satisfies Assumption 2 (non-zero first-stage). From Table 2, the IV point estimate

for the effect of attaining a degree on employment and weekly earnings twelve months after

randomization using program status as an instrument is 19.4 percentage points and $86.63,

respectively, and both are highly statistically significant. These are point estimates of LATE

in (2) under Assumptions 1 to 3 plus the exclusion restriction assumption in (1). In this

context, the exclusion restriction assumption requires that all the effect of the program status

on employment and earnings works through the attainment of a GED, high school, or vocational

degree. Nevertheless, this assumption is likely violated in this setting because JC may have

an effect on the outcomes through other services, such as job search services or social skills

training. In fact, below we provide some evidence that JC has an effect on both outcomes net

8For further description of the JC program and the NJCS see Schochet, Burghardt and Glazerman (2001),
Lee (2009) and Flores-Lagunes, Gonzalez and Neumann (2010).

9 In this application we abstract from the problems of sample attrition over time and missing values. Lee
(2009), who employs a similar sample, suggests that the attrition/non-response problem is not serious.
10There exits non-compliance with the assigned treatment in the NJCS. The proportion of those in the treat-

ment group who enroll in JC was 73 percent, and the proportion of those in the control group that managed to
enroll in JC was 1.4 percent. We discuss below the implications of non-compliance with the assigned treatment
for the interpretation of our results.
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of the effect that works through the attainment of a degree, which implies that the exclusion

restriction is violated. Thus, we apply the bounds for LATE derived in this paper to learn

about the effect of interest using program status as an invalid instrument.

We start by discussing the assumptions employed in the paper in the context of this empirical

application. Assumption 3 (individual-level monotonicity of Z on D) states that being assigned

to participate in JC has a non-negative individual-level effect on the attainment of a GED,

high school or vocational degree, so that there are no individuals who would obtain such a

degree if they were not assigned to participate in JC and would not if they were assigned. This

assumption is plausible in this setting given that JC facilitates the obtainment of such a degree.

In this context, the never (always) takers are those individuals who would never (always) obtain

a degree regardless of whether or not they are assigned to participate in JC, and the compliers

are those who would obtain a degree if they were assigned to participate in JC but would not if

they were not assigned. Table 2 shows the estimated proportions of each of these strata, along

with bootstrap standard errors.

Assumption 4.1 states that the attainment of a degree has a non-negative average effect

on employment and earnings for the compliers, which is consistent with conventional human

capital theories in economics. Assumption 4.2 states that the LNATE for all strata are non-

negative, or that the combination of the rest of the channels through which the program status

affects the outcome has a non-negative average effect on labor market outcomes for all strata.

This assumption is likely satisfied in this application because the other components of the JC

program (e.g., job search assistance, social skills training, health services) also aim to improve

the participants’ future labor market outcomes.

Assumption 5 states that the average potential outcomes of the compliers are no less (no

greater) than the corresponding average potential outcomes of the never (always) takers. We

believe this assumption is also likely to hold in our application given the characteristics of the

individuals expected to belong in each strata. For instance, we would expect individuals with

more (less) favorable traits to succeed in the labor market (e.g., discipline) to belong to the

always-taker (never-taker) strata than the complier strata . Thus, even though Assumption

5 is not directly testable, indirect evidence regarding its plausibility can be gained from com-

paring average baseline characteristics that are closely related to the outcomes (e.g., values of

the outcomes prior to treatment) for the different strata. If these comparisons suggest that the

compliers have better (worse) average baseline characteristics than the always (never) takers,

Assumption 5 is less likely to hold. In the current application, the probability of being em-

ployed and the average weekly earnings in the year prior to randomization for both the always

takers and the compliers are statistically greater than those of the never takers, while the dif-

ferences of those two variables between the always takers and the compliers are not statistically
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different from zero.11 Hence, the data does not provide indirect evidence against Assumption

5. In addition to analyzing baseline characteristics, one can check the testable implications of

Assumptions 4 and 5 discussed in the previous section. The last three rows of Table 2 verify

that these testable implications hold in the data, so the assumptions are not falsified by the

data.

Table 3 shows the estimated bounds for the employment and earnings outcomes for each of

the bounds in Propositions 2 through 4. For completeness, we also present the bounds for the

MATE in (3). We provide standard errors for each of the bounds to give a sense of the accuracy

with which they are estimated.12 In general, the bounds in Table 3 are precisely estimated.

In the ensuing discussion we focus on the estimated bounds and abstract from performing

statistical inference, as the main purpose of the application is to illustrate the identifying power

of these bounds.13

We begin by focusing on MATE, which gives the part of the average effect of the program

status on the outcomes that works through the attainment of a degree. These bounds are shown

in the first and third row of Table 3 for the employment and earnings outcomes, respectively.

Under Proposition 2, the lower bound on MATE equals zero and the estimated upper bound

equals the estimated ATE of the program on the outcome. Replacing Assumption 4 with

Assumption 5 (Proposition 3) yields an estimated upper bound of 3 percentage points for the

employment outcome and $14.7 for weekly earnings. This implies that relative to the ATE

of program status on the probability of employment (earnings), at most 75 (81) percent of

the average effect of the program status on the employment (earnings) outcome is due to

the attainment of a degree. When both Assumptions 4 and 5 are used (Proposition 4), the

bounds on MATE imply that the part of the average effect of program status on employment

(earnings) that is due to the obtainment of a degree is at most half (60%). The fact that the

11The probability of being employed in the year prior to randomization for the never takers, compliers and
always takers are, respectively, (standard errors in parenthesis) 0.153 (.009); 0.205 (.046); 0.216 (.011). The
corresponding numbers for the average weekly earnings in the year prior to randomization are 86.26 (2.57);
117.73 (12.95); 109.74 (3.09). The means for the never and always takers are calculated from the groups with
(Zi,Di) = (1, 0) and (Zi,Di) = (0, 1), respectively. The mean for the compliers is estimated by writing it as a
function of the population mean, the means for the never and always takers, and the strata proportions in the
population.
12The standard errors for the estimators of the bounds not involving minimum or maximum operators are

obtained with 5,000 bootstrap replications. For the estimators of bounds involving those two operators, we
combine the bootstrap results for the potential bounds not involving those two operators with the results from
Clark (1961), who provides an algorithm to approximate the variance of the maximum of two or more random
variables having a joint normal distribution. Finally, for those bounds truncated at zero, we follow Cai et al.
(2008) and calculate the standard errors for the estimators employing the formula for a truncated (at zero)
normal distribution.
13We note that it is not straightforward to construct valid confidence intervals based on the standard errors

reported in Table 3. A complete analysis of inference based on the bounds presented in Propositions 2 through
4 is beyond the scope of this paper, whose main focus is on identification. Recent work on inference for partially
identified models defined by moment inequalities includes Chernozhukov et al. (2007), Bugni (2010), Romano
and Shaikh (2010) and Andrews and Soares (2010).
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estimated upper bounds on MATE under Propositions 3 and 4 are considerably below the

ATE of program status on the outcomes strongly suggests a failure of the exclusion restriction

assumption, and thus the likely unreliability of the conventional LATE point estimates in Table

2.

