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Abstract

In this paper, we study the (symmetric) equilibria of a model of multilateral bar-
gaining where players are heterogeneous regarding their time preferences, and make
costly e¤orts at the beginning of the process in order to in�uence their probabilities of
being the proposer for all stages of the negotiation process. We analyse whether the
optimality of the unanimity rule (as the voting rule minimizing the social cost resulting
from the agents�willingness to buy in�uence) characterised in Yildirim (2007) extends
to the present situation. In the case of weakly heterogeneous agents, we show that
k-majority rules may actually become strictly optimal. Then we provide numerical ex-
amples that suggest that there are situations where each type of voting rule (unanimity
and strict k-majority) may be socially optimal.
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1 Introduction

Negotiations are common in many important economic problems, such as legislative bar-
gaining (Snyder et al. (2005)), international environmental agreements, litigation processes,
issues of corporate governance. Agents taking part in such processes have incentives to gain
power in order to in�uence the outcome of the process. There are plenty of evidence sug-
gesting that agents exert (costly) e¤orts to promote their most preferred alternative. For
instance, agents can provide services and contributions to the functioning of their organiza-
tion in order to increase their chances to be elected as members of the executive committee.
This in turn will enable them to in�uence the system of decision-making.
The agents� incentives to buy in�uence have been studied in certain contexts. Gross-

man and Helpman (2002) analyse settings where special interest groups might in�uence the
outcome of legislative bargaining by compensating other parties or the agenda setter. Their
main focus is on the e¤ect of such process of vote buying on the characteristics of the policies
that are implemented. In Evans (1997), Anbarci et al. (2002), or Board and Zwiebel (2005),
agents exert unproductive e¤orts to in�uence their rights to propose. All these contributions
do not compare di¤erent voting rules with respect to the social cost resulting from in�uence
activities, which is the main goal of the present paper. As such, the closest references are
Yildirim (2007, 2010), where the author analyses a sequential bargaining situation in which
agents compete in order to in�uence their chances to become the proposer. Competition
can take place at a pre-bargaining stage (persistent recognition) or at each stage of the ne-
gotiations (transitory recognition). In Yildirim (2007) the author characterizes unanimity
as the unique voting rule minimizing the social cost resulting from in�uence activities when
agents are identical and recognition is transitory. Then, in Yildirim (2010), he compares
both recognition systems for a given rule (unanimity).
The present contribution complements the above two papers by comparing the optimal-

ity of the di¤erent voting rules when agents may become heterogeneous and recognition is
persistent. A striking conclusion is obtained: when heterogeneity is weak, there are cases
where strict k-majority rules may become optimal. It is further highlighted that it is not
possible to conclude that this is a generic property of the model. Speci�cally, we analyse
a situation with weak heterogeneity (a case where the di¤erence between the values of the
agents�discount factors is small (see Ryvkin (2007)) where k-majority rules are strictly opti-
mal. Then we provide numerical examples that suggest that unanimity may become optimal
too.
Unlike Yildirim (2007), the present paper focuses on the case of persistent recognition,

where agents exert e¤orts to in�uence their chances to become proposers at the beginning
of the process, i.e before the �rst round of negotiation. This is mainly because this type of
recognition seems to be appropriate when considering many important real world processes,
such as legislative bargaining or executive committees in organizations.
Since this type of recognition has not been considered in Yildirim (2007), the �rst step

of the analysis consisted in studying the existence and characterization of the symmetric
equilibria of the homogeneous case. This is provided in a companion paper (Quérou and
Soubeyran (2010)), where it is highlighted that the case of persistent recognition di¤ers
substantially. Indeed, an equivalence property is obtained. While unanimity is the unique
optimal voting rule when recognition is transitory, voting rules yield the same social cost
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(provided that an equilibrium exists) when agents are identical and exert e¤orts only once
at the beginning of the process. This interesting result leads us to wonder if one may obtain
the strict optimality of k-majority rules in heterogeneous situations.
In the second stage of the analysis (which is provided in the present paper), we introduce

heterogeneity in the model by considering that agents may have di¤erent time preferences.
This is modeled by assuming that the value of any agent i�s discount factor �i is either
high (�H) or low (�L), where �H > �L are positive. We mainly focus on the case of weak
heterogeneity where �H = �L + ", with " a positive parameter which is assumed to be
su¢ ciently small. In this case, we highlight, by focusing on a simple case where one agent
is more patient than the others, that there are situations where k-majority voting rules may
become strictly optimal. Finally, we provide (numerical) examples in more general cases
(regarding the agents�degree of heterogeneity) that suggest that unanimity and k-majority
voting rules may become optimal too.
The intuition is as follows. Unlike the case where agents are identical, the heterogeneous

case exhibits the following property. If an equilibrium level of e¤orts of a speci�c type of
agent increases when moving from the unanimity to a strict k-majority voting rule, then
the other type �nds it optimal to decrease it. The net e¤ect on the overall social cost is
ambiguous, and each type of voting rule may become optimal.
Even though the overall conclusion is important, there are two points that we would

like to stress. First, we use a speci�c form of recognition function in the present paper,
which is yet the most widely used form in the literature on rent seeking (see Tullock (1980)).
Second, the analysis provided here is not exhaustive. Speci�cally, we do not provide a full
characterization of the cases where k-majority voting rules become optimal. We rather focus
on the case where all agents become more and more impatient.
The reasons are as follows. The main goal of the analysis is to highlight the fact that

the case of persistent recognition is quite speci�c, since the conclusions obtained here di¤er
sensibly from those obtained in the transitory case. In order to ful�l this goal, one has
to contrast results in the homogeneous and heterogeneous cases. Compared to Yildirim
(2007), the introduction of heterogeneity makes it much more di¢ cult to derive analytically
tractable expressions that enable to compare the di¤erent voting rules. The logit form of
the recognition function used in the present paper enables us to provide informative results,
while keeping technical di¢ culties at a reasonable level. Developing the comparison of the
voting rules in the heterogeneous case would be very di¢ cult from a technical point of view,
while (according to us) not adding much to the main message of the contribution.
The remainder of the paper is organized as follows. The model is introduced in Section

2. The characterization of the (symmetric) SSPE is provided in Sections 3 and 4. The
comparison of unanimity and k-majority rules is provided in Section 5, where it is highlighted
that strict k-majority rules may become optimal. Numerical examples are provided in Section
6. Section 7 concludes. Most proofs are relegated in an appendix.