Table 3 also shows the estimated bounds for LATE under the different assumptions con-

sidered in the paper (rows 2 and 4). In this empirical application, the LATE in Proposition 1

is interpreted as the local average effect for compliers of attaining a GED, high school or voca-

tional degree on the outcome, when assigned to participate in JC. Note that given the imperfect

compliance with the random assignment present in the NJCS, LATE cannot be interpreted as

the local average effect for compliers when enrolled in JC. Instead, it has an interpretation

similar to that of an “intention-to-treat” parameter.14

Under Assumptions 1 through 4 (Proposition 2), the lower bound on LATE for both out-

comes is zero, and the estimated upper bounds equal the IV point estimates in Table 2 that

assume the validity of the instrument. These bounds come directly from Assumption 4, and

hence the data do not provide any additional information to sharpen the bounds when combined

with those assumptions. It is important to note, however, that these results imply that the IV

point estimate provides an upper bound for LATE in (6) under those assumptions. Therefore,

knowledge of the direction of the net and mechanism average effects of the instrument on the

outcome provides useful information about the conventional IV estimator.

The bounds obtained by employing Assumption 5 instead of Assumption 4 (Proposition 3)

are more informative with respect to the upper bound on LATE. They yield an estimated

upper bound on LATE of 15.1 percentage points for the probability of being employed, and of

$70.19 for weekly earnings. These upper bounds are below the LATE point estimates in Table

2, suggesting that these point estimates are upward biased and that the exclusion restriction

is violated. The last vertical panel of Table 3 shows the bounds when all five assumptions

are combined (Proposition 4). In this case, the lower bound on LATE for both outcomes is

zero, which comes directly from Assumption 4. The estimated upper bounds for the LATE

of attaining a GED, high school or vocational degree on employment and earnings imply that

these effects are at most 10 percentage points and $53.87, respectively. Both upper bounds

are well below the LATE point estimates in Table 2, implying that for both outcomes, the

invalidity of the instrument results in point estimates that are severely upward biased. This

is consistent with the intuition that the invalidity of the instrument is due to the availability

of other services within JC that affect labor market outcomes positively. In sum, the bounds

derived in this paper provide valuable information about the effects of interest in this empirical

application.

14 If the parameter of interest is the local average effect for compliers when enrolled in JC, the approach
developed here can be extended to bound that parameter while also addressing the non-compliance problem, but
that extension is beyond the scope of the present paper.
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We now discuss the estimated bounds relative to other estimates. First, employing our sam-

ple of eligible applicants to the JC program, a simple linear regression of each labor market

outcome on the indicator of GED, high school or vocational degree attainment yields estimates

of 0.13 (.01) and $63.1 (4.48) for employment and earnings, respectively (standard errors in

parentheses). Both are clearly above our preferred estimated upper bounds for LATE under

Proposition 4 (0.1 and $53.87, respectively). Controlling for a set of covariates in these simple

regressions brings the estimated degree effect a step closer to the upper bounds under Propo-

sition 4: 0.11 (.01) and $57.13 (4.54), respectively.15

A second comparison of interest is relative to the bounds derived by Manski and Pepper

(2000). We estimated two sets of their bounds for each outcome. The first is under their

monotone instrumental variable and monotone treatment response assumptions (MIV-MTR),

while the other is under their monotone treatment selection and MTR assumptions (MTS-

MTR). The MTS assumption specializes the MIV assumption to the case when the IV is the

realized treatment, in which case their bounds do not require a bounded outcome. As discussed

in the Introduction, while the bounds in Manski and Pepper (2000) are closer in spirit to ours in

that they do not require a valid instrument, they bound a different parameter than our bounds

do, the ATE = E[Y (1) − Y (0)]. Thus, one must keep this in mind when comparing them.

For employment, the estimated MIV-MTR lower and upper bounds are 0 (0) and 0.49 (.01),

respectively, while those for earnings are 0 (0) and $870.6 (52.7), respectively.16 These upper

bounds for ATE are above all those presented in Table 3 for LATE. The estimated MTS-

MTR bounds on ATE are closer but still somewhat wider than our bounds on LATE under

Proposition 4. For employment, the estimated MTS-MTR lower and upper bounds are 0 (0)

and 0.13 (.01), respectively, while those for earnings are 0 (0) and $63.1 (4.48), respectively.17

A third comparison is to studies that estimate degree effects. This literature is not as vast

as that analyzing the effect of years of schooling (e.g., Card, 1999), making it more difficult

to find estimates of parameters comparable to ours (i.e., LATE). Three studies that employ

actual information on degree attainment–as opposed to inferring it from years of schooling

completed–are Jaeger and Page (1996), Flores-Lagunes and Light (2010) and Cameron and

Heckman (1993). The main specification in all three employs OLS on a log-hourly wage model

with several control variables. Using CPS data, Jaeger and Page (1996) estimate a 12 percent

return to a high school degree for white males (conditional on years of schooling completed)

and a 8 percent return to an “occupational associate’s degree”. The second study employs

NLSY79 data and estimates a 20 percent return to a high school or GED degree. Cameron and

15The covariates we control for are age, age squared, race, gender, indicators for whether the individual is
married, a household head, has children, and three indicators for the size of the city of residence.
16These bounds require a bounded outcome. For earnings, we use the in-sample maximum as the upper bound.
17Note that with a binary treatment the upper bound for ATE under the MTS-MTR assumptions is E[Y |D =

1]−E[Y |D = 0].
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Heckman (1993) also employ NLSY79 data and report an estimate of 15 percent for high school

and 6.2 percent for GED degrees. They also present a specification that controls parametrically

for selection, resulting in estimates of 11 percent and 3 percent for high school and GED,

respectively. Our preferred estimated upper bound for earnings is $53.87 which, relative to the

average earnings of those individuals assigned to the control group ($171), represents a return

of 31 percent by quarter twelve after random assignment. Hence, the estimates of the above

studies fall within the bounds of the LATE in our empirical application.18

As a final comparison, we relate our results to the empirical literature on the returns to

years of schooling. The average number of actual hours of academic and vocational instruction

received while enrolled in JC for those individuals who participated and obtained a degree is

1,448.19 Considering that a typical high school student receives the equivalent of 1,080 hours

of instruction during a school year (Schochet et al., 2001), obtaining a degree is equivalent to

about 1.34 years of schooling. Thus, our results above imply an upper bound on the average

return to a year of schooling of about 23 percent (31%/1.34). Card (1999) surveyed estimates

of the return to a single year of schooling based on IV estimates that exploit institutional

features of school systems, which estimate the effect for individuals who would otherwise have

relatively low educational attainment and hence are comparable to our sample and parameter

of interest (LATE). The IV estimates he presents range from 6 to 15.3 percent (Table 4 in

Card, 1999), and therefore fall within the estimated bounds for the LATE considered in our

empirical application.

4 Conclusion

This paper derived nonparametric bounds for local average treatment effects employing an

invalid instrument and allowing the outcome to have an unbounded support. We substitute the

exclusion restriction assumption in Imbens and Angrist (1994) and Angrist, Imbens and Ru-

bin(1996) with assumptions requiring weak monotonicity of potential outcomes within or across

the three principal strata: always takers, never takers and compliers. The empirical application

we present illustrates the identifying power of these bounds. In addition to estimating bounds

on the local average treatment effect, the results herein are also potentially useful in the design

of experiments. While in some instances it may be difficult or even impossible to randomize a

treatment of interest, it may be possible to randomize a variable that affects that treatment.

18 Indeed, a straightforward comparison is difficult given the differences in (i) samples, (ii) the definition of
the outcome variable (earnings versus log-wages) and (iii) the parameters being estimated (ATE versus LATE).
Nevertheless, the estimates from those papers are a useful point of reference given the apparent lack of studies
estimating degree effects employing instrumental variables.
19 Ideally, we would like an estimate of the average number of actual hours of academic and vocational instruc-

tion received by those who were not assigned to participate in JC but completed a degree outside of JC (always
takers) in order to have a better estimate of that number for the compliers. Unfortunately, that information is
not available from the data.
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In this case, our approach provides a methodology to obtain bounds on the effect of interest

when the randomized variable does not satisfy the exclusion restriction and thus it cannot be

used as a valid instrumental variable.

Several extensions of the results in this paper are of interest. First, one could consider

settings in which the instrument, the treatment of interest or both are multivalued. In such

cases, the number of strata (and thus the number of unidentified objects) increase, so we may

expect the bounds to be less informative than in the setting analyzed in this paper. Extensions

in this direction can be based on work extending the LATE model in Angrist, Imbens and

Rubin(1996) to the multivalued case (Angrist and Imbens, 1995; Nekipelov, 2007). Second, in

some applications, the instrument may not be randomly assigned and it may be necessary to

adjust for covariates. One could combine the ideas in this paper with work allowing estimation

of LATE when the instrument is assumed to be random conditional on a set of covariates

(Hirano et al., 2000; Abadie, 2003; Frölich, 2007; Hong and Nekipelov, 2007).20 While beyond

the scope of the current paper, these extensions are at the top of our research agenda.

20Note that oftentimes the conditioning on covariates is done to justify the exclusion restriction assumption,
which in our approach is not required.
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5 Appendix

From Section 2.2, the relevant point identified objects in our setting are: πnt = p0|1,

πat = p1|0, πc = p1|1 − p1|0 = p0|0 − p0|1, E[Y
z (1)] = E[Y |Z = 1], E[Y z (0)] = E[Y |Z = 0],

E[Y z (1) |nt] = E[Y |Z = 1,D = 0], E[Y z (0) |at] = E[Y |Z = 0,D = 1], πntE[Y
z
i (0) |nt] +

πcE[Y
z
i (0) |c] = p0|0E[Yi|Zi = 0,Di = 0] and πatE[Y

z
i (1) |at] + πcE[Y

z
i (1) |c] = p1|1E[Yi|Zi =

1,Di = 1].

The trimming-based bounds on mean potential outcomes at the strata level discussed in

Section 2.2 are given by: L0,nt ≤ E [Y z (0) |nt] ≤ U0,nt; L1,at ≤ E [Y z (1) |at] ≤ U1,at; L0,c ≤
E [Y z (0) |c] ≤ U0,c and L1,c ≤ E [Y z (1) |c] ≤ U1,c, where

L0,nt = E[Y |Z = 0,D = 0, Y ≤ y00(p0|1/p0|0)
], U0,nt = E[Y |Z = 0,D = 0, Y ≥ y001−(p0|1/p0|0)],

L1,at = E[Y |Z = 1,D = 1, Y ≤ y11(p1|0/p1|1)], U
1,at = E[Y |Z = 1,D = 1, Y ≥ y111−(p1|0/p1|1)],

L0,c = E[Y |Z = 0,D = 0, Y ≤ y001−(p0|1/p0|0)], U
0,c = E[Y |Z = 0,D = 0, Y ≥ y00(p0|1/p0|0)

],

L1,c = E[Y |Z = 1,D = 1, Y ≤ y111−(p1|0/p1|1)], U
1,c = E[Y |Z = 1,D = 1, Y ≥ y11(p1|0/p1|1)

].

Proof of Proposition 2. We start by deriving bounds for the non-point identified mean

potential outcomes of the stratas, and for all the local net and mechanism average treatment

effects.

Bounds for E[Y z (0) |nt]: Ass. 4.2 impliesE[Y z (1) |nt] = E[Y |Z = 1,D = 0] ≥ E[Y z (0) |nt].
Ass. 4 does not provide any additional information for a lower bound of E[Y z(0)|nt]. Since U0,nt

can be above or below E[Y |Z = 1,D = 0], we have: L0,nt ≤ E [Y z(0)|nt] ≤ min{U0,nt, E[Y |Z =
1,D = 0]}.21

Bounds for E[Y z (1) |at]: Ass. 4.2 implies E[Y z (1) |at] ≥ E[Y z(0)|at] = E[Y |Z = 0,D = 1].

Ass. 4 does not provide any additional information for an upper bound of E[Y z (1) |at]. Thus
we have: max{L1,at, E[Y |Z = 0,D = 1]} ≤ E [Y z (1) |at] ≤ U1,at.

Bounds for E[Y z(0)|c]: Ass. 4.1 and 4.2 imply E[Y z (1) |c] ≥ E[Y z(0)|c], which implies that
U1,c is another upper bound for E[Y z(0)|c]. Ass. 4 does not provide any additional information
for a lower bound of E[Y z(0)|c]. Hence, L0,c ≤ E[Y z(0)|c] ≤ min{U0,c, U1,c}.