2 Description of the model

We consider the problem introduced by Yildirim (2007, 2010) where agents may have di¤erent
time preferences. Speci�cally, we assume that n � 2 agents (who belong to N = f1; :::; ng)

3



bargain over the allocation of a surplus of �xed size (normalized to one). They have possibly
di¤erent time preferences (we denote by 0 < �i < 1 agent i�s discount factor). Agents negoti-
ate according to a bargaining protocol a la Rubinstein (1982), except that their recognition
probabilities are endogenous. Each agent exerts e¤ort at the beginning of the process, and
relative e¤orts determine each agent�s recognition probability for all periods.
We assume that, provided agent i exerts e¤ort xi at the beginning of the process, his

recognition probability is given by pi � p(xi; x�i), where x�i is the vector of e¤orts of the
n � 1 other players (x will denote the vector of e¤orts of the n players). We will have to
impose more structure on the recognition probabilities in parts of the analysis, especially to
characterize the social cost. We will use a Tullock contest success function by assuming the
following form:
Assumption: Let the recognition probability be such that, for x � 0,

p(xi; x�i) =

� xiPn
l=1 xl

if x 6= 0;
1
n
if x = 0;

(1)

This function has been introduced by Tullock and it has been widely used in the literature
on contests. This is the simplest form of contest success functions with axiomatic foundations
(Skaperdas, 1996).
E¤orts are costly and, in order to keep the analysis as simple as possible, we will assume

that the cost of e¤ort is linear, that all agents have the same marginal cost of e¤ort, and
that this cost is denoted by the positive parameter c.
In order to be consistent with Yildirim (2007, 2010), we will focus on stationary subgame

perfect equilibria (SSPE). With this equilibrium notion, it will be easily checked that (since
�i < 1) agent i will always have incentives to make an o¤er that is immediately accepted.
Before proceeding with the analysis, let us stress once again the main point of the present

paper. We want to analyse the optimal voting rule under endogenous recognition. Yildirim
(2007) proved that, in the homogeneous case, the unanimity rule minimizes the social cost
resulting from the agents�incentives to exert unproductive e¤orts to become the proposer
during the negotiations. He focused on the case where the contest takes place at each stage
of the process (transitory recognition). In the present paper, we ask whether unanimity
minimizes the total cost of recognition e¤orts when agents may be heterogeneous. It will be
proved that the conclusion provided by Yildirim (on the strict optimality of the unanimity
rule) has to be contrasted when recognition is persistent. Speci�cally, a situation will be
analysed where k-majority rules become strictly optimal.
Let us now describe the di¤erent steps adopted in the present paper. In the next sections,

we will use backward reasoning to characterize the SSPE and more speci�cally the agents�
equilibrium payo¤s, expected shares of the surplus, and levels of e¤ort. We will focus on
symmetric equilibria, i.e. equilibria where identical players make the same e¤ort.
In Section 3, the optimal strategies of the negotiation stage will be characterized. In

order to rule out cases where agents might be indi¤erent between certain strategies, we will
have to rely on a tie-breaking rule that will be described in the same section.
In Section 4, we will analyse the initial stage of recognition, and we will characterize

the equilibrium candidate. Then, we will complete the analysis by providing a condition
that will ensure that this candidate is immune to unilateral deviations. At this stage of the
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analysis, we will focus on the case of weakly heterogeneous agents (as discussed by Ryvkin
(2007)), and we will assume that agents become more and more impatient (their discount
factors become arbitrarily small).
In Section 5, we will compare the resulting social costs and we will show that there are

conditions under which strict k-majority rules become strictly optimal. We will then provide
numerical examples in Section 6 in order to stress that unanimity may become optimal too.
Let us now proceed with the analysis of the negotiation stage.

3 The negotiation phase: second stage

We will use backward induction in order to solve for the SSPE of the present two stage game.
We will �rst analyse the �nal stage of the game where agents negotiate in order to allocate
the surplus. Some notations and de�nitions will be needed: they will be introduced in the
�rst subsection. Then we will proceed with the analysis.
One important point has to be stressed. In the present section, we will study the gen-

eral situation without imposing weak heterogeneity. This assumption will be needed (and
introduced) later.

3.1 Notations and de�nitions

In order to analyse the negotiation stage we will have to characterize the agents�optimal
strategies and the equilibrium shares. Each agent�s strategy can be characterized by the
probabilities to include other agents in his winning coalition. Let  i =

�
 ij
�
j2Nnfig denote

the vector of inclusion probabilities, where  ij denotes speci�cally the probability that player
i includes player j in his winning coalition. Under a given k-majority rule, we must have
 ij 2 [0; 1] for all i; j 2 N , i 6= j and

X
j2Nnfig

 ij = k � 1 for all i 2 N . It is convenient to

de�ne  �i =
�
 1; 2; :::; i�1; i+1; :::; ; n

�
.

Now let us de�ne the shares induced by the agents�strategies. If the resulting vector of
such shares is denoted by s = (s1; :::; sn), it is easily checked that each individual share si is
characterized by:

si = pi (1� wi) + �i�isi, for i = 1; :::; n. (2)

where,
wi =

X
j 6=i

 ij�jsj and �i =
X
j 6=i

pj ji. (3)

In other words, agent i�s share is induced by the agents�strategies as follows. When agent
i becomes the proposer (which happens with probability pi) he will include a certain set of
agents in his winning coalition. In order to do so, he will o¤er them their continuation value.
Now, with the remaining probability agent i is not the proposer. In this case, provided that
he belongs to the proposer�s winning coalition (in case his own equilibrium continuation
value �isi is su¢ ciently low) he will be o¤ered his own continuation value.
In the next subsection we will characterize the agents�equilibrium strategies.
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3.2 Second stage equilibrium

In the present subsection we characterize the agents�optimal strategies during the negotiation
process (taking into account that their recognition probabilities are �xed). At this stage of
the analysis we will introduce a tie breaking rule that will explain what type of behavior is
assumed from identical agents.
We now proceed with the analysis. Fix p = (p1; :::; pn) and s = (s1; :::; sn). The second

stage equilibrium is characterized by  = ( 1; :::; n) such that:

 i = Argmax
 i

(
pi[1�

X
j 6=i

 ij�jsj] +
X
j 6=i

pj ji�isi

)
; (4)

The best reply of player i in the second stage of the game is given by:

8i;8j 6= i;  ij =

8<:
1 if �jsj < �ksk
� 1 if �jsj = �ksk
0 if �ksk < �jsj

(5)

This reasoning leads to the following preliminary result:
Lemma 1 : In the equilibrium of the second stage, the vector of probabilities of inclusion,
 = ( i)i2N , and the vector of shares s = (si)i2N are functions of (x; �), with  i =  i (x; �)
and si = si (x; �) for all i 2 N . The vector of shares s is the solution of

si = pi (1� wi) + �i�isi, for i = 1; :::; n, (6)

where,
wi =

X
j 6=i

 ij�jsj and �i =
X
j 6=i

pj ji, (7)

and,

8i;8j 6= i;  ij =

8<:
1 if �jsj < �ksk
� 1 if �jsj = �ksk
0 if �ksk < �jsj

(8)

The second stage equilibrium strategies are characterized implicitly.
Before deriving the �rst stage equilibrium, we will show an interesting property of the

second stage equilibrium. In order to prove the result we need to introduce a tie-breaking
rule (TBR) that will specify what happens in situations where the votes of two players have
the same cost. This is required in order to specify the agents�strategies when they could
be indi¤erent between two potential candidates for their winning coalition. The tie-breaking
rule can be described as follows:
Assumption (TBR): If �lsl = �ksk = �isi with i 6= l, then  ji =  jl =  jk if j 6= i; l; k,
 ki =  kl and  ik =  lk if k 6= i; l.

This rule is quite natural and intuitive: it implies that identical players are treated the
same way, and behave the same way. Equipped with this rule, we can now prove the following
result:
Proposition 1: Assume that �i � �l and assumption (TBR) holds. In the second stage
equilibrium, pi < pl ) �isi < �lsl and pi � pl ) �isi � �lsl.
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Proof of Proposition 1: In the appendix. �
The above Proposition will now be used to prove the following important property:

Corollary 1: In the second stage equilibrium, if �i = �l, then xi = xl () pi = pl ) si = sl.
Proof of Corollary 1: Assume �i � �l. According to Proposition 1, if xi = xl then
�isi = �lsl. Hence, if �i = �l, we have si = sl.�
All the above results provide us with a characterisation of the agents�optimal strategies

at the last stage of the game. Now we go backward and analyse the initial stage of the game,
where agents exert e¤orts in order to in�uence their recognition probability.

4 Recognition: �rst stage

4.1 General characterisation

Reasoning backward, the �rst stage equilibrium of the game is the equilibrium of a one-shot
situation where the payo¤ of player i is given by the di¤erence between his equilibrium share
and the cost incurred, that is vi (x; �) = si (x; �)�cxi, with xi � 0. The rest of the paper will
focus on the symmetric equilibrium of this one shot game, where such symmetric equilibrium
is characterized by a vector of e¤ort levels x� = (x�; :::; x�) satisfying the following conditions

vi (x
�; �) � vi

�
x0;x��i; �

�
, for all i; (9)

with,
si = pi (1� wi) + �i�isi, for i = 1; :::; n. (10)

Using Lemma 1, we obtain:

wi =

�
wk + �ksk � �isi if �isi � �ksk

wk if �ksk � �isi
; (11)

and,

�i

8<:
= 1� pi if �isi < �ksk
� 1� pi if �isi = �ksk

0 if �ksk < �isi

; (12)

The above expressions result from an intuitive idea. On one side, agents choose the
cheapest winning coalition when they become proposers. On the other side, only those
agents with the cheapest votes will be included in the winning coalition when they are
not recognized as proposers. This characterization will be used to derive the equilibrium
candidates (speci�cally, the levels of e¤ort chosen by the di¤erent types).
Before proceeding with this part of the analysis, it may be interesting to brie�y come back

to the homogeneous case. Quérou and Soubeyran (2010) analysed the existence and char-
acterisation of symmetric equilibria in this case. They proved that, as long as a symmetric
equilibrium exists, voting rules yield the same social cost. This equivalence property is sub-
stantially di¤erent from the case of transitory recognition (Yildirim 2007) where unanimity
is strictly optimal.
We will now consider the case where players are heterogeneous. In the present setting,

we will highlight that the conclusion reached by Yildirim may be reversed when recognition
is persistent.
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4.2 Recognition with weak heterogeneity from above

We analyse the case where one agent is more patient than the others. We �rst consider
the unanimity voting rule and then k-majority rules with k � n � 1. As mentioned in the
introduction, we will assume that agents are weakly heterogeneous (Ryvkin (2007)), that is:

�H = �L + "; (13)

where " is a positive constant assumed to be su¢ ciently small (we will elaborate on this point
when required in the analysis). We assume that n� 1 agents have a low discount factor (�L)
and one agent has a high discount factor �H (where 0 < �L < �H < 1). We assume, without
loss of generality, that the nth agent is the agent with the highest discount factor. We denote
his share, his probability of recognition and his e¤ort by sH , pH and xH , respectively.

4.2.1 The unanimity rule

When an agreement requires unanimous consent, it is relatively easy to characterize the
optimal continuation values. We �rst analyse the negotiation game. The expected share of
the surplus secured by agent i satis�es the following equality:

si = pi[1�
X
j 6=i

�jsj] +
X
j 6=i

pj�isi; (14)

In other words, agent i o¤ers to each agent his expected (discounted) share of the surplus
when recognized as the proposer (which happens with probability pi). When another agent
j is recognized, agent i receives his expected (discounted) share of the surplus (equal to �isi).
The above expression can be rewritten as follows:

si =
pi

1� �i
[1�

nX
j=1

�jsj]: (15)

Multiplying (14) by �i, then summing over i, we obtain:

nX
j=1

�jsj =

Pn
j=1

�jpj
1��jPn

j=1
�jpj
1��j + 1

: (16)

Coming back to expression (15) and using
Pn

j=1 pj = 1, we have:

si =

pi
1��iPn
j=1

pj
1��j

: (17)

Using pi(xi; x�i) = xiPn
j=1 xj

for x 6= 0; we �nally obtain:

si =
xi
1��iPn
j=1

xj
1��j

: (18)
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Now we come back to the �rst stage of the process in order to derive a closed form expression
of the optimal levels of e¤ort. At this stage, the problem of any agent i is to exert the optimal
level of e¤ort in order to maximize his expected payo¤ (taking into account that other agents
exert e¤orts too). In other words, agent i�s optimal level of e¤ort solves:

max
xi�0

�i(xi; x
u
�i) = si(xi; x

u
�i)� cxi; (19)

where (xu1 ; :::; x
u
n) denotes a vector of optimal levels of e¤ort. It is easily checked that �i(:; x

�
�i)

is twice continuously di¤erentiable and (strictly) concave. Thus, we know that a vector of
equilibrium levels of e¤ort exists (and is unique), and that it is characterized by the following
�rst order conditions:

1

1� �i

P
j 6=i

xuj
1��jhPn

j=1

xuj
1��j

i2 � c � 0; (20)

for any agent i, where the inequality is binding if and only if the equilibrium level xui is
positive. Since we concentrate on symmetric equilibria where the low type agents have the
same share, we must have xui = xuL. The following result provides a characterization of the
equilibrium levels of e¤ort under weak heterogeneity:
Proposition 2: At the symmetric equilibrium, both types of agents exert positive levels of
e¤ort. When the degree of heterogeneity is weak, they are given by the following expressions:

xuL '
n� 1
n2c

�
1� (n� 2)

n (1� �L)
"

�
; (21)

and,

xuH '
n� 1
n2c

�
1 +

n� 2
n (1� �L)

(n� 1) "
�

(22)

Proof of Proposition 2: In the appendix. �
The above proposition states that both types of agents will exert positive levels of e¤ort

(since " << 1). An increase in the degree of heterogeneity " decreases the e¤ort of the low
types agents whereas it increases the e¤ort of the high type agent. The general formula
(without approximation) of social costs is

SCu =

nX
i=1

cxui = c[xuH + (n� 1)xuL] (23)

= (n� 1) (1� �H)
(n� 1) (1� �L) + (1� �H + (n� 1) (�H � �L))

((n� 1) (1� �L) + (1� �H))
2

Let us now analyse the e¤ect of heterogeneity on the above expression of the social cost. A
marginal increase in the degree of heterogeneity induces a decrease of size (n�2)(n�1)2

n3(1��L)c in the

cumulated e¤ort of the low type agents (n� 1)xuL and an increase of size
(n�2)(n�1)2
n3(1��L)c in the

e¤ort of the high type agent. Hence, heterogeneity has no �rst order e¤ect on the social cost.
However, the following result highlights that an e¤ect of second order exists:
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Proposition 3: Under unanimity, for a weak degree of heterogeneity ", the social cost is
(approximately):

SCu ' n� 1
n

� (n� 1)3

n3 (1� �L)
2 "
2; (24)

which increases as the degree of heterogeneity " increases .
Proof: Di¤erentiating the expression of social costs with respect to " (twice) yields the
above expression. �
This proposition shows that an increase of heterogeneity will decrease social cost (with

an e¤ect of second order). Hence, the decrease in the e¤ort of the n � 1 low type agents
outweighs the increase in the e¤ort of the high type agent whatever the number of low type
agents.1 Speci�cally, we obtain the following result:

Corollary 2: A second order approximation of SCu around (�L; �H)! (0 ; 0 ) leads to:

SCu ' n� 1
n

�
�
n� 1
n

�3 �
(�H)

2 + (�L)
2� (25)

In order to summarize our �ndings, we characterized the optimal levels of e¤ort, derived
the expression of the resulting social cost, and analysed the in�uence of the degree of hetero-
geneity when an agreement requires unanimous consent. In the next section we will proceed
with the analysis of the cases where strict majorities are required.