Bounds for E[Y z (1) |c]: Ass. 4 implies E[Y z (1) |c] ≥ E[Y z(0)|c], which implies that L0,c is
another lower bound for E[Y z (1) |c]. Hence, max{L0,c, L1,c} ≤ E[Y z (1) |c] ≤ U1,c.

Bounds for E[Y (1,D(0)) |c]: Ass. 4.1 and 4.2 imply E[Y z (1) |c] ≥ E[Y (1,D (0)) |c] ≥
E[Y z(0)|c], which combined with the results above gives L0,c ≤ E [Y (1,D (0)) |c] ≤ U1,c.

Bounds for LNATEnt: From (8), LNATEnt = E[Y |Z = 1,D = 0] − E[Y z(0)|nt]. Using
the bounds previously derived for E[Y z(0)|nt], and letting Lnt = E[Y |Z = 1,D = 0] − U0,nt

and Unt = E[Y |Z = 1,D = 0]− L0,nt, we have:22 max
©
0, Lnt

ª
≤ LNATEnt ≤ Unt.

21For brevity, in what follows we omit explicitly specifying when some quantities can be greater or lower than
others unless we believe it is necessary. Hence, when min (or max) operators are present, it implies that none of
the terms inside them is always lower (greater) than the other(s).
22The following equalities are helpful for the rest of the proofs. For scalars a, b, c and d we have: (i) a −
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Bounds for LNATEat: From (8), LNATEat = E[Y z(1)|at] − E[Y |Z = 0,D = 1]. Using

the bounds previously derived for E[Y z (1) |at], and letting Lat = L1,at − E[Y |Z = 0,D = 1]

and Uat = U1,at −E[Y |Z = 0,D = 1], we have: max
©
0, Lat

ª
≤ LNATEat ≤ Uat.

Bounds for LNATEc: From (8), LNATEc = E[Y (1,D (0))|c] − E[Y z(0)|c]. Ass. 4.2

directly implies LNATEc ≥ 0. Using the bounds previously obtained for the components in
LNATEc we obtain two additional lower bounds: L0,c − U0,c and L0,c − U1,c. By definition,

L0,c − U0,c ≤ 0. Also, employing Ass. 4 we have U1,c ≥ E[Y z (1) |c] ≥ E[Y z(0)|c] ≥ L0,c,

so L0,c − U1,c ≤ 0. Hence, the lower bound for LNATEc is 0. Using the bounds previously

derived for the components of LNATEc, we have the upper bound is U1,c − L0,c. Thus,

0 ≤ LNATEc ≤ (U1,c − L0,c).

Bounds for LMATEc: LMATEc = E[Y z(1)|c]−E[Y (1,D (0))|c]. Ass. 4.1 directly implies
LMATEc ≥ 0. Using the bounds previously obtained for the components of LMATEc we

obtain two additional lower bounds: L1,c − U1,c and L0,c − U1,c. Since L1,c − U1,c ≤ 0 (by

definition) and L0,c − U1,c ≤ 0 (from above), the lower bound for LMATEc is 0. Using

the bounds previously derived for the components of LMATEc, we have the upper bound is

U1,c − L0,c. Thus, 0 ≤ LMATEc ≤ (U1,c − L0,c).

We now derive the bounds for MATE, starting with the lower bound. We use equations

(10) to (13) to derive potential lower bounds forMATE by plugging in the appropriate bounds

derived above into the terms that are not point identified. The corresponding four potential

lower bounds are:

∆1 = 0

∆2 = p0|1L
0,nt + p1|0E [Y |Z = 0,D = 1] +

¡
p1|1 − p1|0

¢
max

©
L0,c, L1,c

ª
−
¡
p1|1 − p1|0

¢
[U1,c − L0,c]−E [Y |Z = 0]

∆3 = E [Y |Z = 1]− p1|0U
1,at − p0|1E [Y |Z = 1,D = 0]−

¡
p1|1 − p1|0

¢
U1,c

∆4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0U
at − p0|1U

nt −
¡
p1|1 − p1|0

¢ £
U1,c − L0,c

¤
.

After some algebra, we have ∆2 = −πc(U1,c−max
©
L0,c, L1,c

ª
)−πnt(E[Y z(0)|nt]−L0,nt)−

πc(E[Y
z(0)|c] − L0,c); ∆3 = −πat(U1,at − E[Y z (1) |at]) − πc(U

1,c − E[Y z (1) |c]) and ∆4 =
∆3−πnt(E[Y z(0)|nt]−L0,nt)−πc(E[Y z(0)|c]−L0,c). Using the fact that U1,c ≥ max

©
L0,c, L1,c

ª
(from above), we have: ∆2 ≤ 0, ∆3 ≤ 0 and ∆4 ≤ 0. Hence, the lower bound for MATE is

∆1 = 0.

Now consider the upper bound for MATE. Plugging in the bounds derived above for the

corresponding non-point identified terms in equations (10) to (13) yields the lower bounds U1,

U2, U3 and U4, as given in Prop. 2. After some algebra, we can write: U4 − U2 = p1|0(U
1,c−

max{c, d} = min{a− c, a−d}; (ii) a−min{c, d} = max{a− c, a−d}; (iii) max{a, b}− c = max{a− c, b− c}; (iv)
min{a, b} − c = min{a − c, b − c}; (v) max{a, b} −min{c, d} = max{a − c, a− d, b − c, b − d}; (vi) min{a, b} −
max{c, d} = min{a− c, a− d, b− c, b− d}.
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E[Y |Z = 0,D = 1] − max{0, L1,at − E[Y |Z = 0,D = 1]}) − p1|1(U
1,c − E[Y |Z = 1,D = 1]);

U4−U3 = p0|1(E[Y |Z = 1,D = 0]−L0,c−max{0, E[Y |Z = 1,D = 0]−U0,nt})−p0|0(E[Y |Z =
0,D = 0]−L0,c); U4−U1 = (U4−U2)+(U4−U3); U2−U1 = (U4−U3); U3−U1 = (U4−U2);
and U3 − U2 = (U4 − U2) + (U3 − U4). All six comparisons can be greater or less than

zero depending on the data, so no potential upper bound is dropped. To show this, it is

enough to get for each comparison one case where the difference can be greater or less than

zero. For instance, consider the first difference. U4 − U2 can be greater or less than zero if

max{0, L1,at − E[Y |Z = 0,D = 1]} = 0 and E[Y |Z = 1,D = 1] ≥ E[Y |Z = 0,D = 1], since

p1|1 ≥ p1|0 ≥ 0 and (U1,c− E[Y |Z = 0,D = 1]) ≥ (U1,c − E[Y |Z = 1,D = 1]) ≥ 0. Similar
arguments can be made for the rest of the comparisons.