4.2.2 Strict k-majority rules

We now proceed with the characterization of the symmetric SSPE under strict k-majority
rules and weak heterogeneity from above. We still consider that the high type player is the
nth player. The �rst result implies that the optimal continuation value of the high type
player must be higher than that of the low type agents. Speci�cally, we have:
Lemma 2: When players are heterogeneous (from above), in a symmetric equilibrium:

�Lsi = �LsL < �HsH for all i � n� 1 (26)

Proof of Lemma 2: In the appendix. �

The above lemma will enable us to proceed with the characterization of the equilibrium
candidate. The next proposition describes the unique candidate for a symmetric equilibrium.
Proposition 4 : When players are heterogeneous (from above), under a strict k -majority
rule, the levels of e¤ort are (in a symmetric equilibrium):

xkL =
(1� �L

k�1
n�1)(n� 1)

c[n� �L (k � 1)]2
;xkH =

(1� �L(k � 1))(n� 1)
c[n� �L (k � 1)]2

; (27)

1A second order approximation of the e¤orts leads to: xuL '
(n�1)
cn2 � (n�1)(n�2)

cn3(1��) " �
1
c
(n�1)(2n�3)
n4(1��)2 "2 and

xuH ' n�1
cn2 +

�
1
c
(n�1)2(n�2)
n3(1��)

�
"� (n�1)2

n4(1��)2
�
n2 � 3n+ 3

�
"2:
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the agents�equilibrium payo¤s are:

vkH =

�
1� �L(k � 1)
n� �L (k � 1)

�2
; (28)

and,

vkL =
1

(n� �L (k � 1))2
; (29)

Proof of Proposition 4: In the appendix. �

The above result identi�es the unique equilibrium candidate. However, it does not prove
that this candidate is actually an equilibrium. Speci�cally, up to this point, we assumed
that the symmetric equilibrium exists. It remains to rule out potential unilateral deviations.
In order to do so, we will rewrite the discount factors as follows: � = �L =

�H
�
with � > 1,

since these expressions will be easier to use in the proofs of the next results.
The following condition ensures the existence of the equilibrium:

Lemma 3 : If � ! 0, xkH ; x
k
L > 0 and the corresponding shares are such that �HsH > �LsL.

Thus, when agents become su¢ ciently impatient one can ensure that the unique candidate
is actually immune to unilateral deviations. We can now proceed with the last step of the
analysis and compare the social costs resulting from unanimity and k-majority voting rules.

5 Comparison of social costs

5.1 Optimality of strict k-majority rules

As in the previous section we denote �H = �� and �L = �. They will enable us to provide a
simple comparison of the social costs. We obtain the following expressions:

SCu = (n� 1) (1� ��)
(n� 1) (1� �) + (1� �� + (n� 1) (�� 1)�)

((n� 1) (1� �) + (1� ��))2
(30)

and

SCk = (n� 1) n� 2� (k � 1)
(n� � (k � 1))2

(31)

Relying on the assumption of weak heterogeneity (and that all agents become arbitrarily
impatient), we can compare these costs by using their second order approximations around
� = 0 :

SCu ' n� 1
n

� (�� 1)2
�
n� 1
n

�3
�2 (32)

SCk ' n� 1
n

� (k � 1)2 n� 1
(n)3

�2 (33)

and
SCu � SCk ' n� 1

n3
�2
�
(k � 1)2 � (�� 1)2 (n� 1)2

�
(34)
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It is immediately checked that SCu > SCk if and only if 1 + k�1
n�1 > �. In other words,

there exists a threshold value regarding � such that k-majority rules become strictly optimal
for any value of � lying below this threshold. This implies that, in weakly heterogeneous
situations where agents become arbitrarily impatient, unanimity is eventually dominated by
strict k-majority rules.

5.2 Intuition and implications of the result

The main intuition is as follows. In the present case, the optimal strategies of both types of
agent (regarding their level of e¤ort) exhibit the following property. When the optimal level
of e¤ort of a speci�c type increases as a result of the introduction of a new voting rule, the
second type of agents will �nd it bene�cial to decrease his level of e¤ort. Speci�cally, under
a k-majority rule and heterogeneity from above, the bene�t of being the proposer for a low
type agent is (when si = sL for each low type agent i):

�L = 1� (k � 1)
�
n� 1
n� 2 +

1

n� 1

�
�LsL (35)

while the bene�t for a high type agent is:

�H = 1� (k � 1) �LsL: (36)

It can be checked that the e¤orts of all players cannot simultaneously increase when moving
from unanimity to k-majority.
In order to illustrate this property of the game, let us consider the following example:

n = 3, the other parameters being �L = 1=10 , c = 1, �H = 1=9, and we consider simple
majority voting. We plot the reaction functions under k-majority and unanimity of player
1 (low type) and player 3 (high type) (denoted by, respectively, Rk1

�
xk2; xH

�
, RkH

�
x1; x

k
2

�
,

Ru1 (x
u
2 ; xH) and RuH (x1; x

u
2)), while the e¤ort level of player 2 (low type) is �xed to its

equilibrium value. We obtain the following graph:
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Fig. 1: Reaction functions and voting rule
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This graph illustrates our main point: an increase in the optimal level of e¤ort of one
type of agent implies necessarily that the equilibrium level of e¤ort decreases for the other
type. The above result highlights that there are cases where strict k-majority voting rules
may become optimal.
This conclusion may have diverse interpretations. For example, it highlights the fact that

the use of executive committees in economic organizations may be e¢ cient (provided that
agents are heterogeneous) as it minimizes the agents�unproductive e¤orts to increase their
in�uence. This is so because it excludes some members from the collective decision making
process. Nonetheless, we do not claim that this is the unique conclusion.
Indeed, the previous analysis is restricted to the case of weak heterogeneity because the

analysis of the general case becomes quickly untractable. Nonetheless, numerical examples
will be provided in the next section in order to highlight that each type of voting rules may
become optimal in more general cases.