Finally, the bounds for LATE follow directly from the bounds for MATE and the result

in Proposition 1. Q.D.E.

Proof of Proposition 3. As before, we first derive bounds for the non-point identi-

fied mean potential outcomes of the stratas, and for all the local net and mechanism average

treatment effects.

Bounds for E[Y z(0)|nt]: Ass. 5.3 and equation (9) imply E[Y z(0)|nt] ≤ E[Y |Z = 0,D = 0].

Since by definition E[Y |Z = 0,D = 0] ≤ U0,nt, the upper bound in this case is E[Y |Z = 0,D =

0]. Ass. 5 does not provide any additional information for a lower bound of E[Y z(0)|nt]. Thus,
L0,nt ≤ E [Y z(0)|nt] ≤ E [Y |Z = 0,D = 0].

Bounds for E[Y z (1) |at]: Ass. 5.1 and 5.2 imply E[Y z (1) |at] ≥ E[Y z (1) |nt] = E[Y |Z =

1,D = 0]. Ass. 5.6 and equation (9) for the group (Z,D) = (1, 1) yield E[Y z (1) |at] ≥ E[Y |Z =
1,D = 1].23 By definition, E[Y |Z = 1,D = 1] ≥ L1,at, and note also that E[Y |Z = 1,D = 1] ≥
E[Y |Z = 1,D = 0]. Since Ass. 5 does not provide any additional information for an upper

bound of E[Y z (1) |at], we have E[Y |Z = 1,D = 1] ≤ E[Y z (1) |at] ≤ U1,at.

Bounds for E[Y z(0)|c]: Ass. 5.3 and equation (9) yield E[Y z(0)|c] ≥ E[Y |Z = 0,D = 0],

where by definition E[Y |Z = 0,D = 0] ≥ L0,c. As for the upper bound, Ass. 5.4 implies

E[Y z(0)|c] ≤ E[Y z(0)|at] = E[Y |Z = 0,D = 1], which can be greater or less than U0,c. Thus,

E[Y |Z = 0,D = 0] ≤ E[Y z(0)|c] ≤ min{U0,c, E[Y |Z = 0,D = 1]}.
Bounds for E [Y z (1) |c]: Ass. 5.6 and equation (9) for the group (Z,D) = (1, 1) yield

E[Y z (1) |c] ≤ E[Y |Z = 1,D = 1], where by definition U1,c ≥ E[Y |Z = 1,D = 1]. As for the

lower bound, Ass. 5.5 implies E[Y z (1) |c] ≥ E[Y z (1) |nt] = E[Y |Z = 1,D = 0], which can

be greater or less than L1,c. Thus, max{L1,c, E[Y |Z = 1,D = 0]} ≤ E[Y z (1) |c] ≤ E[Y |Z =

1,D = 1].

Bounds for E[Y (1,D(0)) |c]: Ass. 5.1 implies E[Y (1,D (0)) |c] ≥ E[Y z (1) |nt] = E[Y |Z =
1,D = 0]. Combining Ass. 5.2 with the bounds previously derived for E[Y z (1) |at] yields
E[Y (1,D (0)) |c] ≤ E[Y z (1) |at] ≤ U1,at. Hence, E[Y |Z = 1,D = 0] ≤ E[Y (1,D (0)) |c] ≤
23Equation (9) for the group (Z,D) = (1, 1) is: E[Y |Z = 1,D = 1] = πat

πat+πc
·E[Y z (1) |at]+ πc

πat+πc
·E[Y z (1) |c].
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U1,at.

The bounds for LNATEnt, LNATEat, LNATEc and LMATEc follow directly by plugging

in the appropriate bounds previously derived for each of their non-point identified components.

For instance, for LNATEnt = E[Y |Z = 1,D = 0]− E[Y z(0)|nt] we employ the bounds previ-
ously derived for E[Y z(0)|nt] to get (E[Y |Z = 1,D = 0]−E[Y |Z = 0,D = 0]) ≤ LNATEnt ≤
(E[Y |Z = 1,D = 0]− L0,nt).

We now derive the bounds for MATE, starting with the lower bound. As before, we use

equations (10) to (13) to derive potential lower bounds for MATE by plugging in the appro-

priate bounds derived above into the terms that are not point identified. The corresponding

four potential lower bounds are:

∆1 =
¡
p1|1 − p1|0

¢
L
c
m

∆2 = p0|1L
0,nt + p1|0E [Y |Z = 0,D = 1] +

¡
p1|1 − p1|0

¢
max{L1,c, E[Y |Z = 1,D = 0]}

−
¡
p1|1 − p1|0

¢
U
c −E [Y |Z = 0]

∆3 = E [Y |Z = 1]− p1|0U
1,at − p0|1E [Y |Z = 1,D = 0]−

¡
p1|1 − p1|0

¢
U1,at

∆4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0U
at − p0|1U

nt −
¡
p1|1 − p1|0

¢
U
c
,

with L
c
m = max

©
L1,c, E [Y |Z = 1,D = 0]

ª
− U1,at, U

c
= U1,at −E [Y |Z = 0,D = 0], and Uat

and Unt as defined in the proof of Prop. 2. After some algebra we obtain ∆2−∆1 = ∆4−∆3 =
p0|1(L

0,nt − E[Y |Z = 0,D = 0]) ≤ 0, since by definition L0,nt ≤ E[Y |Z = 0,D = 0]. We also

obtain that∆3−∆1 = (p1|1−p1|0)(U1,at−max{L1,c, E[Y |Z = 1,D = 0]})−p1|1(U1,at−E[Y |Z =
1,D = 1]). Note that: (i) p1|1 ≥ (p1|1 − p1|0) = πc ≥ 0; (ii) U1,at − E[Y |Z = 1,D = 1] ≥
0 by definition; and (U1,at − max{L1,c, E[Y |Z = 1,D = 0]}) ≥ 0 since U1,at ≥ E[Y |Z =

1,D = 1] ≥ L1,c (by definition) and U1,at ≥ E[Y |Z = 1,D = 1] ≥ E[Y |Z = 1,D = 0]; (iii)

(U1,at −max{L1,c, E[Y |Z = 1,D = 0]}) ≥ (U1,at − E[Y |Z = 1,D = 1]), since E[Y |Z = 1,D =