6 The case of higher degrees of heterogeneity

Before concluding the paper, we would like to provide several examples in order to highlight
the fact that the situation remains highly non monotonic in general heterogeneous cases.
Before providing these numerical examples, we must stress the following important point.
In the examples we focus on the equilibrium candidate described in the previous sections.
However, we did not check whether this candidate is actually an equilibrium. The purpose
of the examples is to highlight that there are situations where this candidate yields a strictly
higher social cost compared to the unanimity rule. As such, they suggest that there could
be situations where unanimity might become optimal as well.
Let us now provide the examples, which can be summarised as follows:

nL nH �H �L SCu SCn�1 SCn�2 SCn�3 SCn�4 SCn�5 Optimal ru le

2 1 1=8 1=10 :6664 :6659 :6666 � � � 2-ma jority

2 1 1=2 1=3 :645 no sym . eq. :667 � � � Unanim ity

3 1 1=2 1=3 :720 no sym . eq. no sym . eq. :750 � � Unanim ity

2 2 1=2 1=3 :704 :742 :731 :750 � � Unanim ity

4 1 1=5 1=7 :774 :793 no sym . eq. :799 :800 � Unanim ity

4 1 1=3 1=7 :772 :793 :797 :799 :800 � Unanim ity

2 3 1=5 1=7 :796 :800 :794 :796 :800 � 3-ma jority

3 2 1=5 1=7 :796 :798 no sym . eq. :798 :800 � Unanim ity

2 4 1=5 1=7 :829 :822 :831 :824 no sym . eq. :833 5-ma jority

Fig.2: Optimal rule: numerical examples

The above description should make it clear that the main insights gained from the analysis
are robust to the introduction of a general degree of heterogeneity. One important conclusion
is that one should not expect the unanimity rule to always minimize the agents�incentives
to exert unproductive e¤orts in order to in�uence the outcome of the process. While this
conclusion is valid when recognition is transitory and agents are identical, this is not valid
under persistent recognition.
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7 Conclusion

The issue of buying in�uence in collective decision making is extremely important as it is
prevalent in many real world economic situations (lobbying in legislative bargaining, interna-
tional negotiations, composition of executive committees in economic organizations). There
are many questions related to this issue. The present contribution analyses a multilateral bar-
gaining situation where recognition is persistent and endogenous and compares voting rules
with respect to the social cost resulting from them. It is proved that this comparison di¤ers
depending on the type of recognition that is considered. Moreover, it is highlighted that each
type of voting rule may become optimal when agents exert e¤orts at a pre-bargaining stage
as soon as heterogeneity is brought into the picture. This stresses the fact that one should
be very cautious when thinking about the choice of the appropriate voting rule in collective
decision making situations where in�uence activities might be used. In such situations, the
speci�cs of both the recognition process (recognition versus transitory) and of the agents�
characteristics may matter.
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Appendix

Proof of Proposition 1

The equivalence xi � xl () pi � pl is directly deduced from our assumptions on the
form of the recognition probabilities.Assume �i � �l. To show the �rst implication of the
proposition, pi < pl ) �isi < �lsl, �x p and s with pi < pl and �lsl � �isi. We distinguish
three cases.
Case 1: �lsl � �isi < �ksk. The shares of players i and j are given by:

si = pi (1� wk � �ksk + �isi) + (1� pi) �isi

= pi (1� wk � �ksk) + �isi (37)

and,

sl = pl (1� wk � �ksk + �lsl) + (1� pl) �lsl

= pl (1� wk � �ksk) + �lsl (38)

Since
X
i

si = 1, we have 1� wk � �ksk > 0. Since pi < pl, we have

(1� �i) si < (1� �l) sl (39)

Combining condition (39) with �lsl � �isi, we have

1� �i
1� �l

<
sl
si
� �i
�l
; (40)

which implies
�l < �i; (41)

a contradiction.
Case 2: �ksk < �lsl � �isi. The shares of players i and j are given by:

si = pi (1� wk) (42)

and,
sl = pl (1� wk) : (43)

Since pi < pl, we have si < sl and then �l < �i, a contradiction.
Case 3: �lsl � �ksk � �isi. The share of players i is such that:

si = pi (1� wk) + �i�isi � pi (1� wk) + (1� pi) �isi, (44)

The share of player l is such that:

pl (1� wk � �ksk + �lsl) � sl = pl (1� wk � �ksk + �lsl) + �l�lsl (45)

� pl (1� wk � �ksk + �lsl) + (1� pl) �lsl, (46)
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with equality when �lsl < �ksk.
When �lsl < �ksk < �isi, we have

si = pi (1� wk) , (47)

and,
sl = pl (1� wk) + �lsl � pl�ksk. (48)

Combining the two equations, we obtain:

si =
pi
pl
(1� �l) sl + pi�ksk <

pi
pl
(1� �l) sl + pi�isi, (49)

or,
(1� pi�i) si <

pi
pl
(1� �l) sl, (50)

Since pi < pl � 1, we must have

(1� �l) sl > (1� �i) si; (51)

hence �i < �l, a contradiction.
When �lsl = �ksk < �isi, we have

si = pi (1� wk) , (52)

and,
pl (1� wk) � sl � pl (1� wk) + (1� pl) �lsl: (53)

Pluging the �rst equation into the �rst inequality, we have:

pl
pi
� sl
si
; (54)

because pi > 0 (indeed, if pi = 0, then si = 0 and �lsl < 0, a contradiction). Since pi < pl,
we have si < sl. Since �lsl < �isi, we must have �l < �i, a contradiction.
When �lsl < �ksk = �isi, we have

si � pi (1� wk) + (1� pi) �isi: (55)

and,
(1� �l) sl = pl (1� wk)� pl�ksk. (56)

This equation can be rewritten as:

(1� wk) =
(1� �l)

pl
sl + �isi: (57)

Hence,
si �

pi
pl
(1� �l) sl + �isi: (58)

Since pi < pl, we have (1� �i) si < (1� �l) sl. Since �lsl < �isi, we must have �l < �i, a
contradiction.
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Finally, when �lsl = �ksk = �isi, the shares are given by

si = pi (1� wk) +
X
j 6=i

pj ji�isi; (59)

and,
sl = pl (1� wk) +

X
j 6=l

pj jl�lsl: (60)

If i; j 6= k, we have:

si = pi (1� wk) +
X
j 6=i;l;k

pj ji�isi + (pl li + pk ki) �isi; (61)

and,
sl = pl (1� wk) +

X
j 6=i;l;k

pj jl�lsl + (pi il�lsl + pk kl) �lsl: (62)

Using assumption TBR, we have:

si = pi (1� wk) +
X
j 6=i;l;k

pj ji�isi + (pl il + pk kl) �ksk; (63)

and,
sl = pl (1� wk) +

X
j 6=i;l;k

pj jl�lsl + (pi il + pk kl) �ksk: (64)

If i = k or j = k: assume i = k without loss of generality, then, using assumption TBR:

sk = pk (1� wk) +
X
j 6=l;k

pj ji�isi + pl kl�ksk; (65)

and,
sl = pl (1� wk) +

X
j 6=l;k

pj jl�lsl + pk kl�ksk: (66)

Hence, for both cases (i.e. for i 6= j), the di¤erence of the shares is:

si � sl = (pi � pl) (1� wk �  kl�ksk) : (67)

Since
X
i

si = 1, we have 1� wk �  kl�ksk > 0. Since pi < pl we have si
sl
< 1. Hence �l

�i
< 1,

a contradiction.
The proof of the second result, xi � xl (() pi � pl)) �isi � �lsl, is very similar to the

proof of the �rst result of the proposition and is not reported here. The main di¤erence is
that the proof of the second result does not rely on assumption (TBR).�
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Proof of Proposition 2

Suppose that xuL = 0 < xuH , then the FOC for the high type agent becomes �c � 0, and he
has an incentive to choose xuH = 0, which is a contradiction. Now suppose xuH = 0 < xuL,
then the FOCs become:

1

1� �H

1

(n� 1)xuL
� c and

n� 2
c (n� 1)2

= xuL: (68)

Combining these two expressions and simplifying, we obtain 1��H � n�1
n�2 , which is impossible

since �H < 1. Hence, all agents exert positive levels of e¤ort at the equilibrium. This implies
that all �rst order conditions are satis�ed as equalities. Rewriting conditions (20) we obtain:

1

1� �L

(n� 2) xuL
1��L +

xuH
1��H�

(n� 1) xuL
1��L +

xuH
1��H

�2 = c; (69)

and,

1

1� �H

(n� 1) xuL
1��L�

(n� 1) xuL
1��L +

xuH
1��H

�2 = c: (70)

Condition (69) is the �rst order condition corresponding to a low type agent�s problem. A
�rst implication is that we have necessarily:

1

1� �L

�
(n� 2) xuL

1� �L
+

xuH
1� �H

�
=

n� 1
1� �H

xuL
1� �L

; (71)

which provides us with the expression of xuH
1��H as a function of x

u
L:

xuH
1� �H

=
xuL

1� �L

�
n� 1
1� �H

� n� 2
1� �L

�
(1� �L) : (72)

Plugging this expression into (69), we deduce the expression of the e¤ort of a low type agent:

xuL =

�
1��L
1��H

�
(n� 1)

c
�
1 +

�
1��L
1��H

�
(n� 1)

�2 : (73)

Now, using (72), we have:

xuH =
(n� 1)

��
1��L
1��H

�
(n� 1)� (n� 2)

�
c
�
1 +

�
1��L
1��H

�
(n� 1)

�2 : (74)

Using linear approximations of xuL and x
u
H around " = 0, we have:

xuL '
n� 1
cn2

� 1
c

(n� 1) (n� 2)
n3 (1� �L)

" =
n� 1
cn2

�
1� n� 2

n (1� �L)

�
"; (75)

and,

xuH '
n� 1
cn2

+
1

c

(n� 1)2

n3 (1� �L)
(n� 2) " = n� 1

cn2

�
1 +

n� 1
n (1� �L)

(n� 2) "
�
: (76)

This concludes the proof. �
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Proof of Lemma 2

In a symmetric equilibrium, we must have

xi = xL for all i � n� 1. (77)

Using Corollary 1, we have
si = sL for all i � n� 1. (78)

Assume that �LsL > �HsH . According to Proposition 1, we must have xL > xH . The shares
are given by:

si = pi

"
1� �HsH �

k � 2
n� 2�L

X
j�n�1;j 6=i

sj

#
+ pH

k � 1
n� 1�Lsi + (1� pi � pH)

k � 2
n� 2�Lsi; (79)

for i � n� 1, and,

sH = pH

"
1� k � 1

n� 1�L
X
j�n�1

sj

#
+ (1� pH) �HsH . (80)

Thus,

sH =
pH

1� (1� pH) �H

"
1� k � 1

n� 1�L
X
j�n�1

sj

#
, (81)

and,

�
1� pH

k � 1
n� 1�L � (1� pH)

k � 2
n� 2�L

�
si = pi

24 1� �HpH
1�(1�pH)�H

+
�

�HpH
1�(1�pH)�H

k�1
n�1 �

k�2
n�2

�
�L
X
j�n�1

sj

35 ;
(82)

for i � n� 1.
Summing the last condition over i � n� 1, we have:X

j�n�1
sj =

(1� pH) (1� �H)

1� �H +
�
�H � k�1

n�1�L
�
pH
: (83)

Hence,

sH =

�
1� k�1

n�1�L
�
pH

1� �H +
�
�H � k�1

n�1�L
�
pH
, (84)

and,

si =
(1� �H) pi

1� �H +
�
�H � k�1

n�1�L
�
pH
; (85)

for i � n� 1.
Using the Tullock function, we have:

vH =

�
1� k�1

n�1�L
�
xH

(1� �H)X +
�
�H � k�1

n�1�L
�
xH

� cxH , (86)
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and,

vi =
(1� �H)xi

(1� �H)X +
�
�H � k�1

n�1�L
�
xH

� cxi; (87)

for i � n� 1.
Assume xH > 0, the FOCs are given by:�

1� k � 1
n� 1�L

�
(1� �H) (X � xH)�

(1� �H)X +
�
�H � k�1

n�1�L
�
xH
�2 = c, (88)

and,

(1� �H)
(1� �H) (X � xi) +

�
�H � k�1

n�1�L
�
xH�

(1� �H)X +
�
�H � k�1

n�1�L
�
xH
�2 = c: (89)

In a symmetric equilibrium, we have:�
1� k � 1

n� 1�L
�
(1� �H) (n� 1)xL = c

�
(1� �H) (n� 1)xL +

�
1� k � 1

n� 1�L
�
xH

�2
, (90)

and,

(1� �H)

�
(1� �H) (n� 2)xL +

�
1� k � 1

n� 1�L
�
xH

�
(91)

= c

�
(1� �H) (n� 1)xL +

�
1� k � 1

n� 1�L
�
xH

�2
:

Combining the two conditions, we have:

xL
xH

=
1� k�1

n�1�L�
1� k�1

n�1�L
�
(n� 1)� (1� �H) (n� 2)

: (92)

The Right hand side is striclty larger than 1 if and only if
k � 1
n� 1�L > �H ; (93)

a contradiction.
Now assume xH = 0, the FOCs are:�

1� k � 1
n� 1�L

�
(1� �H) (n� 1)xL
[(1� �H) (n� 1)xL]2

< c, (94)

and,

(1� �H)
(1� �H) (n� 2)xL
[(1� �H) (n� 1)xL]2

= c: (95)

Hence,

xL =
1

c

n� 2
(n� 1)2

; (96)

and condition (94) becomes:

�L >
�H (n� 2) + 1

k � 1 . (97)

Since k � n� 1; we have �H(n�2)+1
k�1 > �H and (97) implies �L > �H , a contradiction.