1] ≥ max{L1,c, E[Y |Z = 1,D = 0]} (see part ii). Parts (i) to (iii) imply that ∆3 −∆1 can be
greater or less than zero. After some algebra we have that L

1
= ∆1 and L

2
= ∆3, and thus the

lower bound on MATE is max{L1, L2}.
Now consider the upper bound for MATE. Plugging in the bounds derived above for the

corresponding non-point identified terms in equations (10) to (13) yields the following potential

upper bounds:

Υ1 =
¡
p1|1 − p1|0

¢
U
c
m

Υ2 = p0|1E [Y |Z = 0,D = 0] + p1|0E [Y |Z = 0,D = 1] +
¡
p1|1 − p1|0

¢
E [Y |Z = 1,D = 1]

−
¡
p1|1 − p1|0

¢
L
c −E [Y |Z = 0]

Υ3 = E [Y |Z = 1]− p1|0E [Y |Z = 1,D = 1]− p0|1E [Y |Z = 1,D = 0]

−
¡
p1|1 − p1|0

¢
E [Y |Z = 1,D = 0]

Υ4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0L
at − p0|1L

nt −
¡
p1|1 − p1|0

¢
L
c
,
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where U
c
m = E [Y |Z = 1,D = 1] − E [Y |Z = 1,D = 0], L

c
= E [Y |Z = 1,D = 0] − min{U0,c,

E[Y |Z = 0,D = 1]}, Lat
= E [Y |Z = 1,D = 1] − E [Y |Z = 0,D = 1], and L

nt
= E[Y |Z =

1,D = 0] − E[Y |Z = 0,D = 0]. After some algebra we obtain Υ2 = Υ4, Υ3 = Υ1 and

Υ1 − Υ4 = πc(E[Y |Z = 0,D = 0] − min{U0,c, E[Y |Z = 0,D = 1]}) ≤ 0, since U0,c ≥
E[Y |Z = 0,D = 0] and E[Y |Z = 0,D = 1] ≥ E[Y |Z = 0,D = 0]. Thus, the upper bound for

MATE equals U ≡ Υ1.
Finally, the bounds for LATE follow directly from the bounds for MATE and the result

in Proposition 1. Q.D.E.

Proof of Proposition 4. Bounds for E[Y z(0)|nt]: Ass. 4.2 implies E[Y z(0)|nt] ≤
E[Y z (1) |nt] = E[Y |Z = 1,D = 0]; and Ass. 5.3 implies E[Y z(0)|nt] ≤ E[Y |Z = 0,D = 0]

(see proof of Prop. 3), where by definition U0,nt ≥ E[Y |Z = 0,D = 0]. Combining the rest

of the assumptions does not yield any additional upper bound for E[Y z(0)|nt] that could be
lower than E[Y |Z = 0,D = 0] or E[Y |Z = 1,D = 0].24 Equation (9) and the fact that

E[Y z (1) |nt] = E[Y |Z = 1,D = 0] imply that E[Y |Z = 1,D = 0] can be greater or less than

E[Y |Z = 0,D = 0] since, even though E[Y z(0)|nt] ≤ E[Y z (1) |nt] (by Ass. 4.2), we have that
E[Y z (1) |nt] can be greater or less than E[Y z(0)|c]. Hence, the upper bound for E[Y z(0)|nt]
is min{E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]}. Ass. 4 and 5 do not provide any additional
information for a lower bound of E[Y z(0)|nt]. Thus, L0,nt ≤ E [Y z(0)|nt] ≤ min{E[Y |Z =

1,D = 0], E[Y |Z = 0,D = 0]}.
Bounds for E[Y z (1) |at]: Ass. 4.2 implies E[Y z (1) |at] ≥ E[Y z(0)|at] = E[Y |Z = 0,D = 1];

and Ass. 5.6 implies E[Y z (1) |at] ≥ E[Y |Z = 1,D = 1] (see proof of Prop. 3), where by

definition E[Y |Z = 1,D = 1] ≥ L1,at. Combining Assumptions 4 and 5 does not yield any

additional lower bound for E[Y z (1) |at] that could be greater than E[Y |Z = 1,D = 1] or

E[Y |Z = 0,D = 1]. Equation (9) for the group (Z,D) = (1, 1) and the fact that E[Y z(0)|at] =
E[Y |Z = 0,D = 1] imply that E[Y |Z = 0,D = 1] can be greater or less than E[Y |Z = 1,D = 1]

since, even though E[Y z(0)|at] ≤ E[Y z (1) |at] (by Ass. 4.2), we have that E[Y z(0)|at] can be
greater or less than E[Y z (1) |c]. Hence, the lower bound for E[Y z (1) |at] is max{E[Y |Z =

1,D = 1], E[Y |Z = 0,D = 1]}. Ass. 4 and 5 do not provide any additional information
for an upper bound of E[Y z (1) |at]. Thus, max{E[Y |Z = 1,D = 1], E[Y |Z = 0,D = 1]} ≤
E[Y z (1) |at] ≤ U1,at.

Bounds for E[Y z(0)|c]: Ass. 4 does not provide any information for a lower bound of
E[Y z(0)|c]; while Ass. 5.3 and equation (9) yield E[Y z(0)|c] ≥ E[Y |Z = 0,D = 0], where by

definition E[Y |Z = 0,D = 0] ≥ L0,c. Regarding an upper bound, the trimming-based bounds

imply E[Y z(0)|c] ≤ U0,c. Ass. 5.4 implies E[Y z(0)|c] ≤ E[Y z(0)|at] = E[Y |Z = 0,D = 1].

24For instance, combining Ass. 5.3, 5.4 and 4.2 yields E[Y z (1) |at] ≥ E[Y z (0) |at] ≥ E[Y z (0) |c] ≥
E[Y z (0) |nt], which implies E[Y z (0) |at] = E[Y |T = 0, S = 1] ≥ E[Y z (0) |nt] and U1,at ≥ E[Y z (1) |at] ≥
E[Y z (0) |nt]. However, we have that E[Y |T = 0, S = 1] ≥ E[Y |T = 0, S = 0] and U1,at ≥ E[Y |T = 1, S = 1] ≥
E[Y |T = 0, S = 0].
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Finally, Ass. 4 implies E[Y z (1) |c] ≥ E[Y z(0)|c]. Below we show that the upper bound for

E[Y z (1) |c] under Ass. 1, 3, 4 and 5 equals E[Y |Z = 1,D = 1], so E[Y z(0)|c] ≤ E[Y |Z = 1,D =

1]. Depending on the data, any of the previous three upper bounds for E[Y z(0)|c] can be less
than the other two. Thus, we obtain E[Y |Z = 0,D = 0] ≤ E[Y z(0)|c] ≤ min{U0,c, E[Y |Z =

0,D = 1], E[Y |Z = 1,D = 1]}.
Bounds for E[Y z (1) |c]: Ass. 4 does not provide any information for an upper bound of

E[Y z (1) |c]; while Ass. 5.6 and equation (9) for the group (Z,D) = (1, 1) yield E[Y z (1) |c] ≤
E[Y |Z = 1,D = 1], where by definition E[Y |Z = 1,D = 1] ≤ U1,c. Regarding a lower

bound, the trimming-based bounds imply E[Y z (1) |c] ≥ L1,c. Ass. 5.5 implies E[Y z (1) |c] ≥
E[Y z (1) |nt] = E[Y |Z = 1,D = 0]. Finally, Ass. 4 implies E[Y z (1) |c] ≥ E[Y z(0)|c]. Above we
showed that the lower bound for E[Y z(0)|c] under Ass. 1, 3, 4 and 5 equals E[Y |Z = 0,D = 0],

so E[Y z (1) |c] ≥ E[Y |Z = 0,D = 0]. Depending on the data, any of the previous three lower

bounds for E[Y z (1) |c] can be greater than the other two. Thus, we obtain max{L1,c, E[Y |Z =
1,D = 0], E[Y |Z = 0,D = 0]} ≤ E[Y z (1) |c] ≤ E[Y |Z = 1,D = 1].

Bounds for E[Y (1,D(0)) |c]: Ass. 4.2 implies E[Y (1,D (0)) |c] ≥ E[Y z(0)|c]. From above,

the lower bound for E[Y z(0)|c] under Ass. 1, 3, 4 and 5 equals E[Y |Z = 0,D = 0]. Ass.

5.1 implies E[Y (1,D (0)) |c] ≥ E[Y z (1) |nt] = E[Y |Z = 1,D = 0], which can be greater or

less than E[Y |Z = 0,D = 0] (see above). Hence, E[Y (1,D (0)) |c] ≥ max{E[Y |Z = 0,D =

0], E[Y |Z = 1,D = 0]}. Ass. 4.1 implies E[Y z (1) |c] ≥ E[Y (1,D (0)) |c]. From above, the

upper bound for E[Y z (1) |c] under Ass. 1, 3, 4 and 5 equals E[Y |Z = 1,D = 1]. Note that 5.2

implies E[Y (1,D (0)) |c] ≤ E[Y z (1) |at] ≤ U1,at, but by definition E[Y |Z = 1,D = 1] ≤ U1,at.

Therefore, max{E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]} ≤ E[Y (1,D (0))|c] ≤ E[Y |Z = 1,D =

1].

Bounds for LNATEnt: From (8), LNATEnt = E[Y |Z = 1,D = 0] − E[Y z(0)|nt]. Using
the bounds previously derived for E[Y z(0)|nt] we have: max{0, Lnt} ≤ LNATEnt ≤ Unt, with

L
nt
and Unt as defined in the proofs of Prop. 3 and 2, respectively.

Bounds for LNATEat: From (8), LNATEat = E[Y z(1)|at] − E[Y |Z = 0,D = 1]. Using

the bounds previously derived for E[Y z (1) |at] we have: max{0, Lat} ≤ LNATEat ≤ Uat, with

L
at
and Uat as defined in the proofs of Prop. 3 and 2, respectively.

Bounds for LNATEc: From (8), LNATEc = E[Y (1,D (0))|c] − E[Y z(0)|c]. Ass. 4.2

directly implies LNATEc ≥ 0. Using the bounds previously obtained for the components of
LNATEc we obtain six additional potential lower bounds: E[Y |Z = 1,D = 0]−U0,c, E[Y |Z =
1,D = 0] − E[Y |Z = 1,D = 1], E[Y |Z = 1,D = 0] − E[Y |Z = 0,D = 1], E[Y |Z = 0,D =

0]−U0,c, E[Y |Z = 0,D = 0]−E[Y |Z = 1,D = 1] and E[Y |Z = 0,D = 0]−E[Y |Z = 0,D = 1].

Note that: E[Y |Z = 1,D = 0] − E[Y |Z = 1,D = 1] ≤ 0; E[Y |Z = 0,D = 0] − U0,c ≤ 0;

E[Y |Z = 0,D = 0]−E[Y |Z = 1,D = 1] ≤ 0; and E[Y |Z = 0,D = 0]−E[Y |Z = 0,D = 1] ≤ 0.
Hence, LNATEc ≥ max{E[Y |Z = 1,D = 0] − U0,c, E[Y |Z = 1,D = 0] − E[Y |Z = 0,D =
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1], 0} = max{0, Lc}, with L
c
as defined in the proof of Prop. 3. Using the bounds previously

derived for the components of LNATEc, we have that the upper bound is eU c ≡ E[Y |Z =

1,D = 1]−E[Y |Z = 0,D = 0].

Bounds for LMATEc: LMATEc = E[Y z(1)|c]−E[Y (1,D (0))|c]. Ass. 4.1 directly implies
LMATEc ≥ 0. Using the bounds previously obtained for the components of LMATEc we

obtain three additional potential lower bounds: L1,c − E[Y |Z = 1,D = 1], E[Y |Z = 1,D =

0] − E[Y |Z = 1,D = 1] and E[Y |Z = 0,D = 0] − E[Y |Z = 1,D = 1]. Each of these three

expressions is less than or equal to zero. Using the bounds previously derived for the components

of LMATEc we have the upper bound is eU c
m ≡ E[Y |Z = 1,D = 1] − max{E[Y |Z = 1,D =

0], E[Y |Z = 0,D = 0]}. Thus, 0 ≤ LMATEc ≤ eU c
m.

We now derive the bounds for MATE, starting with the lower bound. As before, we use

equations (10) to (13) and the bounds obtained above to derive potential lower bounds for

MATE. The corresponding four potential lower bounds are:

∆1 = 0

∆2 = p0|1L
0,nt + p1|0E [Y |Z = 0,D = 1]−

¡
p1|1 − p1|0

¢ eU c −E [Y |Z = 0]

+
¡
p1|1 − p1|0

¢
max{L1,c, E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]}

∆3 = E [Y |Z = 1]− p1|0U
1,at − p0|1E [Y |Z = 1,D = 0]

−
¡
p1|1 − p1|0

¢
E[Y |Z = 1,D = 1]

∆4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0U
at − p0|1U

nt −
¡
p1|1 − p1|0

¢ eU c.