Finally, we must have �HsH > �LsL.�
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Proof of Proposition 4

We �rst deal with the most general case where the voting rule is not equivalent to a dicta-
torship of the proposer and the number of players is at least 3. Then, we will prove that the
general characterization of the equilibrium remains valid for the case where k = 1. Conse-
quently, the statement of the proposition holds for n = 2 (because k = 1 is the only strict
k-majority for n = 2).
Let us proceed with the �rst step of the proof. We know from Lemma 2 that �LsL < �HsH ,

that is, the low type agent is the cheapest one. This means that any agent will include k� 1
low type agents in his winning coalition. Moreover, the only chance that the high type agent
gets a positive share of the surplus is that he becomes the proposer. The shares can thus be
rewritten as follows (we still assume that agents i = 1; :::; n�1 constitute the sub-population
of low types):

si = pi[1�
X

j 6=i;j�n�1

k � 1
n� 2�jsj] +

X
j 6=i;j�n�1

pj
k � 1
n� 2�isi + pH

k � 1
n� 1�isi; (98)

for i = 1; :::; n� 1 and
sH = pH [1�

X
j�n�1

k � 1
n� 1�jsj]; (99)

for the high type agent.
Let us elaborate on both expressions. Any low type agent i includes k � 1 low type

agents in his winning coalition when he becomes the proposer. The tie-breaking rule is such
that each remaining low type agent j 6= i is included in the winning coalition with the same
probability k�1

n�2 . Now, when another low type agent j 6= i becomes the proposer, he includes
i in his winning coalition with probability k�1

n�2 . Finally, when the high type agent becomes
the proposer, i is included in the winning coalition with probability k�1

n�1 . This explains
expression (98). Now, when the high type agent is the proposer, he includes k � 1 low type
agents in his winning coalition. Again, the probability that any low type agent be included in
the winning coalition is the same, but now it is k�1

n�1 . When a low type agent is the proposer,
the high type agent is never in the winning coalition (since k � n� 1).
Using �j = �L for all j � n� 1 and

P
j 6=i;j�n�1 pj = 1� pi� pH , (98) can be rewritten as

follows:

si =
pi

1� �L
�
(1� pH)

k�1
n�2 + pH

k�1
n�1
�  1� �L

k � 1
n� 2

X
j�n�1

sj

!
; (100)

Summing (98) over i = 1; :::; n� 1 and simplifying, we obtain:
n�1X
i=1

si =

Pn�1
i=1 pi

1� �L
k�1
n�1pH

=
1� pH

1� �L
k�1
n�1pH

: (101)

In order to keep the expressions simple, let us denote q = k�1
n�1 , which is the "quota" of the

k majority rule. Coming back to expression (99) we obtain:

sH =
(1� �Lq) pH
1� �LqpH

(102)
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and, plugging (101) into (98), we have

si

�
1� �L

k � 1
n� 2 (1� pH)� �LqpH

�
= pi

�
1� �L

k � 1
n� 2

1� pH
1� �LqpH

�
(103)

for any low type agent i. This implies that, for any i � n� 1 we have:

si = pi
1� �L

k�1
n�1

1�pH
1��LqpH

1� �L
k�1
n�2(1� pH)� �LqpH

: (104)

Rewriting and simplifying, we obtain:

si =
pi

1� �LqpH
; (105)

for any agent i = 1; :::; n� 1.
Reasoning backward, we can now analyse the �rst stage where players compete in a

contest for recognition. Using the Tullock function, the shares can be written as functions
of the levels of e¤ort (x1; :::xn�1; xH):

si =
xi

X � �LqxH
; (106)

for any agent i = 1; :::; n� 1, with X =
Pn

j=1 xj, and

sH =
(1� �Lq)xH
X � �LqxH

; (107)

for the high type agent. At this stage, the problem of any agent i is to exert the optimal
level of e¤ort in order to maximize his expected payo¤ (taking into account that other agents
exert e¤orts too), or in other words:

max
xi�0

�i(xi; x
k
�i) = si(xi; x

k
�i)� cxi; (108)

where (xk1; :::x
k
n�1; x

k
H) denotes a vector of optimal levels of e¤ort. As in the case of unanimous

consent, we easily check that each agent�s expected payo¤ is strictly concave in xi, that a
unique equilibrium candidate (characterized by a vector of e¤ort levels) exists, and that the
corresponding e¤ort levels are characterized by the following �rst order conditions:

Xk � �Lqx
k
H � xki�

X � �LqxkH
�2 � c; (109)

for any agent i = 1; :::; n� 1, where Xk =
Pn�1

j=1 x
k
j + x

k
H and the inequality is binding if and

only if the equilibrium level xki is positive. And,

(1� �Lq)
�
Xk � xkH

��
Xk � �LqxkH

�2 � c; (110)
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for the high type agent. Since we focus on symmetric equilibria where the low type agents
have the same share, we must have xki = xkL for any low type agent. Hence, in equilibrium,
we have,

(n� 2)xkL + (1� �Lq)x
k
H�

(n� 1)xL + (1� �Lq)xkH
�2 � c; (111)

and,
(1� �Lq) (n� 1)xkL�

(n� 1)xkL + (1� �Lq)xkH
�2 � c; (112)

Assume �rst that xkL = 0 < xkH : then condition (112) becomes 0 � c and the high type
player has no incentive to make a positive e¤ort, xkH = 0, which is a contradiction. Now
assume that xkH = 0 < xkL, then sH = 0 < sL =

1
n�1 . This contradicts our initial assumption

that �LsL < �HsH . Hence, in equilibrium, we have xkL; x
k
H > 0, i.e. the equilibrium is interior

and the FOCs are binding:

(n� 2)xkL + (1� �Lq)x
k
H�

(n� 1)xkL + (1� �Lq)xkH
�2 = c; (113)

and,
(1� �Lq) (n� 1)xkL�

(n� 1)xkL + (1� �Lq)xkH
�2 = c: (114)

A necessary condition is then:

(1� �Lq)x
k
H = (1� �Lq (n� 1)) xkL: (115)

Substituting this expression into (114), we have:

xkL =
(1� �Lq) (n� 1)

c ((n� 1) (1� �Lq) + 1)
2 : (116)

Using the necessary condition, we obtain:

xkH =
(n� 1) (1� �Lq (n� 1))
c ((n� 1) (1� �Lq) + 1)

2 : (117)

This concludes the proof for 2 � k � n � 1. Let us now check that the characterization
remains valid when k = 1 for n � 2. In this speci�c case, the characterization of the optimal
strategies at the second stage is straightforward. Speci�cally, the share of any agent i is
given by the following expression:

si = pi: (118)

Then, using the expression of the recognition function, checking that agent i�s payo¤
is strictly concave and deriving the �rst order conditions, we conclude immediately that
the unique equilibrium candidate for a symmetric SSPE is such that xi = 1

c
n�1
n2

for any
agent i = 1; :::; n. This expression corresponds to the case k = 1 when using the general
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characterization introduced in the statement of the proposition. Moreover, it is easily checked
that this candidate is actually an equilibrium. Indeed, this is true since the characterization
of all agents� optimal shares during the second stage does not change even in case of a
unilateral deviation (because k = 1). Thus, the fact that the vector of e¤ort levels satis�es
the �rst order conditions enables us to conclude the proof. �

Proof of Lemma 3

The proof results from the combination of the three following lemmas:
Lemma 4 : If � ! 0, the levels of e¤ort xkH ; x

k
L are positive and the corresponding shares

are such that �HsH > �LsL.
Proof: Since xkL > xkH , the condition is equivalent to x

k
H > 0, that is,

1

k � 1 > �: (119)

When � ! 0, this condition is valid.
Condition �HsH > �LsL is equivalent to

�H

�
1� �L

k � 1
n� 1

�
xkH > �Lx

k
L (120)

or,
(1� �(k � 1))�� 1 > 0: (121)

When � ! 0, this condition is valid. This concludes the proof. �
Thus we know that the candidate described in Proposition 4 is consistent with situations

where all agents become very impatient. To ensure that the candidate is indeed an equilib-
rium, we just need to check that it is robust to all possible unilateral deviations. This is
checked for each type of agent in Lemmas 5 and 6. Speci�cally, we have:
Lemma 5: Under a strict k -majority rule, when � ! 0, the high type agent has no incentive
to deviate from xk =

�
xkL; :::; x

k
L; x

k
H

�
.