After some algebra we obtain ∆2 = −πc(E[Y |Z = 1,D = 1] −max{L1,c, E[Y |Z = 1,D =

0], E[Y |Z = 0,D = 0]}) − p0|1(E[Y |Z = 0,D = 0] − L0,nt). By definition, E[Y |Z = 0,D =

0] ≥ L0,nt and E[Y |Z = 1,D = 1] ≥ L1,c. Also, E[Y |Z = 1,D = 1] ≥ E[Y |Z = 1,D = 0] and

E[Y |Z = 1,D = 1] ≥ E[Y |Z = 0,D = 0]. Hence, ∆2 ≤ 0. We also have: ∆3 = −p1|0(U1,at −
E[Y |Z = 1,D = 1]) ≤ 0; and ∆4 = −p1|0(U1,at − E[Y |Z = 1,D = 1]) − p0|1(E[Y |Z = 0,D =

0]− L0,nt) ≤ 0. Thus, the lower bound for MATE equals ∆1 = 0.

Now consider the upper bound for MATE. Plugging in the bounds derived above for the

corresponding non-point identified terms in equations (10) to (13) yields the following potential
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upper bounds:

Υ1 =
¡
p1|1 − p1|0

¢ eU c
m

Υ2 = p0|1min{E [Y |Z = 0,D = 0] , E [Y |Z = 1,D = 0]}

+p1|0E [Y |Z = 0,D = 1] +
¡
p1|1 − p1|0

¢
E[Y |Z = 1,D = 1]

−
¡
p1|1 − p1|0

¢
max{0, Lc}−E [Y |Z = 0]

Υ3 = E [Y |Z = 1]− p1|0max{E [Y |Z = 1,D = 1] , E [Y |Z = 0,D = 1]}

−p0|1E [Y |Z = 1,D = 0]−
¡
p1|1 − p1|0

¢
max{E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]}

Υ4 = E [Y |Z = 1]−E [Y |Z = 0]− p1|0max{0, L
at}− p0|1max{0, L

nt}

−
¡
p1|1 − p1|0

¢
max{0, Lc}.

After some algebra we obtainΥ4−Υ2 = Υ3−Υ1 = p1|0min{L
at
, 0} ≤ 0. Υ3 can be greater or

less than Υ4 depending on the data. As before, it is enough to show one case in which Υ4−Υ3 is
greater than zero and one in which it is less than zero. After some algebra we can writeΥ4−Υ3 =
p0|1E [Y |Z = 1,D = 0]+πcmax{E[Y |Z = 1,D = 0], E[Y |Z = 0,D = 0]}−p0|0E[Y |Z = 0,D =

0]− p0|1max{0, L
nt}− πcmax{0, L

c}. Let Lnt
= E[Y |Z = 1,D = 0]−E[Y |Z = 0,D = 0] ≤ 0.

Then, Υ4 −Υ3 = p0|1(E [Y |Z = 1,D = 0]− E[Y |Z = 0,D = 0])− πcmax{0, L
c} ≤ 0. Now let

L
nt
= E[Y |Z = 1,D = 0] − E[Y |Z = 0,D = 0] ≥ 0. Then, Υ4 − Υ3 = πc(L

nt −max{0, Lc}),
which is greater or equal to zero if L

c ≤ 0.25 Thus, the upper bound for MATE equals

min{eU1, eU2}, where eU1 ≡ Υ3 and eU2 ≡ Υ4.
Finally, the bounds for LATE follow directly from the bounds for MATE and the result

in Proposition 1. Q.D.E.

25 In fact, it can be shown that Υ4 −Υ3 = πc(L
nt −max{0, Lc}) ≥ 0 regardless of the value of Lc as long as

L
nt ≥ 0.
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Parameters
Average Treatment Effects

ATE of program status on employment
ATE of program status on earnings 
ATE of program status on degree attainment
LATE of degree attainment on employment
LATE of degree attainment on earnings

Strata Proportions
πnt

πat

πc

Conditional Means Estimate Std. Error Estimate Std. Error
E[Y|Z=0] 0.61 (0.009) 170.85 (3.703)
E[Y|Z=1] 0.65 (0.007) 188.96 (2.933)

Testable Implications
E[Y|Z=0, D=1]‐E[Y|Z=0, D=0] 0.09 (0.018) 48.87 (7.365)
E[Y|Z=1, D=1]‐E[Y|Z=1, D=0] 0.15 (0.014) 70.50 (5.894)
E[Y|Z=1, D=1]‐E[Y|Z=0, D=0] 0.13 (0.015) 64.23 (5.708)
Notes: The outcome Y  is either weekly earnings or employment status in quarter 12 after randomization. The treatment D  is the 
attainment of a high school, GED, or vocational degree. The instrumental variable  Z  is an indicator for whether the individual 
was randomly assigned to participate in JC ("program status"). Sample size is 8,020 individuals: 2,975 with Z =0 and 5,045 with 
Z =1. Standard errors are based on 5,000 bootstrap replications.

Employment

18.11
0.209

0.34

0.45

0.194

(0.007)

(0.009)

(0.011)

(0.055)
86.63 (22.769)

0.21

Weekly Earnings

Table 2. Point Estimates of Interest

(4.759)
(0.011)

(0.011)

Standard ErrorEstimate

0.041



Assumptions:

Parameters LB UB LB UB LB UB

1.  MATE 0.000 0.041 ‐0.094 0.032 0.000 0.021
(0.000) (0.011) (0.006) (0.003) (0.000) (0.007)

2.  LATE 0.000 0.194 ‐0.448 0.151 0.000 0.100
(0.000) (0.055) (0.013) (0.014) (0.000) (0.035)

3.  MATE 0.00 18.11 ‐35.52 14.74 0.00 11.26
(0.00) (4.76) (3.51) (1.46) (0.00) (2.68)

4.  LATE 0.00 86.63 ‐169.89 70.50 0.00 53.87
(0.00) (22.77) (9.38) (5.89) (0.00) (12.48)

1, 2, 3, and 4 1, 2, 3, and 5 1, 2, 3, 4 and 5

Notes: The outcome Y is either employment status or weekly earnings in quarter 12 after 
randomization. The treatment D is the attainment of a high school, GED, or vocational degree. 
The instrumental variable  Z is an indicator for whether the individual was randomly assigned to 
participate in JC ("program status"). Sample size is 8,020 individuals: 2,975 with Z=0 and 5,045 
with Z=1. In parenthesis are standard errors computed as described in footnote 12 in the text.

Employment Outcome

Weekly Earnings Outcome

Table 3. Estimated Bounds for MATE and LATE

Proposition 2 Proposition 3 Proposition 4