Proof:We already know from the proof of Proposition 4 that there is no pro�table deviation
such that �Lsi = �LsL < �HsH for all i � n� 1.
Let us �rst consider the case where the H-type agent (agent n) deviates by exerting

an e¤ort such that �HsH = �LsL. Using assumption (TBR), the shares are given by the
following expressions:

sH = pH [1� (k � 1)�LsL] + (1� pH)
k � 1
n

�HsH ; (122)

sL = pL[1� (n� 1)
k � 1
n

�LsL �
k � 1
n

�HsH ] + (1� pL)
k � 1
n

�LsL

Rearranging these expressions, we obtain:

sH = pH [1� (k � 1)�LsL �
k � 1
n

�HsH ] +
k � 1
n

�HsH ; (123)

sL = pL[1� (k � 1)�LsL �
k � 1
n

�HsH ] +
k � 1
n

�LsL
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Then

sH =
n� �L(k � 1)
n� �H(k � 1)

sL: (124)

Since �HsH = �LsL, we must have

�LsL = �H
n� �L(k � 1)
n� �H(k � 1)

sL: (125)

Now assume sL = 0, then sH = 0 and sL = pL must be strictly positive because xkL > 0.
Hence, we must have

�L = �H
n� �L(k � 1)
n� �H(k � 1)

; (126)

which is equivalent to �L = �H , a contradiction.
Now consider that the high type agent deviates by exerting an e¤ort xn such that �HsH <

�LsL. Equations (86) and (87) yield the following expressionfs of the payo¤ functions:

vH =

�
1� k�1

n�1�L
�
xn

(1� �H) (n� 1)xkL +
�
1� k�1

n�1�L
�
xn
� cxn, (127)

and,

vi =
(1� �H)x

k
L

(1� �H) (n� 1)xkL +
�
1� k�1

n�1�L
�
xn
� cxi; (128)

for i � n� 1. Condition �HsH < �LsL is equivalent to:

�H

�
1� k � 1

n� 1�L
�
xn < �L (1� �H)x

k
L; (129)

or,

xn <
�L (1� �H)

�H

(n� 1)
c (n� �L (k � 1))2

� x: (130)

The optimal (interior) bxn is such that
bxn = 1

c

(n� 1)
p
(1� �H)

n� �L (k � 1)

"
1�

p
(1� �H) (n� 1)
n� �L (k � 1)

#
: (131)

It is easily checked that bxn > 0 is equivalent to
�H > 1�

�
n� �L (k � 1)

n� 1

�2
=

�
�1 + �L (k � 1)

n� 1

��
1 +

n� �L (k � 1)
n� 1

�
: (132)

Condition 1 ensures that the RHS is negative and then bxn > 0.
Condition (130) can be rewritten as:

1� (n� 1)
p
(1� ��)

n� � (k � 1) <
1

�

p
(1� ��)

n� � (k � 1) : (133)
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For � = 0, this condition becomes 1
n
< 1

�
1
n
, which is impossible. Since both sides are

continuous functions of �, when � is su¢ ciently close to 0, the condition does not hold.
This enables us to conclude that the payo¤ the high type player can get is bounded above

by the value of vH at x (which we denote by v). Formally,

vH < v =
�L

(n� 1) �H + �L
� �L (1� �H)

�H

(n� 1)
(n� �L (k � 1))2

; (134)

or,

v � vkH =
�L

(n� 1) �H + �L
�

�L(1��H)
�H

(n� 1) + (1� �L(k � 1))2

(n� �L (k � 1))2
(135)

This di¤erence is negative only if

�L (n� �L (k � 1))2 � �L (1� �H)

�H
((n� 1) �H + �L) (n� 1) (136)

+((n� 1) �H + �L) (1� �L(k � 1))2 ;

or,

f (�; �) = � (n� � (k � 1))2 � (1� ��) ((n� 1)�+ 1) (n� 1)(137)

�� ((n� 1)�+ 1) (1� �(k � 1))2 � 0

where � = �L and �� = �H . Since f is a continuous function of � and f (0; �) = � (�� 1)2 (n� 1),
we conclude that f (�; �) � 0 when � is su¢ ciently close to 0. This rules out this type of
unilateral deviations, which concludes the proof. �
Now, we proceed with the possible deviations of a low type player. Without loss of

generality, we assume that player 1 deviates and chooses an e¤ort denoted x1 6= xkL. The
e¤orts of the other players are �xed: xi = xkL for 2 � i � n � 1 and xn = xkH for the high
type player. Thus, whatever x1, we have pi = pkL for 2 � i � n � 1 and pn = pkH for the
high type player. Using Corollary 1, we have also si = sL for 2 � i � n� 1. We obtain the
following result:
Lemma 6: Under a strict k-majority rule, when � ! 0, any low type agent has no incentive
to deviate from xk =

�
xkL; :::; x

k
L; x

k
H

�
.

Proof: First remark that, when the players become very impatient, the cost of the votes
become negligeable and the share of each player comes close to his recognition probability:

lim
�!0

si = lim
�!0

pi. (138)

In the proof we will also use that

lim
�!0

xkL = lim
�!0

xkH =
n� 1
cn2

: (139)

Notice that a deviation by player 1 will modify the shares of all other players. However, the
resulting shares of the other low type agents will still be indentical (see Corollary 1). We
distinguish 2 di¤erent cases:
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Case 1 : �LsL < �Ls1. According to Proposition 1, since �LsL < �Ls1, we must have xkL < x1.
Then, let x1 = xkL with  > 1. Using (138) and (139), we have:

lim
�!0

v1 =


 + (n� 1) � c
n� 1
cn2

; (140)

and,

lim
�!0

vkL =
1

n2
: (141)

For � ! 0, player 1 has an incentive to play x1 rather than xkL if and only if:

lim
�!0

v1 � lim
�!0

vkL � 0; (142)

or,
0 � (n� 1)2 [ � 1]2 ; (143)

a contradiction.
Case 2 : �Ls1 < �LsL. According to Proposition 1, since �Ls1 < �LsL, we must have x1 = �xkL
with � < 1. Then it is easily checked that the following condition holds:

lim
�!0

v1 =
�

� + n� 1 � �
n� 1
n2

: (144)

For � ! 0, player 1 has an incentive to play x1 rather than xkL if and only if:

lim
�!0

v1 � lim
�!0

vkL � 0; (145)

or,
0 � (� � 1)2 (n� 1) ; (146)

a contradiction. This concludes the proof. �
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